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RANDOM WALKS DRIVEN BY LOW MOMENT MEASURES

BY ALEXANDER BENDIKOV1 AND LAURENT SALOFF-COSTE2

Wrocław University and Cornell University

We study the decay of convolution powers of probability measures with-
out second moment but satisfying some weaker finite moment condition. For
any locally compact unimodular group G and any positive function � :G →
[0,+∞], we introduce a function �G,� which describes the fastest possible

decay of n �→ φ(2n)(e) when φ is a symmetric continuous probability density
such that

∫
�φ is finite. We estimate �G,� for a variety of groups G and func-

tions �. When � is of the form � = ρ ◦ δ with ρ : [0,+∞) → [0,+∞), a fixed
increasing function, and δ :G → [0,+∞), a natural word length measuring
the distance to the identity element in G, �G,� can be thought of as a group
invariant.

1. Introduction. Throughout this work, G is a locally compact unimodular
group equipped with its Haar measure λ, and Lp(G) = Lp(G,λ), 1 ≤ p ≤ ∞, is
the space of (classes of) p integrable measurable functions. When convenient, we
write λ(dx) = dx.

Sometimes, but not always, we will assume that G is also compactly gener-
ated. When that is the case, we let U be an open relatively compact set which is
symmetric and contains a compact generating neighborhood of the identity ele-
ment e. For any element x in G, we set |x| = inf{n :x ∈ Un} (with the convention
that U0 = {e}) and V (n) = λ(Un). The function V is called the volume growth
function of the group G. The rough behavior of both x �→ |x| and n �→ V (n) is
essentially independent of the choice of U ; for example, see [31]. The case when
G is a finitely generated group equipped with a finite symmetric generating set,
and its counting measure is of course included here, and the results we obtain are
particularly interesting in this case.

Given a Borel probability measure μ on G, we let μ(n) be the n-fold convolution
power of μ and let μ̌ be the measure defined by μ̌(A) = μ(A−1) for any Borel
set A. Recall that μ(n) is the law of the random walk driven by μ and started at e.
We call a measure symmetric if μ = μ̌. Since G is unimodular, we have λ̌ = λ. It
follows that a measure having a density φ w.r.t. the Haar measure λ is symmetric if
and only if φ is symmetric, that is, φ = φ̌ where φ̌(x) = φ(x−1); see, for example,
[7], Exercise 5, page 89. Throughout the paper, we denote by Rφ the operator of
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convolution by the function φ ∈ L2(G) on the right, that is, Rφf = f ∗ φ (say,
for compactly supported continuous function f ). When φ is in L1(G), Rφ also
denotes the extension of this operator to L2(G) [and, more generally, Lp(G)].
When φ = φ̌ ∈ L1(G), Rφ is a bounded self-adjoint operator on L2(G).

1.1. The decay of convolution powers. A probability measure μ on a com-
pactly generated group G is said to have finite second moment if μ(| · |2) < ∞.
A fundamental result concerning symmetric random walks on groups asserts that
there exists a nonincreasing positive function �G such that, for any symmetric
probability measure dμ = φ dλ with finite second moment and continuous density
φ whose support contains a generating compact neighborhood of the identity, we
have

μ(2n)(U) 	 φ(2n)(e) 	 �G(n);(1.1)

see [13, 20]. Here, f (n) 	 g(n) means that there are constants ci ∈ (0,∞) such
that, for all n, c1f (c2n) ≤ g(n) ≤ c3f (c4n). Clearly, in the above estimates, the
implied constants ci are allowed to depend on μ and G.

The following list provides some examples of explicit computation of �G, as-
suming that G is compactly generated. More accurately, it is the equivalence class
of �G under the equivalence relation 	 which is computed.

• If G is such that V (n) 	 nD , then �G(n) 	 n−D/2. Every nilpotent group has
these properties for some integer D; see [29, 31] and the references therein.

• If G is polycyclic (or linear solvable) and has exponential volume growth, then
�G(n) 	 exp(−n1/3); see [1, 22, 30, 31].

• The group G is nonamenable if and only if �G(n) 	 exp(−n) (this is a formula-
tion of Kesten’s celebrated theorem regarding amenability and random walks).

• Let M,N be two finitely generated groups, and let G be the wreath product
G = M 
 N = (

∑
n∈N Mn) � N . This is the semidirect product of N with of the

direct sum of countably many copies of M indexed by N where the action of N

is by index translation; see, for example, [21] for a precise definition.
– Assume N satisfies VN(n) 	 nd for some d ≥ 1 and M is nontrivial. Then we

have

�G(n) 	
⎧⎪⎨⎪⎩

exp
(−nd/(d+2)

)
, if M is finite;

exp
(−[nd(logn)2]1/(d+2)

)
, if VM(n) 	 nb, b ≥ 1;

exp
(−n(d+1)/(d+3)

)
, if M ∈ P E ,

where P E stands for polycyclic with exponential volume growth.
– Assume that N ∈ P E and M is nontrivial, finite or polycyclic. Then we have

�G(n) 	 exp(−n(logn)−2);
see [9, 10, 21, 26] for details and further results.
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• Let N = Z
d , M be nontrivial, and k ≥ 2 be an integer. Set G = M 
 (M 
 (· · · (M 


N) · · ·)) where k successive wreath products are taken. Then

�G(n) 	
{

exp(−n(logk−1 n)−2/d), if M is finite,

exp
(−n[(logk−1 n)/ logk n]−2/d

)
, if VM(n) 	 nb, b ≥ 1.

Here, log1(x) = log(e + x) and logk(x) = log(e + logk−1(x)), k ≥ 2; see [9, 10,
26].

The article [25] gives an overview. Many further behaviors are possible for the
function �G, but a complete classification of the possible behaviors is not known.
In fact, the very existence of such a classification seems highly unlikely, and there
are (uncountably) many amenable finitely generated groups G for which the be-
havior of �G is unknown. Still, Definition 1.1 means that on any such group, we
know that all random walks driven by a symmetric measure with generating sup-
port and finite second moment have comparable probability of return.

This work focuses on the probability of return of random walks driven by
measures that may fail to have a finite second moment but satisfy some fi-
nite moment condition. Namely, consider a nonnegative, nondecreasing function
ρ : [0,+∞) → [0,+∞). For any finitely generated group G equipped with a word
length | · | as above, let ρG be the function

ρG :G → [0,+∞), x �→ ρG(x) = ρ(|x|).
We will abuse notation and write ρ for ρG when convenient. We say that a proba-
bility measure μ on G has finite ρG-moment if

μ(ρG) =∑
g∈G

ρG(g)μ(g) < ∞.

Since we are mostly interested in measures without second moment, the following
are some of the natural choices for ρ:

• Small powers: ρα(t) = (1 + t)α , α ∈ (0,2).
• Regularly varying functions of index α ∈ (0,2), for example,

ρ(t) = (1 + t)α[log(e + t)]β, β ∈ R.

• Slowly varying increasing functions including:
– ρ

exp
c,α (t) = exp(c[log(1 + t)]α), α ∈ (0,1) and c > 0;

– ρ
log
α (t) = [log(e + t)]α , α ∈ (0,∞).

We consider the following natural question. What can be said about the decay
of φ(2n)(e) when dμ = φ dλ is a symmetric measure having a finite ρG-moment
for one of the functions ρ mentioned above?
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1.2. Group invariants associated with random walks and moment conditions.
In general, requiring that a symmetric measure μ has a finite moment of some
sort is not enough to determine the behavior of the convolution powers of that
measure. The following definition introduces the notion of “fastest decay” allowed
by a given moment condition.

DEFINITION 1.1 (Fastest decay under �-moment). Let G be a locally compact
unimodular group. Fix a measurable function � :G → [0,+∞]. Fix a compact
symmetric neighborhood 
 of e in G such that λ(
) ≥ 1 and sup
2{�} > 0. For

K > 1, let S 
,K
G,� be the set of all symmetric continuous probability densities φ on

G with the properties that ‖φ‖∞ ≤ K and
∫

φ� dλ ≤ K sup
2{�}. Set

�

,K
G,� :n �→ �


,K
G,� (n) := inf

{
φ(2n)(e) :φ ∈ S 
,K

G,�

}
.

In words, �

,K
G,� provides the best lower bound valid for all convolution powers

of probability measures with density in S 
,K
G,� .

Let φ0 = λ(
)−11
. Then φ
(2)
0 ∈ S 
,K

G,� so that �

,K
G,� takes finite values.

Clearly, n �→ �

,K
G,� (n) is nonincreasing because n �→ φ(2n)(e) is nonincreasing

when φ is symmetric. By definition, �

,K
G,a� = �


,K
G,� for any a > 0. A priory, it

is possible that �

,K
G,� ≡ 0, but in many cases, this possibility can be ruled out so

that �

,K
G,� is actually meaningful and contains information. As indicated below,

the choice of 
 and K in this definition is mostly irrelevant.
The following proposition contains basic (but not entirely obvious) properties of

�

,K
G,� that indicate that Definition 1.1 is quite reasonable. Because of this propo-

sition, we will often omit the reference to 
 and K in �

,K
G,� and write

�

,K
G,� = �G,�.

PROPOSITION 1.2. Let G be a locally compact unimodular group. Let
� :G → [0,+∞] be a measurable function and fix a compact symmetric neigh-
borhood 
 of e in G such that λ(
) ≥ 1 and sup
2{�} > 0. Fix K > 1.

