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BANDWIDTH SELECTION IN KERNEL DENSITY ESTIMATION:
ORACLE INEQUALITIES AND ADAPTIVE MINIMAX

OPTIMALITY

BY ALEXANDER GOLDENSHLUGER1 AND OLEG LEPSKI

University of Haifa and Université de Provence

We address the problem of density estimation with Ls -loss by selec-
tion of kernel estimators. We develop a selection procedure and derive cor-
responding Ls -risk oracle inequalities. It is shown that the proposed selec-
tion rule leads to the estimator being minimax adaptive over a scale of the
anisotropic Nikol’skii classes. The main technical tools used in our deriva-
tions are uniform bounds on the Ls -norms of empirical processes developed
recently by Goldenshluger and Lepski [Ann. Probab. (2011), to appear].

1. Introduction. Let X be a random variable in R
d having density f with re-

spect to the Lebesgue measure. We want to estimate f on the basis of the i.i.d. sam-
ple Xn = (X1, . . . ,Xn) drawn from f . Any Xn-measurable map f̂ : Rd → Ls(R

d)

is understood as an estimator of f , and its accuracy is measured by the Ls -risk:

Rs[f̂ , f ] := [Ef ‖f̂ − f ‖q
s ]1/q, s ∈ [1,∞), q ≥ 1,

where Ef is the expectation with respect to the probability measure Pf of the
observations Xn. The objective is to develop an estimator of f with small Ls -risk.

Kernel density estimates originate in Rosenblatt (1956) and Parzen (1962);
this is one of the most popular techniques for estimating densities [Silverman
(1986), Devroye and Györfi (1985)]. Let K : Rd → R be a fixed function such
that

∫
K(x)dx = 1 (we call such functions kernels). Given a bandwidth vector

h = (h1, . . . , hd), hi > 0, the kernel estimator f̂h of f is defined by

f̂h(t) = 1

nVh

n∑
i=1

K

(
t − Xi

h

)
= 1

n

n∑
i=1

Kh(t − Xi),(1)

where Vh := ∏d
i=1 hi , u/v for u, v ∈ R

d stands for the coordinate-wise division,
and Kh(·) := V −1

h K(·/h). It is well known that accuracy properties of f̂h are de-
termined by the choice of the bandwidth h, and bandwidth selection is the central
problem in kernel density estimation. There are different approaches to the prob-
lem of bandwidth selection.
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The minimax approach is based on the assumption that f belongs to a given
class of densities F, and accuracy of f̂h is measured by its maximal Ls -risk over
the class F,

Rs[f̂h;F] := sup
f ∈F

Rs[f̂h;f ].

Typically F is a class of smooth functions, for example, the Hölder, Nikol’skii
or Besov functional class. Then the bandwidth h is selected so that the maximal
risk Rs[f̂h;F] (or a reasonable upper bound on it) is minimized with respect to
h. Such a choice leads to a deterministic bandwidth h depending on the sample
size n, and on the underlying functional class F. In many cases the resulting ker-
nel estimator constructed in this way is rate optimal (or optimal in order) over the
class F. Minimax kernel density estimation with Ls -risks on R

d was considered
in Bretagnolle and Huber (1979), Ibragimov and Has’minskiı̆ (1980), Ibragimov
and Khas’minskiı̆ (1981), Devroye and Györfi (1985), Hasminskii and Ibragi-
mov (1990), Donoho et al. (1996), Kerkyacharian, Picard and Tribouley (1996),
Juditsky and Lambert-Lacroix (2004) and Mason (2009) where further references
can be found.

The oracle approach considers a set of kernel estimators F (H) = {f̂h, h ∈ H},
and aims at a measurable data-driven choice ĥ ∈ H such that for every f from a
large functional class the following Ls -risk oracle inequality holds:

Rs[f̂ĥ
;f ] ≤ C inf

h∈H
Rs[f̂h;f ] + δn.(2)

Here C > 0 is a constant independent of f and n, and the remainder δn does not
depend on f . Oracle inequalities with “small” remainder term δn and constant C

close to 1 are of prime interest; they are key tools for establishing minimax and
adaptive minimax results in estimation problems. To the best of our knowledge,
oracle inequalities of the type (2) were established only in the cases s = 1 and
s = 2. Devroye and Lugosi (1996, 1997, 2001) established oracle inequalities for
s = 1. The case s = 2 was studied by Massart [2007, Chapter 7], Samarov and
Tsybakov (2007), Rigollet and Tsybakov (2007) and Birgé (2008). The last cited
paper contains a detailed discussion of recent developments in this area.

The contribution of this paper is twofold. First, we propose a selection proce-
dure for a set of kernel estimators, and establish for the corresponding Ls -risk,
s ∈ [1,∞), oracle inequalities of the type (2). Second, we demonstrate that our
selection rule leads to a minimax adaptive estimator over a scale of the anisotropic
Nikol’skii classes (see Section 3 below for the class definition).

More specifically, let hmin = (hmin
1 , . . . , hmin

d ) and hmax = (hmax
1 , . . . , hmax

d ) be
two fixed vectors satisfying 0 < hmin

i ≤ hmax
i ≤ 1, ∀i, and let

H :=
d⊗

i=1

[hmin
i , hmax

i ].(3)
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Consider the set of kernel estimators

F (H) = {f̂h, h ∈ H},(4)

where f̂h is given in (1). We propose a measurable choice ĥ ∈ H such that the
resulting estimator f̂ = f̂

ĥ
satisfies the following oracle inequality:

Rs[f̂ĥ
;f ] ≤ inf

h∈H
{(1 + 3‖K‖1)Rs[f̂h;f ] + Cs(nVh)

−γs } + δn,s .(5)

The constants Cs , γs , and the remainder term δn,s admit different expressions de-
pending on the value of s.

• If s ∈ [1,2), then (5) holds for all densities f with γs = 1 − 1
s
, Cs depending on

the kernel K only, and with

δn,s = c1(lnn)c2n1/s exp{−c3n
2/s−1}

for some constants ci , i = 1,2,3.
• If s ∈ [2,∞), then (5) holds for all densities f uniformly bounded by a constant

f∞ with γs = 1
2 , Cs depending on K and f∞ only, and with

δn,s = c1(lnn)c2n1/2 exp{−c3V
−2/s
max }, Vmax := Vhmax,

for some constants ci , i = 1,2,3. We emphasize that the proposed selection rule
is fully data-driven and does not use information on the value of f∞.

Thus, the oracle inequality (5) holds with exponentially small (in terms of depen-
dence on n) remainder δn,s (by choice of Vmax in the case s ∈ [2,∞)). We stress
that explicit nonasymptotic expressions for Cs , c1, c2 and c3 are available. It is im-
portant to realize that the term Cs(nVh)

−γs is a tight upper bound on the stochastic
error of the kernel estimator f̂h. This fact allows to derive rate optimal estimators
that adapt to unknown smoothness of the density f . In particular, in Section 3
we apply our oracle inequalities in order to develop a rate optimal adaptive kernel
estimator for the anisotropic Nikol’skii classes. Minimax estimation of densities
from such classes was studied in Ibragimov and Khas’minskiı̆ (1981), while the
problem of adaptive estimation was not considered in the literature.

The paper is structured as follows. In Section 2, we define our selection rule and
prove key oracle inequalities. Section 3 discusses adaptive rate optimal estimation
of densities for a scale of anisotropic Nikol’skii classes. Proofs of all results are
given in Section 4.

