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DISTRIBUTIONS ON UNBOUNDED MOMENT SPACES AND
RANDOM MOMENT SEQUENCES1

BY HOLGER DETTE AND JAN NAGEL

Ruhr-Universität Bochum and Technische Universität München

In this paper we define distributions on moment spaces corresponding to
measures on the real line with an unbounded support. We identify these distri-
butions as limiting distributions of random moment vectors defined on com-
pact moment spaces and as distributions corresponding to random spectral
measures associated with the Jacobi, Laguerre and Hermite ensemble from
random matrix theory. For random vectors on the unbounded moment spaces
we prove a central limit theorem where the centering vectors correspond to
the moments of the Marchenko–Pastur distribution and Wigner’s semi-circle
law.

1. Introduction. For a set T ⊂ R, let P(T ) denote the set of all probability
measures on the Borel field of T with existing moments. For a measure μ ∈ P(T ),
we denote by

mk(μ) =
∫
T

xkμ(dx); k = 0,1,2, . . . ,

the kth moment and define

M(T ) = {m(μ) = (m1(μ),m2(μ), . . .)T |μ ∈ P(T )} ⊂ R
N(1.1)

as the set of all moment sequences. We denote by �n (n ∈ N) the canonical
projection onto the first n coordinates and call Mn(T ) = �n(M(T )) ⊂ R

n the
nth moment space. These moments have found considerable interest in the litera-
ture; see Karlin and Studden (1966). Most authors concentrate on the “classical”
moment space corresponding to measures on the interval [0,1]; see Karlin and
Shapley (1953), Kreı̆n and Nudelman (1977), among others. Chang, Kemperman
and Studden (1993) equipped it with a uniform distribution in order to understand
more fully the shape and the structure. In particular, these authors proved asymp-
totic normality of an appropriately standardized version of a projection �k(mn)

of a uniformly distributed vector mn on Mn([0,1]). Gamboa and Lozada-Chang
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(2004) considered large deviation principles for random moment sequences on the
space Mn([0,1]), while Lozada-Chang (2005) investigated similar problems for
moment spaces corresponding to more general functions defined on a bounded set.
More recently, Gamboa and Rouault (2010) discussed random spectral measures
related to moment spaces of measures on the interval [0,1] and moment spaces
related to measures defined on the unit circle. Distributions of random moments
induced by measures on lp balls were investigated by Barthe et al. (2010).

The present paper is devoted to the problem of defining probability distribu-
tions on unbounded moment spaces. We will investigate these distributions from
several perspectives. We introduce a class of general distributions on the moment
space corresponding to measures defined on a compact interval. By a limiting ar-
gument we will derive canonical distributions on the moment spaces correspond-
ing to measures on the unbounded intervals T = [0,∞) and R, respectively. We
also show that these distributions appear naturally in the study of random spec-
tral measures of the classical Jacobi, Laguerre and Gaussian ensemble. Finally we
consider random moment sequences distributed according to the new probabil-
ity distributions on the unbounded moment spaces. In particular, we prove weak
convergence of a centered random moment vector, where the centering vector cor-
responds to the moments of the Marchenko–Pastur law (in the case of the moment
space M([0,∞))) and to the semi-circle law [for the moment space M(R)]. These
measures play a very important role in free probability and quantum probability;
see the books of Hiai and Petz (2000) and Hora and Obata (2007).

2. Distributions on unbounded moment spaces. In the present section
we will define a class of more general distributions on the nth moment space
Mn([a, b]) as considered by Chang, Kemperman and Studden (1993). The moti-
vation for considering this class is twofold. On one hand, we want to introduce dis-
tributions on the moment space Mk([a, b]), which are different from the uniform
distribution. On the other hand, we want to identify distributions on unbounded
moment spaces as limits of distributions on Mk([a, b]), when b − a → ∞.

Let mk−1 = (m1, . . . ,mk−1)
T ∈ Mk−1([a, b]) be a given vector of moments

of a probability measure on the interval [a, b], then these first k − 1 moments
impose bounds on the kth moment mk such that the moment vector mk =
(m1, . . . ,mk−1,mk)

T is an element of the kth moment space Mk([a, b]). More
precisely, define for mk−1 ∈ Mk−1([a, b])

m−
k = min

{
mk(μ)

∣∣∣μ ∈ P([a, b]) with
∫ b

a
t i dμ(t) = mi for i = 1, . . . , k − 1

}
,

m+
k = max

{
mk(μ)