• If there exists a constant C such that, for all x, y ∈ G, �(xy) ≤ C(�(x) + �(y))

then, for each integer n, �

,K
G,� (n) > 0.

• For any symmetric continuous probability density φ with finite �-moment, that
is, such that

∫
�φ dλ < ∞, there are a positive constant c = c(φ) and an integer

k = k(φ) such that, ∀n, φ(2n)(e) ≥ c�

,K
G,� (kn).

• For i = 1,2, fix constants Ki > 1 and compact symmetric neighborhoods 
i of
e in G with λ(
i) ≥ 1. Let �i , i = 1,2, be nonnegative measurable functions on
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G such that a�1 ≤ �2 ≤ A�1 for some a,A ∈ (0,∞) and sup
2
i
{�i} ∈ (0,∞).

Then, we have

�

1,K1
G,�1

	 �

2,K2
G,�2

.

For general �, we do not expect to be able to give a precise bound on �G,�,
even in the case of Abelian groups such as Z

d .
A more reasonable question is to try to understand �G,� when � = ρG and ρ

belongs to a specific family of examples such as the families ρα,ρ
exp
c,α , or ρ

log
α men-

tioned above. Indeed, in such cases, the function �G,ρG
(or, perhaps, its equiva-

lence class under the equivalence relation 	) can be thought of as a group invariant
describing the fastest possible decay of the probability of return of a random walk
driven by a symmetric measure with finite ρG-moment. In this restricted context,
one may hope to estimate �G,ρG

in terms of the function �G in (1.1) and the func-
tion ρ. Further, it is an interesting natural question to ask whether or not all/some
of the invariants �G,ρG

are actually already determined by �G. This appears to be
a rather subtle question.

Another interesting question raised by Definition 1.1 is the question of describ-
ing classes of measures that are in S 
,K

G,� and approach the extremal behavior de-
scribed by �G,ρG

. What is the typical “shape” of an almost optimal density? For
instance, should we expect these densities to include densities that are roughly
“radial” in terms of the given word-length | · |? Can we obtain almost extremal
densities as convex combinations of the convolution powers of the uniform prob-
ability on a compact symmetric generating neighborhood of the identity element
in G?

Let us observe that determining the exact behavior of �G,ρG
is a delicate task,

even for G = Z and ρ(x) = (1+|x|)α , α ∈ (0,2). Hence, it is useful and natural to
introduce simplified invariants by comparing �G,� to certain scales of functions.
The following definition introduces a sample of such simplified invariants.

DEFINITION 1.3. For G and � as in Definition 1.1, define:

(1) The power decay invariant,

power(G,�) = inf
{
γ ∈ (0,∞) : sup

n
{nγ �G,�(n)} = ∞

}
.

(2) The exponential-polylog decay invariant,

exp-plg(G,�) = inf
{
γ ∈ (0,∞) : inf

n

{(
log(e + n)

)−γ log
(
1/�G,�(n)

)}= 0
}
.

Computing this quantity is of interest when power(G,�) = ∞.
(3) The exponential-power decay invariant,

exp-pow(G,�) = inf
{
γ ∈ (0,1] : inf

n

{
n−γ log

(
1/�G,�(n)

)}= 0
}
.

Again, computing this quantity is of interest when exp-plg(G,�) = ∞.
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1.3. A sample of illustrative results. Throughout this subsection we assume
that G is compactly generated and that �G is the function given by (1.1) (up to
the equivalence relation 	). With the notation introduced above, we can state a
number of theorems that illustrate the type of results we obtain in this work. Recall
the following notation:

• ρα(t) = (1 + t)α , α ∈ (0,2).
• ρ

exp
c,α (t) = exp(c[log(1 + t)]α), α ∈ (0,1) and c > 0;

• ρ
log
α (t) = [log(e + t)]α , α ∈ (0,∞).

THEOREM 1.4. If G has polynomial volume growth of degree D, that is,
V (n) 	 nD , then

∀α ∈ (0,2) power(G,ρα) = D/α

and

∀α ∈ (0,1) exp-plg(G,ρexp
c,α ) = 1/α.

As we shall see, we run into difficulties when estimating exp-pow(G,ρ
log
α ). As-

suming G has polynomial volume growth, we are only able to obtain the estimates

1

α + 1
≤ exp-pow(G,ρlog

α ) ≤ 1

α
, α > 1.

This indicates that our techniques need to be improved in order to treat low mo-
ment conditions. Indeed, on Z (and other Abelian groups), simple Fourier analysis
techniques yield

exp-pow(Z, ρlog
α ) = 1

α + 1
, α > 0;

see [3].

THEOREM 1.5. Assume that the group G has the property that

∀n �G(n) ≥ exp(−cnγ )

for some c ∈ (0,∞) and γ ∈ (0,1). Then, for any α ∈ (0,2), there exists c1 ∈
(0,∞) such that

∀n �G,ρα (n) ≥ exp(−c1n
γα) where γα = γ

γ + (α/2)(1 − γ )
.

So, for instance, for any finitely generated polycyclic group with exponential
volume growth, we have γ = 1/3, and thus the probability of return of a random
walk driven by a symmetric measure μ with finite first moment [i.e., μ(| · |) < ∞]
is bounded below by

μ(2n)(e) ≥ exp(−c1n
1/2).
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As indicated by the following results, the lower bound stated in Theorem 1.5 is
essentially sharp in a number of cases.

THEOREM 1.6. Assume that the group G has exponential volume growth and
satisfies ∀n,�G(n) ≥ exp(−cn1/3). Then, for each α ∈ (0,2),

exp-pow(G,ρα) = 1

1 + α

and exp-pow(G,ρ
exp
c,β ) = exp-pow(G,ρ

log
α ) = 1, β ∈ (0,1), c > 0, α > 2.

Note that the statement that exp-pow(G,ρ
exp
c,β ) = exp-pow(G,ρ

log
α ) = 1 for the

groups considered in Theorem 1.6 is crude. More detailed results are described
in the core of the paper. For instance, exp-pow(G,ρ

exp
c,β ) = 1 can be refined to the

much more informative statement that, for any fixed c > 0 and β ∈ (0,1), there
exist c1, c2 ∈ (0,∞) such that

−n exp(−c1(logn)β) ≤ log�G,ρ
exp
c,β

(n) ≤ −n exp(−c2(logn)β)

for all n large enough.
The case of the lamplighter groups (Z/2Z) 
 Z

d , the simplest wreath products,
is particularly interesting.

THEOREM 1.7. For Gd = (Z/2Z) 
 Z
d , d = 1,2, . . . , and for α ∈ (0,2),

exp-pow(Gd,ρα) = d

d + α
.

PROOF. The upper bound follows from Theorem 1.5. The lower bound re-
quires an ad hoc argument explained in Section 5. �

For the next result, recall that a group G is meta-Abelian if it contains a normal
Abelian subgroup A such that G/A is Abelian. From the view point of group
theory, meta-Abelian groups are only “one step” removed from being Abelian.

THEOREM 1.8. Let G be a finitely generated meta-Abelian group. Then either
G has polynomial volume growth and there is an integer D such that

∀α ∈ (0,2) power(G,ρα) = D/α

or there exists an integer d such that

∀α ∈ (0,2)
1

1 + α
≤ exp-pow(G,ρα) ≤ d

d + α
.
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PROOF. Being solvable, finitely generated meta-Abelian groups either have
polynomial volume growth or exponential volume growth; see [18, 32]. In the
polynomial volume growth case, apply Theorem 1.4. For any group with exponen-
tial volume growth, Theorem 4.10 gives the lower bound exp-pow(G,ρα) ≥ 1

1+α
.

By [21], any meta-Abelian group has �G(n) ≥ exp(−Cnd/d+2) for some integer
d ≥ 1. Thus the upper bound exp-pow(G,ρα) ≤ d

d+α
follows from Theorem 1.5.

�

1.4. Methodology. We close this introduction by describing in broad terms
the techniques we will use to prove the results described above. For the purpose
of this discussion, we focus on the problem of estimating the rate of decay of con-
volution powers of symmetric measures having a continuous density and a finite
ρα-moment, α ∈ (0,2) [ρα(x) = (1 + |x|)α]. We start with a quick review of clas-
sical results in the context of the lattice Z

d . In this context, the literature focuses
on local limit theorems, that is, results that describe the precise asymptotic behav-
ior of φ(2n)(x). For instance, if φ is a symmetric probability density which has
generating support and finite second moment, φ(2n)(0) ∼ c(d,μ)n−d/2 (e.g., [28],
P9, Section 7). For α ∈ (0,2), the simple condition of having a finite ρα-moment
is not sufficient for the validity of a local limit theorem, even on Z.

For a symmetric probability density φ on Z, set G(k) =∑|i|≥k φ(k), H(k) =
k−2∑|i|≤k i2φ(i). Then φ is in the domain of attraction of a symmetric stable law
of index α if lim∞ H/G = α/(2 − α). In such a case, a local limit theorem holds
stating that φ(2n)(e) ∼ c(α,μ)an with an defined by Q(an) = 1/n, Q = G + H ;
see, for example, [11, 12, 14, 15]. All classical discussions of such results make
heavy use of Fourier transform techniques. It is easy to use these techniques to see
that if a symmetric probability density φ with generating support on Z

d has finite
ρα-moment for some α ∈ (0,2), then we must have φ(2n)(0) ≥ c(d,μ)n−d/α and

�Zd ,ρα
(n) ≥ c(d,α)n−d/α.