2. Selection rule and oracle inequalities. Let F (H) be the set of kernel
density estimators defined in (4). We want to select an estimator from the fam-
ily F (H). For this purpose, we need to impose some assumptions and establish
notation that will be used in the definition of our selection procedure.
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2.1. Assumptions. The following assumptions on the kernel K will be used
throughout the paper.

(K1) The kernel K satisfies the Lipschitz condition

|K(x) − K(y)| ≤ LK |x − y| ∀x, y ∈ R
d,

where | · | denotes the Euclidean distance. Moreover, K is compactly supported,
and, without loss of generality, supp(K) ⊆ [−1/2,1/2]d .

(K2) There exists a real number k∞ < ∞ such that ‖K‖∞ ≤ k∞.

Assumptions (K1) and (K2) are rather standard in kernel density estimation. We
note that Assumption (K1) can be weakened in several ways. For example, it suf-
fices to assume that K belongs to the isotropic Hölder ball of functions Hd(α,LK)

with any α > 0 [in Assumption (K1) α = 1].
Sometimes we will suppose that f ∈ F, where

F :=
{
p : Rd → R :p ≥ 0,

∫
p = 1,‖p‖∞ ≤ f∞ < ∞

}
,

and f∞ is a fixed constant. Without loss of generality we assume that f∞ ≥ 1.

2.2. Notation. For any U : Rd → R and s ∈ [1,∞) define

ρs(U) :=
{

4n1/s−1‖U‖s, s ∈ [1,2),
n−1/2‖U‖2, s = 2,

and if s ∈ (2,∞), then we set

ρs(U) := Ds

{
n−1/2

(∫ [∫
U2(t − x)f (x)dx

]s/2

dt

)1/s

+ 2n1/s−1‖U‖s

}
,

where Ds := 15s/ ln s is the best-known constant in the Rosenthal inequality
[Johnson, Schechtman and Zinn (1985)]. Observe that ρs(U) depends on f when
s ∈ (2,∞); hence we will also consider the empirical counterpart of ρs(U):

ρ̂s(U) := Ds

{
n−1/2

(∫ [
1

n

n∑
i=1

U2(t − Xi)

]s/2

dt

)1/s

+ 2n1/s−1‖U‖s

}
.

We put also

rs(U) := ρs(U) ∨ n−1/2‖U‖2, r̂s(U) := ρ̂s(U) ∨ n−1/2‖U‖2

and

gs(U) :=

⎧⎪⎪⎨⎪⎪⎩
32ρs(U), s ∈ [1,2),
25

3
ρ2(U), s = 2,

32r̂s(U), s > 2.

Armed with this notation we are ready to describe our selection rule.
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2.3. Selection rule. The rule is based on auxiliary estimators {f̂h,η, h, η ∈ H}
that are defined as follows: for every pair h,η ∈ H we let

f̂h,η(t) := 1

n

n∑
i=1

[Kh ∗ Kη](t − Xi),

where “∗” stands for the convolution on R
d . Define also

ms(h,η) := gs(Kη) + gs(Kh ∗ Kη) ∀h,η ∈ H,
(6)

m∗
s (h) := sup

η∈H
ms(η,h) ∀h ∈ H.

For every h ∈ H let

R̂h := sup
η∈H

[‖f̂h,η − f̂η‖s − ms(h,η)]+ + m∗
s (h).(7)

The selected bandwidth ĥ and the corresponding kernel density estimator are de-
fined by

ĥ := arg inf
h∈H

R̂h, f̂ = f̂
ĥ
.(8)

The selection rule (6)–(8) is a refinement of the one introduced recently in
Goldenshluger and Lepski (2008, 2009) for the Gaussian white noise model.

REMARKS. 1. It is easy to check that Assumption (K1) implies that R̂h and
m∗

s (h) are continuous random functions on the compact subset H ⊂ R
d . Thus, ĥ

exists and is measurable [Jennrich (1969)].
2. We call function ms(·, ·) the majorant. In fact, if ξh and ξh,η denote the

stochastic errors of estimators f̂h and f̂h,η, respectively, that is, if

ξh(t) := 1

n

n∑
i=1

[Kh(t − Xi) − Ef Kh(t − X)],

ξh,η(t) := 1

n

n∑
i=1

{[Kh ∗ Kη](t − Xi) − Ef [Kh ∗ Kη](t − X)},

then it is seen from the proofs of Theorems 1 and 2 below that ms(h,η) uniformly
“majorates” ‖ξh,η − ξη‖s in the sense that the expectation

Ef sup
(h,η)∈H×H

[‖ξh,η − ξη‖s − ms(h,η)]q+
is “small.”

3. It is important to realize that the majorant ms(h,η) is explicitly given and
does not depend on the density f to be estimated. The majorant is completely
determined by kernel K and observations, and thus it is available to the statistician.
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2.4. Oracle inequalities. Now we are in a position to establish oracle inequal-
ities on the risk of the estimator f̂ = f̂

ĥ
given by (8). Put

AH :=
d∏

i=1

[1 ∨ ln(hmax
i /hmin

i )], BH := [1 ∨ log2(Vmax/Vmin)],

where from now on

Vmin :=
d∏

i=1

hmin
i , Vmax :=

d∏
i=1

hmax
i .

The next two statements, Theorems 1 and 2, provide oracle inequalities on the
Ls -risk of f̂ in the cases s ∈ [1,2] and s ∈ (2,∞), respectively.

THEOREM 1. Let Assumptions (K1) and (K2) hold.

(i) If s ∈ [1,2), then for all f and n ≥ 42s/(2−s)

Rs[f̂ ;f ] ≤ inf
h∈H

[
(1 + 3‖K‖1)Rs[f̂h, f ] + C1(nVh)

1/s−1]
(9)

+ C2A
4/q
H n1/s exp

{
−2n2/s−1

37q

}
.

(ii) If s = 2 and f2∞Vmax + 4n−1/2 ≤ 1/8, then for all f ∈ F

Rs[f̂ ;f ] ≤ inf
h∈H

[
(1 + 3‖K‖1)Rs[f̂h, f ] + C3(nVh)

−1/2]
(10)

+ C4A
4/q
H n1/2 exp

{
− 1

16q[f2∞Vmax + 4n−1/2]
}
.

Here C1 and C3 are absolute constants, while C2 and C4 depend on LK , k∞, d

and q only.

THEOREM 2. Let Assumptions (K1) and (K2) hold, s ∈ (2,∞), and assume
that for some C1 = C1(K, s, d) > 1

nVmin > C1, Vmax ≥ 1/
√

n.

If n ≥ C2 for some constant C2 depending on LK , k∞, f∞, d and s only, then
∀f ∈ F,

Rs[f̂ ;f ] ≤ inf
h∈H

[
(1 + 3‖K‖1)Rs[f̂h, f ] + C3f1/2∞ (nVh)

−1/2]
(11)

+ C4A
4/q
H B

1/q
H n1/2[exp{−C5bn,s} + exp{−C6f−1∞ V −2/s

max }],
where bn,s := n4/s−1 if s ∈ (2,4), and bn,s := [f∞V

4/s
max]−1 if s ≥ 4. The constants

Ci , i = 3, . . . ,6, depend on LK , k∞, d , q and s only.
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REMARKS. 1. All constants appearing in Theorems 1 and 2 can be expressed
explicitly [see Lemmas 1 and 2 below and corresponding results in Goldenshluger
and Lepski (2011) for details].