∣∣∣μ ∈ P([a, b]) with
∫ b

a
t i dμ(t) = mi for i = 1, . . . , k − 1

}
,

then it follows that mk = (m1, . . . ,mk)
T ∈ Int Mk([a, b]) if and only if m−

k <

mk < m+
k , where IntC denotes the interior of a set C ⊂ R

k . Consequently, we
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define for a point mk ∈ Int Mk([a, b]) the canonical moment of order l = 1, . . . , k

as

pl = pl(mk) = ml − m−
l

m+
l − m−

l

; l = 1, . . . , k.(2.1)

Note that for mk ∈ Int Mk([a, b]) we have pl ∈ (0,1); l = 1, . . . , k; and that pk

describes the relative position of the moment mk in the set of all possible kth mo-
ments with fixed moments m1, . . . ,mk−1. For this reason, the canonical moments
do not depend on the interval [a, b], that is they are invariant under linear transfor-
mations of the measure; see Dette and Studden (1997). Moreover, definition (2.1)
defines a one-to-one mapping,

ϕn : mn �→ pn = (p1, . . . , pn)
T(2.2)

from the interior of the moment space Mn([a, b]) onto the open cube (0,1)n. It
can be shown that for a point (m1, . . . ,m2n−1) ∈ Int M2n−1([a, b]) the canonical
moments appear in the three-term recurrence relation

xPk(x) = Pk+1(x) + bk+1Pk(x) + akPk−1(x), k = 1, . . . , n − 1,(2.3)

[P0(x) = 1,P1(x) = x − b1] of the monic orthogonal polynomials associated with
the vector (m1, . . . ,m2n−1); see Chihara (1978). These polynomials are orthogonal
with respect to every measure with first moments m1, . . . ,m2n−1, and the recursion
coefficients in (2.3) are given by

bk+1 = a + (b − a)
(
(1 − p2k−1)p2k + (1 − p2k)p2k+1

);
(2.4)

k = 0, . . . , n − 1,

ak = (b − a)2(1 − p2k−2)p2k−1(1 − p2k−1)p2k; k = 1, . . . , n − 1,(2.5)

where we put p−1 = p0 = 0 (note that ak > 0;k = 1, . . . , n). In the case T =
[0,∞) the upper bound m+

k does not exist, but we can still define for a point
mk−1 ∈ Int Mk−1([0,∞)) the lower bound

m−
k = min

{
mk(μ)

∣∣∣μ ∈ P([0,∞)) with
∫ ∞

0
t i dμ(t) = mi for i = 1, . . . , k − 1

}
,

where mk = (m1, . . . ,mk)
T ∈ Int Mk([0,∞)) if and only if mk > m−

k . In this case,
the analogs of the canonical moments are defined by the quantities

zl = zl(mn) = ml − m−
l

ml−1 − m−
l−1

, l = 1, . . . , k(2.6)

(with m−
0 = 0) and related to the coefficients in the three-term recurrence relation

(2.3) for the monic orthogonal polynomials by

ak = z2k−1z2k, bk = z2k−2 + z2k−1.(2.7)



DISTRIBUTIONS ON UNBOUNDED MOMENT SPACES 2693

Note that (2.6) defines a one-to-one mapping

ψn : mn �→ zn = (z1, . . . , zn)
T(2.8)

from the interior of the moment space Mn([0,∞)) onto (R+)n. Finally, in the
case T = R, neither m−

k nor m+
k can be defined. Nevertheless, there exists also a

one-to-one mapping

ξn : m2n−1 �→ (b1, a1, . . . , an−1, bn)
T(2.9)

from the interior of the (2n − 1)th moment space Int M2n−1(R) onto the space
(R×R

+)n−1 ×R of coefficients in the three-term recurrence relation (2.3), which
can be considered as the analog of (2.8) and is defined by∫

R

xkPk(x) dμ(x) = a1 · · ·ak, k = 1, . . . , n − 1,(2.10)

∫
R

xk+1Pk(x) dμ(x) = a1 · · ·ak(b1 + · · · + bk+1), k = 0, . . . , n − 1;(2.11)

see, for example, Wall (1948).
In the following sections we will use the canonical moments and corresponding

quantities on the interval [0,∞) and the real line for the definition of distributions
on the corresponding moment spaces. The basic idea is to define a general class
of distributions on the moment space Mn([a, b]) and to consider the limit as b −
a → ∞. To be precise, let for k ≥ 1 f̃k : (0,1) −→ R be a nonnegative integrable
function with

∫ 1
0 f̃k(x) dx > 0, then a distribution on the interior of the moment

space Mn([a, b]) is given by

fn(mn) = cn

n∏
k=1

f̃k(pk(mn))1{m−
k <mk<m+

k },(2.12)

where pk(mn) is the kth canonical moment defined in (2.1) and cn a normaliza-
tion constant. Our first theorem gives the distribution of the canonical moments
corresponding to the random vector mn with density fn defined in (2.12).

