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ON ADAPTIVE INFERENCE AND CONFIDENCE BANDS

BY MARC HOFFMANN AND RICHARD NICKL

ENSAE-CREST and University of Cambridge

The problem of existence of adaptive confidence bands for an unknown
density f that belongs to a nested scale of Hölder classes over R or [0,1] is
considered. Whereas honest adaptive inference in this problem is impossible
already for a pair of Hölder balls �(r),�(s), r �= s, of fixed radius, a non-
parametric distinguishability condition is introduced under which adaptive
confidence bands can be shown to exist. It is further shown that this condi-
tion is necessary and sufficient for the existence of honest asymptotic con-
fidence bands, and that it is strictly weaker than similar analytic conditions
recently employed in Giné and Nickl [Ann. Statist. 38 (2010) 1122–1170].
The exceptional sets for which honest inference is not possible have vanish-
ingly small probability under natural priors on Hölder balls �(s). If no upper
bound for the radius of the Hölder balls is known, a price for adaptation has
to be paid, and near-optimal adaptation is possible for standard procedures.
The implications of these findings for a general theory of adaptive inference
are discussed.

1. Introduction. One of the intriguing problems in the paradigm of adaptive
nonparametric function estimation as developed in the last two decades is what one
could call the “hiatus” between estimation and inference, or, to be more precise,
between the existence of adaptive risk bounds and the nonexistence of adaptive
confidence statements. In a nutshell the typical situation in nonparametric statis-
tics could be described as follows: one is interested in a functional parameter f that
could belong either to � or to �′, two sets that can be distinguished by a certain
“structural property,” such as smoothness, with the possibility that � ⊂ �′. Based
on a sample whose distribution depends on f , one aims to find a statistical proce-
dure that adapts to the unknown structural property, that is, that performs optimally
without having to know whether f ∈ � or f ∈ �′. Now while such procedures can
often be proved to exist, the statistician cannot take advantage of this optimality
for inference: To cite Robins and van der Vaart [29], “An adaptive estimator can
adapt to an underlying model, but does not reveal which model it adapts to, with
the consequence that nonparametric confidence sets are necessarily much larger
than the actual discrepancy between an adaptive estimator and the true parameter.”

We argue in this article that adaptive inference is possible if the structural prop-
erty that defines � and �′ is statistically identifiable, by which we shall mean here
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that the nonparametric hypotheses H0 :f ∈ � and H1 :f ∈ �′ \ � are asymptot-
ically consistently distinguishable (in the sense of Ingster [16–18]). In common
adaptation problems this will necessitate that certain unidentified parts of the pa-
rameter space be removed, in other words, that the alternative hypothesis H1 be
restricted to a subset �̃ of �′ \ �. One is in turn interested in choosing �̃ as large
as possible, which amounts to imposing minimal identifiability conditions on the
parameter space. We shall make these ideas rigorous in one key example of adap-
tive inference: confidence bands for nonparametric density functions f that adapt
to the unknown smoothness of f . The general approach, however, is not specific
to this example as we shall argue at the end of this introduction, and the heuristic
mentioned above is valid more generally.

The interest in the example of confidence bands comes partly from the fact
that the discrepancy between estimation and inference in this case is particularly
pronounced. Let us highlight the basic problem in a simple “toy adaptation” prob-
lem. Consider X1, . . . ,Xn independent and identically distributed random vari-
ables taking values in [0,1] with common probability density function f and joint
law Prf . We are interested in the existence of confidence bands for f that are adap-
tive over two nested balls in the classical Hölder spaces Cs([0,1]) ⊂ Cr ([0,1]),
s > r , of smooth functions with norm given by ‖ · ‖s,∞; see Definition 1 below.
Define the class of densities

�(s) := �(s,B) =
{
f : [0,1] → [0,∞),

∫ 1

0
f (x) dx = 1,‖f ‖s,∞ ≤ B

}
(1.1)

and note that �(s) ⊂ �(r) for s > r . We shall assume throughout that B ≥ 1 to
ensure that �(s) is nonempty.

A confidence band Cn = Cn(X1, . . . ,Xn) is a family of random intervals

{Cn(y) = [cn(y), c′
n(y)]}y∈[0,1]

that contains graphs of densities f : [0,1] → [0,∞). We denote by |Cn| =
supy∈[0,1]|c′

n(y) − cn(y)| the maximal diameter of Cn. Following Li [24] the band
Cn is called asymptotically honest with level α for a family of probability densities
P if it satisfies the asymptotic coverage inequality

lim inf
n

inf
f ∈P

Prf
(
f (y) ∈ Cn(y) ∀y ∈ [0,1]) ≥ 1 − α.(1.2)

We shall usually only write Prf (f ∈ Cn) for the coverage probability if no confu-
sion may arise. Note that P may (and later typically will have to) depend on the
sample size n. Suppose the goal is to find a confidence band that is honest for the
class

P all := �(s) ∪ �(r) = �(r)

and that is simultaneously adaptive in the sense that the expected diameter Ef |Cn|
of Cn satisfies, for every n (large enough),

sup
f ∈�(s)

Ef |Cn| ≤ Lrn(s), sup
f ∈�(r)

Ef |Cn| ≤ Lrn(r),(1.3)
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where L is a finite constant independent of n and where

rn(s) =
(

logn

n

)s/(2s+1)

.

Indeed even if s were known no band could have expected diameter of smaller
order than rn(s) uniformly over �(s) (e.g., Proposition 1 below), so that we are
looking for a band that is asymptotically honest for P all and that shrinks at the
fastest possible rate over �(s) and �(r) simultaneously. It follows from Theo-
rem 2 in Low [26] (see also [4, 8]) that such bands do not exist.

THEOREM 1 (Low). Any confidence band Cn that is honest over P all with
level α < 1 necessarily satisfies

lim
n

sup
f ∈�(s)

Ef |Cn|
rn(s)

= ∞.

The puzzling fact is that this is in stark contrast to the situation in estimation:
adaptive estimators f̂n such as those based on Lepski’s method [23] or wavelet
thresholding [7] can be shown to satisfy simultaneously

sup
f ∈�(s)

Ef ‖f̂n − f ‖∞ = O(rn(s)), sup
f ∈�(r)

Ef ‖f̂n − f ‖∞ = O(rn(r));

see [10, 11, 13] and Theorem 5 below. So while f̂n adapts to the unknown smooth-
ness s, Theorem 1 reflects the fact that knowledge of the smoothness is still not
accessible for the statistician.

Should we therefore abstain from using adaptive estimators such as f̂n for in-
ference? Giné and Nickl [12] recently suggested a new approach to this problem,
partly inspired by Picard and Tribouley [28]. In [12] it was shown that one can
construct confidence bands Cn and subsets �̄(ε, r) ⊂ �(r), defined by a concrete
analytical condition that involves the constant ε > 0, such that Cn is asymptotically
honest for

Pε = �(s) ∪ �̄(ε, r)

for every fixed ε > 0, and such that Cn is adaptive in the sense of (1.3). Moreover,
these subsets were shown to be topologically generic in the sense that the set

{f ∈ �(r) but f /∈ �̄(ε, r) for any ε > 0}
that was removed is nowhere dense in the Hölder norm topology of Cr (in fact in
the relevant trace topology on densities). This says that the functions f ∈ P all that
prevent adaptation in Theorem 1 are in a certain sense negligible.

In this article we shall give a more statistical interpretation of when, and if, why,
adaptive inference is possible over certain subsets of Hölder classes. Our approach
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will also shed new light on why adaptation is possible over the sets �̄(ε, r). Define,
for s > r , the following class:

�̃(r, ρn) := �̃(r, s, ρn,B) =
{
f ∈ �(r,B) : inf

g∈�(s)
‖g − f ‖∞ ≥ ρn

}
,(1.4)

where ρn is a sequence of nonnegative real numbers. Clearly �̃(r,0) = �(r), but
if ρn > 0, then we are removing those elements from �(r) that are not separated
away from �(s) in sup-norm distance by at least ρn. Inspection of the proof of
Theorem 2 shows that the set removed from �(r) \ �(s) is nonempty as soon as
ρn > 0.