2. We will show that for given h the expected value of the stochastic error
of the estimator f̂h, that is, (E‖ξh‖q

s )
1/q , admits the upper bound of the order

O((nVh)
1/s−1) when s ∈ [1,2) and O((nVh)

−1/2) when s ∈ (2,∞). It is also ob-
vious that

Rs[f̂h;f ] ≤ ‖Bh‖s + (Ef ‖ξh‖q
s )1/q,

where Bh(f, t) := ∫
Kh(t − x)f (x)dx −f (t), t ∈ R

d . Thus, our estimator attains,
up to a constant and remainder term, the minimum of the sum of the bias and the
upper bound on the stochastic error. This form of the oracle inequality is conve-
nient for deriving minimax and minimax adaptive results (see Section 3). Indeed,
bounds on the bias and the stochastic error are usually developed separately and
require completely different techniques.

3. We note that AH ≤ O([lnn]d) and BH ≤ O(lnn) for any set H ⊂ [0,1]d such
that hmin

i ≥ O(n−c), c > 0, ∀i = 1, . . . , d . If s ∈ (2,∞), and if the set of consid-
ered bandwidths H is such that Vmax = [κ lnn]−s/2 for some κ > 0, then the sec-
ond term on the right-hand side of (10) and (11) can be made negligibly small by
carefully choosing the constant κ. Observe that conditions ensuring consistency of
f̂h are nVh → ∞ and Vh → 0 as n → ∞; thus the requirement Vmax = [κ lnn]−s/2

is not restrictive. Note also that in the case s ∈ [1,2) the second term on the right-
hand side of (9) is exponentially small in n for any H.

4. The condition Vmax ≥ 1/
√

n is imposed only for the sake of convenience in
the presentation of our results. Clearly, we would like to have the set H as large
as possible; hence consideration of vectors hmax such that Vmax = Vhmax ≤ 1/

√
n

does not make much sense.
5. Note that the oracle inequalities (9), (10) and (11) of Theorems 1 and 2 hold

under very mild conditions on the density f . In particular, in the case s ∈ [1,2)

the inequality (9) holds for all densities, and only boundedness of f is required for
(10) and (11).

6. It should be also mentioned that if for s ∈ [1,2) we impose additional
conditions on f [e.g., such as the domination condition in Donoho et al.
(1996), page 514], then the order of the stochastic error of f̂h can be im-
proved to O((nVh)

−1/2). This will lead to the oracle inequality (9) with the term
C1(nVh)

1/s−1) replaced by C1(nVh)
−1/2. However, O((nVh)

1/s−1) is a tight up-
per bound on the stochastic error of f̂h when no conditions on f are assumed. In
particular, it is well known that smoothness condition alone is not sufficient for
consistent density estimation on R

d with L1-losses [Ibragimov and Khas’minskiı̆
(1981)].
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2.5. Ls -risk oracle inequalities. As it was mentioned above, the oracle in-
equalities of Theorems 1 and 2 are useful for derivation of adaptive rate optimal
estimators. They are established under very mild assumptions on the density f .
However, it is not clear how the second term under the infimum sign on the right-
hand side of the developed oracle inequalities is compared to Rs[f̂h;f ]. Tradi-
tionally oracle inequalities compare the risk of a proposed estimator to the risk
of the best estimator in the given family; cf. (2). Therefore the natural question is
whether an Ls-risk oracle inequality of the type (2) can be derived from the results
of Theorems 1 and 2.

In this section we provide an answer to this question. We will be mostly inter-
ested in finding minimal assumptions on the underlying density f that are suffi-
cient for establishing the Ls -risk oracle inequality. It will be shown that this prob-
lem is directly related to establishing a lower bound on the term (Ef ‖ξh‖q

s )1/q .
Let μ ∈ (0,1) and ν > 0 be fixed real numbers. Denote by Fμ,ν the set of all

probability densities f satisfying the following condition:

∃B ∈ B(Rd) : mes(B) ≤ ν,

∫
B

f ≥ μ.

Here B(Rd) is the Borel σ -algebra on R
d and mes(·) is the Lebesgue measure

on R
d .

Below we will assume that f ∈ Fμ,ν for some μ and ν. This condition is very
weak. For example, if F is a set of densities such that either (i) F is a totally
bounded subset of L1(R

d), or (ii) the family of probability measures {Pf , f ∈ F }
is tight, then for any μ ∈ (0,1) there exists 0 < ν < ∞ such that F ⊆ Fμ,ν . The
statement (i) is a consequence of the Kolmogorov–Riesz compactness theorem.

THEOREM 3. Let s ∈ [2,∞) and suppose that assumptions of Theorems 1(ii)
and 2 are fulfilled. If s > 2, then assume additionally that f ∈ Fμ,ν for some μ

and ν, and

Vmax ≤ 2−1μ

[‖K‖2

‖K‖1

]2
.

If n ≥ C1 = C1(LK,k∞, f∞, d, s), then there exists a constant C0 > 0 [C0 =
C0(K) if s = 2 and C0 = C0(K,μ, ν, s) if s > 2] such that

Rs[f̂ ;f ] ≤ C0 inf
h∈H

Rs[f̂ĥ
;f ]

+ C2A
4/q
H B

1/q
H n1/2[exp{−C3bn,s} + exp{−C4f−1∞ V −2/s

max }],
where bn,s := n4/s−1 if s ∈ (2,4) and bn,s := [f∞V

4/s
max]−1 if s ≥ 4. The constants

Ci depend on LK , k∞, d , q and s only.
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The proof indicates that Theorem 3 follows from the fact that for any s ∈ [2,∞)

one has

[Ef ‖ξh‖q
s ]1/q ≥ c(nVh)

−1/2 ∀h,(12)

where c > 0 is a constant. This lower bound holds under very weak conditions on
the density f (for arbitrary f if s = 2 and f ∈ Fμ,ν if s > 2). In order to prove
the similar Ls -risk oracle inequality in the case s ∈ [1,2) it would be sufficient to
show that [Ef ‖ξh‖q

s ]1/q ≥ c(nVh)
−1+1/s for any h. However, the last lower bound

cannot hold in such generality as (12). In particular, according to Remark 5 after
Theorem 2, [Ef ‖ξh‖q

s ]1/q ≤ c(nVh)
−1/2 for all h under a tail domination condition

(e.g., for compactly supported densities). Under such a domination condition the
corresponding Ls -risk oracle inequality can be easily established using the same
arguments as in the proof of Theorem 3.

2.6. Generalization. Although in the present paper we focus on the bandwidth
selection, the proposed selection rule can be easily extended to very general fami-
lies of linear estimators.

Let L be the collection of functions L : Rd × R
d → R such that∫

Rd
L(t, x)dt = 1 ∀x ∈ R

d .

Consider the following family of estimators generated by L:

F (L) =
{
f̂L(·) = 1

n

n∑
i=1

L(·,Xi), L ∈ L

}
.

The objective is to propose the selection rule from the family F (L) and to establish
for the obtained estimator Ls -oracle inequality. A close inspection of the proofs of
Theorems 1 and 2 leads to the following generalization of the selection rule (8).

