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ON IMAGE SEGMENTATION USING INFORMATION
THEORETIC CRITERIA
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University of California at Davis

Image segmentation is a long-studied and important problem in image
processing. Different solutions have been proposed, many of which follow
the information theoretic paradigm. While these information theoretic seg-
mentation methods often produce excellent empirical results, their theoret-
ical properties are still largely unknown. The main goal of this paper is to
conduct a rigorous theoretical study into the statistical consistency properties
of such methods. To be more specific, this paper investigates if these methods
can accurately recover the true number of segments together with their true
boundaries in the image as the number of pixels tends to infinity. Our theoret-
ical results show that both the Bayesian information criterion (BIC) and the
minimum description length (MDL) principle can be applied to derive sta-
tistically consistent segmentation methods, while the same is not true for the
Akaike information criterion (AIC). Numerical experiments were conducted
to illustrate and support our theoretical findings.

1. Introduction. Image segmentation aims to partition an image into a set of
nonoverlapping regions so that pixels within the same region are homogeneous
with respect to some characteristic (e.g., gray value or roughness), while pixels
from adjacent regions are significantly different with respect to the same charac-
teristic. It is a fundamental problem in image processing, as very often it is nec-
essary to first group the highly localized pixels into more global and meaningful
segmented objects to facilitate the extraction of useful information. In this paper,
gray value is the image characteristic that forms the basis for segmentation. For
general introductions to image segmentation, see, for example, Glasbey and Hor-
gan (1995) and Haralick and Shapiro (1992).

A grayscale image can be seen as a two-dimensional (2D) surface living in
a three-dimensional space. Therefore one popular approach to segmenting it is
to model it by a 2D piecewise constant function, with the set of all discontinu-
ity points defining the region boundaries of the image. Examples of segmenta-
tion methods that follow this approach include Kanungo et al. (1995), LaValle
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and Hutchinson (1995), Leclerc (1989), Lee (1998, 2000), Luo and Khoshgoftaar
(2006) and Wang, Ju and Wang (2009). As to be demonstrated below, segment-
ing images with this approach can be recast as a model selection problem, and one
crucial issue to its success is the choice of the model complexity, which is equaiva-
lent to choosing the number of regions together with the shapes of their bound-
aries. Common information theoretic methods such as the Akaike information
criterion (AIC) [Akaike (1974)], the Bayesian information criterion (BIC), also
known as the Schwarz information criterion [Schwarz (1978)] and the minimum
description length (MDL) principle [Rissanen (1989, 2007)] have been adopted to
solve this problem; for example, see Kanungo et al. (1995), Leclerc (1989), Lee
(1998, 2000), Luo and Khoshgoftaar (2006), Murtagh, Raftery and Starck (2005),
Stanford and Raftery (2002), Zhang and Modestino (1990) and Zhu and Yuille
(1996). While many of these methods produce excellent practical results, their the-
oretical properties are still largely unknown. The goal of this paper is to conduct a
systematic study on the theoretical properties of these methods, with the hope of
enhancing our understanding of their performances, at both theoretical and empir-
ical levels. To the best of our knowledge, this is the first time that such a rigorous
theoretical study is being performed for image segmentation methods.

The rest of this paper is organized as follows. Background material is presented
in Section 2. Section 3 presents our main theoretical results. These theoretical re-
sults are empirically verified by numerical experiments in Section 4. Concluding
remarks are offered in Section 6, while technical details are delayed to the Ap-
pendix.

2. Background. Denote by f the true image and �n = {x1, . . . , xn} the set of
n grid points at which a noisy version of f is sampled. Without loss of generality it
is assumed that the domain of f is [0,1]2. As mentioned before, f is modeled as a
2D piecewise constant function as follows. Write fi = f (xi) and f = (f1, . . . , fn)

′.
Let the number of regions (or pieces or segments) in f be m, and denote the gray
value and domain of the νth region as μν and Rν , respectively. Then we have, for
i = 1, . . . , n,

fi = μν if xi ∈ Rν,(1)
m⋃

ν=1

Rν = [0,1]2 and Rν ∩ Rν′ = ∅ if ν �= ν′.(2)

In the sequel we write R = (R1, . . . ,Rm) and μ = (μ1, . . . ,μm)′. Thus R defines
a segmentation of f . The observed noisy version y = (y1, . . . , yn)

′ of f is modeled
as

yi = fi + εi, i = 1, . . . , n,(3)

where the noise εi’s are independent, identically distributed random variables with
zero mean and variance σ 2. Given y, the goal is then to estimate f, which is equiv-
alent to estimating m, R and μ.
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For simplicity, denote by θm = (m,R,μ)′ a generic parameter vector. Estimat-
ing f is hence equivalent to the model selection problem in which each model is
determined by the parameter θm. Let RSSm = ∑

i(yi − f̂i)
2 be the corresponding

residual sum of squares. Notice that different values of m would lead to a different
number of parameters in θm. Also notice that θm cannot be estimated by minimiz-
ing RSSm, as RSSm can be made arbitrarily small as m tends to n. One way to
resolve this issue is to add a penalty term to RSSm to suitably penalize the com-
plexity of θm. As alluded to before, information theoretic model selection methods
like AIC, BIC and MDL can be used to derive such a penalty. We first focus on the
MDL criterion derived by Lee (2000),

MDL(m,R) = m lnn + ln 3

2

m∑
ν=1

bν + 1

2

m∑
ν=1

lnaν + n

2
ln

(
RSSm

n

)
,(4)

where each region Rν enters through its “area” aν (in terms of number of pix-
els) and “perimeter” bν (in terms of number of pixel edges). These quantities are
formally defined as

aν = #(�n ∩ Rν) and bν = #(�n ∩ ∂Rν)

with #A and ∂A indicating, respectively, cardinality and boundary of the set A.
Observe that, once the estimates m̂ and R̂ are specified, μ can be uniquely esti-
mated by

μ̂ν = 1

âν

∑
i∈R̂ν

yi for all ν,(5)

and therefore μ is dropped in the argument list of MDL(m,R). To sum up, the
MDL-based method of Lee (2000) estimates m and R as the joint minimizer of (4),
which is equivalent to saying

(m̂, R̂) = arg min
m≤M,R

2

n
MDL(m,R),(6)

and μ̂ is given by (5). Practical algorithms, developed, for example, by Lee (2000)
and Zhu and Yuille (1996), can be used to solve (6).