Similar to above we are interested in finding a confidence band that is honest
over the class

P(ρn) := �(s) ∪ �̃(r, ρn),

and that is adaptive in the sense of (1.3), in fact only in the sense that

sup
f ∈�(s)

Ef |Cn| ≤ Lrn(s), sup
f ∈�̃(r,ρn)

Ef |Cn| ≤ Lrn(r)(1.5)

for every n (large enough). We know from Low’s results that this is impossible if
ρn = 0, but the question arises as to whether this changes if ρn > 0, and if so, what
the smallest admissible choice for ρn is.

It was already noted or implicitly used in [1, 5, 15, 19, 29] that there is a generic
connection between adaptive confidence sets and minimax distinguishability of
certain nonparametric hypotheses. In our setting consider, for instance, testing the
hypothesis

H0 :f0 = 1 against H1 :f0 ∈ M, M finite, M ⊂ �̃(r, ρn).

As we shall see in the proof of Theorem 2 below, an adaptive confidence band
over P(ρn) can be used to test any such hypothesis consistently, and intuitively
speaking an adaptive confidence band should thus only exist if ρn is of larger order
than the minimax rate of testing between H0 and H1 in the sense of Ingster [16,
17]; see also the monograph [18]. For confidence bands a natural separation metric
is the supremum-norm (see, however, also the discussion in the last paragraph of
the Introduction), and an exploration of the corresponding testing problems gives
our main result, which confirms this intuition and shows moreover that this lower
bound is sharp up to constants at least in the case where B is known.

THEOREM 2. Let s > r > 0. An adaptive and honest confidence band over

�(s) ∪ �̃(r, ρn)

exists if and only if ρn is greater than or equal to the minimax rate of testing
between H0 :f0 ∈ �(s) and H1 :f0 ∈ �̃(r, ρn), and this rate equals rn(r). More
precisely:
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(a) Suppose that Cn is a confidence band that is asymptotically honest with
level α < 0.5, over �(s) ∪ �̃(r, ρn) and that is adaptive in the sense of (1.5). Then
necessarily

lim inf
n

ρn

rn(r)
> 0.

(b) Suppose B, r, s and 0 < α < 1 are given. Then there exists a sequence ρn

satisfying

lim sup
n

ρn

rn(r)
< ∞

and a confidence band Cn = Cn(B, r, s, α;X1, . . . ,Xn) that is asymptotically hon-
est with level α and adaptive over �(s) ∪ �̃(r, ρn) in the sense of (1.5).

(c) Claims (a) and (b) still hold true if �(s) is replaced by the set{
f ∈ �(s), inf

g∈�(t)
‖g − f ‖∞ ≥ Brn(s)/2

}
for any t > s.

The last claim shows that the situation does not change if one removes similar
subsets from the smaller Hölder ball �(s), in particular removing the standard
null-hypothesis f0 = 1 used in the nonparametric testing literature, or other very
smooth densities, cannot improve the lower bound for ρn.

Part (b) of Theorem 2 implies the following somewhat curious corollary: since
any f ∈ �(r) \ �(s) satisfies infg∈�(s) ‖g − f ‖∞ > 0 (note that �(s) is ‖ · ‖∞-
compact), we conclude that f ∈ �̃(r,Lrn(r)) for every L > 0, n ≥ n0(f, r,L)

large enough. We thus have:

COROLLARY 1. There exists a “dishonest” adaptive confidence band Cn :=
Cn(B, r, s, α;X1, . . . ,Xn) that has asymptotic coverage for every fixed f ∈ P all;
that is, Cn satisfies

lim inf
n

Prf (f ∈ Cn) ≥ 1 − α ∀f ∈ P all

and

f ∈ �(s) ⇒ Ef |Cn| = O(rn(s)),

f ∈ �(r) ⇒ Ef |Cn| = O(rn(r)).

A comparison to Theorem 1 highlights the subtle difference between the min-
imax paradigm and asymptotic results that hold pointwise in f : if one relaxes
“honesty,” that is, if one removes the infimum in (1.2), then Low’s impossibility
result completely disappears. Note, however, that the index n from which onwards
coverage holds in Corollary 1 depends on f , so that the asymptotic result cannot
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be confidently used for inference at a fixed sample size. This is a reflection of the
often neglected fact that asymptotic results that are pointwise in f have to be used
with care for statistical inference; see [3, 22] for related situations of this kind.

In contrast to the possibly misleading conclusion of Corollary 1, Theorem 2
characterizes the boundaries of “honest” adaptive inference, and several questions
arise.

(i) What is the relationship between the sets �̃(r, ρn) from Theorem 2 and the
classes �̄(ε, r) considered in [12]? Moreover, is there a “Bayesian” interpretation
of the exceptional sets that complements the topological one?

(ii) The typical adaptation problem is not one over two classes, but over a
scale of classes indexed by a possibly continuous smoothness parameter. Can one
extend Theorem 2 to such a setting and formulate natural, necessary and sufficient
conditions for the existence of confidence bands that adapt over a continuous scale
of Hölder classes?

(iii) Can one construct “practical” adaptive nonparametric confidence bands?
For instance, can one use bands that are centered at wavelet or kernel estimators
with data-driven bandwidths? In particular can one circumvent having to know the
radius B of the Hölder balls in the construction of the bands?

We shall give some answers to these questions in the remainder of the article,
and summarize our main findings here.

About question (i): we show in Proposition 3 that the “statistical” separation of
�(r) and �(s) using the sup-norm distance as in (1.4) enforces a weaker condi-
tion on f ∈ �(r) than the analytic approach in [12], so that the present results are
strictly more general for fixed smoothness parameters s. We then move on to give
a Bayesian interpretation of the classes �̃(r, ρn) and �̄(ε, r): we show in Proposi-
tion 4 that a natural Bayesian prior arising from “uniformly” distributing suitably
scaled wavelets on �(r) concentrates on the classes �̃(r, ρn) and �̄(ε, r) with
overwhelming probability.

About question (ii): if the radius B of the Hölder balls involved is known, then
one can combine a natural testing approach with recent results in [10, 11, 13] to
prove the existence of adaptive nonparametric confidence bands over a scale of
Hölder classes indexed by a grid of smoothness parameters that grows dense in
any fixed interval [r,R] ⊂ (0,∞) as n → ∞; see Theorems 3, 4.

A full answer to question (iii) lies beyond the scope of this paper. Some partial
findings that seem of interest are the following: note first that our results imply that
the logarithmic penalties that occurred in the diameters of the adaptive confidence
bands in [12] are not necessary if one knows the radius B . On the other hand
we show in Proposition 1 that if the radius B is unknown, then a certain price
in the rate of convergence of the confidence band cannot be circumvented, as B

cannot reliably be estimated without additional assumptions on the model. This
partly justifies the practice of undersmoothing in the construction of confidence
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bands, dating back to Bickel and Rosenblatt [2]. It leads us to argue that near-
adaptive confidence bands that can be used in practice, and that do not require the
knowledge of B , are more likely to follow from the classical adaptive techniques,
like Lepski’s method applied to classical kernel or wavelet estimators, rather than
from the “testing approach” that we employ here to prove existence of optimal
procedures.

To conclude: the question as to whether adaptive methods should be used for
inference clearly remains a “philosophical” one, but we believe that our results
shed new light on the problem. That full adaptive inference is not possible is a
consequence of the fact that the typical smoothness classes over which one wants
to adapt, such as Hölder balls, contain elements that are indistinguishable from a
testing point of view. On the other hand Hölder spaces are used by statisticians to
model regularity properties of unknown functions f , and it may seem sensible to
exclude functions whose regularity is not statistically identifiable. Our main results
give minimal identifiability conditions of a certain kind that apply in this particular
case.