THEOREM 2.1. Suppose that mn is a random vector on the moment space
Mn([a, b]) with density fn defined in (2.12). Then the canonical moments
p1(mn), . . . , pn(mn) are independent and pk(mn) has a density proportional to
f̃k(x)(x − x2)n−k1{0<x<1} (1 ≤ k ≤ n).

PROOF. It follows from Theorem 1.4.9 and equation (1.3.6) in Dette and Stud-
den (1997) that the Jacobian determinant of the mapping ϕn defined in (2.2) is
given by ∣∣∣∣ ∂ϕn

∂mn

∣∣∣∣ =
n∏

k=1

∂pk(mn)

∂mk

=
n∏

k=1

(m+
k − m−

k )−1

(2.13)

= (b − a)−n(n+1)/2
n∏

k=1

(
pk(1 − pk)

)−(n−k);
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considering the product structure of fn, this gives the asserted distribution. �

For the construction of distributions on the unbounded moment space Mn([0,
∞)), a special case will be of particular interest; that is, f̃k(x) = xγk (1 − x)δk ,
where γ = (γk)k∈N, δ = (δk)k∈N are sequences of real parameters, such that
γk, δk > 0 for all k ≥ 1. In this case the density on the moment space Mn([a, b])
is given by

f (γ,δ)
n (mn) = c[a,b]

n

n∏
k=1

(
mk − m−

k

m+
k − m−

k

)γk
(

m+
k − mk

m+
k − m−

k

)δk

1{m−
k <mk<m+

k },(2.14)

where

c[a,b]
n =

[
(b − a)n(n+1)/2

n∏
k=1

∫ 1

0
xn−k+γk (1 − x)n−k+δk dx

]−1

(2.15)

is the normalizing constant. The choice of density (2.14) is motivated by results
of Dette and Studden (1995) who showed that the empirical distribution of the
(appropriately normalized) roots of the Jacobi polynomials P

(γk,δk)
k (x) converges

weakly to a distribution with unbounded support if γk → ∞ or δk → ∞. It follows
from Theorem 2.1 that for the density f

(γ,δ)
n , the canonical moment pk has a Beta

distribution Beta(γk + n − k + 1, δk + n − k + 1). In the following we use den-
sities of form (2.14) to construct a distribution on the unbounded moment space

Mn([0,∞)).

THEOREM 2.2. Let f
(γ (d),δ(d))
n denote the density defined in (2.14) on the mo-

ment space Mn([0, d]) corresponding to the probability measures on the interval
[0, d], where the parameter sequences γ (d) = (γ

(d)
k )k∈N, δ(d) = (δ

(d)
k )k∈N depend

on length d and satisfy for all k ≥ 1 γ
(d)
k → γk > −1 and δ

(d)
k /d → δk ∈ R

+ as

d → ∞. Then for d → ∞ the density f
(γ (d),δ(d))
n converges point-wise to the func-

tion

g(γ,δ)
n (mn) = c[0,∞)

n

n∏
k=1

zk(mn)
γk exp(−δkzk(mn))1{zk(mn)>0},(2.16)

where zk(mn) is given in (2.6) and c
[0,∞)
n = ∏n

k=1(δ
γk+n−k+1
k )/	(γk + n −

k + 1). Moreover, g
(γ,δ)
n defines a density on the unbounded moment space

Mn([0,∞)).

PROOF. The fact that g
(γ,δ)
n is a density is obvious from the transformation

in the proof of Theorem 2.3 below, we prove here only the convergence. For a
fixed point mn ∈ Mn([0,∞)), there exists a d0 ∈ N with mn ∈ Mn([0, d]) for all
d ≥ d0. Let pn(mn) denote the vector of canonical moments corresponding to the
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vector mn in the moment space Mn([0, d]). We will show at the end of this proof
that

pk(mn) = zk(mn)

d

(
1 + o(1)

)
, k = 1, . . . , n,(2.17)

where the quantities zk(mn) are defined in (2.6). Observing this representation and
definition (2.14), it follows for d → ∞

f (γ (d),δ(d))
n (mn) = c[0,d]

n

n∏
k=1

(
zk(mn)

d

)γ
(d)
k

(
1 − zk(mn)

d

)δ
(d)
k (

1 + o(1)
)

= d−(γ
(d)
1 +···+γ

(d)
n )c[0,d]

n

n∏
k=1

zk(mn)
γk exp(−δkzk(mn))

(
1 + o(1)

)
.