One can also use AIC and BIC to derive penalty terms to add to RSSm, and the
resulting penalties will be proportional to the number of “free” (and independent)
parameters in the fitted image f̂ [e.g., Murtagh, Raftery and Starck (2005), Stanford
and Raftery (2002) and Zhang and Modestino (1990)]. This leads to the following
question: what would be a meaningful way of counting the number of free pa-
rameters in f̂? There seems to be no unique answer, but we shall follow Murtagh,
Raftery and Starck (2005) and Stanford and Raftery (2002) and model each true
pixel value fi with a mixture distribution of m Gaussians, where the mean, vari-
ance and mixing probability for the νth Gaussian are μν , σ 2 and aν/

∑
ν aν , re-

spectively. As there are m of the μν’s, one σ 2 and m− 1 free mixing probabilities,
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the total number of free parameters is 2m. With this, the corresponding AIC and
BIC segmentation criteria are

AIC(m,R) = 2m + n

2
ln

(
RSSm

n

)

and

BIC(m,R) = m lnn + n

2
ln

(
RSSm

n

)
,

respectively. The AIC and BIC estimates for (m,R) are then given by

(m̂, R̂) = arg min
m≤M,R

2

n
AIC(m,R)(7)

and

(m̂, R̂) = arg min
m≤M,R

2

n
BIC(m,R),(8)

respectively. Observe that for both AIC(m,R) and BIC(m,R), the region bound-
aries R are not explicitly penalized; they enter the criteria only through RSSm.
Also observe that the penalty term of AIC(m,R) is independent of n.

Before we proceed further, it is worthwhile to point out a major difference be-
tween the variable selection problem in linear regression models and the image
segmentation problem. In variable selection for linear regression, the goal is to se-
lect the significant predictors and remove the insignificant ones from the model.
In other words, some “data” are not used in estimating the model parameters. For
image segmentation, the goal is to group homogeneous pixels together to form seg-
mented objects, and in this process all data (i.e., all pixel values) are always used
to estimate the model parameters. Given this major difference, one can see that
variable selection in linear regression and image segmentation are two different
problems, and hence existing theories from classical linear regression modeling
cannot be directly applied to image segmentation.

3. Main results. This section presents our main theoretical findings. Briefly,
both the BIC and MDL segmentation solutions are statistically consistent in a well-
defined sense, while the AIC solution is not.

The consistency of the BIC and MDL solutions are investigated at two levels.
First, we will establish the strong consistency of R̂ if the true number of regions
m = m0 can be assumed known. Second, if the true value m0 is unknown and if
the noise is restricted to be Gaussian, we will establish the weak consistency of m̂

and R̂. While the existence of a true underlying model was not essential for the
practical use of (6)–(8), we will, in this section, assume that the image of interest
is indeed of the form (1)–(2) and shall denote the associated true gray values and
segmentation by μ0 = (μ0

1, . . . ,μ
0
m0) and R0 = (R0

1, . . . ,R0
m0), respectively.
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In order to enable large sample results, we impose further technical condi-
tions. First, to ensure sufficient separation of the regions and to avoid sets of zero
(Lebesgue) measure in the decomposition of [0,1]2, it will be assumed throughout
that each R0

ν contains an open ball of suitably small radius: for all ν = 1, . . . ,m0,
there is zν ∈ R0

ν and ε > 0 such that

Bε(zν) = {z ∈ [0,1]2:‖z − zν‖ < ε} ⊂ R0
ν

with ‖ · ‖ denoting Euclidean norm on R
2. All candidate segmentations R from

which the estimate R̂ is produced in any of (6) to (8) are restricted to satisfy the
same condition.

Next, we assume that the set of grid points �n is dense in [0,1]2 in the sense
that, for all ε > 0, there is an n0 ≥ 1 such that

[0,1]2 ⊂
n⋃

i=1

Bε(xi) for all n ≥ n0.(9)

Last, we assume further that the number of grid points in any given region grows
with the sample size (at the same linear rate) and therefore require that aν = 
nαν�
with

∑
ν αν = 1, where 
·� denotes the integer part.

3.1. Consistency of MDL segmentation. We first consider the MDL seg-
mentation solution (6). Suppose for now that m = m0 is known, and let R̂ =
arg minR

2
n

MDL(m0,R). In this case, we have the following strong consistency
result.

THEOREM 3.1. Let {yi} be the sequence of random variables specified in (3),
and assume that m = m0 is known. Then

R̂ → R0 with probability one as n → ∞.

The almost sure convergence in the theorem is defined as follows. Denote by ≺
the lexicographical order in R

2, that is, a = (a1, a2) ≺ b = (b1, b2) if and only if
either a1 < b1 or a1 = b1 and a2 < b2. We assume throughout that any segmen-
tation R = (R1, . . . ,Rm) satisfies R1 ≺ · · · ≺ Rm, where Rν ≺ Rκ if and only if
there is zν ∈ Rν such that zν ≺ zκ for all zκ ∈ Rκ . For two sets A and B , let now
A
B be their symmetric difference. Denote by λ2 the Lebesgue measure in R

2

restricted to [0,1]2 and set R̂
R0 = ⋃m0

ν=1 R̂ν
R0
ν . Then, we mean by R̂ → R0

with probability one that P(lim supn{λ2(R̂
R0) = 0}) = 1. In other words, the
Lebesgue measure of the random sets R̂
R0 is zero in the limit with probability
one.

The proofs of Theorems 3.1 and 3.2 below can be found in the Appendix.
Of course, in practice, the assumption that m0 is known is unrealistic. Establish-

ing consistency in the general case of unknown m0 is, however, substantially more
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difficult. Even in the simpler univariate change-point frameworks, where indepen-
dent variables are grouped into segments of identical distributions, only special
cases such as normal distributions and exponential families have been thoroughly
investigated; see, for example, Lee (1997) and Yao (1988). The reason for this
is that sharp tail estimates for maxima of certain squared Gaussian processes are
needed which do not hold for distributions with thicker tails. See Lemma A.6 be-
low for more details. Nevertheless, if we assume the noise is normally distributed,
we are able to establish the following consistency result.

THEOREM 3.2. Let {yi} be the sequence of random variables specified in (3)
and assume that the {εi} are normally distributed. Then

m̂
P→ m0 as n → ∞

and

R̂
P→ R0 as n → ∞,

even if the true value m = m0 is unknown. Here
P→ indicates convergence in prob-

ability.

The second convergence in probability is defined as follows. Let now R̂
R0 =⋃m
ν=1 R0

ν
R̂ν , where m = min{m,m0}. Then, in analogy to the almost sure conver-

gence above, we use the terminology R̂
P→ R0 to mean that limn P ({λ2(R0
R̂) =

0}) = 1. In words, Theorem 3.2 asserts that, if the noise εi is normal, the MDL
method is capable of recovering the true number of regions as well as the region
boundaries as the number of pixels in the image goes to infinity.

3.2. Consistency of BIC segmentation. The results stated in Theorems 3.1 and
3.2 also hold for the BIC solution given by (8). This statement can be proofed
by modifying the proofs for Theorems 3.1 and 3.2. Details can be found in the
Appendix.

3.3. AIC segmentation is inconsistent. While being consistent in the special
case of known m = m0, the AIC solution given by (7) is, however, inconsistent in
the general case. The main reason is that its penalty term, m, is independent of the
sample size n and does not properly adjust for the model complexity. Some details
are provided in the Appendix.