As laws that are in the domain of attraction of a symmetric stable law of index
β > α have finite ρα-moment, we also get that

∀β > α �Zd ,ρα
(n) ≤ cβn−d/β.

Hence power(Zd, ρα) = d/α. Note that determining the exact behavior of n �→
�Z,ρα

(n) appears to be a somewhat subtle problem and will not be discussed here.
Both the Fourier transform and explicit examples such as symmetric stable laws

are not available on most noncommutative groups so that the arguments outlined
above must be replaced by different ideas. Our approach is as follows:

(1) Our lower bounds on �G,ρα are obtained and expressed via the function
�G given by (1.1). This function �G describes the decay of convolution powers
of symmetric, nondegenerate densities with finite second moment on the group G.
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To transfer the information contained in this function �G and make it relevant to
the study of the convolution powers of measures with finite ρα-moment, we will
use a sort of interpolation argument, the comparison of Dirichlet forms and the
notion of von Neumann trace. Each one of these ingredients plays a crucial role in
obtaining our lower bounds.

Section 2 contains the proof of Proposition 1.2 as well as an interesting and im-
portant variation on Definition 1.1. It also develops the key interpolation argument
which leads to the comparison of important quadratic forms including the Dirichlet
forms of the probability measures we want to study.

The role of the notion of von Neumann trace is explained in the Appendix where
related needed material is described. The results developed in the Appendix are the
tools that allow us to turn the comparison of quadratic forms obtained in Section 2
into lower bound for �G,ρα .

(2) To obtain upper bounds on �G,ρα , it suffices to exhibit some probability
densities satisfying the desired moment condition and whose convolution powers
can be estimated. On a general noncommutative group, this is not necessarily an
easy task. One possible technique—discrete subordination—uses Bernstein func-
tions to produce probability densities on G that include laws that can be thought of
as analogs of symmetric stable laws. The decay of the convolution powers of these
laws can be precisely expressed and controlled in terms of the group invariant �G

at (1.1), and this technique is quite interesting in its own right. This idea, which
the authors developed for the purpose of the present paper, is presented in detail
in [4]. We will use some of the results of [4]. However, the moment properties
of these subordinated laws are directly related to the rate of escape of the basic
simple random walk on the underlying group. In particular, for groups with a rate
of escape that is faster than the classical

√
n, the moment conditions satisfied by

these subordinated laws are not what one would expect from a simplistic analogy
with the classical case of Z. For instance, on a finitely generated group with linear
rate of escape, the “symmetric stable law” of exponent β ∈ (0,2) [by definition,
the law obtained via discrete (β/2)-subordination from the law of simple random
walk] will only have a finite ρα-moment for β > 2α (instead of β > α in the clas-
sical case). What this means is that, in general, upper bounds obtained by using
[4] will not match closely the lower bounds discussed in (1) above. They will only
do so if there exists a simple random walk on G that has a rate of escape of type√

n as in the classical case of Z. This is a subtle requirement since it is not known
whether or not all random walks associated with finite symmetric generating sets
on a given finitely generated group have the same rate of escape.

(3) There is a more elementary way to produce probability distributions with
finite ρα-moment and whose convolution powers can be estimated. This technique
goes back to [24, 29]. It is revisited in Section 4.2. It works well for groups where
the invariant �G behaves precisely as predicted by the available upper bounds
based on volume growth (e.g., polycyclic groups). It does not work well for wreath
products such as (Z/2Z) 
 Z

d , d ≥ 2. For such groups neither of the techniques in
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(2) or (3) produce upper bounds on �G,ρα matching the lower bounds obtained
via (1). Nevertheless, Section 5 shows that the lower bounds obtained via (1) are
essentially tight even in the case of these wreath products. This requires an ad hoc
argument that takes advantage of the precise structure of these groups.

2. Comparisons of Dirichlet forms. This section develops the key technique
that we use to obtain lower bounds on the functions �G,� introduced in Defini-
tion 1.1, namely, comparison of Dirichlet forms. The first subsection contains sim-
ple results that show that the object introduced in Definition 1.1, �G,�, has some
nice stability properties. The second subsection develops a somewhat sophisticated
comparison between certain quadratic forms. It plays a central role in our results.

It is useful to introduce the following somewhat subtle modification of Defini-
tion 1.1 in which a “weak moment condition,” W(�,μ) < ∞, replaces the “strong
moment condition” μ(�) < ∞. For any probability measure μ and � :G →
[0,∞), W(�,μ) is defined by

W(�,μ) = sup
s>0

{sμ(� > s)}.

DEFINITION 2.1. Let G be a locally compact unimodular group. Fix a mea-
surable function � :G → [0,+∞]. Fix a compact symmetric neighborhood 
 of
e in G such that λ(
) ≥ 1 and sup
2{�} > 0. For K > 1, let S̃ 
,K

G,� be the set
of all symmetric continuous probability densities φ on G with the properties that
‖φ‖∞ ≤ K and W(�,φ dλ) ≤ K sup
2{�}. Set

�̃

,K
G,� :n �→ �̃


,K
G,� (n) := inf

{
φ(2n)(e) :φ ∈ S̃ 
,K

G,�

}
.

Obviously,

�

,K
G,� ≥ �̃


,K
G,� .(2.1)

In the classical case of R
d or Z

d with � = ρα(| · |) = (1 + | · |)α , as long as α ∈
(0,2), we have

�̃

,K

Zd ,ρα
(n) 	 n−d/α,

whereas it is not easy to estimate �

,K

Zd ,ρα
(n) precisely (see the comments made in

the Introduction). Interestingly enough, for α = 2, we have (see [14])

�

,K

Zd ,ρ2
(n) 	 n−d/2, �̃


,K

Zd ,ρ2
(n) 	 (n logn)−d/2.

2.1. Some basic stability results for �G,�. By definition, a continuous sym-
metric probability density φ such that

‖φ‖∞ ≤ K and
∫

�φ dλ ≤ K sup

2

{�}
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must satisfy

φ(2n)(e) ≥ �

,K
G,� (n).

It is natural to ask what can be said of a symmetric probability density φ ∈ L2(G)

such that
∫

�φ dλ < ∞. This section gives a reassuring answer to this question and
proves the results stated in Proposition 1.2. We need the following elementary fact.

PROPOSITION 2.2. Let G be a locally compact unimodular group. Assume
that � :G → [0,∞] is a measurable function with the property that there exists
C ∈ [1,∞) such that

∀x, y ∈ G �(xy) ≤ C
(
�(x) + �(y)

)
.

If μ is a probability measure satisfying μ(�) < ∞, then

μ(n)(�) ≤ nCn−1μ(�), n = 1,2, . . . .

Further, we have

W
(
�,μ(n))≤ n(2C)n−1W(�,μ).

PROOF. By definition of the convolution product, for any two measures μ,ν,

μ ∗ ν(�) =
∫
G×G

�(xy)dμ(x) dν(y).

If μ,ν are probability measures, since �(xy) ≤ C(�(x) + �(y)), we obtain

μ ∗ ν(�) ≤ C
(
μ(�) + ν(�)

)
.

The inequality μ(n)(�) ≤ nCn−1μ(�) follows by induction. To obtain the inequal-
ity regarding W(�,μ(n)) observe that

{(x, y) :�(x, y) > s} ⊂ {(x, y) :�(x) > s/(2C)} ∪ {(x, y) :ρ(y) > s/(2C)}.
Hence, for any two probability measures μ,ν, we have

μ ∗ ν({� > s}) =
∫
{(x,y) : �(xy)>s}

dμ(x) dν(y)

≤ μ({� > s/2C}) + ν
({� > s/(2C)}).

This yields W(�,μ ∗ ν) ≤ 2C(W(�,μ) + W(�, ν)) and the desired result follows
by induction. �

COROLLARY 2.3. Let �,
,K be as in Definition 1.1. Assume that � tends to
infinity at infinity and satisfies

∀x, y ∈ G �(xy) ≤ C
(
�(x) + �(y)

)
.

Then �

,K
G,� (n) > 0 and �̃


,K
G,� (n) > 0, for all 
,K,n.
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PROOF. We prove the result for �

,K
G,� (the case of �̃


,K
G,� is similar). Let

�0 = sup
2{�}. Let φ be a symmetric continuous probability density in S 
,K
G,� , that

is, such that ‖φ‖∞ ≤ K and
∫

φ� dλ ≤ K�0. Then
∫

φ(2n)� dλ ≤ 2KnC2n−1�0.
Further, for any N ,∫

�>N
φ(2n) dλ ≤ N−1

∫
φ(2n)� dλ ≤ 2KnC2n−1�0

N
.

Since φ(2n) attains its maximum at e, we obtain that

φ(2n)(e) ≥ 1

λ(� ≤ N)

∫
�≤N

φ(2n) dλ ≥ 1 − 2KnC2n−1�0/N

λ(� ≤ N)
.

As � tends to infinity at infinity, λ(� ≤ N) is finite for any finite N . Hence, for
N = 4KnC2n−1�0, we obtain a uniform positive lower bound on φ(2n)(e) for all
φ ∈ S 
,K

G,� . �

PROPOSITION 2.4. Let G be a locally compact unimodular group. Let
�,
,K be as in Definition 1.1. Let φ be a symmetric continuous probability den-
sity.

• Assume that
∫

�φ dλ < ∞. Then there exist c1 = c1(φ) > 0, c2 = c2(φ) ∈ N

such that

∀n = 1,2, . . . φ(2n)(e) ≥ c1�

,K
G,� (c2n).