For any couple L, L′ ∈ L let

[L ⊗ L′](t, x) :=
∫

Rd
L(t, y)L′(y, x)dy

and define the estimator

f̂L⊗L′(·) = 1

n

n∑
i=1

[L ⊗ L′](·,Xi).

Let

ξL(t) := 1

n

n∑
i=1

[L(t,Xi) − Ef L(t,X)],

ξL⊗L′(t) := 1

n

n∑
i=1

{[L ⊗ L′](t,Xi) − Ef [L ⊗ L′](t,X)}.
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Suppose that for any L, L′ ∈ L one can find a majorant ms(L, L′) for ‖ξL⊗L′ −
ξL′‖s . In other words, suppose that the expectation

Ef sup
(L,L′)∈L×L

[‖ξL⊗L′ − ξL′‖s − ms(L, L′)]q+

is “small,” and analogues of Lemmas 1 and 2 given below are proved. We refer to
Goldenshluger and Lepski (2011), where results of this type for various collections
L can be found.

For every L ∈ L let

R̂L := sup
L′∈L

[‖f̂L⊗L′ − f̂L′‖s − ms(L, L′)]+ + sup
L′∈L

ms(L′, L),(13)

and define

L̂ := arg inf
L∈L

R̂L.(14)

The selected estimator is f̂ = f̂L̂.
In order to prove analogues of Theorems 1 and 2 the following assumption

(commutativity property) on the collection L has to be imposed:∫
Rd

L(·, y)L′(y, ·)dy =
∫

Rd
L′(·, y)L(y, ·)dy ∀L, L′ ∈ L.(15)

Thus, using the commutativity property (15) and majorants for the Ls -norms of
empirical processes derived in Goldenshluger and Lepski (2011), one can establish
Ls -oracle inequalities for the selection rule (13)–(14).

3. Adaptive estimation of densities with anisotropic smoothness. In this
section we illustrate the use of oracle inequalities of Theorems 1 and 2 for deriva-
tion of adaptive rate optimal density estimators.

We start with the definition of the anisotropic Nikol’skii class of functions.

DEFINITION 1. Let p ∈ [1,∞], α = (α1, . . . , αd), αi > 0, and L > 0. We say
that a density f : Rd → R belongs to the anisotropic Nikol’skii class Np,d(α,L)

of functions if:

(i) ‖D�αi�
i f ‖p ≤ L, for all i = 1, . . . , d ;

(ii) for all i = 1, . . . , d , and all z ∈ R
1{∫ ∣∣D�αi�

i f (t1, . . . , ti + z, . . . , td) − D
�αi�
i f (t1, . . . , ti , . . . , td)

∣∣p dt

}1/p

≤ L|z|αi−�αi�.

Here Dk
i f denotes the kth-order partial derivative of f with respect to the variable

ti and �αi� is the largest integer strictly less than αi .
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The functional classes Np,d(α,L) were considered in approximation theory by
Nikol’skii; see, for example, Nikol’skiı̆ (1969). Minimax estimation of densities
from the class Np,d(α,L) was considered in Ibragimov and Khas’minskiı̆ (1981).
We refer also to Kerkyacharian, Lepski and Picard (2001) where the problem of
adaptive estimation over a scale of classes Np,d(α,L) was treated for the Gaussian
white noise model.

Consider the following family of kernel estimators. Let u be an integrable, com-
pactly supported function on R such that

∫
u(y)dy = 1. As in Kerkyacharian, Lep-

ski and Picard (2001), for some integer number l we put

ul(y) :=
l∑

k=1

(
l

k

)
(−1)k+1 1

k
u

(
y

k

)
,

and define

K(t) :=
d∏

i=1

ul(ti), t = (t1, . . . , td).(16)

The kernel K constructed in this way is bounded and compactly supported, and it
is easily verified that∫

K(t)dt = 1,

∫
K(t)tk dt = 0 ∀|k| = 1, . . . , l − 1,

where k = (k1, . . . , kd) is the multi-index, ki ≥ 0, |k| = k1 + · · · + kd and tk =
t
k1
1 · · · tkd

d for t = (t1, . . . , td).
For fixed α = (α1, . . . , αd) set 1/ᾱ = ∑d

i=1(1/αi) and define

ϕn,s(ᾱ) := L−γs/(ᾱ+γs)n−γs ᾱ/(ᾱ+γs), γs :=
{

1 − 1/s, s ∈ (1,2],
1/2, s ∈ (2,∞).

THEOREM 4. Let F (H) be the family of kernel estimators defined in (1), (3)
and (4) that is associated with the kernel (16). Let f̂ denote the estimator given by
selection according to our rule (6)–(8) from the family F (H).

(i) Let s ∈ (1,2), and assume that hmin
i = 1/n and hmax

i = 1, ∀i = 1, . . . , d .
Then for any class Ns,d(α,L) such that maxi=1,...,d�αi� ≤ l − 1, L > 0 one has

lim sup
n→∞

{[ϕn,s(ᾱ)]−1Rs[f̂ ;Ns,d(α,L)]} < ∞.

(ii) Let s ∈ [2,∞), and assume that hmin
i = κ1/n and hmax

i = [κ2 lnn]−s/(2d),
∀i = 1, . . . , d for some constants κ1 and κ2. Then for any class Ns,d(α,L) such
that maxi=1,...,d�αi� ≤ l − 1, L > 0 one has

lim sup
n→∞

{[ϕn,s(ᾱ)]−1Rs[f̂ ;Ns,d(α,L)]} < ∞.
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It is well known that ϕn,s(ᾱ) is the minimax rate of convergence in estimation of
densities from the class Ns,d(α,L) [see Ibragimov and Khas’minskiı̆ (1981) and
Hasminskii and Ibragimov (1990)]. Therefore Theorem 4 shows that our estimator
f̂ is adaptive minimax over a scale of the classes Ns,d(α,L) indexed by α and L.

The above result holds when both the smoothness and the accuracy are mea-
sured in the same Ls -norm. We demonstrate below that if the additional condition
of compact support is imposed, then the resulting estimator is adaptive minimax
over a much larger scale of functional classes.

DEFINITION 2. Let p ∈ [1,∞], α = (α1, . . . , αd), αi > 0, L > 0, and let Q

be a fixed cube in R
d . We say that a density f : Rd → R belongs to the functional

class Wp,d(α,L,Q) if f ∈ Np,d(α,L), and supp(f ) ⊆ Q.

THEOREM 5. Let s ∈ [1,∞), and assume that hmin
i = κ1/n and hmax

i =
[κ2 lnn]−[s∨2]/(2d), ∀i = 1, . . . , d for some constants κ1 and κ2. Let F (H) be
the corresponding family of kernel estimators that is associated with the kernel
(16). Let f̂ denote the estimator given by the selection procedure (6)–(8) with
s substituted by s ∨ 2. Then for any class Wp,d(α,L,Q) such that p ≥ [s ∨ 2],
maxi=1,...,d�αi� ≤ l − 1, L > 0

lim sup
n→∞

{[ψn,s(ᾱ)]−1Rs[f̂ ;Wp,d(α,L,Q)]} < ∞,

where

ψn,s(ᾱ) := (
L[mes{Q}](p−[s∨2])/p[s∨2])1/(2ᾱ+1)

n−ᾱ/(2ᾱ+1).