4. Simulation results. Two sets of simulation experiments were conducted to
empirically verify the theoretical results presented above.
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4.1. Experiment 1. Three test images f were used in the first simulation ex-
periment, and they are displayed in the top row of Figure 1. Recall that the area and
perimeter of each region appear explicitly in the MDL penalty (4), but not the AIC
nor the BIC penalty. To assess the effects of having or not having such quantities
as penalty, the three test images were constructed to have different region areas,
perimeters and area-to-perimeter ratios. Test image 1 has seven square regions of
two different sizes, with true gray values for some of the adjacent regions being
very close. Test image 2 contains eight rectangular regions of same size, with true
gray values increasing from the left to the right. Test image 3 contains four regions
of different sizes and shapes.

Noisy images were generated by adding Gaussian white noise with variance σ 2

to each of the test images. Three signal-to-noise ratios (snrs) were used: 1, 2 and 4,
where snr is defined as

√
var(f )/σ . Some typical noisy images are also displayed

in Figure 1. Note that for snr = 1 some of the region boundaries are hardly visible.
Four image sizes were used: n = 642,1282, 2562 and 5122, and the number of
repetitions for each configuration was 500.

For each noisy image, the AIC, BIC and MDL segmentation solutions (6) to (8)
were obtained using the merging algorithm in Lee (2000). To verify the result that

m̂
P→ m0 (Theorem 3.2), the number of regions in each segmentation solution was

counted and the corresponding frequencies are tabulated in Tables 1 to 3. From
these tables the following empirical conclusions can be made:

• AIC had a strong tendency to over-estimate m0.
• The performance of BIC improved as n increased, and occasionally it over-

estimated m0.
• For reasonably large snr and n, MDL always correctly estimated m0.
• For small snr and n, MDL under-estimated m0. As mentioned before, for such

cases some of the region boundaries are hardly visible (see Figure 1).
• When comparing the BIC and MDL results, especially from Table 3, it seems

that having the region area and perimeter in the penalty improved the perfor-
mance.

The other major theoretical result that we want to verify is that R̂ converges
to R0 (Theorems 3.1 and 3.2). However, it is not as straightforward as verifying

m̂
P→ m0, as there is no universally agreed distance metric for measuring the dis-

tance between two image partitions R̂ and R0 [although some related work can be
found in Baddeley (1992)]. To circumvent this issue, we use a somewhat stricter
metric, the mean-squared-error (MSE), defined as MSE(f̂ ) = ∑n

i=1(fi − f̂i)
2. The

reason we see MSE(f̂ ) as a stricter metric is that, given that m0 is correctly esti-
mated, it is extremely likely that R̂ = R0 when MSE(f̂ ) = 0, but not vice versa.

The averaged values of MSE(f̂ ) and {MSE(f̂ )}0.5/σ are listed in Table 4,
where σ 2 is the true noise variance. As expected, the larger the image size n, the
smaller these values are. Also, the corresponding figures from BIC and MDL are
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FIG. 1. The true test images used in the first numerical experiment (first row), and typical noisy
images generated from snr = 1 (second row), 2 (third row) and 4 (last row). All images are plotted
with size 256 × 256.
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TABLE 1
Frequencies of m̂ estimated from the noisy images generated from test image 1 for different

combinations of snr and n. The value of the true m0 is 7

n = 642 n = 1282 n = 2562 n = 5122

snr m̂ AIC BIC MDL AIC BIC MDL AIC BIC MDL AIC BIC MDL

1 3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 101 0 0 0 0 0 0 0 0 0
6 0 0 237 0 0 0 0 0 0 0 0 0
7 0 485 162 3 495 500 6 499 500 0 500 500
8 18 15 0 10 5 0 15 1 0 14 0 0
9 59 0 0 59 0 0 52 0 0 45 0 0

10+ 423 0 0 428 0 0 427 0 0 441 0 0

2 3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 2 489 500 2 496 500 2 499 500 1 500 500
8 22 11 0 25 4 0 24 1 0 16 0 0
9 63 0 0 79 0 0 65 0 0 52 0 0

10+ 413 0 0 394 0 0 409 0 0 431 0 0

4 3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 3 487 500 0 498 500 3 499 500 0 500 500
8 19 12 0 17 2 0 9 1 0 1 0 0
9 64 0 0 54 0 0 31 0 0 10 0 0

10+ 414 1 0 429 0 0 457 0 0 489 0 0

substantially smaller than those from AIC for large n. For small n and snr, MDL
produced poor MSE(f̂ ) values. It is due to the fact that MDL under-estimates m0.

4.2. Experiment 2. Altogether six test images were used in this second nu-
merical experiment. When comparing to the three test images used in the first
experiments, the shapes of the objects in these six images are more complicated;
see Figure 2.

We repeated the same testing procedure as above, but only for n = 2562. For
each test image, the averages of the estimated number of regions for AIC, BIC
and MDL segmentation solutions are tabulated in Table 5. The standard errors of
these averages are also reported. We have also computed the averaged values of
of MSE(f̂ ) and {MSE(f̂ )}0.5/σ ; they are listed in Table 6. Empirical conclusions
obtainable from these two tables are similar to those from the first experiment.
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TABLE 2
Similar to Table 1 but for test image 2. The value of the true m0 is 8

n = 642 n = 1282 n = 2562 n = 5122

snr m̂ AIC BIC MDL AIC BIC MDL AIC BIC MDL AIC BIC MDL

1 3 0 0 213 0 0 0 0 0 0 0 0 0
4 0 0 276 0 0 124 0 0 0 0 0 0
5 0 1 11 0 0 312 0 0 0 0 0 0
6 0 23 0 0 0 57 0 0 0 0 0 0
7 0 127 0 0 0 7 0 0 2 0 0 0
8 5 203 0 78 492 0 69 500 498 75 500 500
9 33 114 0 114 6 0 127 0 0 96 0 0

10+ 462 32 0 308 2 0 304 0 0 329 0 0

2 3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 12 0 0 0 0 0 0 0 0 0
5 0 0 77 0 0 0 0 0 0 0 0 0
6 0 0 138 0 0 0 0 0 0 0 0 0
7 0 0 147 0 0 0 0 0 0 0 0 0
8 85 488 126 82 500 500 92 500 500 66 500 500
9 119 12 0 114 0 0 95 0 0 94 0 0

10+ 296 0 0 304 0 0 313 0 0 340 0 0

4 3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0
8 67 499 500 76 500 500 84 500 500 65 500 500
9 96 1 0 126 0 0 102 0 0 115 0 0

10+ 337 0 0 298 0 0 314 0 0 320 0 0

A noteworthy observation is that, when snr is not large, the tendency for BIC to
over-estimate m0 is more apparent for these new test images, that is, when the
object boundaries are more complex.

