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DETECTION OF CORRELATIONS

BY ERY ARIAS-CASTRO1, SÉBASTIEN BUBECK AND GÁBOR LUGOSI2

University of California, San Diego, Princeton University, and ICREA and
Pompeu Fabra University

We consider the hypothesis testing problem of deciding whether an ob-
served high-dimensional vector has independent normal components or, al-
ternatively, if it has a small subset of correlated components. The correlated
components may have a certain combinatorial structure known to the statis-
tician. We establish upper and lower bounds for the worst-case (minimax)
risk in terms of the size of the correlated subset, the level of correlation, and
the structure of the class of possibly correlated sets. We show that some sim-
ple tests have near-optimal performance in many cases, while the generalized
likelihood ratio test is suboptimal in some important cases.

1. Introduction. In this paper we consider the following statistical problem:
upon observing a high-dimensional vector, one is interested in detecting the pres-
ence of a sparse, possibly structured, correlated subset of components of the vector.
Such problems emerge naturally in numerous scenarios. The setting is closely re-
lated to Gaussian signal detection in Gaussian white noise, on which there is an
extensive literature surveyed in [20]. In image processing, textures are modeled via
Markov random fields [13], so that detecting a textured object hidden in Gaussian
white noise amounts to finding an area in the image where the pixel values are
correlated. Similar situations arise in remote sensing based on a variety of hard-
ware. A related task is the detection of space–time correlations in multivariate time
series, with potential applications to finance [1].

1.1. Setting and notation. We investigate the possibilities and limitations in
problems of detecting correlations in a Gaussian framework. We may formulate
this as a general hypothesis testing problem as follows. An n-dimensional Gaus-
sian vector X = (X1, . . . ,Xn) is observed. Under the null hypothesis H0, the vec-
tor X is standard normal, that is, with zero mean vector and identity covariance
matrix. To describe the alternative hypothesis H1, let C be a class of subsets of
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{1, . . . , n}, each of size k, indexing the possible “contaminated” components. One
wishes to test whether there exists an S ∈ C such that

Cov(Xi,Xj ) =
⎧⎨
⎩

1, i = j ,
ρ, i �= j , with i, j ∈ S,
0, otherwise,

where ρ > 0 is a given parameter. Equivalently, if X = (X1, . . . ,Xn) denotes the
vector of observations, then

H0 :X ∼ N (0, I) vs. H1 :X ∼ N (0,AS) for some S ∈ C ,

where I denotes the n × n identity matrix and

(AS)i,j =
⎧⎨
⎩

1, i = j ,
ρ, i �= j , with i, j ∈ S,
0, otherwise.

(1.1)

We write P0 for the probability under H0 (i.e., the standard normal measure in R
n)

and, for each S ⊂ C , PS for the measure of N (0,AS).
The goal of this paper is to understand for what values of the parameters

(n, k, ρ) reliable testing is possible. This, of course, depends crucially on the size
and structure of the subset class C . We consider the following two prototypical
classes:

• k-intervals. In this example, we consider the class of all intervals of size k of
the form {i, . . . , i + k − 1} modulo n—for aesthetic reasons. (We call such an
interval a k-interval.) This class is the flagship of parametric classes, typical of
the class of objects of interest in signal processing.

• k-sets. In this example, we consider the class of all sets of size k, that is, of the
form {i1, . . . , ik} where the indices are all distinct in {1, . . . , n}. (We call such a
set a k-set.) This class is the flagship of nonparametric classes, and may arise in
multiple comparison situations.

Our theory, however, applies more generally to other classes, such as:

• k-hypercubes. In this example, the variables are indexed by the d-dimensional
lattice, that is, X = (Xi : i ∈ {1, . . . ,m}d), so that the sample size is n = md ,

and we consider the class of all hyper-rectangles of the form×d

s=1{is, . . . , is +
ks − 1}—each interval modulo m—of fixed size

∏d
s=1 ks = k. This class is the

simplest model for objects to be detected in images (mostly d = 2,3 in applica-
tions).

• Perfect matchings. Suppose n is a perfect square with k2 = n. The components
of the observed vector X correspond to edges of the complete bipartite graph
on 2k vertices and each set in C corresponds to the edges of a perfect matching.
Thus, |C| = k!. In this example C has a nontrivial combinatorial structure.
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• Spanning trees. In another example, n = (k+1
2

)
and the components of X cor-

respond to the edges of a complete graph Kk+1 on k + 1 vertices and every
element of C is a spanning tree of Kk+1.

As usual, a test is a binary-valued function f : Rn → {0,1}. If f (X) = 0, then
the test accepts the null hypothesis H0; otherwise H0 is rejected by f . We measure
the performance of a test based on its worst-case risk over the class of interest C ,
formally defined by

Rmax(f ) = P0{f (X) = 1} + max
S∈C

PS{f (X) = 0}.

We will derive upper and lower bounds on the minimax risk

Rmax∗ := inf
f

Rmax(f ).

A standard way of obtaining lower bounds for the minimax risk is by putting a
prior on the class C and obtaining a lower bound on the corresponding Bayesian
risk, which never exceeds the worst-case risk. Because this is true for any prior,
the idea is to find one that is hardest (often called least favorable). Most classes we
consider here are invariant under some group action: k-intervals are invariant under
translation and k-sets are invariant under permutation. Invariance considerations
([21], Section 8.4) lead us to considering the uniform prior on C , giving rise to the
following average risk:

R(f ) = P0{f (X) = 1} + P1{f (X) = 0},
where

P1{f (X) = 0} := 1

N

∑
S∈C

PS{f (X) = 0},

and N := |C| is the cardinality of C . The advantage of considering the average risk
over the worst-case risk is that we know an optimal test for the former, which, by
the Neyman–Pearson fundamental lemma, is the likelihood ratio test, denoted f ∗.
Introducing

ZS = exp
(1

2XT (I − A−1
S )X

)
(1.2)

for all S ∈ C , the likelihood ratio between H0 and H1 may be written as

L(X) = 1

N

∑
S∈C

ZS

E0ZS

,(1.3)

and the optimal test becomes

f ∗(x) = 0 if and only if L(x) ≤ 1.
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Note that E0ZS = √
det(AS). The (average) risk R∗ = R(f ∗) of the optimal test is

called the Bayes risk and it satisfies

R∗ = 1 − 1

2
E0|L(X) − 1| = 1 − 1

2
E0

∣∣∣∣ 1

N

∑
S∈C

ZS

E0ZS

− 1
∣∣∣∣.