Our findings apply also more generally to the adaptation problem discussed at
the beginning of this introduction with two abstract classes �,�′. We are primar-
ily interested in confidence statements that Cai and Low [4] coin strongly adaptive
(see Section 2.2 in their paper) and in our case this corresponds precisely to re-
quiring (1.2) and (1.3). If �,�′ are convex, and if one is interested in a confidence
interval for a linear functional of the unknown parameter, Cai and Low show that
whether strong adaptation is possible or not is related to the so-called “inter-class
modulus” between �,�′, and their results imply that in several relevant adaptation
problems strongly adaptive confidence statements are impossible. The “separation-
approach” put forward in the present article (following [12]) shows how strong
adaptation can be rendered possible at the expense of imposing statistical identifi-
ability conditions on �,�′, as follows: one first proves existence of a risk-adaptive
estimator f̂n over �,�′ in some relevant loss function. Subsequently one chooses
a functional F :� × �′ → [0,∞), defines the nonparametric model

Pn := � ∪
{
f ∈ �′ \ � : inf

g∈�
F(g, f ) ≥ ρn

}
and derives the minimax rate ρn of testing H0 :f ∈ � against the generally non-
convex alternative {f ∈ �′ \ � : infg∈� F(g, f ) ≥ ρn}. Combining consistent tests
for these hypotheses with f̂n allows for the construction of confidence statements
under sharp conditions on ρn. A merit of this approach is that the resulting confi-
dence statements are naturally compatible with the statistical accuracy of the adap-
tive estimator used in the first place. An important question in this context, which
is beyond the scope of the present paper, is the optimal choice of the functional F:
for confidence bands it seems natural to take F(f, g) = ‖f −g‖∞, but formalizing
this heuristic appears not to be straightforward. In more general settings it may be
less obvious to choose F. These remain interesting directions for future research.
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2. Proof of Theorem 2 and further results. Let X1, . . . ,Xn be i.i.d. with
probability density f on T which we shall take to equal either T = [0,1] or T = R.
We shall use basic wavelet theory [6, 14, 27] freely throughout this article, and we
shall say that the wavelet basis is S-regular if the corresponding scaling functions
φk and wavelets ψk are compactly supported and S-times continuously differen-
tiable on T . For instance, we can take Daubechies wavelets of sufficiently large
order N = N(S) on T = R (see [27]) or on T = [0,1] (Section 4 in [6]).

We define Hölder spaces in terms of the moduli of the wavelet coefficients of
continuous functions. The wavelet basis consists of the translated scaling functions
φk and wavelets ψlk = 2l/2ψk(2l(·)), where we add the boundary corrected scaling
functions and wavelets in case T = [0,1]. If T = R the indices k, l satisfy l ∈ N ∪
{0}, k ∈ Z, but if T = [0,1] we require l ≥ J0 for some fixed integer J0 = J0(N)

and then k = 1, . . . ,2l for the ψlk’s, k = 1, . . . ,N < ∞ for the φk’s. Note that
ψlk = 2l/2ψ(2l(·) − k) for a fixed wavelet ψ if either T = R or if ψlk is supported
in the interior of [0,1]. Write shorthand αk(h) = ∫

hφk , βlk(h) = ∫
hψlk .

DEFINITION 1. Denote by C(T ) the space of bounded continuous real-valued
functions on T , and let φk and ψk be S-regular Daubechies scaling and wavelet
functions, respectively. For s < S, the Hölder space Cs(T ) (=Cs when no confu-
sion may arise) is defined as the set of functions{

f ∈ C(T ) :‖f ‖s,∞ ≡ max
(
sup
k

|αk(f )|, sup
k,l

2l(s+1/2)|βlk(f )|
)

< ∞
}
.

Define, moreover, for s > 0,B ≥ 1, the class of densities

�(s) := �(s,B,T ) =
{
f :T → [0,∞),

∫
T

f (x) dx = 1,‖f ‖s,∞ ≤ B

}
.(2.1)

It is a standard result in wavelet theory (Chapter 6.4 in [27] for T = R and Theo-
rem 4.4 in [6] for T = [0,1]) that Cs is equal, with equivalent norms, to the classi-
cal Hölder–Zygmund spaces Cs . For T = R, 0 < s < 1, these spaces consist of all
functions f ∈ C(R) for which ‖f ‖∞ +supx �=y,x,y∈R(|f (x)−f (y)|/|x−y|s) is fi-
nite. For noninteger s > 1 the space Cs is defined by requiring D[s]f of f ∈ C(R)

to exist and to be contained in Cs−[s]. The Zygmund class C1 is defined by requir-
ing |f (x + y) + f (x − y) − 2f (x)| ≤ C|y| for all x, y ∈ R, some 0 < C < ∞ and
f ∈ C(R), and the case m < s ≤ m+1 follows by requiring the same condition on
the mth derivative of f . The definitions for T = [0,1] are similar; we refer to [6].

Define the projection kernel K(x,y) = ∑
k φk(x)φk(y) and write

Kj(f )(x) = 2j
∫
T

K(2j x,2j y)f (y) dy

= ∑
k

αk(f )φk +
j−1∑
l=J0

∑
k

βlk(f )ψlk
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for the partial sum of the wavelet series of a function f at resolution level j ≥
J0 + 1, with the convention that J0 = 0 if T = R.

If X1, . . . ,Xn are i.i.d. ∼ f then an unbiased estimate of Kj(f ) is, for α̂k =
(1/n)

∑n
i=1 φk(Xi), β̂lk = (1/n)

∑n
i=1 ψlk(Xi) the empirical wavelet coefficients,

fn(x, j) = 2j

n

n∑
i=1

K(2j x,2jXi) = ∑
k

α̂kφk +
j−1∑
l=J0

∑
k

β̂lkψlk.(2.2)

2.1. Proof of Theorem 2. We shall first prove Theorem 2 to lay out the main
ideas. We shall prove claims (a) and (b), that this also solves the testing problem
H0 :f0 ∈ �(s) against H1 :f0 ∈ �̃(r, ρn) follows from the proofs. The proof of
claim (c) is postponed to Section 3. Let us assume B ≥ 2 to simplify some notation.
Take j∗

n ∈ N such that

2j∗
n �

(
n

logn

)1/(2r+1)

is satisfied, where � denotes two-sided inequalities up to universal constants.
(⇐): Let us show that lim infn(ρn/rn(r)) = 0 leads to a contradiction. In this

case ρn/rn(r) → 0 along a subsequence of n, and we shall still index this subse-
quence by n. Let f0 = 1 on [0,1] and define, for ε > 0, the functions

fm := f0 + ε2−j (r+1/2)ψjm,

where m = 1, . . . ,M, c02j ≤ M < 2j , j ≥ 0, c0 > 0, and where ψ is a Daubechies
wavelet of regularity greater than s, chosen in such a way that ψjm is supported
in the interior of [0,1] for every m and j large enough. (This is possible using
the construction in Theorem 4.4 in [6].) Since

∫ 1
0 ψ = 0 we have

∫ 1
0 fm = 1 for

every m and also fm ≥ 0 ∀m if ε > 0 is chosen small enough depending only
on ‖ψ‖∞. Moreover, for any t > 0, using the definition of ‖ · ‖t,∞ and since
c(φ) ≡ supk | ∫ 1

0 φk| ≤ supk ‖φk‖2 = 1,

‖fm‖t,∞ = max
(
c(φ), ε2j (t−r)), m = 1, . . . ,M,(2.3)

so fm ∈ �(r) for ε ≤ 2 (recall B ≥ 2) and every j but fm /∈ �(s) for j large
enough depending only on s, r,B, ε.

Note next that

|βlk(h)| =
∣∣∣∣2l/2

∫
ψk(2

lx)h(x) dx

∣∣∣∣ ≤ 2−l/2‖ψk‖1‖h‖∞ ≤ 2−l/2‖h‖∞

for every l, k, and any bounded function h implies

‖h‖∞ ≥ sup
l≥0,k

2l/2|βlk(h)|(2.4)
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so that, for g ∈ �(s) arbitrary,

‖fm − g‖∞ ≥ sup
l≥0,k

2l/2|βlk(fm) − βlk(g)|

≥ ε2−jr − 2j/2|βjk(g)| ≥ ε2−jr − B2−js(2.5)

≥ ε

2
2−jr

for every m and for j ≥ j0, j0 = j0(s, r,B, ε). Summarizing we see that

fm ∈ �̃

(
r,

ε

2
2−jr

)
∀m = 1, . . . ,M

for every j ≥ j0. Since ρn = o(rn(r)), rn(r) � 2−j∗
n r , we can find jn > j∗

n such
that

ρ′
n := max(ρn, rn(s) logn) ≤ ε

2
2−jnr = o(2−j∗

n r )(2.6)

in particular fm ∈ �̃(r, ρ ′
n) for every m = 1, . . . ,M and every n ≥ n0, n0 =

n0(s, r,B, ε).
Suppose now Cn is a confidence band that is adaptive and honest over �(s) ∪

�̃(r, ρn), and consider testing

H0 :f = f0 against H1 :f ∈ {f1, . . . , fM} =: M.