• Assume that W(�,φ dλ) < ∞. Then there exist c1 = c1(φ) > 0, c2 = c2(φ) ∈ N

such that

∀n = 1,2, . . . φ(2n)(e) ≥ c1�̃

,K
G,� (c2n).

PROOF. The proofs of the two statements are similar and we only give the
proof under the condition

∫
�φ dλ < ∞. Let φ0 = λ(
)−11
. Obviously, since

λ(
) ≥ 1, we have ‖φ(2)
0 ‖∞ ≤ 1 and

∫
�φ

(2)
0 dλ ≤ sup
2{�}. By hypothesis,

M = max
{
‖φ‖∞,

(
sup

2

{�}
)−1
∫

�φ dλ

}
< +∞.

If M ≤ K , the result is clear. If not then M > K > 1. In this case, set α = (K −
1)/(M−1) ∈ (0,1), and observe that the symmetric continuous probability density
φ1 = αφ + (1 − α)φ

(2)
0 satisfies ‖φ1‖∞ ≤ K and

∫
�φ1 dλ ≤ K sup
2{�}. Thus,

∀n φ
(2n)
1 (e) ≥ �


,K
G,� (n).

Further, by construction, the Dirichlet forms E = Eφ dλ and E1 = Eφ1 dλ [see (2.5)]
satisfy E ≤ (1/α)E1. In terms of the convolution operator Rφ (convolution on the
right by φ) acting on L2(G), this is equivalent to say that

I − Rφ ≤ (1/α)(I − Rφ1).



LOW MOMENT RANDOM WALKS 2551

By Corollary A.10, this implies that φ(2n)(e) ≥ c1φ
(2c2n)
1 (e), for some c1 > 0 and

c2 ∈ N. �

REMARK 2.5. If, for all x, y ∈ G, �(xy) ≤ C(�(x) + �(y)), then any sym-
metric probability density φ ∈ L2(G) (not necessarily continuous) with finite �-
moment satisfy

φ(2n)(e) ≥ c1�

,K
G,� (c2n)

for some c1 = c1(φ) > 0 and c2 = c2(φ) ∈ N. Indeed, it suffices to apply the pre-
vious result to φ ∗ φ which is continuous and also has finite �-moment.

PROPOSITION 2.6. Let G be a locally compact unimodular group. For i = 1,
2, fix constants Ki > 1 and compact neighborhoods 
i of e in G with λ(
i) ≥ 1.
Let �i :G → [0,∞), i = 1,2, be measurable functions such that a�1 ≤ �2 ≤ A�1

for some a,A ∈ (0,∞) and sup
2
i
{�i} ∈ (0,∞). Then, we have

�

1,K1
G,�1

	 �

2,K2
G,�2

, �̃

1,K1
G,�1

	 �̃

2,K2
G,�2

.

PROOF. We treat the case of the function �. The case of �̃ is similar. Set Mi =
sup
2

i
{�i} ∈ (0,∞). Let φ1 ∈ S 
1,K1

G,�1
. Let φ0 = λ(
2)

−11
2 and set φ2 = αφ1 +
(1 − α)φ

(2)
0 , for some α ∈ (0,1] to be chosen later. This continuous symmetric

probability density satisfies

‖φ2‖∞ ≤ αK1 + (1 − α) and
∫

φ2�2 dλ ≤ αAK1M1 + (1 − α)M2.

It follows that, for α close enough to 1, we have φ2 ∈ S 
2,K2
G,�2

. Indeed, picking
α = min{1, (K2 − 1)/(K1 − 1), (K2 − 1)M2/AK1|M2 − M1|} will work.

As in the previous proof, setting Ei = Eφi dλ [see (2.5)], we find that E1 ≤
(1/α)E2. By Corollary A.10, this implies that there exists c > 0 and an integer
k such that

φ
(2n)
1 (e) ≥ cφ

(2kn)
2 (e).

Further c and k depend only K1,K2,M1,M2 and A. Hence

∀n �

1,K1
G,�1

(n) ≥ c�

2,K2
G,�2

(kn)

as desired. Using the symmetry of the hypotheses, the reverse inequality holds as
well. �
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2.2. An abstract interpolation/comparison result. The results developed in
this key section make use of a given nonnegative self-adjoint operator (A,DA)

on L2(G) with associated semigroup Ht = e−tA, t ≥ 0, which is assumed to be,
in some sense, well understood. In applications, Ht will actually be a symmetric
Markov semigroup, and ‖A1/2f ‖2

2 will be a Dirichlet form. We assume that A (and
thus also Ht ) commutes with left translations in G. Namely, for f ∈ L2(G) and
h ∈ G, set τhf = f (h·) ∈ L2(G). We assume that A has the property that f ∈ DA

implies τhf ∈ DA and A(τhf ) = τh(Af ) for any h ∈ G.
As mentioned above, we think of the semigroup Ht as a basic object which

is well understood. The key idea is that we then also understand quite well the
semigroups generated by certain functions ψ(A) of A. The class of functions ψ

of interest to us here is the class of those functions that admit the Laplace-type
representation

ψ(λ) = λ2
∫ ∞

0
e−λsω(s) ds with ω ≥ 0.(2.2)

The simplest example of such function is ψ :λ �→ λα , α ∈ (0,1), which is ob-
tained by picking ω(s) = cαs1−α , cα = 1/�(2−α). By spectral theory the L2(G)-
domain of ψ(A)1/2 is the set of functions f ∈ L2(G) such that

‖ψ(A)1/2f ‖2
2 =
∫ ∞

0
‖AHs/2f ‖2

2ω(s) ds < ∞.(2.3)

It is easy to see that ‖ψ(A)1/2f ‖2
2 < ∞ whenever f ∈ DA and ω(s) ≤ C(1 + s)

(in fact, f ∈ DA1/2 suffices). It follows that ψ(A)1/2 is densely defined and self-
adjoint whenever ω(s) ≤ C(1 + s).

Next, we introduce a key assumption about (A,DA). This assumption is ex-
pressed in term of a given positive (measurable) function δ :G �→ [0,∞). It cap-
tures a fundamental relation between the L2-variation of f and ‖A1/2f ‖2. Namely,
setting

fh(x) = f (xh), f ∈ L2(G), x,h ∈ G,

we assume that there exists a constant C0 ∈ [1,∞) such that

∀f ∈ DA,∀h ∈ G

(∫
G

|fh − f |2 dλ

)1/2

≤ C0δ(h)‖A1/2f ‖2.(2.4)

Finally, for any probability measure μ on G, we set

∀f ∈ L2(G) Eμ(f,f ) = 1

2

∫
G

∫
G

|f (xy) − f (x)|2 dλ(x) dμ(y).(2.5)

When μ is symmetric, Eμ is the Dirichlet form associated with μ and Eμ(f,f ) =
〈f − f ∗ μ,f 〉.
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THEOREM 2.7. Referring to the setting and notation introduced above, con-
sider a pair of nonnegative increasing functions ω, ψ related by (2.2). Assume that
s �→ ω(s)/s is decreasing, and set

ξ(t) =
∫ t

0

(
s

ω(s)

)1/2 ds

s
, ζ(t) = t1/2

∫ ∞
t

ds

sω(s)1/2 .(2.6)

Let ρ : [0,∞) → [1,∞) be an increasing function such that, for all t ≥ 0,

t max{ξ(t2), ζ(t2)}
ω(t2)1/2 ≤ C2

1ρ(t).(2.7)

Then, if A satisfies (2.4) and μ is such that μ(ρ ◦ δ) < ∞, we have

Eμ(f,f ) ≤ 8C2
0C1μ(ρ ◦ δ)‖ψ(A)1/2f ‖2

2, f ∈ DA.

REMARK 2.8. When μ is symmetric, Eμ is a Dirichlet form. In general,
f �→ ‖ψ(A)1/2f ‖2

2 is not a Dirichlet form. If we assume that −A is the infinites-
imal generator of a symmetric Markov semigroup, then f �→ ‖ψ(A)1/2f ‖2

2 is a
Dirichlet form if we assume that ψ is a Bernstein function; see [4, 17]. This will
not play an important role in this paper but [4], Theorem 2.5, shows that it is often
possible to choose ψ to be a Bernstein function.

REMARK 2.9. The functions ξ, ζ are always greater or equal to (t/ω(t))1/2.
The typical functions ω of interest to us are such that ω(s) ≥ ηs1−ε in (0,1) with
ε ∈ (0,1) and ω(s) 	 s/β(s) at infinity with β an increasing regularly varying
function of index in [0,1). If β has index in (0,1), then

ξ(t) 	 ζ(t) 	
(

t

ω(t)

)1/2

at infinity

and (2.7) can be replaced by

t2

ω(t2)
≤ C2

1ρ(t).

If, instead, β is slowly varying then it is still the case that ζ(t) 	 (t/ω(t))1/2 at
infinity but, for t large enough,(

t/ω(t)
)1/2 � ξ(t) ≤ C log(e + t)

(
t/ω(t)

)1/2
.

In this case, max{ζ(t2), ξ(t2)} = ξ(t2) for t large enough.
If β has index 1 and is of the form β(t) = t/�(t) with �(t) slowly varying at

infinity then ω(t) 	 �(t), ξ(t) 	 (t/ω(t))1/2 but (t/ω(t))1/2 � ζ(t) and, in fact,
ζ(t) might be infinite unless further assumptions are made on �.
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PROOF OF THEOREM 2.7. Let f ∈ DA and write

g(h) = ‖fh − f ‖2,

fh − f = ([Htf ]h − Htf ) + ([f − Htf ]h) − (f − Htf ).