Finally, we obtain from (2.15) for the normalizing constant by a straightforward

calculation d−(γ
(d)
1 +···+γ

(d)
n )c[0,d]

n = c
[0,∞)
n (1 + o(1)), which proves the assertion

of the theorem. For the remaining proof of the representation (2.17), let μ be a
measure on the interval [0, d] with first moments given by mn and let ν denote
the measure on the interval [0,1] obtained from μ by the linear transformation
x �→ x/d . We write pk(μ) for pk(mn) and zk(μ) for zk(mn). Invariance of the
canonical moments under linear transformations yields pk(μ) = pk(ν). The recur-
sion variables of the measure ν can be decomposed as

zk(ν) = (
1 − pk−1(ν)

)
pk(ν).(2.18)

A comparison of the continued fraction expansion of the Stieltjes transform of μ

and of ν [see Theorem 3.3.3 in Dette and Studden (1997)] yields dzk(ν) = zk(μ).
With (2.18) we obtain

pk(μ) = pk(ν) = zk(ν)

1 − pk−1(ν)
= 1

d

zk(μ)

1 − pk−1(μ)

for k > 1. The first canonical moment is given by p1(mn) = (m1 − m−
1 )/(m+

1 −
m−

1 ) = m1/d = z1(mn)/d, and (2.17) follows by an induction argument. �

The following theorem is essential for the asymptotic investigations in Section 3
and gives the distribution of the the vector zn = (z1, . . . , zn)

T corresponding to a
random point in Mn([0,∞)).

THEOREM 2.3. Let mn ∈ Mn([0,∞)) be governed by a law with density
g

(γ,δ)
n . Then the recursion variables zn = ψn(mn) defined by (2.6) are indepen-

dent and gamma distributed, that is,

zk ∼ Gamma(γk + n − k + 1, δk), k = 1, . . . , n.
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PROOF. By its definition in (2.6), the random variable zk depends only on the
moment m1, . . . ,mk ; therefore the Jacobi matrix of the mapping ψn is a lower
triangular matrix. We obtain for the Jacobian determinant∣∣∣∣∂mn

∂zn

∣∣∣∣ =
n∏

k=1

∣∣∣∣∂mk

∂zk

∣∣∣∣ =
n∏

k=1

(mk−1 − m−
k−1) =

n∏
k=2

z1 · · · zk−1 =
n∏

k=1

zn−k
k ,

where the third identity follows from the definition of the zi in (2.6). Considering
the second representation of the density in (2.16), this yields the claimed distribu-
tion. �

We conclude this section with a discussion of distributions on the moments
space corresponding to measures on R. For the sake of brevity we restrict our-
selves to moment spaces of odd dimension, that is, M2n−1(R). To derive a class
of distributions on M2n−1(R) we consider the moment space M2n−1([−s, s])
with s → ∞ and a density of the form (2.14) with parameters varying with s. The
proof of the following result is similar to the proof of Theorem 2.2 and therefore
omitted.

THEOREM 2.4. Denote by f
(γ (s),δ(s))
2n−1 the density defined in (2.14) on the mo-

ment space M2n−1([−s, s]), where the parameters satisfy

γ
(s)
2k−1 = δ2k−1s

2 + o(1), δs
2k−1 = δ2k−1s

2 + o(1),

γ
(s)
2k = γk + o(1), δ

(s)
2k = δ2ks

2 + o(s2)

with γk > −1, δk > 0. Then f
(γ (s),δ(s))
2n−1 converges point-wise to the function

h
(γ,δ)
2n−1(m2n−1)

=
n∏

k=1

√
δ2k−1

π
exp(−δ2k−1b

2
k(m2n−1))

(2.19)

×
n−1∏
k=1

δ2k
γk+2n−2k

	(γk + 2n − 2k)
a

γk

k (m2n−1)

× exp(−δ2kak(m2n−1))1{ak(m2n−1)>0}.

Moreover, the function h
(γ,δ)
2n−1 defines a density on the moment space M2n−1(R).

The following result is the analog of Theorem 2.3. The proof follows by similar
arguments, where the Jacobian can be obtained from equations (2.10) and (2.11).

THEOREM 2.5. Let m2n−1 ∈ M2n−1(R) be a random vector with density
h

(γ,δ)
2n−1 defined in (2.19). Then the random recursion coefficients (b1, a1, . . . , an−1,
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bn)
T = ξ2n−1(m2n−1) in the recurrence relation (2.3) for the orthogonal polyno-

mials associated with m2n−1 are independent and

bk ∼ N
(

0,
1

2δ2k−1

)
, ak ∼ Gamma(γk + 2n − 2k, δ2k).