Theorem 5 shows that if s ∈ [1,∞), then the estimator f̂ given by our selection
procedure achieves the minimax rate of convergence simultaneously on every class
Wp,d(α,L,Q) with any p ≥ [s ∨ 2], maxi=1,...,d�αi� ≤ l − 1, L > 0 and any fixed
support Q. It should be especially stressed that no information about the support
set Q and the index p are used in construction of f̂ .

4. Proofs. First we recall that the accuracy of estimators f̂h and f̂h,η, h,η ∈
H, is characterized by the bias and stochastic error given by

Bh(f, t) :=
∫

Kh(t − x)f (x)dx − f (t),

ξh(t) := 1

n

n∑
i=1

[Kh(t − Xi) − Ef Kh(t − X)]

and

Bh,η(f, t) :=
∫

[Kh ∗ Kη](t − x)f (x)dx − f (t),

ξh,η(t) := 1

n

n∑
i=1

{[Kh ∗ Kη](t − Xi) − Ef [Kh ∗ Kη](t − X)},
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respectively.
The proofs extensively use results from Goldenshluger and Lepski (2011); in

what follows for the sake of brevity we refer to this paper as GL (2011).

4.1. Auxiliary results. We start with two auxiliary lemmas that establish prob-
ability and moment bounds on Ls -norms of the processes ξh and ξh,η. Proofs of
these results are given in the Appendix.

LEMMA 1. Let Assumptions (K1) and (K2) hold.

(i) If s ∈ [1,2), then for all n ≥ 42s/(2−s) one has{
Ef sup

h∈H
[‖ξh‖s − 32ρs(Kh)]q+

}1/q

(17)

≤ δ(1)
n,s := C1A

2/q
H n1/s exp

{
−2n2/s−1

37q

}
,

{
Ef sup

(h,η)∈H×H
[‖ξh,η‖s − 32ρs(Kh ∗ Kη)]q+

}1/q

(18)

≤ δ(2)
n,s := C2A

4/q
H n1/s exp

{
−2n2/s−1

37q

}
.

(ii) Let f ∈ F, and assume that 8[f2∞Vmax +4n−1/2] ≤ 1; then for all f ∈ F one
has {

Ef sup
h∈H

[
‖ξh‖2 − 25

3
ρ2(Kh)

]q

+

}1/q

(19)

≤ δ
(1)
n,2 := C3A

2/q
H n1/2 exp

{
− 1

16q[Vmaxf2∞ + 4n−1/2]
}
,

{
Ef sup

(h,η)∈H×H

[
‖ξh,η‖2 − 25

3
ρ2(Kh ∗ Kη)

]q

+

}1/q

(20)

≤ δ
(2)
n,2 := C4A

4/q
H n1/2 exp

{
− 1

16q[f2∞Vmax + 4n−1/2]
}
.

The constants Ci , i = 1, . . . ,4, depend on LK , k∞, d and q only.

LEMMA 2. Let Assumptions (K1) and (K2) hold, f ∈ F, s > 2, and assume
that

n ≥ C1, nVmin > C2, Vmax ≥ 1/
√

n.
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Then the following statements hold:{
Ef sup

h∈H
[‖ξh‖s − 32r̂s (Kh)]q+

}1/q

(21)

≤ δ(1)
n,s := C3A

2/q
H B

1/q
H n1/2 exp

{
− C4

f∞V
2/s
max

}
,

{
Ef sup

(h,η)∈H×H
[‖ξh,η‖s − 32r̂s(Kh ∗ Kη)]q+

}1/q

(22)

≤ δ(2)
n,s := C5A

4/q
H B

1/q
H n1/2 exp

{
− C6

f∞V
2/s
max

}
.

In addition, for any H1 ⊆ H and H2 ⊆ H
Ef sup

h∈H1

[r̂s(Kh)]q ≤ (1 + 8Ds)
q sup

h∈H1

[rs(Kh)]q
(23)

+ C7A
2
HBHnq(s−2)/(2s) exp{−C8bn,s},

Ef sup
(h,η)∈H1×H2

[r̂s(Kh ∗ Kη)]q ≤ (1 + 8Ds)
q sup

(h,η)∈H1×H2

[rs(Kh ∗ Kη)]q
(24)

+ C9A
4
HBHnq(s−2)/(2s) exp{−C10bn,s},

where bn,s := n4/s−1 if s ∈ (2,4) and bn,s := [f∞V
4/s
max]−1 if s ∈ [4,∞). The con-

stants Ci , i = 2, . . . ,10, depend on LK , k∞, d , q and s only, while C1 depends
also on f∞.

4.2. Proofs of Theorems 1 and 2. The proofs of both theorems (which we
break into several steps) follow along the same lines.

We note that in the case s ∈ [2,∞) the condition f ∈ F implies that f ∈ Ls(R
d).

If s ∈ (1,2), then by Assumptions (K1) and (K2), we have that Pf {f̂h ∈ Ls(R
d)} =

1 for any Xn-measurable vector h ∈ H and for any n. Hence, if f /∈ Ls(R
d), then

R[f̂h;f ] = +∞, ∀h ∈ H, and the result (i) of Theorem 1 holds trivially. Thus, we
can assume that f ∈ Ls(R

d) when s ∈ (1,2).
1◦. First we show that for any h,η ∈ H

Bh,η(f, x) = Bη(f, x) +
∫

Kη(y − x)Bh(f, y)dy(25)

= Bh(f, x) +
∫

Kh(y − x)Bη(f, y)dy.(26)

Indeed, by the Fubini theorem,∫
[Kh ∗ Kη](t − x)f (t)dt

=
∫ [∫

Kh(t − y)Kη(y − x)dy

]
f (t)dt
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=
∫ [∫

Kh(t − y)f (t)dt − f (y)

]
Kη(y − x)dy +

∫
Kη(y − x)f (y)dy

=
∫

Kη(y − x)f (y)dy +
∫

Kη(y − x)Bh(f, y)dy.

Subtracting f (x) from both sides of the last equality we come to (25); (26) follows
similarly.

2◦. Let ms(·, ·) and m∗
s (·) be given by (6), and define

δn,s :=
{
Ef sup

(h,η)∈H×H
[‖ξh,η − ξη‖s − ms(h,η)]q+

}1/q
.(27)

Let f̂ = f̂
ĥ

be the estimator defined in (7)–(8). Our first goal is to prove that

Rs[f̂ ;f ] ≤ inf
h∈H

{(1 + 3‖K‖1)Rs[f̂h;f ] + 3(Ef [m∗
s (h)]q)1/q} + 3δn,s .(28)

By the triangle inequality for any η ∈ H

‖f̂
ĥ
− f ‖s ≤ ‖f̂

ĥ
− f̂

ĥ,η
‖s + ‖f̂

ĥ,η
− f̂η‖s + ‖f̂η − f ‖s,(29)

and we are going to bound the first two terms on the right-hand side.
Define

B̄h(f ) := sup
η∈H

∥∥∥∥∫ Kη(t − ·)Bh(f, t)dt

∥∥∥∥
s

, h ∈ H.

We have for any h ∈ H

R̂h − m∗
s (h) = sup

η∈H
[‖f̂h,η − f̂η‖s − ms(h,η)]

≤ sup
η∈H

[‖Bh,η(f, ·) − Bη(f, ·)‖s + ‖ξh,η − ξη‖s − ms(h,η)]

≤ B̄h(f ) + sup
η∈H

[‖ξh,η − ξη‖s − ms(h,η)]+ =: B̄h(f ) + ζ.