Since f − Htf = ∫ t
0 AHsf ds, we have

‖([f − Htf ]h) − (f − Htf )‖2 ≤ 2
∫ t

0
‖AHsf ‖2 ds.(2.8)

Using (2.4), we also have

‖[Htf ]h − Htf ‖2 ≤ C0δ(h)‖A1/2Htf ‖2.(2.9)

Further,

‖A1/2Htf ‖2 =
∥∥∥∥∫ ∞

t
A1/2AHsf ds

∥∥∥∥
2
≤
∫ ∞
t

(es)−1/2‖AHs/2f ‖2 ds.(2.10)

Here we have used the inequalities

‖A1/2Hsf ‖2 ≤ ‖A1/2Hs/2‖2→2‖Hs/2f ‖2

and (by spectral theory)

‖A1/2Hs‖2→2 ≤ max
a>0

{a1/2e−sa} = (2es)−1/2.

Putting together inequalities (2.8), (2.9) and (2.10) yields

g(h) ≤ 2
∫ t

0
‖AHsf ‖2 ds + C0δ(h)

∫ ∞
t

(es)−1/2‖AHs/2f ‖2 ds.

Pick t = τ(h) = max{1, δ(h)2}, set θ = max{ξ, ζ } and write

g(h)

θ ◦ τ(h)
≤ 2C0

∫ ∞
0

K(h, s)([sω(s)]1/2‖AHs/2f ‖2)
ds

s
,

where K is the kernel on G × (0,∞) given by

K(h, s) = s1/2

θ ◦ τ(h)ω(s)1/2

(
1(0,τ (h))(s) + δ(h)s−1/21[τ(h),∞)(s)

)
.

Consider this kernel as defining an integral operator

K :L2
(
(0,∞),

ds

s

)
→ L2(G, [θ ◦ τ ]2 dμ), u �→ Ku,

Ku(h) =
∫ ∞

0
K(h, s)u(s)

ds

s
.
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Assuming that this operator is bounded with norm N∗, we obtain

Eμ(f,f ) =
∫
G

|g|2 dμ

≤ 4C2
0N2∗
∫ ∞

0
‖AHs/2f ‖2

2ω(s) ds(2.11)

= 4C2
0N2∗‖ψ(A)1/2f ‖2

2.

A standard interpolation argument gives

N2∗ ≤
(

sup
h∈G

∫ ∞
0

K(h, s)
ds

s

)(
sup
s>0

∫
G

K(·, s)[θ ◦ δ]2 dμ

)
and we have∫ ∞

0
K(h, s)

ds

s
= 1

θ(τ (h))

∫ τ(h)

0

ds

[sω(s)]1/2 + δ(h)

θ(τ (h))

∫ ∞
τ(h)

ds

sω(s)1/2 ,

∫
G

K(·, s)[θ ◦ τ ]2 dμ = s1/2

ω(s)1/2

∫
{τ>s}

[θ ◦ τ ]dμ + 1

ω(s)1/2

∫
{τ≤s}

δ[θ ◦ τ ]dμ.

By the definitions of ξ, ζ and θ ,

sup
h∈G

{∫ ∞
0

K(h, s)
ds

s

}
≤ 2.

Further, since we assume that s �→ ω(s) is increasing and s �→ ω(s)/s decreasing,
(2.7) yields

sup
s>0

{∫
G

K(·, s)[θ ◦ τ ]2 dμ

}
≤ C1

∫
ρ ◦ δ dμ.

This gives the desired result. �

This proof admits the following result as a corollary.

THEOREM 2.10. Referring to the setting and notation introduced above, con-
sider a pair of smooth nonnegative increasing functions ω, ψ related by (2.2). Fix
α ∈ (0,1) and assume that ω is smoothly regularly varying of index 1−α at infinity
and bounded below by ω(t) ≥ ηt1−ε at 0 for some η > 0 and ε ∈ (0,1). Set

ρ(t) = (1 + t2/ω(t2)
)
.(2.12)

Assume that A satisfies (2.4) and that μ satisfies

W(ρ,μ) = sup
s>0

{
sμ({ρ ◦ δ > s})}< ∞.(2.13)

Then we have

Eμ(f,f ) ≤ C2
0C(ω)W(ρ,μ)‖ψ(A)1/2f ‖2

2, f ∈ DA.
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PROOF. We follow the proof of Theorem 2.7. Taking into account that θ(t) 	
cα(t/ω(t))1/2 and that we have set ρ(t) = 1 + t2/ω(t2), the proof of Theorem 2.7
shows that we need to estimate∫

G
K(·, s2)[ρ ◦ δ]2 dμ = ρ(s)1/2

∫
{δ>s}

[ρ ◦ δ]1/2 dμ

+ 1

ω(s2)1/2

∫
{δ≤s}

δ[ρ ◦ δ]1/2 dμ,

uniformly over the range s > 1. Setting v(s) = μ(δ > s), we have

ρ(t)v(t) ≤ W(ρ,μ)

and

ρ(s)1/2
∫
{δ>s}

[ρ ◦ δ]1/2 dμ = ρ(s)1/2
∫ ∞
s

ρ1/2(t) d[−v(t)]

≤ ρ(s)1/2

2

∫ ∞
s

ρ′(t)ρ(t)−1/2v(t) dt + ρ(s)v(s)

≤ W(ρ,μ)

(
1 + ρ(s)1/2

2

∫ ∞
s

ρ′(t)ρ(t)−3/2 dt

)
≤ 2W(ρ,μ).

Further, using the fact that ω is regularly varying with positive index 1 − α, we
have tρ ′(t) ∼ 2αρ(t) and

1

ω(s2)1/2

∫
{τ≤s}

δ[ρ ◦ δ]1/2 dμ ≤ 1

ω(s2)1/2

∫ s

0
tρ(t)1/2d[−v(t)]

≤ 1

ω(s2)1/2

∫ s

0

(
ρ(t)1/2 + tρ′(t)ρ(t)−1/2)v(t) dt

≤ C(ω)W(ρ,μ)

ω(s2)1/2

∫ s

0
ρ(t)−1/2 dt

≤ C(ω)W(ρ,μ)

ω(s2)1/2

∫ s

0

ω(t2)1/2 dt

t

≤ C′(ω)W(ρ,μ).

This gives the desired result. �

REMARK 2.11. The case when ω is a slowly varying increasing function cor-
responds to moment conditions that are close to a finite second moment. In this
case, the use of Theorem 2.7 is limited by the fact that it involves the possibly
infinite quantity

ζ(t) = t1/2
∫ ∞
t

ds

sω(s)1/2 .
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We can improve the result by using a slightly different proof. Namely, using the
same notation as in the proof of Theorem 2.7, we write

g(h) ≤ 2C0

∫ ∞
0

K(h, s)([sω(s)]1/2‖AHs/2f ‖2)
ds

s
,

where K is the kernel on G × (0,∞) given by

K(h, s) = s1/2

ω(s)1/2

(
1(0,τ (h))(s) + δ(h)s−1/21[τ(h),∞)(s)

)
.

Next, we use the Hilbert–Schmidt norm
∫
G

∫∞
0 |K(h, s)|2 ds

s
dμ(h) to estimate the

norm of K :L2((0,∞), ds
s

) → L2(G,dμ). We have∫
G

∫ ∞
0

|K(h, s)|2 ds

s
dμ(h) =

∫
G

(∫ τ(h)

0

ds

ω(s)
+ δ(h)2

∫ ∞
τ(h)

ds

sω(s)

)
dμ(h)

≤
∫
G

(̃
ξ2(τ (h)) + ζ̃ 2(τ (h))

)
dμ(h),

where

ξ̃ (t) =
(∫ t

0

ds

ω(s)

)1/2

and ζ̃ (t) =
(
t

∫ ∞
t

ds

sω(s)

)1/2

.

This implies that the conclusion of Theorem 2.7 holds under the hypothesis that
ρ(t) ≥ ζ̃ 2(t2) + ζ̃ 2(t2).

For instance, consider the case when ω(t) = [log(e + t)]α , α > 0. In this case,
ψ(t) ∼ t[log(e + 1/t)]α . On the one hand, we have ζ(t) = ∞ if α ≤ 2 and ζ(t) 	
t1/2[log(e + t)]1−α/2 if α > 2. This means that Theorem 2.7 requires α > 2 and
ρ(t) ≥ C(1 + t)2[log(e + t)]1−α .

On the other hand, we have ζ̃ (t) 	 t1/2[log(e + t)](1−α)/2 if α > 1. This means
that the variation explained above requires only α > 1, with the same ρ, that is,
ρ(t) ≥ C(1 + t)2[log(e + t)]1−α .

2.3. Two fundamental examples.

First example. Let G be a unimodular Lie group, and let (A,DA) be the
(unique) self-adjoint extension of a Hörmander sum of squares

A =
k∑
1

X2
i acting on C∞

c (G),

where {Xi, i = 1, . . . , k} is a fixed set of left-invariant vector fields which generates
the Lie algebra of G (Hörmander condition). Then, it is known that Htf = f ∗ μt

where (μt )t>0 is a convolution semigroup of probability measures, and each μt
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admits a smooth positive density x �→ ht (x) with respect to the Haar measure λ;
see, for example, [31], Chapter 3. Further, as t tends to infinity, we have

ht (e) 	 �G(t)

	
⎧⎪⎨⎪⎩

e−t , if G is not amenable,

e−t1/3
, if G is amenable with exponential volume growth,

t−D/2, for some integer D, otherwise.