Define a test 	n as follows: if no fm ∈ Cn, then 	n = 0, but as soon as one of
the fm’s is contained in Cn, then 	n = 1. We control the error probabilities of
this test. Using (2.5), Markov’s inequality, adaptivity of the band, (2.6) and noting
rn(s) = o(ρ′

n), we deduce

Prf0(	n �= 0) = Prf0(fm ∈ Cn for some m)

= Prf0(fm,f0 ∈ Cn for some m)

+ Prf0(fm ∈ Cn for some m,f0 /∈ Cn)

≤ Prf0(‖fm − f0‖∞ ≤ |Cn| for some m) + α + o(1)

≤ Prf0(|Cn| ≥ ρ′
n) + α + o(1)

≤ Ef0 |Cn|/ρ′
n + α + o(1) = α + o(1).

Under any alternative fm ∈ �̃(r, ρ ′
n), invoking honesty of the band we have

Pfm(	n = 0) = Prfm(no fk ∈ Cn) ≤ Prfm(fm /∈ Cn) ≤ α + o(1)

so that summarizing we have

lim sup
n

(
Ef0	n + sup

f ∈M
Ef (1 − 	n)

)
≤ 2α < 1.(2.7)
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On the other hand, if 	̃ is any test (any measurable function of the sample taking
values 0 or 1), we shall now prove

lim inf
n

inf
	̃

(
Ef0	̃ + sup

f ∈M
Ef (1 − 	̃)

)
≥ 1,(2.8)

which contradicts (2.7) and completes this direction of the proof. The proof follows
ideas in [16]. We have, for every η > 0,

Ef0	̃ + sup
f ∈M

Ef (1 − 	̃) ≥ Ef0(1{	̃ = 1}) + 1

M

M∑
m=1

Efm(1 − 	̃)

≥ Ef0(1{	̃ = 1} + 1{	̃ = 0}Z)

≥ (1 − η)Prf0(Z ≥ 1 − η),

where Z = M−1 ∑M
m=1(dP n

m/dP n
0 ) with P n

m the product probability measures in-
duced by a sample of size n from the density fm. By Markov’s inequality,

Prf0(Z ≥ 1 − η) ≥ 1 − Ef0 |Z − 1|
η

≥ 1 −
√

Ef0(Z − 1)2

η

for every η > 0, and we show that the last term converges to zero. Writing (in
abuse of notation) γj = ε2−jn(r+1/2), using independence, orthonormality of ψjm

and
∫

ψjm = 0 repeatedly as well as (1 + x) ≤ ex , we see

Ef0(Z − 1)2 = 1

M2

∫
[0,1]n

(
M∑

m=1

(
n∏

i=1

fm(xi) − 1

))2

dx

= 1

M2

∫
[0,1]n

(
M∑

m=1

(
n∏

i=1

(
1 + γjψjm(xi)

) − 1

))2

dx

= 1

M2

M∑
m=1

∫
[0,1]n

(
n∏

i=1

(
1 + γjψjm(xi)

) − 1

)2

dx

= 1

M2

M∑
m=1

(∫
[0,1]n

n∏
i=1

(
1 + γjψjm(xi)

)2
dx − 1

)

= 1

M2

M∑
m=1

((∫
[0,1]

(
1 + γjψjm(x)

)2
dx

)n

− 1

)

= 1

M

(
(1 + γ 2

j )n − 1
) ≤ e

nγ 2
j − 1

M
.
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Now using (2.6) we see nγ 2
j = ε2n2−jn(2r+1) = o(logn) so that e

nγ 2
j = o(nκ) for

every κ > 0, whereas M � 2jn ≥ 2j∗
n � rn(r)

−1/r still diverges at a fixed polyno-
mial rate in n, so that the last quantity converges to zero, which proves (2.8) since
η was arbitrary.

(⇒): Let us now show that an adaptive band Cn can be constructed if ρn equals
rn(r) times a large enough constant, and if the radius B is known. The remarks
after Definition 1 imply that ‖f ‖∞ ≤ k‖f ‖s,∞ ≤ kB for some k > 0. Set

σ(j) := σ(n, j) :=
√

kB
2j j

n
, ρn := L′σ(j∗

n ) � rn(r)(2.9)

for L′ a constant to be chosen later. Using Definition 1 and supx

∑
k |ψk(x)| < ∞,

we have for fn from (2.2) based on wavelets of regularity S > s

‖Ef fn(j
∗
n ) − f ‖∞ = ‖Kj∗

n
(f ) − f ‖∞ ≤ b02−j∗

n r ≤ bσ(j∗
n )(2.10)

for some constants b0, b that depend only on B,ψ .
Define the test statistic d̂n := infg∈�(s) ‖fn(j

∗
n ) − g‖∞. Let now f̂n(y) be any

estimator for f that is exact rate adaptive over �(s) ∪ �(r) in sup-norm risk; that
is, f̂n satisfies simultaneously, for some fixed constant D depending only on B, s, r

sup
f ∈�(r)

Ef ‖f̂n − f ‖∞ ≤ Drn(r), sup
f ∈�(s)

Ef ‖f̂n − f ‖∞ ≤ Drn(s).(2.11)

Such estimators exist; see Theorem 5 below. Define the confidence band Cn ≡
{Cn(y), y ∈ [0,1]} to equal

f̂n(y) ± Lrn(r) if d̂n > τ and f̂n(y) ± Lrn(s) if d̂n ≤ τ, y ∈ [0,1],
where τ = κσ(j∗

n ), and where κ and L are constants to be chosen below.
We first prove that Cn is an honest confidence band for f ∈ �(s) ∪ �̃(r, ρn)

when ρn is as above with L′ large enough depending only on κ,B . If f ∈ �(s) we
have coverage since adaptivity of f̂n implies, by Markov’s inequality,

inf
f ∈�(s)

Prf (f ∈ Cn) ≥ 1 − sup
f ∈�(s)

Prf
(‖f̂n − f ‖∞ > Lrn(s)

)

≥ 1 − 1

Lrn(s)
sup

f ∈�(s)

Ef ‖f̂n − f ‖∞

≥ 1 − D

L
,

which can be made greater than 1 − α for any α > 0 by choosing L large enough
depending only on K,B,α, r, s. When f ∈ �̃(r, ρn) there is the danger of d̂n ≤ τ

in which case the size of the band is too small. In this case, however, we have,
using again Markov’s inequality,

inf
f ∈�̃(r,ρn)

Prf (f ∈ Cn) ≥ 1 − supf ∈�̃(r,ρn) Ef ‖f̂n − f ‖∞
Lrn(r)

− sup
f ∈�̃(r,ρn)

Prf (d̂n ≤ τ)
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and the first term subtracted can be made smaller than α for L large enough in view
of (2.11). For the second note that Prf (d̂n ≤ τ) equals, for every f ∈ �̃(r, ρn),

Prf
(

inf
g∈�(s)

‖fn(j
∗
n ) − g‖∞ ≤ κσ(j∗

n )
)

≤ Prf
(
inf
g

‖f − g‖∞ − ‖fn(j
∗
n ) − Ef fn(j

∗
n )‖∞

− ‖Kj∗
n
(f ) − f ‖∞ ≤ κσ(j∗

n )
)

≤ Prf
(
ρn − ‖Kj∗

n
(f ) − f ‖∞ − κσ(j∗

n ) ≤ ‖fn(j
∗
n ) − Ef fn(j

∗
n )‖∞

)
≤ Prf

(‖fn(j
∗
n ) − Ef fn(j

∗
n )‖∞ ≥ (L′ − κ − b)σ (j∗

n )
)

≤ ce−cj∗
n = o(1)

for some c > 0, by choosing L′ = L′(κ,B,K) large enough independent of f ∈
�̃(r, ρn), in view of Proposition 5 below. This completes the proof of coverage of
the band.