Note that, with the only exception of the case of spanning trees, in all examples
mentioned above, the minimax and Bayes risks coincide, that is, R∗ = Rmax∗ . This
is again due to invariance ([21], Section 8.4). (The class of spanning trees is not
sufficiently symmetric for this equality to hold. However, as we will see below,
even in this case, R∗ and Rmax∗ are of the same order of magnitude.)

We focus on the case when n is large and formulate some of the results in
an asymptotic language with n → ∞ though in all cases explicit nonasymptotic
inequalities are available. Of course, such asymptotic statements only make sense
if we define a sequence of integers k = kn and classes C = Cn. This dependency in
n will be left implicit. In this asymptotic setting, we say that reliable detection is
possible (resp., impossible) if Rmax∗ → 0 (resp., → 1) as n → ∞.

REMARK (Covariance structure). In this paper we assume that, under the
alternative hypothesis, the correlation between any two variables in the “con-
taminated” set is the same. While this model has a natural interpretation (see
Lemma 1.1 below), it is clearly a restrictive assumption. This simplification is
convenient in understanding the fundamental limits of detection (i.e., in obtaining
lower bounds on the risk). At the same time, the tests we exhibit also match these
lower bounds under more general correlation structures, such as

(AS)i,j

⎧⎨
⎩

= 1, i = j ,
≥ ρ, i �= j , with i, j ∈ S,
= 0, otherwise.

(1.4)

That said, dealing with more general correlation structures remains an interesting
and important challenge, relevant in the detection of textured objects in textured
background, for example.

1.2. Relation to previous work. The vast majority of the literature on detec-
tion is concerned with the detection of a signal in additive (often Gaussian) noise,
which would correspond here to an alternative where Xi ∼ N (μ,1) for i ∈ S,
where μ > 0 is the (per-coordinate) signal amplitude. We call this the detection-
of-means setting. The literature on this problem is quite comprehensive. Indeed,
the detection of k-intervals and k-hypercubes is treated extensively in a number
of papers; see, for example, [4, 6, 10, 14, 22]. A more general framework that in-
cludes the detection of perfect matchings and spanning trees is investigated in [2],
and the detection of k-sets is studied in [7, 16–19]. In the literature on detection of
parametric objects, the phrase “correlation detection” usually refers to the method
of matched filters, which consists of correlating the observed signal with signals
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of interest. This is not the problem we are interested in here. While the problem
of detection-of-correlations considered here is mathematically more challenging
than the detection-of-means setting, there is a close relationship between the two.
The connection is established by the representation theorem of [8]—stated here
for the case Gaussian random variables.

LEMMA 1.1 ([8]). Let X1, . . . ,Xk be standard normal with Cov(Xi,Xj ) =
ρ for i �= j . Then there are i.i.d. standard normal random variables, denoted
U,U1, . . . ,Uk , such that Xi = √

ρU + √
1 − ρUi for all i.

Thus, given U , the problem becomes that of detecting a subset of variables with
nonzero mean (equal to

√
ρU ) and with a variance equal to 1 − ρ (instead of 1).

This simple observation will be very useful to us later on. When U is random, the
setting is similar to that of detecting a Gaussian process (here equal to

√
ρU for

i ∈ S, and equal to 0 otherwise) in additive Gaussian noise. However, the typical
setting assumes that the Gaussian process affects all parts of the signal [20]. In
our setting, the signal (the subset of correlated variables) will be sparse. Since we
only have one instance of the signal X, the problem cannot be considered from the
perspective of either multivariate statistics or multivariate time series. If indeed we
had multiple copies of X, we could draw inspiration from the literature on the es-
timation of sparse correlation matrices [9, 12], from the literature on multivariate
time series [23], or on other approaches [15]; but this is not the case as we only
observe X. Closer in spirit to our goal of detecting correlations in a single vector
of observation is the paper of [3], which aims at testing whether a Gaussian ran-
dom field is i.i.d. or has some Markov dependency structure. Their setting models
communication networks and is not directly related to ours.

It transpires, therefore, that ρ in the detection-of-correlations setting plays a role
analogous to μ2 in the detection-of-means setting. While this is true to a certain
extent, the picture is quite a bit more subtle. The detection-of-means problem for
parametric classes such as k-intervals is well understood. In such cases, μ2 needs
to be of order at least (1/k) log(n/k) for reliable detection of k-intervals to be
possible. This remains true in the detection-of-correlations setting, and the gen-
eralized likelihood ratio test (GLRT) is near-optimal, just as in the detection-of-
means problem; see, for example, [6].

Our inspiration for considering k-sets comes from the line of research on the
detection of sparse Gaussian mixtures. Very precise results are known on (n, k,μ)

that make detection possible [7, 18, 19] and optimal tests have been developed,
such as the “higher criticism” [16, 17]. In fact, the recent paper [11] deals with
heteroscedastic instances of the detection-of-means problem where the variance of
the anomalous variables may be different from 1. For example, it is known that,
when n = O(k2) [resp., k2 = o(n)], μ2 needs to be of order at least n/k2 [resp.,
log(n)] for reliable detection of k-sets to be possible, and the test based on

∑
i Xi

(resp., maxi Xi) is near-optimal. Though more precise results are available when
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k2 = o(n), these cannot be translated immediately to our case via the representa-
tion theorem of Lemma 1.1. As a bonus, we show that the GLRT is clearly sub-
optimal in some regimes—see Theorem 3.1. Note that in the detection-of-means
problem it is not known whether the GLRT has any power.

1.3. Contribution and content of the paper. This paper contains a collection of
positive and negative results about the detection-of-correlation problem described
above. In Section 2 we derive lower bounds for the Bayes risk. The usual route
of bounding the variance of the likelihood ratio, that is very successful in the
detection-of-means problem, leads essentially nowhere in our case. Instead, we
develop a new approach based on Lemma 1.1. We establish a general lower bound
for the Bayes risk in terms of the moment generating function of the size of the
overlap of two randomly chosen elements of the class C . This quantity also plays
a crucial role in the detection-of-means setting and we are able to use inequalities
worked out in the literature in various examples. In Section 3 we study the per-
formance of some simple and natural tests such as the squared-sum test—based
on (

∑
i Xi)

2, the generalized likelihood ratio test (GLRT) and a goodness-of-fit
(GOF) test, as well as some variants. We show that, in the case of parametric
classes such as k-intervals and k-hypercubes, the GLRT is essentially optimal.
The squared-sum test is shown to be essentially optimal in the case of k-sets when
k2/n is large, while the GLRT is clearly suboptimal in this regime. This is an in-
teresting example where the GLRT fails miserably. When k2/n is small, detection
is only possible when ρ is very close to 1. We show that a simple GOF test is
near-optimal in this case. The analysis of tests such as the squared-sum test and
the GLRT involves handling quadratic forms in X. This is technically more chal-
lenging than the analogous problem for the detection-of-means setting in which
only linear functions of X appear (which are normal random variables).