5. Real image segmentation. Figure 3(a) displays a synthetic aperture radar
(SAR) image of a rural area. It is of dimension 250 × 250 and is made available
by Dr. E. Attema of the European Space Research and Technology Centre. The
image has been log-transformed in order to stabilize the noise variance. It would
be useful to segment the image into regions of similar vegetation.

Notice that the image is extremely noisy (i.e., low snr) and hence difficult to
obtain a good segmentation. Therefore, we applied the MDL criterion to segment
the image, as the simulation results above suggest that both AIC and BIC would
heavily oversegment the image. The MDL segmented result, which consists of 34
segmented regions, is given in Figure 3(b).
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TABLE 3
Similar to Table 1 but for test image 3. The value of the true m0 is 4

n = 642 n = 1282 n = 2562 n = 5122

snr m̂ AIC BIC MDL AIC BIC MDL AIC BIC MDL AIC BIC MDL

1 3 0 0 2 0 0 0 0 0 0 0 0 0
4 9 493 498 4 498 500 6 499 500 8 500 500
5 34 6 0 33 2 0 35 1 0 22 0 0
6 63 1 0 60 0 0 70 0 0 57 0 0
7 94 0 0 97 0 0 86 0 0 98 0 0
8 80 0 0 113 0 0 103 0 0 95 0 0
9 99 0 0 96 0 0 87 0 0 88 0 0

10+ 121 0 0 97 0 0 113 0 0 132 0 0

2 3 0 0 0 0 0 0 0 0 0 0 0 0
4 6 494 500 7 498 500 5 499 500 3 500 500
5 29 6 0 22 2 0 28 1 0 24 0 0
6 69 0 0 70 0 0 58 0 0 71 0 0
7 92 0 0 97 0 0 87 0 0 85 0 0
8 102 0 0 92 0 0 124 0 0 85 0 0
9 78 0 0 91 0 0 87 0 0 80 0 0

10+ 124 0 0 121 0 0 111 0 0 152 0 0

4 3 0 0 0 0 0 0 0 0 0 0 0 0
4 4 492 500 5 499 500 3 500 500 2 500 500
5 29 8 0 24 1 0 12 0 0 4 0 0
6 56 0 0 49 0 0 46 0 0 15 0 0
7 82 0 0 87 0 0 62 0 0 31 0 0
8 102 0 0 104 0 0 101 0 0 44 0 0
9 104 0 0 94 0 0 92 0 0 76 0 0

10+ 123 0 0 137 0 0 184 0 0 328 0 0

Even though a Gaussian noise assumption may not be appropriate for this SAR
image, the MDL criterion produced a reasonable segmentation. The most apparent
weakness of the segmentation is the roughness of the boundaries (many of which
should clearly be straight) and the failure to detect some narrow regions. This
weakness can be (at least partially) attributed to the noisy nature of the image.

6. Concluding remarks. This paper fills an important gap in the image seg-
mentation literature by providing a systematic investigation into the theoretical
properties of some popular information theoretic segmentation methods. It is
shown that both the BIC and the MDL segmentation solutions are statistically
consistent for recovering the number of objects together with their boundaries in
an image. These theoretical results are empirically verified by simulation experi-
ments. We also note that our theoretical results can be straightforwardly extended
to higher-dimensional problems, such as volumetric or movie segmentation.
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TABLE 4
The averaged MSE(f̂ ) values (multiplied by 1,000) for each combination of test image, snr and n

for the first simulation experiment. Numbers in parentheses are the ratios {MSE(f̂ )}0.5/σ .
Boldface indicates the smallest value for each experimental setting

Image snr n = 642 n = 1282 n = 2562 n = 5122

1 1 AIC 18.58 (0.09352) 4.510 (0.04607) 1.090 (0.02265) 0.2756 (0.01139)

BIC 6.193 (0.05399) 0.9575 (0.02123) 0.2244 (0.01028) 0.05753 (0.005203)
MDL 31.14 (0.1211) 0.9304 (0.02092) 0.2230 (0.01024) 0.05753 (0.005203)

1 2 AIC 4.196 (0.08887) 1.050 (0.04447) 0.2689 (0.02250) 0.06735 (0.01126)

BIC 0.9305 (0.04185) 0.2291 (0.02076) 0.05672 (0.01033) 0.01441 (0.005208)
MDL 0.8783 (0.04066) 0.2236 (0.02052) 0.05630 (0.01029) 0.01441 (0.005208)

1 4 AIC 1.076 (0.09002) 0.2736 (0.04539) 0.06671 (0.02241) 0.01682 (0.01125)

BIC 0.2472 (0.04314) 0.05934 (0.02114) 0.01424 (0.01035) 0.003550 (0.005170)
MDL 0.2280 (0.04144) 0.05869 (0.02102) 0.01414 (0.01032) 0.003550 (0.005170)

2 1 AIC 76.23 (0.1894) 6.908 (0.05701) 1.661 (0.02796) 0.4176 (0.01402)

BIC 112.8 (0.2304) 3.038 (0.03781) 0.6388 (0.01734) 0.1617 (0.008724)
MDL 472.8 (0.4717) 218.2 (0.3204) 0.8846 (0.02040) 0.1617 (0.008724)

2 2 AIC 6.726 (0.1125) 1.655 (0.05581) 0.4015 (0.02749) 0.1047 (0.01404)

BIC 3.212 (0.07775) 0.6411 (0.03474) 0.1540 (0.01702) 0.04023 (0.008702)
MDL 90.07 (0.4118) 0.6411 (0.03474) 0.1540 (0.01702) 0.04023 (0.008702)

2 4 AIC 1.697 (0.1130) 0.4143 (0.05585) 0.1027 (0.02780) 0.02516 (0.01376)

BIC 0.6276 (0.06874) 0.1552 (0.03419) 0.03902 (0.01714) 0.01000 (0.008678)
MDL 0.6248 (0.06859) 0.1552 (0.03419) 0.03902 (0.01714) 0.01000 (0.008678)

3 1 AIC 11.88 (0.07476) 2.870 (0.03675) 0.7030 (0.01819) 0.1759 (0.009098)

BIC 2.078 (0.03127) 0.4024 (0.01376) 0.09679 (0.006749) 0.02367 (0.003338)
MDL 2.545 (0.03461) 0.3927 (0.01359) 0.09558 (0.006707) 0.02367 (0.003338)

3 2 AIC 2.932 (0.07429) 0.7225 (0.03688) 0.1822 (0.01852) 0.04568 (0.009272)

BIC 0.4140 (0.02792) 0.1053 (0.01408) 0.02521 (0.006889) 0.006404 (0.003472)
MDL 0.3915 (0.02715) 0.1028 (0.01391) 0.02494 (0.006852) 0.006404 (0.003472)

3 4 AIC 0.7430 (0.07479) 0.1839 (0.03721) 0.04468 (0.01834) 0.01101 (0.009106)