We now turn to adaptivity of the band and verify (1.5). By definition of Cn we
have almost surely

|Cn| ≤ Lrn(r),

so the case f ∈ �̃(r, ρn) is proved. If f ∈ �(s) then, using (2.10) and Proposi-
tion 5,

Ef |Cn| ≤ Lrn(r)Prf (d̂n > τ) + Lrn(s)

≤ Lrn(r)Prf
(

inf
g∈�(s)

‖fn(j
∗
n ) − g‖∞ > κσ(j∗

n )
)

+ Lrn(s)

≤ Lrn(r)Prf
(‖fn(j

∗
n ) − f ‖∞ > κσ(j∗

n )
) + Lrn(s)

≤ Lrn(r)Prf
(‖fn(j

∗
n ) − Ef fn(j

∗
n )‖∞ > (κ − b)σ (j∗

n )
) + Lrn(s)

≤ Lrn(r)ce
−cj∗

n + Lrn(s) = O(rn(s))

since c can be taken sufficiently large by choosing κ = κ(K,B) large enough. This
completes the proof of the second claim of Theorem 2.

2.2. Unknown radius B . The existence results in the previous section are not
entirely satisfactory in that the bands constructed to prove existence of adaptive
procedures cannot be easily implemented. Particularly the requirement that the
radius B of the Hölder ball be known is restrictive. A first question is whether
exact rate-adaptive bands exist if B is unknown, and the answer turns out to be no.
This in fact is not specific to the adaptive situation, and occurs already for a fixed
Hölder ball, as the optimal size of a confidence band depends on the radius B .
The following proposition is a simple consequence of the formula for the exact
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asymptotic minimax constant for density estimation in sup-norm loss as derived
in [21].

PROPOSITION 1. Let X1, . . . ,Xn be i.i.d. random variables taking values in
[0,1] with density f ∈ �(r,B, [0,1]) where 0 < r < 1. Let Cn be a confidence
band that is asymptotically honest with level α for �(r,B, [0,1]). Then

lim inf
n

sup
f ∈�(r,B,[0,1])

Ef |Cn|
rn(r)

≥ cBp(1 − α)

for some fixed constants c,p > 0 that depend only on r .

In particular if Cn does not depend on B , then Ef |Cn| cannot be of order rn(r)

uniformly over �(r,B, [0,1]) for every B > 0, unless B can be reliably estimated,
which for the full Hölder ball is impossible without additional assumptions. It can
be viewed as one explanation for why undersmoothing is necessary to construct
“practical” asymptotic confidence bands.

2.3. Confidence bands for adaptive estimators. The usual risk-adaptive esti-
mators such as those based on Lepski’s [23] method or wavelet thresholding [7] do
not require the knowledge of the Hölder radius B . As shown in [12] (see also [20])
such estimators can be used in the construction of (near-)adaptive confidence bands
under certain analytic conditions on the elements of �(s). Let us briefly describe
the results in [12, 20]. Let �n be a sequence of positive integers (typically �n → ∞
as n → ∞) and define, for K the wavelet projection kernel associated to some
S-regular wavelet basis, S > s

�̄(ε, s, �n) := {f ∈ �(s) : ε2−ls ≤ ‖Kl(f ) − f ‖∞ ≤ B2−ls ∀l ≥ �n}.(2.12)

The conditions in [12, 20] are slightly weaker in that they have to hold only for
l ∈ [�n, �

′
n] where �′

n − �n → ∞. This turns out to be immaterial in what follows,
however, so we work with these sets to simplify the exposition.

Whereas the upper bound in (2.12) is automatic for functions in �(s), the lower
bound is not. However one can show that a lower bound on ‖Kl(f ) − f ‖∞ of
order 2−ls is “topologically” generic in the Hölder space Cs(T ). The following is
Proposition 4 in [12].

PROPOSITION 2. Let K be S-regular with S > s. The set{
f : there exists no ε > 0, l0 ≥ 0 s.t. ‖Kl(f ) − f ‖∞ ≥ ε2−l(s+1/2) ∀l ≥ l0

}
is nowhere dense in the norm topology of Cs(R).

Using this condition, [12] constructed an estimator f̂n based on Lepski’s method
applied to a kernel or wavelet density estimator such that

Ân

(
sup

y∈[0,1]

∣∣∣∣ f̂n(y) − f (y)

σ̂n

√
f̂n(y)

∣∣∣∣ − B̂n

)
→d Z(2.13)
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as n → ∞, where Z is a standard Gumbel random variable and where Ân, B̂n, σ̂n

are some random constants. If �n is chosen such that

2�n �
(

n

logn

)1/(2R+1)

,(2.14)

then the limit theorem (2.13) is uniform in relevant unions over s ∈ [r,R], r > 0,
of Hölder classes �̄(ε, s, �n). Since the constants Ân, B̂n, σ̂n in (2.13) are known,
confidence bands can be retrieved directly from the limit distribution, and [12]
further showed that so-constructed bands are near-adaptive: they shrink at rate
OP (rn(s)un) whenever f ∈ �̄(ε, s, �n), where un can be taken of the size logn.
See Theorem 1 in [12] for detailed statements. As shown in Theorem 4 in [20], the
restriction un � logn can be relaxed to un → ∞ as n → ∞, at least if one is not
after exact limiting distributions but only after asymptotic coverage inequalities,
and this matches Proposition 1, so that these bands shrink at the optimal rate in the
case where B is unknown.

Obviously it is interesting to ask how the sets in (2.12) constructed from analytic
conditions compare to the classes considered in Theorems 2, 3 and 4 constructed
from statistical separation conditions. The following result shows that the condi-
tions in the present paper are strictly weaker than those in [12, 20] for the case
of two fixed Hölder classes, and also gives a more statistical explanation of why
adaptation is possible over the classes from (2.12).

PROPOSITION 3. Let t > s.

(a) Suppose f ∈ �̄(ε, s, �n) for some fixed ε > 0. Then infg∈�(t) ‖f − g‖∞ ≥
c2−�ns for some constant c ≡ c(ε,B, s, t,K). Moreover, if 2−�ns/rn(s) → ∞ as
n → ∞, so in particular in the adaptive case as in (2.14), then, for every L0 > 0,

�̄(ε, s, �n) ⊂ �̃(s,L0rn(s))

for n ≥ n0(ε,B, s, t,L0,K) large enough.
(b) If �n is s.t. 2−�ns/rn(s) → ∞ as n → ∞, so in particular in the adaptive

case (2.14), then ∀L′
0 > 0, ε > 0 the set

�̃(s,L′
0rn(s)) \ �̄(ε, s, �n)

is nonempty for n ≥ n0(s, t,K,B,L′
0) large enough.

2.4. A Bayesian perspective. Instead of analyzing the topological capacity of
the set removed, one can try to quantify its size by some measure on the Hölder
space Cs . As there is no translation-invariant measure available we consider cer-
tain probability measures on Cs that have a natural interpretation as nonparametric
Bayes priors.
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Take any S-regular wavelet basis {φk,ψlk :k ∈ Z, l ∈ N} of L2([0,1]), S > s.
The wavelet characterization of Cs([0,1]) motivates to distribute the basis func-
tions ψlk’s randomly on �(s,B) as follows: take ulk i.i.d. uniform random vari-
ables on [−B,B] and define the random wavelet series

Us(x) = 1 +
∞∑

l=J

∑
k

2−l(s+1/2)ulkψlk(x),

which converges uniformly almost surely. It would be possible to set J = 0 and
replace 1 by

∑
k u0kφk below, but to stay within the density framework we work

with this minor simplification, for which
∫ 1

0 Us(x) dx = 1 as well as Us ≥ 0 almost
surely if J ≡ J (‖ψ‖∞,B, s) is chosen large enough. Conclude that Us is a random
density that satisfies

‖Us‖s,∞ ≤ max
(
1, sup

k,l≥J

|ulk|
)

≤ B a.s.,

so its law is a natural prior on �(s,B) that uniformly distributes suitably scaled
wavelets on �(s) around its expectation EUs = 1.

PROPOSITION 4. Let K be the wavelet projection kernel associated to a S-
regular wavelet basis φ,ψ of L2([0,1]), S > s, and let ε > 0, j ≥ 0. Then

Pr{‖Kj(Us) − Us‖∞ < εB2−js} ≤ e− log(1/ε)2j

.