2. Lower bounds. In this section we investigate lower bounds on the risk,
which are sometimes called information bounds. First we consider the special case
when C contains only one element as this example will serve as a benchmark for
other examples. Then we consider the standard method based on bounding the
variance of the likelihood ratio under the null hypothesis, and show that it leads
nowhere. We then develop a new bound based on Lemma 1.1 that has powerful
implications, leading to fairly sharp bounds in a number of examples.

2.1. The case N = 1. As a warm-up, and to gain insight into the problem,
consider first the simplest case where C contains just one set, say S = {1, . . . , k}.
In this case, the alternative hypothesis is simple and the likelihood ratio (Neyman–
Pearson) test may be expressed by

f ∗(X) = 0 if and only if XT (I − A−1
S )X ≤ log det(AS).
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This follows by the fact that EZS = √
det(AS) which is easy to check by straight-

forward calculation.
The next simple lemma helps understand the behavior of the Bayes risk.

LEMMA 2.1. Under P0, XT (I − A−1
S )X is distributed as

− ρ

1 − ρ
χ2

k−1 + ρ(k − 1)

1 + ρ(k − 1)
χ2

1 ,

and under the alternative PS , it has the same distribution as

−ρχ2
k−1 + ρ(k − 1)χ2

1 ,

where χ2
1 and χ2

k−1 denote independent χ2 random variables with degrees of free-
dom 1 and k − 1, respectively.

PROOF. If Y = (Y1, . . . , Yn) denotes a standard normal vector, then under H0,
the quadratic form XT (I − A−1

S )X is distributed as YT (I − A−1
S )Y , and under the

alternative, it has the distribution of YT (AS − I)Y , since X is distributed as A1/2
S Y .

Now, observe that for any symmetric matrix B with eigenvalues λ1, . . . , λn, the
quadratic form YT BY has distribution

YT BY ∼
n∑

i=1

λiY
2
i .(2.1)

This follows simply by diagonalizing B and using the rotational invariance of the
standard normal distribution.

The lemma follows from this simple representation and the fact that AS has
eigenvalue 1 − ρ with multiplicity k − 1, 1 + ρ(k − 1) with multiplicity 1, and the
eigenvalue 1 with multiplicity n − k. �

Now it is straightforward to analyze the Bayes risk. In particular, we immedi-
ately have the following:

PROPOSITION 2.1. If C is a singleton, limk→∞ R∗ = 0 if and only if ρk → ∞.
Similarly, limk→∞ R∗ = 1 if and only if ρk → 0.

PROOF. Suppose ρk → ∞. It suffices to show that there exists a threshold τk

such that P0{XT (I − A−1
S )X ≥ τk} → 0 and PS{XT (I − A−1

S )X < τk} → 0. We
use Lemma 2.1 and the fact that, by Chebyshev’s inequality,

P
{|χ2

k − k| > tk
√

k
} → 0, k → ∞,

for any sequence tk → ∞, and the fact that

P{t−1
k < χ2

1 < tk} → 1 as k → ∞.
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We choose tk = log k and define τk := −ρk + ρtk
√

k + tk . Then under the null,

P0{XT (I − A−1
S )X ≥ τk} → 0,

and under the alternative, setting ηk := −ρk − ρtk
√

k + ρkt−1
k ,

PS{XT (I − A−1
S )X < ηk} → 0.

We then conclude with the fact that, for k large enough, τk < ηk .
If ρk is bounded, the densities of the test statistic under both hypotheses have a

significant overlap and the risk cannot converge to 0.
The proof of the second statement is similar. �

Clearly, the role of n is immaterial in this specific example as the optimal test
ignores all components whose indices are not in S = {1, . . . , k}.

2.2. The moment method. When the class C contains more than one element,
the likelihood ratio with uniform prior on C is given by (1.3). A common approach
for deriving a lower bound on the Bayes risk is via an upper bound on the variance
of L(X) under the null. Indeed, by the Cauchy–Schwarz inequality,

R∗ = 1 − E0|L(X) − 1|
2

≥ 1 −
√

E0[L(X)2] − 1

2
.

Therefore, an upper bound on E0[L(X)2]−1 = Var0(L(X)) leads to a lower bound
on R∗.

Let � = det(AS) = (1 − ρ)k−1(1 + ρ(k − 1)), which is independent of S ∈ C .
By Fubini’s theorem, we have

E0L(X)2 = 1

�

1

N2

∑
S,S′∈C

E0(ZSZS′),

where ZS is defined in (1.2). We focus on terms of the double sum for which
S = S′.

The following result is a straightforward consequence of the representation (2.1)
and the well-known expression for the moment generating function of χ2

1 .

LEMMA 2.2. Suppose X is a standard normal vector in R
n and M is an n×n

symmetric matrix with eigenvalues strictly less than 1/2. Then

E exp(XT MX) = det(I − 2M)−1/2.

If M has an eigenvalue exceeding 1/2, then E exp(XT MX) = +∞.

Since M := I − A−1
S has eigenvalue −ρ/(1 −ρ) with multiplicity k, eigenvalue

ρ(k − 1)/(1 + ρ(k − 1)) with multiplicity 1, and eigenvalue 0 with multiplicity
n − k, E0[Z2

S] = E0 exp(XT MX) = +∞ unless ρ(k − 1) < 1. The implications
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are rather insubstantial. It only shows that, when ρ(k − 1) ≤ 1 − ε with ε > 0
fixed, the Bayes risk does not tend to zero. As we shall see, this lower bound is
grossly suboptimal, except in the case where C is a singleton (as in Section 2.1) or
does not grow in size with n.

A refinement of this method consists in bounding the first and second truncated
moments of L(X), again under the null hypothesis. For example, this is the ap-
proach used in [11, 18] in the detection-of-means setting for the case of k-sets to
obtain sharp bounds. Unfortunately, in our case this method only provides a useful
bound when the class C is not too large (i.e., has size polynomial in k) while it
does not seem to lead anywhere in the case of k-sets. The computations are quite
involved and we do not provide details here, as we were able to obtain a more pow-
erful general bound that applies to both k-intervals and k-sets. This is presented in
the next section.