BIC 0.1106 (0.02885) 0.02441 (0.01356) 0.005919 (0.006676) 0.001478 (0.003336)
MDL 0.1041 (0.02799) 0.02415 (0.01348) 0.005919 (0.006676) 0.001478 (0.003336)

The numerical results from the simulation experiments also revealed some dis-
crepancy in the finite sample performances between BIC and MDL, which can
be attributed to the fact that the region area and perimeter enter explicitly into the
MDL segmentation criterion but not BIC. These results seem to suggest that, when
both the number of pixels n and the signal-to-noise ratio (snr) are not small, MDL
is capable of producing very stable and reliable results. For those cases when both
n and snr are small, MDL always under-estimated the number of regions, which
led to poor MSE values. However, when one inspects the noisy images that corre-
spond to such cases, one can see that, due to the high noise variance, some of the
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FIG. 2. The true test images used in the second numerical experiment.

adjacent regions are hardly distinguishable, which explains the under-estimation
of MDL. Overall the numerical results also suggest that BIC has a tendency to
over-estimate the number of regions, and for those high noise variance cases, this
tendency actually worked in favor of the situation. Considering all these factors, in
practice if the image to be segmented is not too noisy or not too small in size, one
may consider using MDL, otherwise, use BIC.

APPENDIX: PROOFS

This Appendix first provides the proofs for Theorems 3.1 and 3.2 in Appendices
A.1 and A.2. Appendix A.3 covers the BIC and AIC procedures.

A.1. Proof of Theorem 3.1. We first provide a number of auxiliary results
and will throughout use the following conventions. The true segmentation of
[0,1]2 will be denoted by R0

1, . . . ,R0
m0 . All other segmentations will be denoted

R1, . . . ,Rm, while the MDL-based estimates will be R̂1, . . . , R̂m. Recall that in the
situation of Theorem 3.1, the number of segments, m = m0, is assumed known.

LEMMA A.1. Let yi = f (xi) + εi , i = 1, . . . , n, be random variables with
f (x) = μ for all x ∈ [0,1]2 and design points �n = {x1, . . . , xn} ⊂ [0,1]2 sat-
isfying (9). Assume furthermore that {εi} is a sequence of independent, identi-
cally distributed random variables with zero mean and variance σ 2. Fix a subset
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TABLE 5
The averaged m̂ values for the second numerical experiment. Numbers in parentheses are estimated

standard errors. The true values of m (i.e., m0) are listed in square brackets

Image [m0] snr = 1 snr = 2 snr = 4

Disc [8] AIC 83.2 (0.274) 69.0 (0.268) 48.2 (0.243)

BIC 20.9 (0.165) 16.5 (0.123) 9.94 (0.0689)

MDL 6.38 (0.0219) 7.06 (0.0107) 8.05 (0.014)

Hand [8] AIC 77.8 (0.259) 63.7 (0.247) 39.6 (0.219)

BIC 20.4 (0.139) 15.5 (0.106) 9.45 (0.0636)

MDL 6.84 (0.0259) 8.05 (0.0245) 8.13 (0.0168)

Human-body [6] AIC 67.7 (0.268) 47.9 (0.247) 25.3 (0.187)

BIC 15.7 (0.130) 8.97 (0.0951) 6.15 (0.0194)

MDL 5.04 (0.00964) 6.23 (0.0253) 6.03 (0.00739)

Ring [16] AIC 81.1 (0.266) 69.6 (0.244) 48.9 (0.218)

BIC 24.8 (0.153) 22.1 (0.120) 16.7 (0.0613)

MDL 11.2 (0.0279) 13.9 (0.0184) 15.2 (0.0189)

Sunflower [8] AIC 81.8 (0.289) 67.6 (0.250) 47.8 (0.259)

BIC 20.0 (0.153) 15.7 (0.123) 10.2 (0.0939)

MDL 6.07 (0.0117) 7.41 (0.0222) 8.15 (0.0224)

Triangle [8] AIC 75.7 (0.276) 62.6 (0.248) 35.4 (0.220)

BIC 18.6 (0.138) 14.5 (0.119) 8.48 (0.0313)

MDL 6.97 (0.0101) 7.57 (0.0223) 7.99 (0.00597)

(a) (b)

FIG. 3. Real image segmentation. (a): Observed SAR image and (b): MDL segmented result.
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TABLE 6
The averaged MSE(f̂ ) values (multiplied by 1,000) for each combination of test image and snr.
Numbers in parentheses are the ratios {MSE(f̂ )}0.5/σ . Boldface indicates the smallest value

for each experimental setting

Image snr = 1 snr = 2 snr = 4

Disc AIC 475.4 (0.2333) 81.55 (0.1932) 10.44 (0.1383)

BIC 405.7 (0.2155) 65.78 (0.1735) 7.811 (0.1196)

MDL 428.7 (0.2215) 69.56 (0.1784) 7.763 (0.1192)

Hand AIC 504.9 (0.2950) 79.51 (0.2342) 10.75 (0.1722)

BIC 465.3 (0.2832) 70.62 (0.2207) 9.522 (0.1621)
MDL 485.4 (0.2893) 71.22 (0.2216) 9.853 (0.1649)

Human-body AIC 135.3 (0.2443) 19.82 (0.1870) 1.491 (0.1026)

BIC 119.9 (0.2300) 17.17 (0.1741) 1.208 (0.09234)
MDL 120.9 (0.2309) 17.53 (0.1759) 1.217 (0.09269)

Ring AIC 541.1 (0.2774) 81.89 (0.2158) 11.00 (0.1582)

BIC 493.2 (0.2648) 70.89 (0.2008) 9.314 (0.1456)
MDL 520.8 (0.2721) 73.74 (0.2048) 9.572 (0.1476)

Sunflower AIC 527.3 (0.2517) 89.43 (0.2073) 12.98 (0.1580)

BIC 464.1 (0.2362) 74.97 (0.1898) 10.54 (0.1423)
MDL 488.3 (0.2422) 83.32 (0.2001) 10.74 (0.1437)

Triangle AIC 219.8 (0.2165) 32.64 (0.1668) 3.242 (0.1051)

BIC 182.6 (0.1973) 24.84 (0.1455) 2.326 (0.08906)
MDL 168.9 (0.1897) 23.50 (0.1416) 2.353 (0.08957)

R ⊂ [0,1]2, and let a = #A for A = {i: xi ∈ �n ∩ R}. Define the estimators

μ̂(R) = 1

a

∑
i∈A

yi and σ̂ 2(R) = 1

a

∑
i∈A

{yi − μ̂(R)}2.

Then μ̂(R) → μ and σ̂ 2(R) → σ 2 with probability one as n → ∞.