By virtue of part (a) of Proposition 3 the same bound can be established, up to
constants, for the probability of the sets �(s) \ �̃(s, ρn) under the law of Us .

Similar results (with minor modifications) could be proved if one replaces the
ulk’s by i.i.d. Gaussians, which leads to measures that have a structure similar to
Gaussian priors used in Bayesian nonparametrics; see, for example, [30]. If we
choose j at the natural frequentist rate 2j � n1/(2s+1), then the bound in Proposi-
tion 4 becomes e−Cnδ2

n(s), δn(s) = n−s/(2s+1), where C > 0 can be made as large
as desired by choosing ε small enough. In view of (2.3) in Theorem 2.1 in [9]
one could therefore heuristically conclude that the exceptional sets are “effective
null-sets” from the point of view of Bayesian nonparametrics.

2.5. Adaptive confidence bands for collections of Hölder classes. The ques-
tion arises of how Theorem 2 can be extended to adaptation problems over col-
lections of Hölder classes whose smoothness degree varies in a fixed interval
[r,R] ⊂ (0,∞). A fixed finite number of Hölder classes can be handled by a
straightforward extension of the proof of Theorem 2. Of more interest is to con-
sider a continuum of smoothness parameters—adaptive estimators that attain the
minimax sup-norm risk over each element of the collection

⋃
0<s≤R �(s) exist; see
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Theorem 5 below. Following Theorem 2 a first approach might seem to introduce
analogues of the sets �̃(s, ρn) as{

f ∈ �(s) : inf
g∈�(t)

‖g − f ‖∞ ≥ ρn(s) ∀t > s
}
.

However this does not make sense as the sets {�(t)}t>s are ‖ · ‖∞-dense in �(s),
so that so-defined �̃(s, ρn(s)) would be empty [unless ρn(s) = 0]. Rather one
should note that any adaptation problem with a continuous smoothness parameter
s and convergence rates that are polynomial in n can be recast as an adaptation
problem with a discrete parameter set whose cardinality grows logarithmically
in n. Indeed let us dissect [r,R] into |Sn| � logn points

Sn := Sn(ζ ) = {si, i = 1, . . . , |Sn|}
that include r ≡ s1,R ≡ s|Sn|, si < si+1 ∀i, and each of which has at most 2ζ/ logn

and at least ζ/ logn distance to the next point, where ζ > 0 is a fixed constant.
A simple calculation shows

rn(si) ≤ Crn(s)(2.15)

for some constant C = C(ζ,R) and every si ≤ s < si+1, so that any estimator that
is adaptive over �(s), s ∈ Sn, is also adaptive over �(s), s ∈ [r,R].

After this discretization we can define

�̃(s, ρn(s), Sn) =
{
f ∈ �(s) : inf

g∈�(t)
‖g − f ‖∞ ≥ ρn(s) ∀t > s, t ∈ Sn

}
,

where ρn(s) is a sequence of nonnegative integers. We are interested in the exis-
tence of adaptive confidence bands over

�(R) ∪
( ⋃

s∈Sn\{R}
�̃(s, ρn(s), Sn)

)

under sharp conditions on ρn(s).
Let us first address lower bounds, where we consider T = [0,1] for simplicity.

Theorem 2 cannot be applied directly since the smoothness index s depends on n

in the present setting, and any two s, s′ ∈ Sn could be as close as ζ/ logn possibly.
If the constant ζ is taken large enough (but finite) one can prove the following
result.

THEOREM 3 (Lower bound). Let T = [0,1],L ≥ 1 and 0 < α < 1/3 be given,
and let Sn(ζ ) be a grid as above. Let s < s′ be any two points in Sn(ζ ) and suppose
that Cn is a confidence band that is asymptotically honest with level α over

�(s ′) ∪ �̃(s, ρn(s), Sn),

and that is adaptive in the sense that

sup
f ∈�(s′)

Ef |Cn| ≤ Lrn(s
′), sup

f ∈�̃(s,ρn(s),Sn)

Ef |Cn| ≤ Lrn(s)
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for every n large enough. Then if ζ := ζ(R,B,L,α) is a large enough but finite
constant, we necessarily have

lim inf
n

ρn(s)

rn(s)
> 0.

A version of Theorem 3 for T = R can be proved as well, by natural modifica-
tions of its proof.

To show that adaptive procedures exist if B is known define

�̃n(s) :=
{
f ∈ �(s) : inf

g∈�(t)
‖g − f ‖∞ ≥ L0rn(s) ∀t ∈ Sn, t > s

}
,

where s varies in [r,R), and where L0 > 0. Setting �̃n(R) ≡ �(R) for notational
convenience, we now prove that an adaptive and honest confidence band exists, for
L0 large enough, over the class

Pn(L0) := P(Sn,B,L0, n) := ⋃
s∈Sn

�̃n(s).

Analyzing the limit set (as n → ∞) of Pn(L0), or a direct comparison to the con-
tinuous scale of classes in (2.12), seems difficult, as Sn depends on n now. Note,
however, that one can always choose {Sn}n≥1 in a nested way, and ζ large enough,
such that Pn(L0) contains, for every n, any fixed finite union (over s) of sets of the
form �̄(ε, s, �n) (using Proposition 3).

THEOREM 4 (Existence of adaptive bands). Let X1, . . . ,Xn be i.i.d. ran-
dom variables on T = [0,1] or T = R with density f ∈ Pn(L0) and suppose
B, r,R,0 < α < 1 are given. Then, if L0 is large enough depending only on B ,
a confidence band Cn = Cn(B, r,R,α;X1, . . . ,Xn) can be constructed such that

lim inf
n

inf
f ∈Pn(L0)

Prf (f ∈ Cn) ≥ 1 − α

and, for every s ∈ Sn, n ∈ N and some constant L′ independent of n,

sup
f ∈�̃n(s)

Ef |Cn| ≤ L′rn(s).(2.16)

3. Proofs of remaining results.

PROOF OF PROPOSITION 1. On the events {f ∈ Cn} we can find a random
density Tn ∈ Cn depending only on Cn such that {|Cn| ≤ D,f ∈ Cn} ⊆ {‖Tn −
f ‖∞ ≤ D} for any D > 0, and negating this inclusion we have

{|Cn| > D} ∪ {f /∈ Cn} ⊇ {‖Tn − f ‖∞ > D}
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so that Prf (|Cn| > D) ≥ Prf (‖Tn − f ‖∞ > D) − Prf (f /∈ Cn). Thus, using cov-
erage of the band

lim inf
n

sup
f ∈�(r,B)

Prf
(|Cn| > cBprn(r)

)
≥ lim inf

n
sup

f ∈�(r,B)

Prf
(‖Tn − f ‖∞ > cBprn(r)

) − α.

The limit inferior in the last line equals 1 as soon as c > 0 is chosen small enough
depending only on r,p in view of Theorem 1 in [21]; see also page 1114 as well
as Lemma A.2 in that paper. Taking lim inf’s in the inequality

sup
f ∈�(r,B)

Ef |Cn|
rn(r)

≥ cBp sup
f ∈�(r,B)

Prf
(|Cn| > cBprn(r)

)
gives the result. �

PROOF OF PROPOSITION 3. (a) Observe first that for every l0 ≥ �n,

‖ψ‖∞
∑
l≥l0

2l/2 sup
k

|βlk(f )| ≥ ‖Kl0(f ) − f ‖∞ ≥ ε2−l0s .