2.3. A general lower bound. In this section we derive a general lower bound
for the Bayes risk. As in the detection-of-means problem [2, 4, 5], the relevant
measure of complexity is in terms of the moment generating function of the size
of the overlap of two randomly chosen elements of C . In the detection-of-means
setting, this is a consequence of bounding the variance of the likelihood ratio. We
saw in Section 2.2 that this method is useless here. Instead, we make a connection
between the two problems using Lemma 1.1.

THEOREM 2.1. For any class C and any a > 0,

R∗ ≥ P{|N (0,1)| ≤ a}(1 − 1
2

√
E exp(νaZ) − 1

)
,

where νa := ρa2/(1 + ρ) − 1
2 log(1 − ρ2) and Z = |S ∩ S′|, with S,S′ drawn

independently, uniformly at random from C . In particular, taking a = 1,

R∗ ≥ 0.6 − 0.3
√

E exp(ν1Z) − 1,

where ν1 = ν(ρ) := ρ/(1 + ρ) − 1
2 log(1 − ρ2).

PROOF. The starting point of the proof is Lemma 1.1,3 which enables us to
represent the vector X as

Xi =
{

Ui, if i /∈ S,√
ρU + √

1 − ρUi, if i ∈ S,

where U,U1, . . . ,Un are independent standard normal random variables.
We consider now the alternative H1(u), defined as the alternative H1 given

U = u. Let R(f ), L, f ∗ [resp., Ru(f ), Lu, f ∗
u ] be the risk of a test f , the likeli-

3In fact, we only need to assume that X is as described in distribution.
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hood ratio, and the optimal (likelihood ratio) test, for H0 versus H1 [resp., H0 ver-
sus H1(u)]. For any u ∈ R, Ru(f

∗
u ) ≤ Ru(f

∗), by the optimality of f ∗
u for H0

versus H1(u). Therefore, conditioning on U ,

R∗ = R(f ∗)
= EURU(f ∗)
≥ EURU(f ∗

U)

= 1 − 1
2EUE0|LU(X) − 1|.

[EU is the expectation with respect to U ∼ N (0,1).] Using the fact that
E0|Lu(X) − 1| ≤ 2 for all u, we have

EUE0|LU(X) − 1| ≤ 2P{|U | > a} + P{|U | ≤ a} max
u∈[−a,a] E0|Lu(X) − 1|

and therefore, using the Cauchy–Schwarz inequality,

1 − 1

2
EUE0|LU(X) − 1| ≥ P{|U | ≤ a}

(
1 − 1

2
max

u∈[−a,a] E0|Lu(X) − 1|
)

≥ P{|U | ≤ a}
(

1 − 1

2
max

u∈[−a,a]

√
E0L2

u(X) − 1
)
.

Since

Lu(x) = 1

N

∑
S∈C

1

(1 − ρ)k/2 exp
(
−∑

i∈S

(xi − √
ρu)2

2(1 − ρ)
− ∑

i /∈S

x2
i

2

)
exp

(
n∑

i=1

x2
i

2

)

= 1

N

∑
S∈C

1

(1 − ρ)k/2 exp
(∑

i∈S

x2
i

2
− (xi − √

ρu)2

2(1 − ρ)

)
,

we get

E0L
2
u(X) = 1

N2

∑
S,S′∈C

1

(1 − ρ)k
E0 exp

( ∑
i∈S∩S′

X2
i − (Xi − √

ρu)2

1 − ρ

+ ∑
i∈S
S′

X2
i

2
− (Xi − √

ρu)2

2(1 − ρ)

)

= 1

N2

∑
S,S′∈C

1

(1 − ρ)k(2π)n/2

×
∫ +∞
−∞

exp
( ∑

i∈S∩S′

x2
i

2
− (xi − √

ρu)2

1 − ρ

− ∑
i∈S
S′

(xi − √
ρu)2

2(1 − ρ)
− ∑

i /∈S∪S′

x2
i

2

)
dx.
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It is easy to check that

x2
i

2
− (xi − √

ρu)2

1 − ρ
= ρu2

1 + ρ
− 1 + ρ

2(1 − ρ)

(
xi − 2

√
ρu

1 + ρ

)2

,

which implies

E0L
2
u(X) = 1

N2

∑
S,S′∈C

exp((ρu2/(1 + ρ))|S ∩ S′|)
(1 − ρ)k(2π)n/2

×
∫ +∞
−∞

exp
(
− ∑

i∈S∩S′

1 + ρ

2(1 − ρ)

(
xi − 2

√
ρu

1 + ρ

)2

− ∑
i∈S
S′

(xi − √
ρu)2

2(1 − ρ)
− ∑

i /∈S∪S′

x2
i

2

)
dx

= 1

N2

∑
S,S′∈C

exp((ρu2/(1 + ρ))|S ∩ S′|)
(1 − ρ)k

(
1 − ρ

1 + ρ

)|S∩S′|/2

× (1 − ρ)k−|S∩S′|

≤ 1

N2

∑
S,S′∈C

exp
((

ρu2

1 + ρ
− 1

2
log(1 − ρ2)

)
|S ∩ S′|

)
,

which concludes the proof. �

We now apply Theorem 2.1 to a few examples. The theorem converts the prob-
lem into a purely combinatorial question and [2] offers various estimates for the
moment generating function of Z which we may use for our purposes.

2.3.1. Nonoverlapping sets. Consider first the simplest case when C contains
N disjoint sets of size k.

COROLLARY 2.1. Let C be the class of all sets of size k. If

ν(ρ) ≤ log(N)

k
,

then the Bayes risk satisfies R∗ ≥ 0.3, and R∗ → 1 if ρ � min(1, log(N)/k) or if
(1 − ρ)N2/k → ∞.

PROOF. Clearly, the size Z of the overlap of two randomly chosen elements
of C equals zero with probability 1 − 1/N and k with probability 1/N . Thus,

EeνZ − 1 = (1/N)(eνk − 1) ≤ (1/N)eνk,
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which is bounded by 1 if ν ≤ log(N)/k. The first part then follows from the sec-
ond part of Theorem 2.1. For the second part, we need to find a → ∞ such that
νak − logN → −∞. (Note that in this case the upper bound above tends to zero.)
First assume that ρ � min(1, log(N)/k). In that case, νa ∼ ρa2, so it suffices to
take a → ∞ slowly enough that ρa2 � min(1, log(N)/k). Next assume that b :=
log(1 − ρ) + 2 log(N)/k → ∞. In this case, we have νa ≤ a2 − (1/2) log(1 − ρ),
and we simply choose a → ∞ slowly enough that a2 − b/2 → −∞. �

2.3.2. k-intervals. Consider the class of all k-intervals. The situation is similar
to that of nonoverlapping sets. (In fact, since this class of k-intervals contains [n/k]
nonoverlapping sets of size k, we could immediately deduce a lower bound via
Corollary 2.1.)