Here the second line is by the triangle inequality and the third line is by (25) and
definition of B̄h(f ). Therefore for any h ∈ H one has

R̂h ≤ B̄h(f ) + m∗
s (h) + ζ.(30)

By (26) for any h,η ∈ H

‖f̂h,η − f̂h‖s ≤ ‖Bh,η(f, ·) − Bh(f, ·)‖s + ‖ξh,η − ξh‖s

≤ B̄η(f ) + ζ + sup
η∈H

ms(η,h)

= B̄η(f ) + m∗
s (h) + ζ ≤ B̄η(f ) + R̂h + ζ,
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where the last inequality is by definition of R̂h. In particular, letting h = ĥ we have
that for any η ∈ H

‖f̂
ĥ,η

− f̂
ĥ
‖s ≤ B̄η(f ) + R̂

ĥ
+ ζ

(31)
≤ B̄η(f ) + R̂η + ζ ≤ 2B̄η(f ) + m∗

s (η) + 2ζ,

where we have used that R̂
ĥ

≤ R̂η, ∀η ∈ H and (30).
Furthermore, for any η ∈ H

‖f̂
ĥ,η

− f̂η‖s = ‖f̂
ĥ,η

− f̂η‖s − ms(ĥ, η) + ms(ĥ, η)

≤ R̂
ĥ
+ m∗

s (η) ≤ R̂η + m∗
s (η) ≤ B̄η(f ) + 2m∗

s (η) + ζ,(32)

where the first inequality is by definition of R̂h and m∗
s (·), the second inequality

holds by definition of ĥ, and the last inequality follows from (30).
Combining (29), (31) and (32) we get for any η ∈ H that

‖f̂
ĥ
− f ‖s ≤ ‖f̂

ĥ
− f̂

ĥ,η
‖s + ‖f̂

ĥ,η
− f̂η‖s + ‖f̂η − f ‖s

≤ ‖f̂η − f ‖s + 3B̄η(f ) + 3m∗
s (η) + 3ζ.

Taking this expression to the power q , computing the expectation and using the
fact that [Ef |ζ |q]1/q = δn,s we obtain

Rs[f̂ ;f ] ≤ inf
h∈H

{Rs[f̂h;f ] + 3B̄h(f ) + 3(Ef [m∗
s (h)]q)1/q} + 3δn,s .(33)

By the Young inequality

B̄h(f ) ≤
(

sup
η∈H

‖Kη‖1

)
‖Bh(f, ·)‖s = ‖K‖1‖Bh(f, ·)‖s .

In addition [see (39)–(40)],

‖Bh(f, ·)‖s ≤ Rs[f̂h;f ] ∀h ∈ H.

Combining this with (33), we complete the proof of (28).
3◦. Lemmas 1 and 2 lead to an upper bound on the quantity δn,s given in (27).

Indeed, by definition of ms(·, ·) [see (6)] we have

δn,s =
{
Ef sup

(h,η)∈H×H
[‖ξh,η − ξη‖s − ms(h,η)]q+

}1/q

≤
{
Ef sup

(h,η)∈H×H
[‖ξh,η‖s − gs(Kh ∗ Kη)]q+

}1/q
(34)

+
{
Ef sup

h∈H
[‖ξh‖s − gs(Kh)]q+

}1/q ≤ δ(1)
n,s + δ(2)

n,s,

where expressions for δ
(1)
n,s and δ

(2)
n,s depending on the value of s ∈ [1,∞) are given

in (17)–(18), (19)–(20) and (21)–(22).



1624 A. GOLDENSHLUGER AND O. LEPSKI

In order to apply (28) it remains to bound {Ef [m∗
s (h)]q}1/q .

4◦. We start with the case s ∈ [1,2). Here, by definition,

m∗
s (h) = sup

η∈H
ms(η,h) = gs(Kh) + sup

η∈H
gs(Kη ∗ Kh)

= 128n1/s−1
(
‖Kh‖s + sup

η∈H
‖Kh ∗ Kη‖s

)
≤ 128[1 + ‖K‖1]k∞(nVh)

1/s−1.

Therefore applying (28), and taking into account (34), (17) and (18), we come to
the statement (i) of Theorem 1.

The statement (ii) of Theorem 1 dealing with the case s = 2 follows similarly by
application of (28) and (34), (19) and (20). This completes the proof of Theorem 1.

5◦. Now consider the case s ∈ (2,∞). Because

m∗
s (h) = sup

η∈H
ms(η,h) = gs(Kh) + sup

η∈H
gs(Kη ∗ Kh)

(35)
= 32r̂s(Kh) + 32 sup

η∈H
r̂s(Kη ∗ Kh),

it suffices to bound from above [Ef |r̂s(Kh)|q]1/q and [Ef supη∈H |r̂s(Kh ∗
Kη)|q]1/q . Using (23) of Lemma 2 with H1 = {h} we have

[Ef |r̂s(Kh)|q]1/q ≤ c1rs(Kh) + c2A
2/q
H B

1/q
H n(s−2)/(2s) exp{−c3bn,s}.

In addition, by the Young inequality,

ρs(Kh) = Dsn
−1/2‖K2

h ∗ f ‖1/2
s/2 + n1/s−1‖Kh‖s

≤ Dsn
−1/2‖Kh‖2

∥∥√f
∥∥
s + (nVh)

−1+1/s‖K‖s

≤ Dsf1/2∞ ‖K‖2(nVh)
−1/2 + ‖K‖s(nVh)

−1+1/s ≤ c4f1/2∞ (nVh)
−1/2;

here we have used that ‖√f ‖s = (
∫

f s/2(x)dx)1/s ≤ (fs/2−1∞
∫

f (x)dx)1/s ≤ f1/2∞ .

Hence

[Ef |r̂s(Kh)|q]1/q ≤ c5f1/2∞ (nVh)
−1/2

(36)
+ c2A

2/q
H B

1/q
H n(s−2)/(2s) exp{−c3bn,s}.

Now, applying (24) with H1 = {h} and H2 = H we obtain[
Ef sup

η∈H
|r̂s(Kh ∗ Kη)|q

]1/q ≤ c6 sup
η∈H

rs(Kh ∗ Kη)

+ c7A
4/q
H B

1/q
H n(s−2)/(2s) exp{−c8bn,s}.

In addition, similar to the above,

sup
η∈H

ρs(Kh ∗ Kη) ≤ sup
η∈H

{
Dsn

−1/2‖Kh ∗ Kη‖2
∥∥√f

∥∥
s + n−1+1/s‖Kh ∗ Kη‖s

}
≤ c8f1/2∞ sup

η∈H
[n(Vh ∨ Vη)]1/2 ≤ c9f1/2∞ (nVh)

−1/2.
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Therefore the last two bounds yield[
Ef sup

η∈H
|r̂s(Kh ∗ Kη)|q

]1/q ≤ c10f1/2∞ (nVh)
−1/2

+ c7A
4/q
H B

1/q
H n(s−2)/(2s) exp{−c8bn,s}.

This along with (36) and (35) results in

[Ef |m∗
s (Kh)|q]1/q ≤ c11f1/2∞ (nVh)

−1/2

+ c12A
4/q
H B

1/q
H n(s−2)/(2s) exp{−c13bn,s}.