Let N be a fixed integer, and let �′
n ≥ �n be a sequence of integers to be chosen

later. Then for some l̄ ∈ [�′
n, �

′
n + N − 1]

sup
k

|βl̄k(f )| ≥ 1

N

�′
n+N−1∑
l=�′

n

sup
k

|βlk(f )|

≥ 2−(�′
n+N)/2

N

( ∞∑
l=�′

n

2l/2 sup
k

|βlk(f )| −
∞∑

l=�′
n+N

2l/2 sup
k

|βlk(f )|
)

≥ 2−(�′
n+N)/2

N

(
ε

‖ψ‖∞
2−�′

ns − c(B, s)2−(�′
n+N)s

)

≥ 2−(�′
n+N)/2

2‖ψ‖∞N
ε2−�′

ns ≥ d(ε,B,ψ, s)2−�′
n(s+1/2)

for some d(ε,B,ψ, s) > 0 if N is chosen large enough but finite depending only
on ε,B,ψ, s. From (2.4) we thus have, for any t > s,

inf
g∈�(t)

‖f − g‖∞ ≥ inf
g∈�(t)

sup
l≥�′

n,k

2l/2|βlk(f − g)|

≥ d(ε,B,ψ, s)2−�′
ns − sup

g∈�(t)

sup
l≥�′

n,k

2l/2|βlk(g)|

≥ d(ε,B,ψ, s)2−�′
ns − B2−�′

nt

≥ c(ε,B, s, t,ψ)2−�ns,
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where we have chosen �′
n large enough depending only on B, s, t, d(ε,B,ψ, s) but

still of order O(�n). This completes the proof of the first claim. The second claim
is immediate in view of the definitions.

(b) Take f = f0 + 2−�n(s+1/2)ψ�nm for some m. Then ‖f ‖s,∞ ≤ 1 so f ∈
�(s,B) and the estimate in the last display of the proof of part (a) implies

inf
g∈�(t)

‖f − g‖∞ ≥ c2−�ns ≥ L′
0rn(s)

for n large enough depending only on B, s, t,L′
0,ψ . On the other hand

‖K�n+1(f ) − f ‖∞ = 0 so f /∈ �̄(ε, s, �n) for any ε > 0. �

PROOF OF PROPOSITION 4. Using (2.4) we have

‖Kj(Us) − Us‖∞ ≥ ‖ψ‖−1
1 sup

l≥j,k

2l/2|βlk(Us)| ≥ ‖ψ‖−1
1 2−js max

k=1,...,2j
|ujk|.

The variables ujk/B are i.i.d. U(−1,1) and so the Uk’s, Uk := |ujk/B|, are i.i.d.
U(0,1) with maximum equal to the largest order statistic U(2j ). Deduce

Pr
(‖Kj(Us) − Us‖∞ < εB2−js) ≤ Pr

(
U(2j ) < ε

) = ε2j

to complete the proof. �

PROOF OF THEOREM 3. The proof is a modification of the “necessity part”
of Theorem 2. Let us assume w.l.o.g. B ≥ 2,R ≥ 1, let us write, in slight abuse of
notation, sn, s

′
n for s, s′ throughout this proof to highlight the dependence on n and

choose jn(sn) ∈ N such that

(n/ logn)1/(2R+1) ≤ c0(n/ logn)1/(2sn+1) ≤ 2jn(sn) ≤ (n/ logn)1/(2sn+1)

holds for some c0 > 1/(2R + 1)1/(2R+1) and every n large enough. We shall as-
sume that ζ is any fixed number satisfying

ζ > (4R + 2)max
(

log2
(
(4R + 2)B

)
, (2R + 1) log

(4R + 2)L

α

)

in the rest of the proof, and we shall establish lim infn(ρn(sn)/Lrn(s
+
n )) > 0, where

s+
n > sn is the larger “neighbor” of sn in Sn. This completes the proof since

lim infn rn(s
+
n )/rn(sn) ≥ c(ζ ) > 0 by definition of the grid.

Assume thus by way of contradiction that lim infn(ρn(sn)/Lrn(s
+
n )) = 0 so that,

by passing to a subsequence of n if necessary, ρn(sn) ≤ Lrn(s
+
n ) + δ for every

δ > 0 and every n = n(δ) large enough. Let ε := 1/(2R + 1) and define

f0 = 1, fm = f0 + ε2−j (sn+1/2)ψjm, m = 1, . . . ,M,

as in the proof of Theorem 2, c′
02j ≤ M ≤ 2j , c′

0 > 0. Then fm ∈ �(sn) for ev-
ery j ≥ j0 where j0 can be taken to depend only on r,R,B,ψ . Moreover for
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j ≥ (logn)/(4R + 2) we have, using (2.4) and the assumption on ζ , for any
g ∈ �(t), t ∈ Sn, t > sn, and every m

‖fm − g‖∞ ≥ sup
l≥0,k

2l/2|βlk(fm) − βlk(g)|

≥ ε2−jsn − 2j/2|βjk(g)| ≥ ε2−jsn − B2−j t(3.1)

≥ 2−jsn(ε − B2−jζ/ logn) ≥ ε

2
2−jsn .

We thus see that

fm ∈ �̃

(
sn,

ε

2
2−jsn, Sn

)
∀m = 1, . . . ,M,

for every j ≥ J0 := max(j0, (logn)/(4R + 2)). Take now j ≡ jn(sn) which ex-
ceeds J0 for n large enough, and conclude

ε

2
2−jn(sn)sn ≥ ε

2
rn(sn) ≥ ε

2

α

L

L

α
(eζ/2)1/(2R+1)2

rn(s
+
n )

(3.2)

≥ L

α
rn(s

+
n ) ≥ ρn(sn)

for n large enough, where we have used the definition of the grid Sn, of ε, the
assumption on ζ and the hypothesis on ρn. Summarizing fm ∈ �̃(sn, ρn(sn), Sn)

for every m = 1, . . . ,M and every n ≥ n0, n0 = n0(r,R,B,ψ).
Suppose now Cn is a confidence band that is adaptive and asymptotically honest

over �(s′
n) ∪ �̃(sn, ρn(sn), Sn), and consider testing H0 :f = f0 against H1 :f ∈

{f1, . . . , fM} =: M. Define a test 	n as follows: if no fm ∈ Cn then 	n = 0, but as
soon as one of the fm’s is contained in Cn then 	n = 1. Now since rn(s

′
n) ≤ rn(s

+
n )

and using (3.1), (3.2) we have

Prf0(	n �= 0) = Prf0(fm ∈ Cn for some m)

≤ Prf0(‖fm − f0‖∞ ≤ |Cn| for some m) + α + o(1)

≤ Prf0

(|Cn| ≥ (L/α)rn(s
+
n )

) + α + o(1)

≤ αrn(s
′
n)/rn(s

+
n ) + α + o(1) ≤ 2α + o(1).

Under any alternative fm ∈ �̃(sn), invoking honesty of the band we have

Pfm(	n = 0) = Prfm(no fk ∈ Cn) ≤ Prfm(fm /∈ Cn) ≤ α + o(1)

so that summarizing we have

lim sup
n

(
Ef0	n + sup

f ∈M
Ef (1 − 	n)

)
≤ 3α < 1.
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But this has led to a contradiction by the same arguments as in the proof of Theo-
rem 2, noting in the last step that nγ 2

j = ε2n2−jn(sn)(2sn+1) ≤ (ε2/(c0)
2R+1) logn

and thus

e
nγ 2

j − 1

M
≤ 1

c′
0c0

e(ε2/(c0)
2R+1) logn

(
logn

n

)1/(2R+1)

= o(1)

since 1/(2R + 1) = ε < c2R+1
0 . �

PROOF OF THEOREM 4. We shall only prove the more difficult case T = R.
Let ji be such that 2ji � (n/ logn)1/(2si+1), let fn(j) be as in (2.2) based on
wavelets of regularity S > R and define test statistics

d̂n(i) := inf
g∈�(si+1)

‖fn(ji) − g‖∞, i = 1, . . . , |Sn| − 1.

Recall further σ(j) from (2.9) and, for a constant L to be chosen below, define
tests

	(i) =
{

0, if d̂n(i) ≤ Lσ(ji),
1, otherwise,

to accept H0 :f ∈ �(si+1) against the alternative H1 :f ∈ �̃n(si). Starting from
the largest model we first test H0 :f ∈ �(s2) against H1 :f ∈ �̃n(r). If H0 is
rejected we set ŝn = r , otherwise we proceed to test H0 :f ∈ �(s3) against
H1 :f ∈ �̃n(s2) and iterating this procedure downwards we define ŝn to be the
first element si in S for which 	(i) = 1 rejects. If no rejection occurs set ŝn = R.