COROLLARY 2.2. Let C be the class of all k-intervals. If

ν(ρ) ≤ log(n/(2k))

k
,

then the Bayes risk satisfies R∗ ≥ 0.3, and R∗ → 1 if ρ � min(1, log(n/k)/k) or
if (1 − ρ)(n/k)2/k → ∞.

PROOF. For two k-intervals chosen independently and uniformly at random,

P{|S ∩ S′| = �} = 2

N
∀� = 1, . . . , k.

Thus,

EeνZ − 1 = 2

N

(
k∑

�=1

eν� − k

)
≤ 2k

N
eνk,

and proceed as in the proof of Corollary 2.1, using the fact that N ≤ n. �

2.3.3. k-sets. Consider the class of all sets of size k.

COROLLARY 2.3. Let C be the class of k-sets. If

k2

n
≤ ln 2

exp(ν(ρ)) − 1
,

then the Bayes risk satisfies R∗ ≥ 0.3, and R∗ → 1 if either k2/n → ∞ and
ρk2/n → 0, or (1 − ρ)n2/k4 → ∞.

PROOF. By [2], Proposition 3.4, which uses negative association,

EeνZ ≤
(
(eν − 1)

k

n
+ 1

)k

≤ exp
(
(eν − 1)

k2

n

)
,
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where the last expression is bounded by 2 under the postulated condition, and tends
to 1 if either k2/n → ∞ and νk2/n → 0, or k2/n → 0 and eνk2/n → 0. First
assume that k2/n → ∞ and ρk2/n → 0. By choosing a → ∞ slowly enough that
ρa2k2/n → 0 we ensure that νak

2/n → 0. Next assume that b := log(1 − ρ) −
2 log(k2/n) → ∞. Since νa ≤ a2 − (1/2) log(1 − ρ), it suffices to take a → ∞
slowly enough that a2 − b/2 → −∞ to ensure that eνk2/n → 0. The result then
follows from Theorem 2.1. �

2.3.4. Perfect matchings. Consider now the example of perfect matchings de-
scribed in the Introduction. Here k = √

n. Once again, Theorem 2.1 applies and
implies that testing is impossible for moderate values of ρ.

COROLLARY 2.4. Let C be the class of all perfect matchings. If ρ ≤ 1/2, the
Bayes risk satisfies R∗ ≥ 0.3. Also, R∗ → 1 if ρ → 0.

PROOF. The random variable Z for this class is considered by [2], who prove
that

EeνZ ≤
(
(eν − 1)

1√
n

+ 1
)√

n

≤ eeν−1.

This is bounded by 2 whenever ν ≤ 1 + ln ln 2, which is satisfied whenever ρ ≤
1/2, and tends to 1 if ν → 0. We then apply Theorem 2.1. �

2.3.5. Spanning trees. A similar argument applies for the class of all span-
ning trees of a complete graph with k + 1 vertices [and n = (k + 1)k/2 edges] as
described in the Introduction.

COROLLARY 2.5. Let C be the class of all spanning trees. If ρ ≤ 0.4, then the
Bayes risk satisfies R∗ ≥ 0.15. We also have R∗ → 1 if ρ → 0.

PROOF. It is shown in [2] that

EeνZ ≤
(
(eν − 1)

2

k + 1
+ 1

)k

≤ e2(eν−1),

which is bounded by 13/4 whenever ν ≤ 1 + ln((ln(13/4))/2), which is satisfied
whenever ρ ≤ 0.4, and tends to 1 if ν → 0. We then apply Theorem 2.1. �

3. Some near-optimal tests. We already know that the likelihood ratio test
is optimal in the Bayesian setting. We study here other tests for multiple reasons.
First, the likelihood ratio test seems difficult to compute in most situations. Second,
the likelihood ratio test is heavily dependent on the prior we choose—here, the
uniform distribution on the class. The third, and perhaps most important, reason is
that it is difficult to obtain directly upper bounds for the (worst-case) risk of the
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likelihood ratio test whereas the tests considered below are easier to analyze and
often yield near-optimal performance. Whenever we obtain an upper bound for the
risk of a test that matches the lower bounds developed in the previous section, we
have a full understanding of the limitations and possibilities of detection for the
particular case considered, and this is our main goal in this paper.

We consider the squared-sum test, which corresponds to the ANOVA test in
the detection-of-means setting, the generalized likelihood ratio test (GLRT) and a
goodness-of-fit (GOF) test, as well as some variants. We say that a test is near-
optimal for a certain setting if it achieves the information bound for that setting to
first order.

3.1. The squared-sum test. One of the simplest tests is based on the obser-
vation that the magnitude of the squared-sum (

∑n
i=1 Xi)

2 may be substantially
different under the null and alternative hypotheses due to the higher correlation
under the latter.

Indeed, under P0, (
∑n

i=1 Xi)
2 is distributed as nχ2

1 , while for any S ⊂ {1, . . . , n}
with |S| = k, under PS , (

∑n
i=1 Xi)

2 has the same distribution as (n+ρk(k−1))χ2
1 ;

in fact, under the more general correlation model (1.4), this is a (stochastic) lower
bound. This immediately leads to the following result.

PROPOSITION 3.1. Let C be an arbitrary class of sets of size k and suppose
that ρk2/n → ∞ in (1.4). If tn is such that tn → ∞ but tn = o(ρk2/n), then the test
which rejects the null hypothesis if (

∑n
i=1 Xi)

2 > ntn has a worst-case risk con-
verging to zero. However, any test based on (

∑n
i=1 Xi)

2 is powerless if ρk2/n → 0
in (1.1).

In Corollary 2.3, we saw that reliable detection of k-sets is impossible if k2/n →
∞ and ρk2/n → 0. Here we see that, when ρk2/n → ∞, the squared-sum test is
asymptotically powerful. Hence, the following statement:

The squared-sum test is near-optimal for detecting k-sets in the regime
where k2/n → ∞.

On the other hand, in the regime k2/n → 0, the squared-sum test is powerless
even if ρ = 1. The test does not require knowledge of ρ, though knowing ρ allows
one to choose the threshold tn in an optimal fashion; if ρ is unknown, we simply
choose tn → 0 very slowly.