Combining this bound with (21), (22) and (34), and applying (28), we complete
the proof of Theorem 2.

4.3. Proof of Theorem 3. Throughout the proof we denote by c0, c1, . . . , the
positive constants depending only on the kernel K , the index s and the quantity
f∞. We divide the proof into four steps.

1◦. Let us prove that for any q ≥ 1 and h ∈ H

3Rs[f̂h;f ] ≥ ‖Bh(f, ·)‖s + Ef ‖ξh‖s .(37)

Indeed, in view of the Jensen inequality for any q ≥ 1

Rs[f̂h;f ] ≥ Ef ‖f̂h − f ‖s = Ef ‖Bh(f, ·) + ξh‖s .(38)

Denote by Bp(1),1 ≤ p ≤ ∞, the unit ball in Lp(Rd). By the duality argument

Ef ‖Bh(f, ·) + ξh‖s = Ef sup

∈Br (1)

∫

(t)[Bh(f, t) + ξh(t)]dt, r = s

s − 1
.

Let 
0 ∈ Br (1) be such that ‖Bh(f, ·)‖s = ∫

0(t)Bh(f, t)dt ; then

Ef ‖Bh(f, ·) + ξh‖s ≥ Ef

∫

0(t)[Bh(f, t) + ξh(t)]dt = ‖Bh(f, ·)‖s .(39)

Here we have used that Ef ξh(t) = 0, ∀t ∈ R
d . We also have by the triangle in-

equality

Ef ‖Bh(f, ·) + ξh‖s ≥ Ef ‖ξh‖s − ‖Bh(f, ·)‖s .(40)

Summing up the inequalities in (39) and (40) we get

Ef ‖Bh(f, ·) + ξh‖s ≥ 2−1
Ef ‖ξh‖s .(41)

Thus, in view of (39) and (41) for any α ∈ (0,1)

Ef ‖Bh(f, ·) + ξh‖s ≥ (1 − α)‖Bh(f, ·)‖s + 2−1αEf ‖ξh‖s .(42)

Choosing α = 2/3, we arrive to (37) in view of (38).
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In view of (37), the assertion of the theorem will follow from the statement of
Theorem 2 if we show that

Ef ‖ξh‖s ≥ c0(nVh)
−1/2.

2◦. Let b > 0 be a constant to be specified, and put a = b−1√nVh. By duality

Ef ‖ξh‖s = Ef sup

∈Br (1)

∫

(t)ξh(t)dt, r = s

s − 1
.(43)

Define the random event A = {aξh ∈ B2(1)}, and note that if A occurs, then by the
Hölder inequality

agξh ∈ Br (1) ∀g ∈ B2r/(2−r)(1).(44)

Recall that s ≥ 2 implies r ∈ [1,2], and if r = s = 2, then we formally put 2r
2−r

=
∞.

If the event A occurs, then Br (1) ⊇ {agξh :g ∈ B2r/(2−r)(1)}. Therefore, by (43)
and (44)

Ef ‖ξh‖s ≥ aEf

[
I(A) sup

g∈B2r/(2−r)(1)

∫
g(t)ξ2

h(t)dt

]

≥ a sup
g∈B2r/(2−r)(1)

Ef

[
I(A)

∫
g(t)ξ2

h(t)dt

]
(45)

= a sup
g∈B2r/(2−r)(1)

∫
g(t)[Ef I(A)ξ2

h(t)]dt = a‖Ef ξ2
h(·)I(A)‖2s/(s+2)

≥ a
[‖Ef ξ2

h(·)‖2s/(s+2) − ‖Ef ξ2
h(·)I(Ā)‖2s/(s+2)

]
,

where Ā is the event complementary to A.
Now consider separately two cases: s = 2 and s > 2.
3◦. If s = 2, we get from (45)

Ef ‖ξh‖2 ≥ a

[∫
Ef ξ2

h(t)dt − Ef

{‖ξh‖2
2I
(‖ξh‖2 ≥ b(nVh)

−1/2)}].(46)

Note that

Ef ξ2
h(t) = n−1

∫
K2

h(t − x)f (x)dx − n−1
[∫

Kh(t − x)f (x)dx

]2

(47)

and, therefore,∫
Ef ξ2

h(t)dt = ‖K‖2
2

nVh

− n−1
∫ [∫

Kh(t − x)f (x)dx

]2

dt.

The Young inequality yields∫ [∫
Kh(t − x)f (x)dx

]2

dt ≤ ‖Kh‖2
1‖f ‖2

2 ≤ ‖K‖2
1f∞.(48)
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Here we have used that f ∈ F. Thus, in view of Vh ≤ Vmax ≤ 1/8 [see assumption
of part (ii) of Theorem 1], we obtain∫

Ef ξ2
h(t)dt ≥ ‖K‖2

2

nVh

− ‖K‖2
1f∞

n
≥ c1(nVh)

−1.(49)

It follows from Theorem 1 of GL (2011) that for any x ≥ 2

P

{
‖ξh‖2 ≥ x‖K‖2√

nVh

}
≤ ec2(1−x)(50)

and, therefore, putting b = y‖K‖2, y ≥ 2, we obtain

Ef

{
‖ξh‖2

2I

(
‖ξh‖2 ≥ y‖K‖2√

nVh

)}
≤ 2‖K‖2

2(nVh)
−1

∫ ∞
y

xec2(1−x) dx.(51)

Choosing y sufficiently large in order to make the latter integral less than c1
4‖K‖2

2
,

we obtain from (46), (49) and (51)

Ef ‖ξh‖2 ≥ c3(nVh)
−1/2.

The theorem is proved in the case s = 2.
4◦. Return now to the case s > 2. Note first that

‖Ef ξ2
h(·)‖2s/(s+2) ≥

(∫
B

|Ef ξ2
h(t)|2s/(s+2) dt

)(s+2)/(2s)

(52)
≥ ν(2−s)/(2s)

∫
B

Ef ξ2
h(t)dt.

The last relation is obtained by the reversed Hölder inequality. Taking into account
that

∫
B f (t)dt ≥ μ, we get, using (47) and (48),∫

B
Ef ξ2

h(t)dt ≥ μ‖K‖2
2

nVh

− ‖K‖2
1f∞

n
≥ c4μ(nVh)

−1.(53)

Here we have used that Vh ≤ 2−1μ‖K‖2
2/‖K‖2

1. On the other hand,

Ef ξ2
h(·)I(Ā) ≤ {

Ef [ξh(·)]4s/(s+2)}(s+2)/(2s){P(Ā)}(s−2)/(2s)

and, therefore,

‖Ef ξ2
h(·)I(Ā)‖2s/(s+2)

(54)
≤ {

Ef

(‖ξh‖4s/(s+2)

)4s/(s+2)}(s+2)/(2s){P(Ā)}(s−2)/(2s).

We derive from Theorem 1 in GL (2011) that there exists c5 such that

Ef

(‖ξh‖4s/(s+2)

)4s/(s+2) ≤ c5(nVh)
−2s/(s+2).(55)

Putting b = x‖K‖2, x ≥ 2, we have in view of (50)

{P(Ā)}(s−2)/(2s) ≤ ec2(1−x)(s−2)/(2s).
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It leads, together with (54) and (55), to the following estimate:

‖Ef ξ2
h(·)I(Ā)‖2s/(s+2) ≤ c6(nVh)

−1ec2(1−x)(s−2)/(2s).(56)

Finally, we obtain from (45), (52), (53) and (56)

Ef ‖ξh‖s ≥ (x‖K‖2)
−1(nVh)

−1/2[c4μν(2−s)/(2s) − c6e
c2(1−x)(s−2)/(2s)].