For f ∈ Pn(L0) define si0 := si0(f ) = max{s ∈ Sn :f ∈ �̃n(s)}.
LEMMA 1. We can choose the constants L and then L0 depending only on

B,φ,ψ such that

sup
f ∈Pn(L0)

Prf
(
ŝn �= si0(f )

) ≤ Cn−2

for some constant C and every n large enough.

PROOF. If ŝn < si0 , then the test 	(i) has rejected for some i < i0. In this case
f ∈ �̃n(si0) ⊂ �(si0) ⊆ �(si+1) for every i < i0, and thus, proceeding as in (2.10)
and using Proposition 5 below, we have for L and then d large enough depending
only on B,K

Prf (ŝn < si0) = Prf

( ⋃
i<i0

{
inf

g∈�(si+1)
‖fn(ji) − g‖∞ > Lσ(ji)

})

≤ ∑
i<i0

Prf
(‖fn(ji) − Ef fn(ji)‖∞ > (L − b)σ (ji)

)

≤ C′|Sn|e−d logn ≤ Cn−2.
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On the other hand if ŝn > si0 (ignoring the trivial case si0 = R), then 	(i0) has
accepted despite f ∈ �̃n(si0). Thus, using rn(si0) ≥ cσ(ji0) for some c = c(B) and
proceeding as in (2.10) we can bound Prf (ŝn > si0) by

Prf
(

inf
g∈�(si0+1)

‖fn(ji0) − g‖∞ ≤ Lσ(ji0)
)

≤ Prf
(

inf
g∈�(si0+1)

‖f − g‖∞ − ‖fn(ji0) − Ef fn(ji0)‖∞

− ‖Ef fn(ji0) − f ‖∞ ≤ Lσ(ji0)
)

≤ Prf
(
L0rn(si0) − ‖Kji0

(f ) − f ‖∞ − Lσ(ji0) ≤ ‖fn(ji0) − Ef fn(ji0)‖∞
)

≤ Prf
(‖fn(ji0) − Ef fn(ji0)‖∞ ≥ (cL0 − L − b)σ (ji0)

)
≤ c′e−c′ji0 ≤ C/n2

for L0 and then also c′ > 0 large enough, using Proposition 5 below. �

Take now f̂n to be an estimator of f that is adaptive in sup-norm loss over⋃
s∈[r,R] �(s) as in Theorem 5 below and define the confidence band

Cn = f̂n ± M

(
logn

n

)ŝn/(2ŝn+1)

,

where M is chosen below. For f ∈ �̃n(si0) the lemma implies

Ef |Cn| ≤ 2M

(
logn

n

)si0/(2si0+1)

+ 2M

(
logn

n

)r/(2r+1)

× Prf (ŝn < si0)

≤ C(M)

(
logn

n

)si0/(2si0+1)

,

so this band is adaptive.
For coverage, we have, again from the lemma and Markov’s inequality

Prf (f ∈ Cn) = Prf
(‖f̂n − f ‖∞ ≤ Mrn(ŝn)

)
≥ 1 − Prf

(‖f̂n − f ‖∞ > Mrn(si0)
) − Pr(ŝn > si0)

≥ 1 − Ef ‖f̂n − f ‖∞
Mrn(si0)

− C

n2

≥ 1 − D(B,R, r)

M
− C

n2 ,

which is greater than or equal to 1 − α for M and n large enough depending only
on B,R, r . �
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PROOF OF PART (c) OF THEOREM 2. The analog of case (b) is immediate.
The analog of part (a) requires the following modifications: set again f0 = 1 on
[0,1], 0 ≤ j ′

n < jn to be chosen below, and define

fm := f0 + B2−j ′
n(s+1/2)ψj ′

nm0 + ε2−jn(r+1/2)ψjnm,

where m = 1, . . . ,M � 2j , all ψlk’s are Daubechies wavelets supported in the in-
terior of [0,1] and where m0 �= m is chosen such that ψj ′

nm0 and ψjnm have disjoint
support for every m (which is possible for jn, j

′
n large enough since Daubechies

wavelets have localized support). Recalling j∗
n from the proof of part (a), we can

choose j ′
n, jn in such a way that j ′

n < jn,2−jnr = o(2−j∗
n r ),

fm ∈ �̃(r, ρn) ∀m, f ′
0 := f0 + B2−j ′

n(s+1/2)ψj ′
nm0 ∈ �̃

(
s, (B/2)rn(s)

)
for every n ≥ n0, n0 = n0(s, r,B, ε,ψ). Now if Cn is a confidence band that
is adaptive and honest over �̃(s, rn(s)) ∪ �̃(r, ρn) consider testing H0 :f = f ′

0
against H1 :f ∈ {f1, . . . , fM} =: M. The same arguments as before (2.7) show
that there exists a test 	n such that lim supn(Ef0	n + supf ∈M Ef (1 − 	n)) ≤
2α < 1 along a subsequence of n, a claim that leads to a contradiction since
we can lower bound the error probabilities of any test as in the original proof
above, the only modification arising in the bound for the likelihood ratio. Let
P ′

0 be the n-fold product probability measure induced by the density f ′
0 and set

Z = (1/M)
∑M

m=1(dPm/dP ′
0). We suppress now the dependence of jn on n for no-

tational simplicity, and define shorthand γj = ε2−j (r+1/2), κj = B2−j ′(s+1/2). To
bound Ef ′

0
(Z−1)2 we note that, using orthonormality of the ψjm’s, that

∫
ψjm = 0

and that ψj ′m0 has disjoint support with ψjm,m = 1, . . . ,M , we have (m �= m′)∫
ψlmψlm′

(1 + κjψj ′m0)
2 f ′

0 =
∫

ψjmψjm′ = 0,

∫
ψjm

1 + κjψj ′m0

f ′
0 =

∫
ψjm = 0,

∫ ψ2
jm

(1 + κjψj ′m0)
2 f ′

0 =
∫

ψ2
jm = 1.

The identities in the last display can be used to bound Ef ′
0
(Z − 1)2 by

1

M2

∫
[0,1]n

(
M∑

m=1

(
n∏

i=1

fm(xi)

f ′
0(xi)

− 1

))2 n∏
i=1

f ′
0(xi) dx

= 1

M2

M∑
m=1

∫
[0,1]n

(
n∏

i=1

(
1 + γjψjm(xi)

1 + κjψj ′m0(xi)

)
− 1

)2 n∏
i=1

f ′
0(xi) dx
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= 1

M2

M∑
m=1

((∫
[0,1]

(
1 + γjψjm(xi)

1 + κjψj ′m0(xi)

)2

f ′
0(x) dx

)n

− 1
)

= 1

M

(
(1 + γ 2

j )n − 1
) ≤ e

nγ 2
j − 1

M
.

The rest of the proof is as in part (a) of Theorem 2. �

3.1. Auxiliary results. The following theorem is due to [10, 11, 13]. We state
a version that follows from Theorem 4 in [25] for T = R. In case T = [0,1] it
follows from the same proofs. The restriction that B be known is not necessary but
suffices for our present purposes.

THEOREM 5. Let X1, . . . ,Xn be i.i.d. with uniformly continuous density f

on T = [0,1] or T = R. Then for every r,R,0 < r ≤ R there exists an estima-
tor f̂n(x) := f̂n(x,X1, . . . ,Xn,B,R) such that, for every s, r ≤ s ≤ R, some
constant D(B, r,R) and every n ≥ 2 we have supf ∈�(s,B,T ) E‖f̂n − f ‖∞ ≤
D(B, r,R)rn(s).

The following inequality was proved in [11] (see also page 1167 in [12]) for
T = R (the case T = [0,1] is similar, in fact simpler).

PROPOSITION 5. Let φ,ψ be a compactly supported scaling and wavelet
function, respectively, both S-Hölder for some S > 0. Suppose P has a bounded
density f and let fn(x, j) be the estimator from (2.2). Given C,C′ > 0, there ex-
ist finite positive constants C1 = C1(C,K) and C2 = C2(C,C′,K) such that, if

(n/2j j) ≥ C and C1

√
(‖f ‖∞ ∨ 1)(2j j/n) ≤ t ≤ C′, then, for every n ∈ N,

Prf
{

sup
x∈R

|fn(x, j) − Efn(x, j)| ≥ t
}

≤ C2 exp
(
− nt2

C2(‖f ‖∞ ∨ 1)2j

)
.
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