3.2. The generalized likelihood ratio test. In this section we investigate the
performance of the generalized likelihood ratio test (GLRT). We show that for
parametric classes such as k-intervals, the test is near-optimal. However, for the
nonparametric class of k-sets, the test performs poorly in some regimes.
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By definition, the GLRT rejects for large values of maxS∈C ZS/E0ZS , or simply
maxS∈C ZS when all the sets in the class C are of same size, since E0ZS only
depends on the size of S. Hence, the GLRT is of the form

f (X) = 0 if and only if max
S∈C

XT (I − A−1
S )X ≤ t

for some appropriately chosen t . We immediately notice that the GLRT requires
knowledge of ρ

Our analysis of the GLRT is based on Lemma 2.1, which provides the dis-
tribution of the quadratic form XT (I − A−1

S )X under the null P0 and under the
alternative PS . Under the null we need to control the maximum of such quadratic
forms over S ∈ C , which we do using exponential concentration inequalities for
chi-squared distributions.

3.2.1. The GLRT for k-intervals and other parametric classes. Recalling
Corollary 2.2, when detecting k-intervals all tests are asymptotically powerless
when ρ � min(1, log(n/k)/k). We assume for concreteness that k/ logn → ∞,
for otherwise detecting k-intervals for very small k has more to do with detecting
k-sets. We state a general result that applies for classes of small cardinality.

PROPOSITION 3.2. Consider a class C of sets of size k, with cardinality N →
∞ such that log(N)/k → 0. When ρk/ logN → ∞, the generalized likelihood
ratio test with threshold value t = −ρk + ρ

√
5k logN + 2 logN has worst-case

risk tending to zero.

PROOF. We first bound the probability of Type I error. Indeed, under the null,
by Lemma 2.1 and its proof, we can decompose

XT (I − A−1
S )X = − ρ

1 − ρ
CS + ρ(k − 1)

1 + ρ(k − 1)
DS,

where CS ∼ χ2
k−1 and DS ∼ χ2

1 . Hence,

max
S∈C

XT (I − A−1
S )X ≤ −ρ min

S∈C
CS + max

S∈C
DS.

It is well known that the maximum of N standard normals is bounded by
√

2 logN

with probability tending to 1 as N → ∞. Hence, the second term on the right-hand
side is bounded by 2 logN with high probability. For the first term, we combine
the union bound and Chernoff’s bound to obtain, for all a ≤ 1,

P0

{
min
S∈C

CS < a(k − 1)
}

≤ NP{χ2
k−1 < a(k − 1)}

(3.1)

≤ N exp
(
−(k − 1)

2
(a − 1 − loga)

)
.
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Using the fact that a − 1 − loga ∼ 1
2(1 − a)2 when a → 1, the right-hand side

tends to zero when a = 1 − √
(5/k) logN . We arrive at the conclusion that the

GLRT with threshold t = −ρk + ρ
√

5k logN + 2 logN has probability of Type I
error tending to zero.

Now consider the alternative under PS . By Lemma 2.1 and Chebyshev’s in-
equality,

XT (I − A−1
S )X ≥ −ρk − ρsk

√
k + ρk/sk

with high probability when sk → ∞. We then conclude by the fact that the right-
hand side is larger than t when sk → ∞ sufficiently slowly. �

Comparing the performance of the GLRT in Proposition 3.2 with the lower
bound for k-intervals in Corollary 2.2, we see that the GLRT is near-optimal for
detecting k-intervals. This is actually the case for all parametric classes we know
of.

3.2.2. The GRLT for k-sets and other nonparametric classes. Consider now
the example of the class of all k-sets. Compared to the previous section, the situa-
tion here is different in that N , the size of the class C , is much larger. For example,
for k-sets, N = (n

k

)
, and therefore log(N)/k → ∞ with n → ∞. The equivalent of

Proposition 3.2 for this regime is the following:

PROPOSITION 3.3. Consider a class C of sets of size k, with cardinality
N → ∞ such that log(N)/k → ∞. When η := (1 − ρ)N2/k(logN)/k → 0, the
generalized likelihood ratio test with threshold value t = −(logN)/

√
η has worst-

case risk tending to zero.

PROOF. We follow the proof of Proposition 3.2. The only difference is in (3.1),
where we now need a → 0 and that right-hand side tends to zero when loga +
2(logN)/k → −∞. Choose a = N−2/k√η, obtaining that, with high probability,

max
S∈C

XT (I − A−1
S )X ≤ − ρ

1 − ρ
N−2/kk

√
η + 2 logN.(3.2)

As before, with high probability under PS ,

XT (I − A−1
S )X ≥ −ρk,(3.3)

so we only need to check that the threshold t is larger than the right-hand side
in (3.2) and smaller than the right-hand side in (3.3), which is the case by the
assumptions we made. �

Notice that in Proposition 3.3 the condition on ρ implies that ρ → 1, which
is much stronger than what the squared-sum test requires when k2/n → ∞. For
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k-sets, N = (n
k

)
—so that logN = k log(n/k) + O(k)—and the requirement is that

(1 − ρ)(n/k)2 log(n/k) → 0, which is substantially stronger than what the lower
bound obtained in Corollary 2.3 requires. Moreover, if we restrict ρ to be bounded
away from 1, then the GLRT may be powerless.

THEOREM 3.1. Let C be the class of all k-sets. If ρ < 0.6 and k = o(n0.7), the
GLRT has a Bayes risk bounded away from zero.

The proof is in the Appendix.
In view of Theorem 3.1, the GLRT is clearly suboptimal when in the situation

stated there, and compares very poorly with the squared-sum test, which is asymp-
totically powerful if ρk2/n → ∞ as seen in Proposition 3.1. We do not know of
any other situation where the GLRT fails so miserably.

3.3. A localized squared-sum test. While the GLRT is near-optimal for de-
tecting objects from a parametric class such as k-intervals, it needs knowledge
of ρ. However, a simple modification solves this drawback. Indeed, consider the
following “local” squared-sum test:

f (X) = 0 if and only if max
S∈C

(∑
i∈S

Xi

)2

≤ t

for some appropriate threshold t .

PROPOSITION 3.4. Consider a class C of sets of size k, with cardinality N →
∞ such that log(N)/k → 0. When ρ � log(N)/k in (1.4), the local squared-sum
test with threshold t = 2k logN has worst-case risk tending to zero.

PROOF. The proof is quite straightforward. Indeed, under the null, for any S

of size k we have
∑

i∈S Xi ∼ N (0, k) so that

max
S∈C

(∑
i∈S

Xi

)2

≤ t

with probability tending to 1. Under an alternative (1.4), S denoting the anomalous
set of variables, we have

P

((∑
i∈S

Xi

)2

≥ t

)
≥ P

((
k + k(k − 1)ρ

)
χ2

1 ≥ t
) → 1,

when ρ � log(N)/k. �

Specializing this result to the case of k-intervals leads to the following statement
(which ignores logarithmic factors):
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The localized squared-sum test is near-optimal for detecting k-intervals
in the regime where log(n)/k → 0.