PROOF. Notice that the sequence {yi} is globally independent and identi-
cally distributed with mean μ and variance σ 2, so in particular on any subset
R ⊂ [0,1]2. Both assertions of the lemma follow therefore directly from the strong
law of large numbers after recognizing that a → ∞ as n → ∞ because of (9). �

LEMMA A.2. Let {yi} be the sequence of random variables defined in (3). Fix
a subset R ⊂ [0,1]2 and denote by μ̂(R) the sample mean defined in Lemma A.1.
Then, μ̂(R) → μ∗ with probability one, where the limit μ∗(R) is defined in (10)
below.
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PROOF. Utilizing the true segmentation, we can write

R =
m⋃

ν=1

R ∩ R0
ν =

2⋃
�=1

⋃
ν∈I�

R ∩ R0
ν ,

where I1 = {ν:R0
ν ⊂ R} and I2 = {ν:R ∩ R0

ν �= ∅} \ I1, thus ignoring those ν for
which R ∩ R0

ν = ∅ on the right-hand side of the last display. Define ã0
ν = #Ã0

ν for
Ã0

ν = {i: xi ∈ �n ∩ R ∩ R0
ν} and a0

ν = #A0
ν for A0

ν = {i: xi ∈ �n ∩ R0
ν}. It follows

from an application of Lemma A.1 that

μ̂(R) = 1

a

∑
i∈A

yi = 1

a

( ∑
ν∈I1

∑
i∈A0

ν

yi + ∑
ν∈I2

∑
i∈Ã0

ν

yi

)

= 1

a

( ∑
ν∈I1

a0
νμ

0
ν + ∑

ν∈I2

ã0
νμ

0
ν

)
(10)

→ 1

α

( ∑
ν∈I1

α0
νμ

0
ν + ∑

ν∈I2

α̃0
νμ

0
ν

)
=: μ∗(R)

with probability one as n → ∞, on account of (9) and by assumption on the
representation of the number of design points in any given region (a = 
αn�,
a0
ν = 
α0

νn� and ã0
ν = 
α̃0

νn�). �

LEMMA A.3. Let {yi} be the sequence of random variables defined in (3). Fix
a subset R ⊂ [0,1]2 and denote by σ̂ 2(R) the variance estimator defined in Lem-
ma A.1. Then, σ̂ 2(R) → σ 2 +σ 2∗ (R) with probability one, where σ 2∗ (R) is defined
in (11) below.

PROOF. Using the notation of the proof of Lemma A.2 and applying similar
arguments yields the decomposition

σ̂ 2(R) = 1

a

∑
i∈A

{yi −μ̂(R)}2 = 1

a

∑
ν∈I1

∑
i∈A0

ν

{yi −μ̂(R)}2 + 1

a

∑
ν∈I1

∑
i∈Ã0

ν

{yi −μ̂(R)}2.

Let first ν ∈ I1. By definition of I1, R0
ν is completely contained in R. Therefore,

adding and subtracting the true value μ0
ν from each of the terms yi − μ̂(R) and

subsequently solving the square leads to

1

a

∑
i∈A0

ν

{yi − μ̂(R)}2 = 1

a

∑
i∈A0

ν

(yi − μ0
ν)

2 − 2

a

∑
i∈A0

ν

(yi − μ0
ν){μ0

ν − μ̂(R)}

+ 1

a

∑
i∈A0

ν

{μ0
ν − μ̂(R)}2

= S1 + S2 + S3.
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Lemma A.1 implies for the first term that

S1 = a0
ν

a

1

a0
ν

∑
i∈A0

ν

(yi − μ0
ν)

2 → α0
ν

α
σ 2 a.s. (n → ∞).

The second term S2 is asymptotically small with probability one. To see this,
observe that, by Lemma A.2, μ0

ν − μ̂(R) converges a.s. to M0
ν = μ0

ν − μ∗(R)

as n → ∞. For two sequences {ξn} and {ζn} of real numbers, write ξn ∼ ζn if
limn ξnζ

−1
n = 1. Then, using the strong law of large numbers for the i.i.d. se-

quence {εi}, we obtain that

S2 ∼ 2M0
ν

a

∑
i∈A0

ν

(yi − μ0
ν) = 2M0

ν

a

∑
i∈A0

ν

εi → 0 a.s. (n → ∞).

Finally, by Lemma A.2,

S3 = a0
ν

a
{μ0

ν − μ̂(R)}2 → α0
ν

α
{μ0

ν − μ∗(R)}2 a.s. (n → ∞).

Let now ν ∈ I2. Then the region R0
ν of the true segmentation is only partially

contained in R. This means that, while all computations can be performed along
the blueprint for the case ν ∈ I1, ã0

ν , α0
ν and Ã0

ν have to be used in place of their
respective counterparts a0

ν , α0
ν and A0

ν . Combining these results, we arrive at the
almost sure convergence

σ̂ 2(R) → σ 2

α

( ∑
ν∈I1

α0
ν + ∑

ν∈I2

α̃0
ν

)

+ 1

α

[ ∑
ν∈I1

α0
ν{μ0

ν − μ∗(R)}2 + ∑
ν∈I2

α̃0
ν{μ0

ν − μ∗(R)}2
]

(11)

= σ 2 + σ 2∗ (R)

since
∑

I1
α0

ν + ∑
I2

α̃0
ν = α. This proves the assertion. �

LEMMA A.4. Let {yi} be the sequence of random variables defined in (3).
Let ε > 0 such that, for appropriately chosen zν ∈ Rν in a segmentation R =
(R1, . . . ,Rm),

Bε(zν) ⊂ Rν for all ν = 1, . . . ,m = m0.(12)

Let Rε = {R:
⋃

ν Rν satisfying (12) such that aν = 
nαν�,∑
ν αν = 1}. Then

R̂ = arg min
R∈Rε

2

n
MDL(m0,R) → R0 a.s. (n → ∞),

where R0 denotes the true segmentation of [0,1]2.
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PROOF. Assume that the MDL estimator is not strongly consistent. Thus R̂
does not converge with probability one to R0 as n → ∞. By boundedness, there
exists a monotonically increasing subsequence {nj } along which R̂nj

→ R∗ with
probability one, with the limit R∗ being a member of Rε , and λ2(R∗
R0) > 0 with
probability one. Note that we must have also that α̂ν → α̂∗

ν along the same subse-
quence. Note that, with probability one, 2

n
MDL(m0,R) ∼ log( 1

n
RSSm0), where ∼

is defined in the proof of Lemma A.3, and that, for R = R∗,

1

n
RSSm0 = 1

n

m0∑
ν=1

∑
i∈A∗

ν

{yi − μ̂(R∗
ν )}2

adopting notation from before. For any ν, there are now two options: either R∗
ν is

contained in a region of the true segmentation, or R∗
ν has nontrivial intersections

with more than one region of the true segmentation. In the first case, R∗
ν ⊂ R0

κ for
some κ . Hence, Lemma A.1 implies that

1

n

∑
i∈A∗

ν

{yi − μ̂(R∗
ν )}2 → α∗

νσ 2 a.s. (n → ∞).