REMARK 2.6. It is notable that the introduced distributions on the moment
space appear naturally as distributions of moment vectors corresponding to ran-
dom spectral measures which were recently discussed by Gamboa and Rouault
(2009, 2010). To be precise, let w = (w1, . . . ,wn) and λ = (λ1, . . . , λn) denote in-
dependent random variables. Assume that w follows a Dirichlet distribution with
density

	(nβ/2)

	(β/2)n
w

β/2−1
1 · · ·wβ/2−1

n 1{w1,...,wn>0,
∑n

i=1 wi=1}(2.20)

and that the density of λ is given by the Jacobi-ensemble

fJ (λ) = c
γ0,δ0
J |�(λ)|β

n∏
i=1

λ
γ0
i (1 − λi)

δ01{0<λi<1},(2.21)

where γ0, δ0 > −1
2 ; see Killip and Nenciu (2004). We define a random measure

by μ = ∑n
i=1 wiδλi

, and it follows from Theorem 2.2 and Proposition 5.3 in Killip
and Nenciu (2004) (applied to the interval [−1,1]) that μ is the spectral measure
of the random tridiagonal matrix

Jn =

⎛
⎜⎜⎜⎝

d1 c1

c1 d2
. . .

. . .
. . . cn−1

cn−1 dn

⎞
⎟⎟⎟⎠ ,

where dk = p2k−2(1 − p2k−3) + p2k−1(1 − p2k−2) and

ck =
√

p2k−1(1 − p2k−2)p2k(1 − p2k−1)

and p−1 = p0 = 0 and p1, . . . , p2n−1 are independent random variables distributed
as

pk ∼

⎧⎪⎪⎨
⎪⎪⎩

Beta
(

2n − k

4
β,

2n − k − 2

4
β + γ0 + δ0 + 2

)
, k even,

Beta
(

2n − k − 1

4
β + γ0 + 1,

2n − k − 1

4
β + δ0 + 1

)
, k odd.

This spectral measure is the unique measure with 〈e1, J
k
n e1〉 = mk(μ) for all k. The

tridiagonal matrix Jn defines monic polynomials P1(x), . . . ,Pn(x) via a recursion
(2.3) with recursion coefficients bk = dk (1 ≤ k ≤ n), ak = c2

k (1 ≤ k ≤ n − 1).
Indeed, the polynomial Pk(x) is the characteristic polynomial of the upper left
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(k × k)-subblock of the matrix Jn and the kth orthogonal polynomial with re-
spect do the measure dμ. Therefore, we obtain from (2.4) and (2.5) that p2n−1 =
(p1, . . . , p2n−1)

T is exactly the vector of canonical moments of the spectral mea-
sure μ, and by definition, their joint density is given by

fp(p2n−1) = c

n∏
k=1

p
(n−k)β/2+γ0
2k−1 (1 − p2k−1)

(n−k)β/2+δ0

×
n−1∏
k=1

p
(n−k)β/2−1
2k (1 − p2k)

(n−k−1)β/2+γ0+δ0+1.

Since the eigenvalues of the matrix Jn are contained in the interval (0,1), the
moments m2n−1(μ) = ϕ−1

2n−1(p2n−1) of the spectral measure are in the interior

of the moment space M2n−1([0,1]). The Jacobian of the transformation ϕ−1
2n−1

is given by
∏n

k=1(pk(1 − pk))
2n−1−k , which gives for the density of the random

moment vector m2n−1(μ)

fm(m2n−1)

= c

n∏
k=1

p2k−1(m2n−1)
(β/2−2)(n−k)+γ0

(
1 − p2k−1(m2n−1)

)(β/2−2)(n−k)+δ0

×
n−1∏
k=1

p2k(m2n−1)
(β/2−2)(n−k)(1 − p2k(m2n−1)

)(β/2−2)(n−k−1)+γ0+δ0 .

This is a density as in (2.14) with parameters γ2k−1 = (
β
2 − 2)(n − k) + γ0,

δ2k−1 = (
β
2 − 2)(n − k) + δ0, (1 ≤ k ≤ n) and γ2k = (

β
2 − 2)(n − k), δ2k =

(
β
2 − 2)(n − k − 1) + γ0 + δ0 (1 ≤ k ≤ n − 1). We finally note that densities of

the form (2.16) and (2.19) on the moment space Mn([0,∞)) and M2n−1(R) are
obtained by replacing the Jacobi ensemble by the Laguerre and Hermite ensemble,
respectively [see Dette and Nagel (2011) for details].