For each integer D, the last case occurs exactly when G has polynomial volume
growth of degree D. The value ht (e) is the maximal value of the function ht on G,
and, furthermore, it equals the norm of the linear operator Ht :L1(G) → L∞(G)

as well as the square of the norm of Ht/2 :L2(G) → L∞(G). In this case, we set

δ(x) = sup

{
f (x) − f (e) :f ∈ C∞

c (G),

k∑
1

|Xif |2 ≤ 1

}
.

This distance is the sub-Riemannian distance naturally associated with the set of
left-invariant vector fields {X1, . . . ,Xk}, and δ(x) is finite for all x ∈ G because we
assume that the Xi’s generate the Lie algebra (this is a special case of one of the
fundamental theorem of sub-Riemannian geometry, often referred to as Chow’s
theorem); see [19] for a detailed discussion. Further, it is a simple matter ([31],
Lemma VII.1.1) to see that EA(f,f ) = ∫ ∑k

1 |Xif |2 dλ and∫
|fh − f |2 dλ ≤ δ(h)2

∫ k∑
1

|Xif |2 dλ, f ∈ C∞
c (G),h ∈ G.

This shows that (2.4) holds true in this case since
∫ ∑k

1 |Xif |2 dλ = ‖A1/2f ‖2
2.

Second example. Let G be a compactly generated unimodular group, and set
Af = f − f ∗ φ0 where φ0 is continuous, symmetric, compactly supported prob-
ability density on G with the property that φ0 > 0 on a compact generating neigh-
borhood of the identity. Then

EA(f,f ) = (1/2)

∫
G

‖fh − f ‖2
2φ0(h) dλ(h)

and Htf = f ∗ ht where

ht = e−t
∞∑
0

tn

n!φ
(n)
0 .

In particular, if G is a finitely generated group with finite symmetric generating set
S containing the identity, we can set φ0 = (#S)−11S . In any case, for t ≥ 1,

ht (e) 	 φ
(2t)
0 (e) 	 �G(t).
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As explained in the Introduction, many different behaviors are possible for the
function �G, depending on G. Assuming that U is a symmetric neighborhood
of the identity which contains a generating compact set, that infU3{φ0} > 0, and
setting

δ(x) = inf{n :x ∈ Un},
[31], Proposition VII.3.2, gives that (the discrete case of this inequality is a bit
simpler and more elementary)∫

|fh − f |2 dλ ≤ C(U,φ0)δ(h)2EA(f,f ), f ∈ L2(G),h ∈ G.

Again, this shows that (2.4) holds true in this setting.

3. Applications: Main lower bounds on �G,ρ . Let G be as in the second
example of Section 2.3. Keep the notation introduced there. In the applications we
have in mind, we are given a continuous increasing function ρ : (0,∞) → [1,∞)

and set ρG = ρ ◦ δ. Our main aim is to estimate the functions �G,ρG
and �̃G,ρG

introduced in Definitions 1.1 and 2.1. Hence, we consider a (otherwise arbitrary)
symmetric continuous probability density φ on G with the property that ‖φ‖∞ ≤
K and

∫
ρGφ dλ ≤ K sup
2{ρ} or W(ρG,φ) ≤ K sup
2{ρ}. Here K > 1 and 


are as in Definitions 1.1 and 2.1.
In order to apply Theorem 2.7, we have to find an increasing function ω com-

patible with ρ in the sense that the pair ρ,ω satisfies the various hypotheses of
Theorem 2.7. The function ψ associated to ρ via ω is then defined by (2.2).

The following examples are of particular interest:

• If ρ(s) = ρ2α(s) = (1 + s)2α , α ∈ (0,1], then we can take

ω(s) = �(2 − α)−1s1−α and ψ(s) = sα.

• If ρ(s) = (1 + s2)α�(1 + s2)α with α ∈ (0,1) and � smooth, positive and slowly
varying at infinity, then we can take

ω(s) = 1 + s

[(1 + s)�(1 + s)]α at infinity

and

ψ(s) 	 [(1 + s)/�(1 + 1/s)]α at 0.

• If ρ(s) = ρ
exp
c,α (s) = exp(c[log(1 + s)]α), α ∈ (0,1), c > 0, then we can take

ω(s) = s exp
(−c1[log(1 + s)]α)

for some c1 > 0 (see Remark 2.9) and we have [see (2.2)]

ψ(s) ∼ exp
(−c1[log(1 + 1/s)]α) at 0.
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• If ρ(s) = ρ
log
α (s) = [log(e + s)]α , α > 1, then we can take

ω(s) = s[log(e + s)]1−α

for some c1 > 0 (see Remark 2.9), and this gives

ψ(s) ∼ [log(e + 1/s)]1−α at 0.

These computations indicate that Theorem 2.7 is too weak to provide results
when ρ(s) = ρ

log
α (s) = [log(e + s)]α and α ≤ 1.

• The previous two cases can be generalized as follows. Assume that

ρ(s) ≥ c log(e + s)
(
1 + η(s2)

)
,

where η is a positive increasing function such that η(s) ∼ s at 0 and η is slowly
varying at infinity. Set

ω(s) = s/η(s) and ψ(λ) = λ2
∫ ∞

0
e−λsω(s) ds.

By [5], Theorem 1.7.1, we have ψ(λ) 	 c/η(1/λ). Further, referring to the no-
tation used in Theorem 2.7, we then have

t max{ξ(t2), ζ(t2)}
ω(t2)1/2 ≤ Cρ(t).

We are now ready to state and prove lower bounds on the functions �G,ρG
and

�̃G,ρG
of Definitions 1.1 and 2.1 for some groups G and functions ρ. We will

use the notation ρα,ρ
exp
c,α , ρ

log
α recalled above. If ρ is a real function, and G is

a compactly generated group with world length δ(x) = |x| = inf{n :x ∈ Un} for
some fixed symmetric relatively compact generating neighborhood of the identity,
we set �G,ρ = �G,ρG

where ρG = ρ ◦ δ.
We state four theorems that cover various cases of particular interest. The proofs

of these results all follow the same outline based on Theorems 2.7 and 2.10 to-
gether with Corollary A.10 and the results of Section A.4, Theorems A.6 and A.7.
The main line of reasoning described in the proof of Theorem 3.1 below is also
used for the proofs of Theorems 3.2, 3.3 and 3.4. The results presented in the
Appendix play a crucial role in these proofs.

THEOREM 3.1. Let G be a locally compact, compactly generated unimodular
group such that �G(n) 	 n−D/2 at infinity, for some integer D.

(1) Assume that ρ(s) ≥ [(1 + s2)�(1 + s2)]α with α ∈ (0,1) and � smooth
positive slowly varying at infinity with de Bruijn conjugate �#. Then there exist
c = cρ ∈ (0,∞) and an integer N = Nρ such that

∀n > N �G,ρ(n) ≥ �̃G,ρ(n) ≥ c[n1/α�#(n1/α)]−D/2.
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(2) Assume that ρ(s) ≥ log(e + s)�(1 + s2) and � smooth positive increasing
and slowly varying at infinity and such that log�−1(t) 	 tγ ω(t)1+γ at infinity,
with γ ≥ 0 and ω slowly varying with de Bruijn conjugate ω#. Then there exist
C = Cρ ∈ (0,∞) and an integer N = Nρ such that

∀n > N log�G,ρ(n) ≥ −C[nγ /ω#(n)]1/(1+γ ).

PROOF. We will use the following notation which is consistent with the nota-
tion used in the Appendix. Let ψ : [0,2] → [0,2] be a continuous increasing func-
tion with continuous derivative such that with ψ(0) = 0, ψ(1) = 1 and ψ(2) < 2.
Fix a symmetric probability density φ0 ∈ L2(G) and assume that its support is a
compact generating neighborhood of the identity element (we assume that G is
compactly generated). This implies that φ

(2n)
0 (e) 	 �G(n); see [13, 20, 31]. We

set T = Rφ0 and [see (A.5)]

Tψ = I − ψ(I − T ).

Let E0 denote Dirichlet form E0(f, f ) = 〈(I − T )f,f 〉 associated with φ0. By
Section 2.3 and Theorems 2.7 and 2.10, if dμ = φ dλ is a symmetric probability
with continuous density satisfying μ(ρ ◦ δ) < ∞, then

Eμ(f,f ) ≤ C‖ψ(I − T )1/2f ‖2
2.(3.1)

Here ψ is chosen such that the condition of Theorems 2.7 and 2.10 relating ψ to
ρ (via ω) are satisfied. See the explicit examples discussed at the beginning of this
section.

By Corollary A.10, (3.1) implies [τ is the natural semifinite trace on the von
Neumann V (G); see the Appendix]

φ(2n)(e) ≥ C
(
e−cn + τ

(
T

2[cn]
ψ

))
.

Now, depending on the behavior of ψ near 0, the trace τ(T 2n
ψ ) can be estimated

using the results of Section A.4, Theorems A.6 and A.7; see also Example A.2.
This gives the announced lower bounds on φ(2n)(e). �

EXAMPLE 3.1. The second statement in Theorem 3.1 can be illustrated by the
following two examples:

(1) log�G,ρ
exp
c,α

(n) ≥ −CD,c,α(logn)1/α , α ∈ (0,1), c > 0.

(2) log�
G,ρ

log
α

(n) ≥ −CD,αn1/α , α > 1.