In the second case, R∗
ν = ⋃

κ R∗
ν ∩ R0

κ , where the disjoint union contains at least
two elements. Then, Lemma A.3 yields that

1

n

∑
i∈A∗

ν

{yi − μ̂(R∗
ν )}2 → α∗

νσ 2 + σ 2∗ a.s. (n → ∞),

where σ 2∗ = ∑
ν α∗

νσ 2∗ (R∗
ν ) with σ ∗(R∗

ν ) as in Lemma A.3. Observe that, on ac-
count of R∗ �= R0 [in the sense that λ2(R∗
R0) �= 0 almost surely], we have
σ 2∗ > 0. On the other hand, σ 2∗ = 0 if the true segmentation R0 were used. Conse-
quently, exploiting the continuity and strict concavity of the logarithm, we arrive
at

lim
n→∞

2

n
MDL(m0,R∗) >

m0∑
ν=1

α0
ν logσ 2 = logσ 2 = lim

n→∞
2

n
MDL(m0,R0)

≥ lim
n→∞

2

n
MDL(m0,R∗),

which is a contradiction. Hence, R̂ is strongly consistent for R0. �

A.2. Proof of Theorem 3.2.

LEMMA A.5. Let {yi} be the sequence of random variables defined in (3). If

(m̂, R̂) = arg min
m≤MR∈Rε

2

n
MDL(m,R),

then P(m̂ ≥ m0) → 1 as n → ∞.
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PROOF. Notice that it follows from the proof of Lemma A.4 that 1
n

RSSm0 →
σ 2 with probability one, provided the true segmentation R0 is used in the com-
putations. If m̂ < m0, then there is at least one R̂ν containing two or more true
regions R0

κ . It follows as in the proofs of Lemmas A.3 and A.4 that P( 1
n

RSSm >

σ 2 + ε) → 1 as n → ∞ for a suitably chosen ε > 0. This implies the claim. �

LEMMA A.6. Let {yi} be the sequence of random variables defined in (3). If
m0 < m ≤ M , then, for all ν = 1, . . . ,m0,

P {R̂ ∈ C0
ν (n)} → 0 (n → ∞),

where C0
ν (n) = {R = (R1, . . . ,Rm): ∂Rκ /∈ ∂R0

ν + B�(n)(0), κ = 1, . . . ,m}.

PROOF. Fix 1 ≤ ν ≤ m0, and let R ∈ C0
ν (n). Because of the continuity of ∂R0

ν ,
there is a zν ∈ ∂R0

ν such that ∂Rκ ∩ B�(n)(zν) = ∅ for all κ = 1, . . . ,m. Define R̃
as the segmentation that includes all regions of the form

Rκ ∩ R0
ν′ ∩ Bc

�(n)(zν), κ = 1, . . . ,m;ν′ = 1, . . . ,m0,

and B�(n)(zν). Clearly, RSS(R) ≥ RSS(R̃), where we use the notations RSS(R)

and RSS(R̃) for the residual sums of squares based on the respective segmenta-
tions R and R̃. Decomposing according to the true segmentation R0 leads to com-
parisons of the following types. Consider first the case R0

ν′ ∩ B�(n)(zν) = ∅. Then,
it follows as in Lemma 4 of Yao (1988) that

0 ≤ ∑
i∈A0

ν′

ε2
i − ∑

κ∈Iν′

∑
i∈Ãκ

{yi − μ̂(R̃κ)}2 = OP (lnn) (n → ∞),

where Iν′ = {κ: R̃κ ⊂ R0
ν′ }, A0

ν′ = {i: xi ∈ �n ∩ R0
ν′ } and Ãκ = {i: xi ∈ �n ∩ R̃κ}.

The rate on the right-hand side of the last display explicitly uses that the noise
{εi} follows a normal law and does not need to be true for arbitrary noise distri-
butions [compare the remark on page 188 of Yao (1988)]. Consider next the case
R0

ν′ ∩ B�(n)(zν) �= ∅. Observe that the number of design points in B�(n)(zν) is pro-
portional to ln2 n, while the number of design points in any R̃ν is proportional to
the sample size n. Any region R̃ν ∈ R̃ obtained from a nontrivial intersection with
Bc

�(n)(zν) has therefore the number of elements reduced by a factor proportional

to ln2 n. This, however, is negligible compared to n in the long run. Therefore, the
same arguments as before imply also that

0 ≤ ∑
i∈C 0

ν′

ε2
i − ∑

κ∈Jν′

∑
i∈Ãκ

{yi − μ̂(R̃κ)}2 = OP (lnn) (n → ∞),

where C 0
ν′ = A0

ν′ \ Bν′ with Bν′ = {i: xi ∈ �n∩B�(n)(zν)∩R0
ν′ }, and Jν′ = {κ: R̃κ ⊂

R0
ν′ ∩ Bc

�(n)(zν)}. It remains to investigate the region B�(n)(zν) itself. Without loss



CONSISTENT IMAGE SEGMENTATION 2931

of generality assume that B�(n)(zν) intersects, apart from R0
ν , only one more true

regions R0
ν′ as the general case can be handled in a similar fashion. Notice that

b = #{B�(n)(zν) ∩ �n} = 
βn� ∼ ln2 n by definition. Let furthermore bν = #{�n ∩
R0

ν ∩ B�(n)(zν)} and bν′ = #{�n ∩ R0
ν′ ∩ B�(n)(zν)}. Then, we must have bν =


βνn� ∼ ln2 n and bν′ = 
βν′n� ∼ ln2 n for appropriate βν and βν′ satisfying βν +
βν′ = β . Now, utilizing that yi − μ̂(B�(n)(zν)) = εi +μν − μ̂(B�(n)(zν)) on R0

ν and
yi − μ̂(B�(n)(zν)) = εi + μν′ − μ̂(B�(n)(zν)) on R0

ν′ , we obtain that

1

b

[ ∑
i∈B∗

ν

ε2
i − ∑

i∈B∗
ν

{
yi − μ̂

(
B�(n)(zν)

)}2
]

= 1

b

[
bν

{
μν − μ̂

(
B�(n)(zν)

)}2 + bν′
{
μν′ − μ̂

(
B�(n)(zν)

)}2] + o(1)

→ −βνβν′

β2 (μν − μν′)2 = B

with probability one as n → ∞, where B∗
ν = {i: xi ∈ �n ∩ B�(n)(zν)} and the limit

is clearly negative. Combining the results in the last three displays, we arrive con-
sequently at

1

b
{RSS − RSS(R̃)} R→ B < 0,

where RSS = ∑n
i=1 ε2

i . Thus,

lim
n→∞ min

R∈[C0
ν (n)]c

RSS(R) > lim
n→∞ RSS ≥ lim

n→∞ RSS(R̂)

with probability approaching one. This implies the assertion. �

LEMMA A.7. Let {yi} be the sequence of random variables defined in (3). If
m0 < m ≤ M and ε > 0, then

P {RSS − RSS(R̂) ∈ [0,Ln(ε, R̂)]} → 1 (n → ∞),

where RSS = ∑n
i=1 ε2

i , RSS(R̂) is the residual sum of squares based on the

segmentation R̂ = (R̂1, . . . , R̂m) selected by the MDL criterion and Ln(ε,R) =
σ 2{ε + 2(m − m0 − 1)(1 + ε)} lnn.