It remains to choose x sufficiently large and we come to the assertion of the theo-
rem in the case s > 2.

4.4. Proof of Theorem 4. Let f ∈ Ns,d(α,L). It is easily checked [see, e.g.,
Proposition 3 in Kerkyacharian, Lepski and Picard (2001)] that bias of the estima-
tor f̂h is bounded as follows:

‖Bh(f, ·)‖s ≤ C1(d, s, l)L

d∑
j=1

h
αj

j .

Moreover, {Ef ‖ξh‖q
s }1/q ≤ C2(nVh)

−γs . If we set the “oracle bandwidth” h∗ :=
(h∗

1, . . . , h
∗
d) so that

[h∗
j ]αj :=

[
C2

C1

]ᾱ/(γs+ᾱ)

L−ᾱ/(γs+ᾱ)n−γs ᾱ/(γs+ᾱ), j = 1, . . . , d,

then h∗ ∈ H and f̂h∗ ∈ F (H) for large enough n. Hence, for any f ∈ Ns,d(α,L)

we have that Rs[f̂h∗;f ] ≤ C3ϕn,s(ᾱ). Then we apply oracle inequalities of The-
orems 1 and 2. Observe that by choice of constant κ2 in definition of hmax we
guarantee that the remainder terms are negligibly small as n → ∞ in comparison
with the first terms in (10) and (11). This fact leads to the statement of the theorem.

4.5. Proof of Theorem 5. First we note that it suffices to prove the theorem
only for s ≥ 2. Indeed, since supp(f ) ⊆ Q, one has supp(f̂h) ⊆ Q′ for any Xn-
measurable random vector h ∈ H, where, in view of the assumptions imposed on
the kernel K ,

Q′ = {y ∈ R
d : |yi − xi | ≤ 1/2, i = 1, . . . , d, x ∈ Q}.

Here we have also used that hmax ∈ (0,1]d . Thus, for any density f and any Xn-
measurable random vector h ∈ H

supp(f̂h − f ) ⊆ Q′

and, therefore, in view of Hölder inequality for any s ∈ [1,2)

‖f̂h − f ‖s ≤ [mes{Q′}](2−s)/(2s)‖f̂h − f ‖2.

We conclude that for any s ∈ [1,2) the estimation problem in the Ls -norm can be
reduced to the estimation problem in the L2-norm.
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Let f ∈ Wp,d(α,L,Q) and s ≥ 2. The standard computation (by the general-
ized Minkowski inequality and by the Hölder inequality along with the fact that f

is compactly supported) yields the following bound on the Ls -norm of the bias of
f̂h:

‖Bh(f, ·)‖s ≤ C1(d, s, l)L[mes{Q}](p−s)/(sp)
d∑

j=1

h
αj

j .

Moreover, {Ef ‖ξh‖q
s }1/q ≤ C2(nVh)

−1/2. If we set the “oracle bandwidth” h∗ :=
(h∗

1, . . . , h
∗
d) so that

[h∗
j ]αj :=

[
C2

C1

]2ᾱ/(2ᾱ+1)(
L[mes{Q}](p−s)/(sp))−2ᾱ/(1+2ᾱ)

n−ᾱ/(2ᾱ+1),

j = 1, . . . , d,

then h∗ ∈ H and f̂h∗ ∈ F (H) for large enough n. Then the result follows by appli-
cation of Theorems 1(ii) and 2.

APPENDIX

Proofs of Lemmas 1 and 2 follow directly from general uniform bounds on
norms of empirical processes established in GL (2011). In our proofs below we
use notation and terminology of this paper.

PROOF OF LEMMA 1. The statement is a direct consequence of Theorem 4 of
Section 3.3 in GL (2011).

To apply this theorem one should verify Assumptions (W1), (W4) and (L) for
the following classes of weights W (1) = {w = n−1Kh :h ∈ H} and W (2) = {w =
n−1(Kh ∗Kη) : (h, η) ∈ H × H}. The sets W (1) and W (2) are considered as images
of H and H × H under transformations h �→ n−1Kh and (h, η) �→ n−1(Kh ∗ Kη),
respectively. The sets H and H × H are equipped with the distances

d1(h,h′) = c1 max
i=1,...,d

ln
(

hi ∨ h′
i

hi ∧ h′
i

)
,

d2[(h,h′), (η, η′)] := c2{d1(h,h′) ∨ d1(η, η′)},
where c1 and c2 are appropriate constants depending on k∞, LK and d only
[see formulas (9.1) and (9.2) in GL (2011)]. With this notation Lemma 9 of
GL (2011) shows that Assumption (L) holds for both W (1) and W (2). Moreover,
Assumption (W1) holds trivially for both W (1) and W (2) with μ∗ = Vmax and
μ∗ = 2dVmax, respectively. Moreover, Assumption (W4) for both W (1) and W (2)

follows from formula (9.8) in GL (2011). Thus all conditions of Theorem 4 are
fulfilled.
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(i) We apply this theorem with z = 1 and ε = 1. We need to evaluate the con-
stant T3,ε for W (1) and W (2). If NH,d1(ε) denotes the minimal number of balls in
the metric d1 needed to cover H, then formula (9.8) from GL (2011) shows that
NH,d1(1/8) ≤ c3AH, where c3 depends on d only. Similarly, NH×H,d2(1/8) ≤
c4A

2
H. In addition, for

LH,d1(ε) :=
∞∑

k=1

exp{2 lnNH,d1(ε2−k) − (9/16)2kk−2}

we have LH,d1(1) ≤ c5AH. Similarly, LH×H,d2(1) ≤ c6A
2
H. Combining these

bounds we come to the statement (i).
(ii) The second statement follows exactly in the same way from the above con-

siderations. Theorem 4 of GL (2011) is again applied with z = 1 and ε = 1. �

PROOF OF LEMMA 2. The proof is by application of Theorem 7 from GL
(2011). We need to calculate several quantities.

We start with the class W (1). Here for ϑ
(1)
0 = 10Dsf∞(LK

√
d)d/2 we have

C∗
ξ,1(y) = 1 + 2ϑ

(1)
0

{√
y
(
V 1/s

max + n−1/(2s))+ yn−1/s}
≤ 1 + 2ϑ

(1)
0

{
2
√

yV 1/s
max + yV 2/s

max
}
,

where we have used that Vmax ≥ 1/
√

n. If we set y = ȳ := [4V
2/s
max(ϑ

(1)
0 ∨ 1)]−1,

then C∗
ξ,1(ȳ) ≤ 4. We apply Theorem 7 with ε = 1 and y = ȳ. Condition nVmin >

C1 = [256D2
s ](s∧4)/(s∧4−2) implies that

ū1(γ ) = 4
[
1 − 8Ds(nVmin)

1/(s∧4)−1/2]−1 ≤ 8.

Moreover, we note that condition ȳ ≤ y
(1)∗ follows from definition of ȳ and n ≥ C2.

In addition, T̃
(1)
1,ε ≤ cA2

HBH. These facts imply (21) and (23).

The bounds (22) and (24) for W (2) follow from similar computations. �
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