THEOREM 3.2. Let G be a locally compact, compactly generated unimod-
ular group such that log�G(n) ≥ −Cnγ at infinity, for some γ ∈ (0,1) and
C ∈ (0,∞). Fix α ∈ (0,1) and ρ(s) 	 [(1 + s2)�(1 + s2)]α with � smooth pos-
itive slowly varying at infinity. Then, there exist Cρ ∈ (0,∞) and an integer Nρ

such that

∀n > Nρ log�G,ρ(n) ≥ log �̃G,ρ(n) ≥ −Cρnγα/�#∗
(
n(1−γ )γα/γ )α,
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where �#∗ is the de Bruijn conjugate of

�∗(s) = �#(s)γα , γα = γ

γ + α(1 − γ )
.

This theorem with � ≡ 1 implies Theorem 1.5.

PROOF OF THEOREM 3.2. The given ρ calls for using ψ(s) = [s/�(s)]α in
Theorem 2.7. Note that ψ−1(t) 	 t1/α/�#(1/t1/α).

Using Theorem A.7 and the same notation and line of reasoning as in the proof
of Theorem 3.1, we obtain that if dμ = φ dλ is a symmetric probability with con-
tinuous density satisfying μ(ρ ◦ δ) < ∞, then

logφ(2n)(e) ≥ −C1n/πψ(n)

with

Cπ−1
ψ (Ct) ≥ tψ−1(1/t)−γ /(1−γ ) ≥ ct(α(1−γ )+γ )/α(1−γ )�#(t1/α)γ /(1−γ ).

This can be written as (for a different constant C)

Cπ−1
ψ (Ct) ≥ t (α(1−γ )+γ )/α(1−γ )�∗(t1/α)(α(1−γ )+γ )/(1−γ )

with �∗(s) = �#(s)γ /(α(1−γ )+γ ). This gives

cπψ(ct) ≤ tα(1−γ )/(α(1−γ )+γ )�#∗
(
t (1−γ )/(α(1−γ )+γ ))α

and

log�G,ρ(n) ≥ −Cnγα/�#∗
(
n(1−γ )/(α(1−γ )+γ ))α

with γα = γ /(α(1 − γ ) + γ ), as desired. �

EXAMPLE 3.2. Assume that � satisfies �(ta) 	 �(t) for all a > 0. Then �# =
1/� and (1/�)# 	 �. Hence �∗ 	 (1/�)γ/(α(1−γ )+γ ) and �#∗ 	 �γ/(α(1−γ )+γ ). Hence
we get

− log�G,ρ(n) ≤ C[n/�α(n)]γα .

This is consistent with Example A.3.

THEOREM 3.3. Let G be a locally compact, compactly generated unimod-
ular group such that log�G(n) ≥ −Cnγ /�(n) at infinity, for some γ ∈ (0,1],
C ∈ (0,∞) and slowly varying function � satisfying �(ta) 	 �(t) for all a > 0.
Assume that α ∈ (0,1) and ρ(s) = (1 + s)2α . Then, we have

log�G,ρ(n) ≥ log �̃G,ρ(n) ≥ −Cρ[n/�(n)α/γ ]γα , γα = γ

γ + α(1 − γ )
.
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THEOREM 3.4. Let G be a locally compact, compactly generated unimod-
ular group such that log�G(n) ≥ −Cn/π(n) with π continuous increasing and
satisfying π(t) ≤ t1−ε for t ≥ 1. Assume that ρ(s) ≥ c log(e + s)�(s2) with c > 0
and � smooth positive increasing and slowly varying at infinity. Then there exist
c1,C1 ∈ (0,∞) such that, for all n large enough,

log�G,ρ(n) ≥ −C1n/�(π(c1n
ε)).

EXAMPLE 3.3. If �G(n) ≥ c exp(−Cnγ ) with γ ∈ (0,1), this yields:

(1) log�G,ρ
exp
c,α

(n) ≥ −Cγ,c,αn exp(−cγ,c,α[logn]α), α ∈ (0,1), c > 0.

(2) log�
G,ρ

log
α

(n) ≥ −Cγ,αn[logn]−(α−1), α > 1.

If, instead, �G(n) ≥ c exp(−Cn/�(n)) with � increasing slowly varying and
satisfying �(ta) 	 �(t) for all a >, we obtain:

(1) log�G,ρ
exp
c,α

(n) ≥ −Cγ,c,αn exp(−cγ,c,α[log�(n)]α), α ∈ (0,1), c > 0.

(2) log�
G,ρ

log
α

(n) ≥ −Cγ,αn[log�(n)]−(α−1), α > 1.

PROOF OF THEOREMS 3.3 AND 3.4. In each case, we use either Theorem 2.7
or Theorem 2.10 together with either Theorems A.6 or A.7, and Corollary A.10.

�

4. Upper bounds on �G,�. The aim of this section is to obtain upper bounds
on the function �G,� (and its variant �̃G,�) under various conditions on the group
G and the function �. To obtain such upper bounds, we only need to exhibit
an example of a symmetric probability density φ such that

∫
�φ dλ < ∞ (or

sups>0{s
∫
{�>s} φ dλ}, in the case of �̃G,�) and for which we can obtain an up-

per bound on n �→ φ(2n)(e). Of course, to obtain good upper bounds, we need to
identify probability densities with the desired moment condition and for which
n �→ φ(2n)(e) presents an almost optimal decay. This question—which densities
produce the optimal decay?—is quite interesting in its own right. For instance,
when G is finitely generated with finite symmetric generating set S and � is of the
form � = ρG = ρ(| · |), and | · | = | · |S is the word-length based on the generating
set S, should we expect to find a probability density with nearly optimal decay
among “radial densities” of the form φ(x) = f (|x|)?

4.1. �G-based upper bounds: subordination. The lower bounds on �G,� (and
�̃G,�) obtained in Section 3 for certain � = ρ ◦ δ are all based on lower bounds on
the function �G. It is thus natural to seek upper bounds of the same nature. These
applications of Theorem 2.7 start with a symmetric compactly supported continu-
ous density φ (with generating support) and involve comparison with the behavior
of certain operators Tψ of the form Tψ = I − ψ(I − Rφ) where the function ψ is
chosen appropriately, depending on ρ.



2564 A. BENDIKOV AND L. SALOFF-COSTE

It would be very nice to identify a class of functions ψ so that Tψ = Rφψ where
φψ is, itself, a symmetric probability density. As already noted after (A.5), this is
certainly the case when ψ is a Bernstein function satisfying ψ(0) = 0, ψ(1) = 1;
see, for example, [17, 27] for an access to the literature on Bernstein functions.
A Bernstein function is a smooth positive function ψ : (0,∞) → (0,∞) such

that (−1)k
dkψ

dtk
≤ 0 and two good and important examples of Bernstein functions

are ψα : s �→ sα , α ∈ (0,1] and ψ
log
α : s �→ [log2(1 + s−1/α)]−α . Further, for any

smooth positive increasing regularly varying function ψ1 of index α in [0,1) at 0
such that x �→ xψ ′

1(x) is also regularly varying of index α, there exists a Bernstein
function ψ such that ψ ∼ ψ1; see [4], Theorem 2.5.

In order to obtain upper bounds on the functions �G,ρG
and �̃G,ρG

, it suffices
to find a Bernstein function ψ such that the probability density φψ satisfies the
required moment condition and to estimate φ

(2n)
ψ (e). The companion paper [4]

develops this idea, and we will simply quote the relevant results.
We start with results concerning groups with polynomial volume growth

V (n) 	 nD . By [16], these groups satisfy �G(n) 	 n−D/2. In fact, thanks to [16]
and deep results of Guivarc’h, Gromov and Losert, groups of polynomial volume
growth are exactly those groups that satisfy �G(n) 	 n−D/2 for some integer D.
An alternative and self-contained proof of the theorems discussed below is given
in the next section.

THEOREM 4.1 ([4]). Assume that G is a compactly generated locally compact
group with polynomial volume growth V (n) 	 nD .

(1) Assume that ρ(s) 	 g(1 + s2) where g(s) = [s�(s)]α where α ∈ (0,1), and
� is a positive slowly varying function at infinity with de Bruijn conjugate �#. Then
there exist C ∈ (0,∞) and an integer N such that

∀n > N �̃G,ρG
(n) ≤ C[n1/α�#(n1/α)]−D/2.

Further, for any slowly varying function �1 with de Bruijn conjugate �#
1 such that∑∞

1
�(n)α

n�1(n)α
< ∞, there exist C(�1) ∈ (0,∞) and an integer N(�1) such that

∀n > N(�1) �G,ρG
(n) ≤ C(�1)[n1/α�#

1(n
1/α)]−D/2.

(2) Assume that ρ(t) 	 g(1 + s2) where g(s) = �̂(s) and �̂(t) = 1/
∫∞
t

du
u�(u)

where � is a positive increasing slowly varying function at infinity. Assume further
that log �̂−1(t) 	 tγ ω(t)1+γ at infinity, with γ ≥ 0 and ω slowly varying with de
Bruijn conjugate ω#. Then there exist c,C ∈ (0,∞) and an integer N such that

∀n > N �̃G,ρG
(n) ≤ C exp

(−c[nγ /ω#(n)]1/(1+γ )).
Further, for any slowly varying function �1 such that

∞∑
1

�̂(n)

n�1(n)
< ∞ and log �̂−1

1 (t) 	 tγ1ω1(t)
1+γ1
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with γ1 ≥ 0 and ω1 slowly varying at infinity, there exist c = c(�1),C = C(�1) ∈
(0,∞) and an integer N = N(�1) such that

∀n > N �G,ρG
(n) ≤ C exp

(−c[nγ1/ω#
1(n)]1/(1+γ1)

)
.