When k is unknown. We might only know that some interval is anomalous,
without knowing the size of that interval. In that case, multiple testing at each
k using the local squared-sum test yields adaptivity. Computationally, this may be
done effectively by computing sums in a multiscale fashion as advocated in [6]. In
fact, here it is enough to compute the sums over all dyadic intervals—since each
interval S contains a dyadic interval of length at least |S|/4—and this can be done
in 3n flops in a recursive fashion.

3.4. A goodness-of-fit test. By now, the parametric case is essentially solved,
with the local squared-sum test being not only near-optimal but also computable
in polynomial time (in n and k) for the case of k-intervals, for example. In the
nonparametric case, so far, the story is not complete. We focus on the class of all
k-sets. There we know that the squared-sum test is near-optimal if k2/n → ∞.
If k2/n → 0, it has no power, and we only know that the GLRT works when
(1 − ρ)(n/k)2 log(n/k) → 0, which does not match the rate obtained in Corol-
lary 2.3. Worse than that, it is not clear whether computing the GLRT is possible
in time polynomial in (n, k). We now show that a simple goodness-of-fit (GOF)
test performs (almost) as desired.

The basic idea is the following. Let Hi = 
−1(Xi), where 
 is the standard
normal distribution function. Under the null, the Hi’s are i.i.d. uniform in (0,1).
Under an alternative with anomalous set denoted by S, the Xi, i ∈ S are closer
together, especially since we place ourselves in the regime where ρ → 1. More
precisely, we have the following.

LEMMA 3.1. Suppose X1, . . . ,Xk are zero-mean, unit-variance random vari-
ables satisfying Cov(Xi,Xj ) ≥ ρ > 0, for all i �= j . Let X denote their average.
Then for any t > 0,

P
{
#{i : |Xi − X| > t} ≥ k/2

} ≤ 2(1 − ρ)

t2 .

PROOF. Let � := ∑
i �=j Cov(Xi,Xj ) ≥ k(k − 1)ρ. Elementary calculations

show that

E

[
1

k

∑
i

(Xi − X)2
]

= 1 − 1

k
− �

k2 ≤ (1 − 1/k)(1 − ρ) ≤ 1 − ρ.

By Markov’s inequality, we then have

P

{
1

k

∑
i

(Xi − X)2 > t2/2
}

≤ 2(1 − ρ)

t2 .
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The statement follows from observing that

#{i : |Xi − X| > t} ≥ k/2 ⇒ 1

k

∑
i

(Xi − X)2 > t2/2.
�

The idea, therefore, is detecting unusually high concentrations of Hi ’s, which is
a form of GOF test for the uniform distribution. Under a general correlation model
as in (1.4), with Lemma 3.1 we see that the concentration will happen over an
interval of length slightly larger than

√
1 − ρ. This is apparent from Lemma 1.1

under the simple correlation model (1.1).
Choose an integer m such that m � (n/k2) log(n/k2) and partition the interval

[0,1] into m bins of length 1/m, denoted Is, s = 1, . . . ,m. Let Bs = #{i :Hi ∈
Is} be the bin counts—thus, we are computing a histogram. Then consider the
following GOF test:

f (X) = 0 if and only if max
s=1,...,m

Bs ≤ t,

where t is some threshold.

PROPOSITION 3.5. Consider the class C of all k-sets in the case where
k2/n → 0 and k/ logn → ∞. In the GOF test above, choose m such that
(n/k2) logn � m � n/ logn. When (1 − ρ)1/2 � 1/m in (1.4), the resulting test
with threshold t = n/m + √

3n log(m)/m has worst-case risk tending to zero.

PROOF. Bernstein’s inequality, applied to the binomial distribution, gives that

P0
{
Bs > n/m + b

√
n/m

} ≤ exp
[−(b2/2)/

(
1 + (b/3)

√
m/n

)]
.

This and the union bound imply that, indeed,

P0

{
max

s
Bs > t

}
→ 0.

Consider now an alternative of the form (1.4), with S denoting the anomalous
set. Let

I := {i ∈ S : |Xi − XS | ≤ 1/m}, XS := 1

k

∑
i∈S

Xi.

Though the set I is random, by Lemma 3.1 and the fact that (1 − ρ)1/2 � 1/m,
we have that

PS{|I | ≥ k/2} → 1.

Define the event Q := {−a ≤ XS ≤ a} for some a > 0. Note that, since the vari-
ance of XS is bounded by 1, P(Qc) ≤ 2(1−
(a)). Define H̃S = 
−1(XS). On Q,
using a simple Taylor expansion, we have

|Hi − H̃S | ≤ |Xi − XS |
φ(a + 1/m)

≤ ea2
/m ∀i ∈ I,
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where φ denotes the standard normal density function and a is taken sufficiently
large. Therefore, when |I | ≥ k/2 and Q hold, at least k/2 of the anomalous Hi’s
fall in an interval of length at most 2ea2

/m. Since such an interval is covered by
at most 2ea2

bins, by the pigeonhole principle, there is a bin that contains ke−a2
/4

anomalous Hi ’s. By Bernstein’s inequality, the same bin will also contain at least
(n − k)/m − √

3n log(m)/m nonanomalous Hi’s (with high probability), so in

total this bin will contain n/m − k/m − √
3n log(m)/m + ke−a2

/4 points. By our
choice of m, k � √

n log(m)/m, so it suffices to choose a → ∞ slowly enough
that ke−a2 � √

n log(m)/m still. Then, with high probability, there is a bin with
more than t points. �

Ignoring logarithmic factors, we are now able to state the following:

The GOF test is near-optimal for detecting k-sets in the regime where
k2/n → 0 and k/ logn → ∞.

When k/ logn → 0, things are somewhat different. There, the GOF test requires
that (1 − ρ)n2k/(k−1) → 0, which is still close to optimal when k → ∞, but far
from optimal when k is bounded (e.g., when k = 2, the exponent is 4 instead of 2).
Indeed, when k/ logn → 0, m needs to be chosen larger than n, and Bernstein’s
inequality is not accurate. Instead, we use the simple bound

P
(
Bin(n,p) ≥ �

) ≤ 2
(np)�

�! when np ≤ 1/2.

Note that Bennett’s inequality would also do. (The analysis also requires some re-
finement showing that, with probability tending to 1 under the alternative, one cell
contains at least k points.) Note that in the remaining case, k = O(1), the GLRT is
optimal up to a logarithmic factor, since it only requires that (1 − ρ)n2 logn → 0,
as seen in Section 3.2.2. We do not know whether a comparable performance can
be achieved by a test that does not have access to ρ.