3. Weak convergence of random moments. In this section we study the
probabilistic properties of random vectors on the moment spaces Mn([a, b]),
Mn([0,∞)) and Mn(R) distributed according to the measures introduced in Sec-
tion 2. We begin with random moments defined on the moment space correspond-
ing to probability measures on a compact interval. Chang, Kemperman and Stud-
den (1993) and Gamboa and Lozada-Chang (2004) investigated the uniform dis-
tribution on Mn([a, b]), and we first demonstrate that weak convergence of ran-
dom moment vectors can be established for a rather broad class of distributions on
Mn([a, b]). An important role in the discussion of moment spaces corresponding
to probability measures with bounded support [a, b] plays the arcsine distribution
ν with density dν(x) = 1/π

√
(x − a)(b − x)1{a<x<b} dx. The canonical moments
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of the arcsine distribution are given by 1/2 [see Dette and Studden (1997)], and
therefore its sequence of moments could be considered as the center of the moment
space M([a, b]). The following statements establish the asymptotic properties of
the (random) canonical moments corresponding to distributions on the moment

space Mn([a, b]) defined in (2.12). Throughout this paper the symbol
D−→ stands

for weak convergence.

THEOREM 3.1. Suppose that the distribution of the random moment vector
mn ∈ Mn([a, b]) is absolute continuous with density fn defined in (2.12), where
the point 1

2 is in the support of the measure with density proportional to f̃k and

denote by p
(n)
k the kth canonical moment of mn (k = 1, . . . , n):

(a) If n → ∞, then almost surely p
(n)
k −−−→

n→∞
1
2 .

(b) If additionally the function f̃k in the density (2.12) is bounded, continuous
at 1

2 and positive, then the kth canonical moment corresponding to mn satisfies√
8n(p

(n)
k − 1

2)
D−−−→

n→∞ N (0, I ).

PROOF. For notational convenience, we consider only the case [a, b] = [0,1].
The proof of the first assertion is a consequence of the Laplace method [see, e.g.,
Pólya and Szegö (1998), page 96]: The canonical moment has density proportional
to f̃k(x)(x − x2)n−k , which concentrates exponentially fast on any neighborhood
of 1

2 . The almost sure convergence follows then with an application of the Borel–
Cantelli lemma.

For a proof of part (b), we apply a technique similar to stable convergence;
see Aldous and Eagleson (1978) and the references therein. From Chang, Kem-
perman and Studden (1993) we know that for f̃k ≡ 1 the convergence holds,
that is, E[IA(p̃k)] → E[IA(p)] for p̃k = √

8n(p
(n)
k − 1

2) the normalized canon-
ical moment, p standard normal distributed and A of the form (−∞, a]. Then for
any f̃k satisfying the assumptions of part (b), the convergence E[IA(p̃k)f̃k(

1
2 +

1√
8n

p̃k)] → E[IA(p)f̃k(
1
2)] holds. This implies the convergence of p̃k if the den-

sity of p
(n)
k is multiplied by f̃k . �

Chang, Kemperman and Studden (1993) showed weak convergence of the vec-
tor m(n)

k of the first k components of a uniformly distributed moment vector
mn = (m1, . . . ,mn) on the moment space Mn([0,1]) (i.e., fk ≡ 1), that is,

√
8nA−1(

m(n)
k − mk(ν)

) D−−−→
n−→∞ N (0, Ik),(3.1)

where mk(ν) denotes the vector of the first k moments of the arcsine distribution
and A is a k × k lower triangular matrix with entries

ai,j = 2−2i+2
(

2i

i − j

)
, j ≤ i.
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By part (b) of Theorem 3.1, it is easy to see that the weak convergence in (3.1)
holds for the more general densities fn on Mn([0,1]). By the arguments in the
proof of Theorem 3.1 it is also apparent that no condition on the density fn can
be dropped, without adding more specific restrictions. In particular, we need f̃k to
be independent of n, which implies the product structure of fn. In this sense, the
densities as in (2.12) constitute the largest class of densities on the moment space
such that the convergence (3.1) holds.

We conclude this paper with a discussion of corresponding results for distribu-
tions on the noncompact moment spaces Mn([0,∞)) and Mn(R). In this case
the analogs of the arcsine distribution in this context are the Marchenko–Pastur
and Wigner’s semicircle distribution defined by

dη(x) =
√

x(4 − x)

2πx
1{0<x<4} dx, dρ(x) = 1

2π

√
4 − x21{−2<x<2} dx,(3.2)

respectively; see Hiai and Petz (2000) or Nica and Speicher (2006). The mo-
ments of the Marchenko–Pastur law η are the Catalan numbers cn defined by
mn(η) = cn = 1

n+1

(2n
n

)
(n ∈ N), and the moments of the semicircle law ρ are given

by m2n(ρ) = cn,m2n−1(ρ) = 0. Our next result establishes the asymptotic prop-
erties of the quantities zk corresponding to a random vector on the moment space
Mn([0,∞)) with density g

(γ,δ)
n defined in (2.16). It is a well-known consequence

of the asymptotic behavior of the density of the Gamma distribution.