PROOF. It follows from Lemma A.6 that R̂ ∈ B0(n) = ⋂m0

ν=1[C0
ν (n)]c with

probability approaching one. It is therefore sufficient to verify the claim for an
arbitrary segmentation R ∈ B0(n). Given such an R introduce the finer R̃ as the
segmentation containing the regions

Rκ ∩ R0
ν′ ∩ [B0(n)]c, κ = 1, . . . ,m;ν′ = 1, . . . ,m0,(13)



2932 A. AUE AND T. C. M. LEE

and

Rκ ∩ R0
ν′ ∩ B0

ν (n), κ = 1, . . . ,m;ν, ν′ = 1, . . . ,m0.(14)

Denote the collection of regions (13) by R̃1 and the collection of regions (14)
by R̃2. We then have RSS ≥ RSS(R) ≥ RSS(R̃) = RSS(R̃1)+RSS(R̃2). The num-
ber of design points in R̃2 is, by definition of the sets C0

ν (n), proportional to lnn.
An application of Lemma 1 in Yao (1988) yields therefore that∣∣∣∣ ∑

R̃ν∈R̃2

∑
i∈Ãν

ε2
i − RSS(R̃2)

∣∣∣∣ = OP (ln lnn) (n → ∞).

For R̃ν ∈ R̃1, let ãν = #R̃ν . Since R ∈ C0(n), it holds that #R̃1 ≤ m − m0. As in
(17)–(19) of Yao (1988), we conclude therefore with Theorem 2 of Darling and
Erdös (1956) that, for any ε > 0 and with probability approaching one,∑

R̃ν∈R̃1

∑
i∈Ãν

ε2
i ≥ RSS(R̃1) ≥ ∑

R̃ν∈R̃1

∑
i∈Ãν

ε2
i − Ln(ε,R).

This completes the proof. �

LEMMA A.8. Let {yi} be the sequence of random variables defined in (3). If
m > m0, then using the notation of (4), it holds for the penalty terms arising from
the area and the perimeter pieces that

m∑
κ=1

lnaκ −
m0∑
ν=1

lna0
ν ≥ 0 and

m∑
κ=1

bκ −
m0∑
ν=1

b0
ν ≥ 0

with probability approaching one as n → ∞.

PROOF. Lemma A.6 implies that the oversegmentation R̂m approximates the
true segmentation R0 in the sense that, with probability approaching one, each
perimeter ∂R0

ν is uniformly approximated by one or more perimeters ∂R̂κ . This
yields in particular that, for a suitable νκ = 1, . . . ,m0, P(R̂κ ⊂ R0

νκ
) → 1 for all

κ = 1, . . . ,m. By assumption, we can write that aκ = λκ,νa
0
νκ

with λκ,ν → ακ/α0
νκ

as n → ∞. Let Vν = {κ ′:Rκ ′ ∩ R0
ν �= ∅}. Then, with probability approaching one,

m∏
κ=1

aκ

[
m0∏
ν=1

a0
ν

]−1

=
m0∏
ν=1

∏
κ∈Vν

λκ,ν(a
0
ν )

#Vν−1 ≥ (mina0
ν )

m−m0
m0∏
ν=1

∏
κ∈Vν

λκ,ν ≥ 1

since
∑

ν(#Vν −1) = m−m0, a0
ν = 
α0

νn� and the product over the λκ,ν converges
to a finite limit as n → ∞. This implies the first statement of the lemma. The
second claim follows along similar lines from the fact that the true segmentation
“shares” all its perimeters with the oversegmentation with probability approaching
one. Since m > m0, there must at least be one additional perimeter piece and the
assertion follows. �
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LEMMA A.9. Let {yi} be the sequence of random variables defined in (3). If
m > m0, then


(m,m0) = n

2

{
ln

(
RSSm

n

)
− ln

(
RSSm0

n

)}
+ (m − m0) lnn ≥ 0

with probability approaching one as n → ∞.

PROOF. Let ε > 0. By the law of large numbers, we have that RSS =∑n
i=1 ε2

i > n(σ 2 − ε). Also, RSS ≥ RSSm0 . Hence,


(m,m0) ≥ n

2

{
ln

(
RSSm

n

)
− ln

(
RSS

n

)}
+ (m − m0) lnn

= n

2
ln

(
1 − RSS − RSSm

RSS

)
+ (m − m0) lnn

≥ n

2
ln

{
1 − Ln(ε, R̂)

n(σ 2 − ε)

}
+ (m − m0) lnn,

where the last inequality follows after an application of Lemma A.7. Continuing
as in Yao (1988), using the fact that ln(1 − x) > −x(1 + ε) for small positive x

and the definition of Ln(ε, R̂), the right-hand side can be estimated from below by

−σ 2(1 + ε)

2(σ 2 − ε)
{ε + 2(m − m0 − 1)(1 + ε)} lnn + (m − m0) lnn,(15)

which is positive with probability approaching one whenever ε is sufficiently
small. �

This implies that m̂
P→ m0. The second claim of Theorem 3.2 follows from

P(Ln) ≥ P(Ln, m̂ = m0) → 1, where Ln = {λ2(R0
R̂) = 0}.
A.3. Proofs for BIC and AIC segmentations. The counterparts of Theo-

rem 3.1 for the AIC and BIC procedures are verbatim the same as for the MDL
procedure. Consistency in the case of known m = m0 does therefore not depend
on the particular penalty terms.

The situation is, however, very different in the general case of an unknown
number of segments in the partition. Here, we can prove the consistency result
of Theorem 3.2 only for the BIC procedure. Following the lines of the proofs in
Appendix A.2, it can be seen that Lemmas A.5–A.7 deal only with the RSS term
and hold irrespective of the specific penalty term. Lemma A.8 deals with the com-
plexity of areas and perimeters unique to the MDL criterion. The crucial point is
therefore Lemma A.9. Repeating the arguments in its proof, one can for the BIC
criterion similarly verify that, if m > m0,


̃(m,m0) = n

2

{
ln

(
RSSm

n

)
− ln

(
RSSm0

n

)}
+ (m − m0) lnn ≥ 0
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with probability approaching one as n → ∞, utilizing

−σ 2(1 + ε)

2(σ 2 − ε)
{ε + 2(m − m0 − 1)(1 + ε)} lnn + (m − m0) lnn

instead of (15). This implies consistency of the BIC procedure. For the AIC seg-
mentation, however, the second term in the last display becomes 2(m−m0) which
grows too slowly to ensure positivity. Hence AIC-based procedures are inconsis-
tent if m is unknown.
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