When k is unknown. In essence, we are trying to detect an interval with a higher
mean in a Poisson count setting. As before, it is enough to look at dyadic inter-
vals of all sizes, which can be done efficiently as explained earlier, following the
multiscale ideas in [6].

APPENDIX: PROOF OF THEOREM 3.1

The proof is divided into three steps. The first step formalizes the fact that we
want to prove that (under H1), the contaminated set has no influence (with high
probability) on the GLRT statistic. The second step exhibits a useful high proba-
bility event. Finally, in the third step we show that on this high probability event,
the contaminated set has no influence on the GLRT.
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It can easily be seen that for every S of size k,

XT (I − A−1
S )X = ρ

(1 + ρ(k − 1))(1 − ρ)

( ∑
i,j∈S,i �=j

XiXj − ρ(k − 1)
∑
i∈S

X2
i

)
.

Introduce the function g : Rk → R defined by

g(u) = ∑
i �=j

uiuj − ρ(k − 1)
∑
i

u2
i =

(
n∑

i=1

ui

)2

− (
1 + ρ(k − 1)

) n∑
i=1

u2
i

for u = (u1, . . . , uk) ∈ R
k . Denoting, for x ∈ R

n and S ⊂ {1, . . . , n}, the vector of
components of x belonging to S by x|S , we may write the GLRT as

f (x) = 0 if and only if max
S∈C

g(x|S) < t.

Note that by the symmetry of C and the test,

R(f ) = P0

{
max
S∈C

g(X|S) ≥ t
}

+ 1

N

∑
S′⊂C

PS′
{
max
S∈C

g(X|S) < t
}

= P0

{
max
S∈C

g(X|S) ≥ t
}

+ P{1,...,k}
{
max
S∈C

g(X|S) < t
}
.

Given X ∼ N (0, I), define the coupling X′ as follows: Xi = X′
i for i /∈ {1, . . . , k},

and Xi,X
′
i are independent for i ∈ {1, . . . , k}. Note that X′ ∼ N (0,A{1,...,k}).

Then, no matter what the threshold t is, we have

R(f ) = P

{
max
S∈C

g(X|S) ≥ t
}

+ P

{
max
S∈C

g(X′|S) < t
}

≥ P

{
max
S∈C

g(X|S) ≥ max
S∈C

g(X′|S)
}
.

In the following we show that, with probability tending to 1, we have

max
S∈C

g(X|S) = max
S∈C

g(X′|S),

which then implies that the GLRT is asymptotically powerless.
By Lemma 1.1, there exist U,U1, . . . ,Uk independent standard normal such

that for all i ∈ {1, . . . , k},
X′

i = √
ρU + √

1 − ρUi.

Using the fact that maxi=1,...,k |Ui | ≤ √
2 log k with high probability, with proba-

bility tending to 1, we have

X′
1, . . . ,X

′
k ∈ [−ζ, ζ ],

where ζ := √
2(1 − ρ) log(ωkk) and ωk is any sequence such that ωk → ∞.

Fix γ > 1 to be determined later and define p = P{ζ ≤ U ≤ γ ζ } where U ∼
N (0,1). By the fact that X1, . . . ,Xn are i.i.d. standard normal, Z := #{i : ζ ≤ Xi ≤
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γ ζ } ∼ Bin(n,p), so that P{Z ≥ k} → 1 if k = o(np). When γ is bounded away
from 1, this is the case if

√
log kk2−ρ = o(n).

In conclusion, we proved that the event

� = {
X′

1, . . . ,X
′
k ∈ (−ζ, ζ ),∃α1, . . . , αk, β1, . . . , βk ∈ {1, . . . , n} distinct:

Xα1, . . . ,Xαk
,−Xβ1, . . . ,−Xβk

∈ (ζ, γ ζ )
}

has a probability that tends to 1 if
√

log kk2−ρ = o(n) as long as γ is bounded
away from 1.

We specify γ = 1/
√

ρ + ( 1
k−1 + ρ)2. Note that, as required, γ exceeds and is

bounded away from 1. Assume that we are on the event �. First note that

g(Xα1, . . . ,Xαk
) ≥ k(k − 1)ζ 2 − ρ(k − 1)kγ 2ζ 2

(A.1)
= k(k − 1)ζ 2(1 − ργ 2),

and the same holds for g(Xβ1, . . . ,Xβk
).

Let S ∈ C be such that S ∩ {1, . . . , k} �= ∅. We want to show that there exists S′
such that g(X|S′) ≥ g(X′|S). This entails that maxS∈C g(X|S) ≥ maxS∈C g(X′|S),
since for S ∩ {1, . . . , k} = ∅ we have g(X|S) = g(X′|S). First remark that we can
assume that (∑

i∈S

X′
i

)2

≥ ζ(k − 1)

√
1 − ργ 2,(A.2)

since otherwise by (A.1) we can simply take S′ = {α1, . . . , αk}. To simplify nota-
tion, we may assume that 1 ∈ S ∩ {1, . . . , k}. By definition of � and the fact that S

contains at least one index in {1, . . . , k}, there exist u, v ∈ {1, . . . , k} such that Xαu

and Xβv do not appear in X′|S . We want to show that by replacing X′
1 by either

Xαu or Xβv , in X′|S , one increases the value of g. More precisely, we want to show
that

max
(
g
(
Xαu,X

′|S\{1}
)
, g

(
Xβv,X

′|S\{1}
)) ≥ g(X′|S).

Then by induction one can show the existence of the S′ described above.
Note that, for x ∈ R

k and y ∈ R,

g(x1, . . . , xj−1, y, xj+1, . . . , xk) − g(x)

= 2(y − xj )
∑
i �=j

xi − ρ(k − 1)(y2 − x2
j )

= (y − xj )

(
2

k∑
i=1

xi − (
2 + ρ(k − 1)

)
xj − ρ(k − 1)y

)
.

Consider the case where
∑

i∈S X′
i > 0 (the case

∑
i∈S X′

i < 0 can be dealt with sim-
ilarly). Since Xαu ≥ X′

1, it suffices to show that 2
∑

i∈S X′
i ≥ (2 + ρ(k − 1))X′

1 +
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ρ(k − 1)Xαu , which follows from

(
2 + ρ(k − 1)

)
X′

1 + ρ(k − 1)Xαu ≤ (k − 1)ζγ

(
2

k − 1
+ 2ρ

)

= 2(k − 1)ζ

√
1 − ργ 2

≤ 2
∑
i∈S

Xi.

This concludes the proof.
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