THEOREM 3.2. Suppose mn is a random vector of moments on the moment
space Mn([0,∞)) with density g

(γ,δ)
n , where the γk are fixed, δ1 = · · · = δn = n,

and let z
(n)
k denote the kth component of the vector zn = (z

(n)
1 , . . . , z

(n)
n ). Then the

standardized random variable z
(n)
k is asymptotically normal distributed, that is,

√
n
(
z
(n)
k − 1

) D−−−→
n→∞ N (0,1).

By Theorem 3.2 the vector
√

n(z(n)
k − 1) = √

n((z
(n)
1 , . . . , z

(n)
k )T − (1, . . . ,1)T )

is asymptotically multivariate normal distributed. In order to derive a correspond-
ing statement of the random vector m(n)

k = ψ−1
k (z(n)

k ) we will use the Delta method
and study first the image of the vector (1, . . . ,1)T under the mapping ψ−1

k .

LEMMA 3.3. Let (cn)n≥1 denote the sequence of Catalan numbers, then

ψn(c1, . . . , cn) = (1, . . . ,1)T .

PROOF. The proof presented here relies on the combinatorical interpretation
of the Catalan numbers and a recursive algorithm given in Skibinsky (1968) to
calculate the moments in terms of the variables zk . The kth Catalan number counts
the paths in N × N starting in (0,0) and ending in (2k,0), where one is only
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allowed to make steps in the direction (1,1) or (1,−1). Skibinsky (1968) defines
the triangular array {gi,j }i,j≥0 by gi,j = 0 for i > j , g0,j = 1 and the recursion

gi,j = gi,j−1 + zj−i+1gi−1,j , 1 ≤ i ≤ j.(3.3)

He showed that gk,k = mk . Consequently, if zi = 1 (i = 1,2, . . .), the quantity gk,k

is the number of paths through the lattice {(i, j)}i,j≥0, starting in (k, k) and ending
in (0,0), where in each vertex we can only make steps upward or to the left and
where we are not allowed to cross the diagonal {(i, i)}. This number is exactly the
kth Catalan number ck . �

THEOREM 3.4. If the vector of random moments mn ∈ Mn([0,∞)) is gov-
erned by a law with density g

(γ,δ)
n , where δ1 = · · · = δn = n, and the γk are fixed,

then the projection m(n)
k = �n

k(mn) of mn onto the first k coordinates satisfies
√

nC−1(
m(n)

k − mk(η)
) D−−−→

n→∞ Nk(0, Ik),

where the vector mk(η) = (c1, . . . , ck)
T contains the first k moments of the

Marchenko–Pastur distribution, and C is a lower triangular matrix with entries
c1,1 = · · · = ck,k = 1, and

ci,j =
(

2i

i − j

)
−

(
2i

i − j − 1

)
, j < i.

PROOF. It suffices to calculate the Jacobi matrix C = ∂ψ−1
k

∂zk
(z0

k) of the mapping

ψ−1
k at z0

k = (1, . . . ,1)T ; then the independence of the recursion variables zk and
Theorem 3.2 yield

√
n
(
m(n)

k − mk(η)
) = √

nC
(
z(n)
k − z0

k

) + oP (1)
D−−−→

n→∞ Nk(0,CCT ).

Note that the moment mi depends only on z1, . . . , zi , and consequently C is a
lower triangular matrix. To identify the entries of the matrix C we consider the
triangular array {gi,j }i,j≥0 defined in (3.3). For a fixed r with 1 ≤ r ≤ k, we in-

troduce the notation ui,j = ∂gi,j

∂zr
(z0

k) and obtain a new triangular array {ui,j }i,j≥0.
Obviously we have ui,j = 0 for i > j , and the other values of ui,j are determined
by the initial condition u0,j = 0 and the recursion

ui,j = ui,j−1 + ui−1,j + δr,j−i+1g
0
i−1,j , 1 ≤ i ≤ j,(3.4)

were δi,j denotes the Kronecker symbol, and g0
i,j is the coefficient in the recursion

(3.4), if all zi are equal to 1, that is,

g0
i,j =

(
i + j

i

)
−

(
i + j

i − 1

)
.

The numbers g0
i,j are sometimes called generalized Catalan numbers; see Finucan

(1976). An induction argument shows that the entries in the new triangular array
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are given by

ui,j =

⎧⎪⎪⎨
⎪⎪⎩

(
i + j

i − 1

)
−

(
i + j

i − r − 1

)
, if j − i ≥ r ,(

i + j

j − r

)
−

(
i + j

i − r − 1

)
, if 0 ≤ j − i < r .

(3.5)

With this identity we obtain for the entries of the matrix C

ci,r = ∂mi

∂zr

(z0
k) = ui,i =

(
2i

i − r

)
−

(
2i

i − r − 1

)

for 1 ≤ r ≤ i, which proves the assertion of the theorem. �

By the same arguments as in the compact case, the general class of densities on
the unbounded moment space Mn([0,∞)) for which the result of Theorem 3.4
holds, is g

(γ,δ)
n (mn)

∏n
k=1 g̃k(zk(mn)). Here, the functions g̃k have to be bounded

and continuous and positive at 1. An analogous result holds in the remaining case
of measures on R.

We now consider the moment space M2n−1(R) and recall the bijective mapping
(2.9) from the interior of the moment space M2n−1(R) onto (R×R

+)n−1 ×R cor-
responding to the range for coefficients in the recursive relation of the orthogonal
polynomials (2.3). The following results give the weak asymptotics of random re-
cursion coefficients and moments and correspond to Theorem 3.2 and 3.4. The
proof is omitted.

THEOREM 3.5. Let the random vector m2n−1 ∈ M2n−1(R) be governed by a
law with density h

(γ,δ)
2n−1 where γk > −1 is fixed and δk = n (k = 1, . . . , n). For fixed

k denote by b
(n)
k and by a

(n)
k the (2k − 1)th component of the vector ξ2n−1(m2n−1)

and the 2kth component, respectively. Then
√

2nb
(n)
k ∼ N (0,1),

√
2n

(
a

(n)
k − 1

) D−−−→
n→∞ N (0,1).

THEOREM 3.6. Let the vector of random moments m2n−1 ∈ M2n−1(R) be
governed by a law with density h

(γ,δ)
2n−1 where δk = n (k = 1, . . . , n). For k ∈ N

denote by m(n)
k = �n

k(m2n−1) the projection onto the first k coordinates and by
mk(ρ) = �k(0, c1,0, c2, . . .) the vector of the first k moments of the semicircle
law defined in (3.2). Then

√
2nD−1(

m(n)
k − mk(ρ)

) D−−−→
n→∞ Nk(0, Ik),

where D is a k × k lower triangular matrix with di,j = 0 if i + j is odd, and the
remaining entries are given by

di,j =
(

i
i − j

2

)
−

(
i

i − j

2
− 1

)
.
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REMARK 3.7. It follows from Remark 2.6 that the moment density of the
Jacobi ensemble is the moment density investigated asymptotically in this section.
Although for the random matrix ensembles the parameters γk, δk depend on n,
only minor changes are necessary to obtain a weak convergence result for the first
k moments. Note that the canonical moment p

(n)
k follows a Beta distribution with

parameters behaving like β
2 n. Therefore

√
4βn(p

(n)
k − 1

2)
D−−−→

n→∞ N (0,1), and we

obtain easily for the vector mk(μn) of the first k moments of μn of the spectral
measure of the Jacobi ensemble defined in (2.21)√

4βnA−1(
mk(μn) − mk(ν)

) D−−−→
n→∞ Nk(0, Ik),

where mk(ν) is the moment vector of the arcsine measure and A is the k×k matrix
in (3.1).

In particular, the moment convergence implies the weak convergence of the
spectral measure to the arcsine measure. This is also a consequence of the well-
known convergence of the empirical eigenvalue distribution to the arcsine measure,
since the (unscaled) moments of the spectral measure have the same asymptotic
behavior as the moments of the empirical eigenvalue distribution. Therefore the
fluctuations around this limit in terms of the moments are Gaussian. The corre-
sponding results for the Laguerre and Hermite ensemble are omitted for the sake
of brevity.

REMARK 3.8. Already in the compact case there are interesting results re-
garding a functional limit theorem. In particular, Dette and Gamboa (2007) proved
the convergence of the standardized range process (m+

�nt� −m−
�nt�)t to a functional

of the Brownian motion in the Skorohod topology. With the distributions on the
unbounded moment spaces, the question arises whether a corresponding result ex-
ist in these cases. Interesting processes are, for example, the moment difference
(m�nt� − m−

�nt�)t for measures on [0,∞) and for measures on the whole real line
the integrals over orthogonal polynomials as in formulas (2.10) and (2.11). For
the sake of brevity, we do not discuss functional limit theorems in the unbounded
cases and defer these interesting questions to our future research.
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