Putting together the results of Theorems 3.1 and 4.1, we obtain the following
results which imply Theorem 1.4.

THEOREM 4.2. Assume that G is a compactly generated locally compact
group with polynomial volume growth V (n) 	 nD .

(1) Assume that ρ(s) 	 g(1 + s2) where g(s) = [s�(s)]α where α ∈ (0,1) and
� is a positive slowly varying function at infinity with de Bruijn conjugate �#. Then

�̃G,ρG
(n) 	 [n1/α�#(n1/α)]−D/2.

(2) For any α ∈ (0,1) and c > 0, there are constants c1, c2,C1,C2 (depending
on G, α and c) such that

∀n c1 exp(−C1[logn]1/α) ≤ �G,ρ
exp
c,α

(n) ≤ C2 exp(−c2[logn]1/α).

(3) For any β > α > 1, there are constants c1, c2,C1,C2 (depending on G, α

and β) such that

∀n c1 exp(−C1n
1/α) ≤ �

G,ρ
log
α

(n) ≤ C2 exp
(−c2n

1/(β+1)).
Our next result concerns groups with volume growth faster than polynomial and

moment of the type ρα(s) = (1+s)α . No classifications of either volume growth or
the behavior of �G are known for such groups. The upper bounds in the following
theorem cannot be obtained by the methods developed in the next section. This
theorem follows immediately from Theorems 3.2 and 3.3 and [4], Theorem 5.3.

THEOREM 4.3. Assume that G is a compactly generated locally compact
group and that there exist 0 ≤ γ̄ ≤ γ ≤ 1 and positive slowly varying functions
η, η̄, both satisfying η(ta) 	 η(t) for all a > 0, such that, for n large enough,

−nγ /η(n) ≤ log�G(n) ≤ −nγ̄ /η̄(n).

For any s > 0, set γs = γ /[s(1 − γ ) + γ ], γ̄s = γ̄ /[s(1 − γ̄ ) + γ̄ ].
Assume further that there exists a symmetric continuous probability density φ

with compact support, positive on a generating compact set and such that

∀n, s

∫
1{|x|≥nθ s}φ(n) dλ ≤ C exp(−csq)(4.1)

for some C,θ, q > 0.
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(1) For any α ∈ (0,min{2,1/θ}), there exist c1,C1 ∈ (0,∞) such that, for all
n large enough,

−C1[n/η(n)α/2γ ]γα/2 ≤ log �̃G,ρα (n) ≤ −c1[n/η̄(n)αθ/γ̄ ]γ̄αθ .

(2) For any α ∈ (0,min{2,1/θ}) and ε > 0, there exist c1,C1 ∈ (0,∞) such
that, for all n large enough,

−C1[n/η(n)α/2γ ]γα/2 ≤ log�G,ρα (n) ≤ −cε

[
n/[η̄(n)(logn)1+ε]αθ/γ̄ ]γ̄αθ .

EXAMPLE 4.1. Assume that G = F 
 H where F is a nontrivial finite
group, and H is polycylic with exponential volume growth. Then �G(n) 	
exp(−n/(logn)2). Condition (4.1) is trivially verified with θ = 1. For α ∈ (0,2),
Theorem 4.3(1) yields

−C1n/[logn]α ≤ �G,ρα (n) ≤ −c1n/[logn]2α

for all n large enough. We conjecture that the lower bound is correct.

We now state two corollaries of Theorem 4.3. The first corollary gives a result
that is widely applicable whereas the second corollary requires a precise under-
standing of the most basic random walks on the group G. In particular, the hy-
pothesis (4.2) made in Corollary 4.5 requires a classical

√
n rate of escape for

simple random walk on G.

COROLLARY 4.4. Assume that G is a compactly generated locally compact
group and that there exist 0 ≤ γ̄ ≤ γ ≤ 1 such that, for n large enough,

−nγ ≤ log�G(n) ≤ −nγ̄ .

For any s > 0, set γs = γ /[s(1 − γ ) + γ ], γ̄s = γ̄ /[s(1 − γ̄ ) + γ̄ ].
(1) For any α ∈ (0,1), there exist c1,C1 ∈ (0,∞) such that, for all n large

enough,

−C1n
γα/2 ≤ log �̃G,ρα (n) ≤ −c1n

γ̄α .

(2) For any α ∈ (0,1) and ε > 0, there exist cε,C1 ∈ (0,∞) such that, for all n

large enough,

−C1n
γα/2 ≤ log�G,ρα (n) ≤ −cεn

γ̄α/(logn)(1+ε)γ̄αα/γ̄ .

COROLLARY 4.5. Assume that G is a compactly generated locally compact
group and that there exist γ ∈ (0,1) and a positive slowly varying function η sat-
isfying η(ta) 	 η(t) for all a > 0, such that

log�G(n) 	 −nγ /η(n).
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For any s > 0, set γs = γ /[s(1 − γ ) + γ ]. Assume further that there exists a sym-
metric continuous probability density φ with compact support, positive on a gen-
erating compact set, and such that

∀n, s

∫
1{|x|≥n1/2s}φ(n) dλ ≤ C exp(−csq)(4.2)

for some C,q > 0.

(1) For any α ∈ (0,2), there exist c1,C1 ∈ (0,∞) such that, for all n large
enough,

−C1[n/η(n)α/2γ ]γα/2 ≤ log �̃G,ρα (n) ≤ −c1[n/η(n)α/2γ ]γα/2 .

(2) For any α ∈ (0,2) and ε > 0, there exist cε,C1 ∈ (0,∞) such that, for all n

large enough,

−C1[n/η(n)α/2γ ]γα/2 ≤ log�G,ρα (n) ≤ −cε

[
n/[η(n)(logn)1+ε]α/2γ ]γα/2 .

EXAMPLE 4.2. Let the group G be either the group Sol = Z �A Z
2 where

A = (21 1
1

)
, or the wreath product F 
Z where F is any finite group. By [23], these

groups satisfy (4.2). Further, these groups have exponential volume growth and
satisfy �G(n) 	 exp(−n1/3); see, for example, [31] and the references therein.
Hence Corollary 4.5 applies. In particular, for any α ∈ (0,2), we have

�̃G,ρα (n) 	 exp
(−n1/(1+α)).

Using a different argument, we shall see in the next section that this result also
holds for all polycyclic groups.

The final two results of this section concern groups with super-polynomial vol-
ume growth and slowly varying moment condition.

THEOREM 4.6. Assume that G is a compactly generated locally compact
group and that there exist 0 < γ̄ ≤ γ < 1 and c,C ∈ (0,∞) such that, for n large
enough,

−Cnγ ≤ log�G(n) ≤ −cnγ̄ .

Let ρ(t) 	 log(e + t)�(t) where � is a continuous increasing slowly varying func-
tion at infinity. Let ρ1 be a slowly varying function such that

∑∞
1

ρ(n)
nρ1(n)

< ∞, set

ρ̂1(t) = 1/
∫∞
t

ds
sρ1(s)

and fix ε ∈ (0,1). Then there are C1(ε), c1(ρ1) ∈ (0,∞) such
that, for all n large enough,

−C(ε)n/�(nεγ/2) ≤ log�G,ρ(n) ≤ −c(ρ1)n/ρ̂1(n
γ̄ ).
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Theorem 4.6 applies to a very large collection of groups. For instance, it ap-
plies to all polycyclic groups with exponential volume growth since such groups
have �G(n) 	 exp(−n1/3). It also applies to groups with volume growth satisfy-
ing cna ≤ logV (n) ≤ Cnb with 0 < a ≤ b < 1 since these volume estimates imply
−C1n

b ≤ log�G(n) ≤ −c1n
a/(a+2).

The following two examples provide a proof of the assertions made in Theo-
rem 1.6 that concern ρ

log
α and ρ

exp
c,α .

EXAMPLE 4.3. We can apply Theorem 4.6 when

ρ(t) = ρlog
α (t) = [log(e + t)]α, α > 1.

In this case we can take � 	 ρ
log
α−1 and ρ1 	 ρ

log
β+1 with β > α. Then ρ̂1 	 ρ

log
β and

the conclusion is that for any β > α, there are constants C2, cβ ∈ (0,∞) such that,
for all n large enough,

−C2n/[logn]α−1 ≤ log�
G,ρ

log
α

(n) ≤ −cβn/[logn]β.

EXAMPLE 4.4. Theorem 4.6 gives a good result when

ρ(t) = ρexp
c,α (t) = exp

(
c[log(1 + t)]α), α ∈ (0,1), c > 0.

Indeed, in this case we can obviously write ρ(t) = log(e + t)�(t) with � ≤ ρ
exp
c,α ,

and we can take ρ1 = ρ
exp
c2,α for any fixed constant c2 > c. The conclusion is that

there are constants c3,C3 such that, for all n large enough,

−C3n exp(−c3[logn]α) ≤ log�G,ρ
exp
c,α

(n) ≤ −c3n exp(−C3[logn]α).

THEOREM 4.7. Assume that G is a compactly generated locally compact
group and that there exist two continuous increasing functions π, π̄ such that, for
all n large enough,

−n/π(n) ≤ log�G(n) ≤ −cn/π̄(n).

Assume that π(t) ≤ t1−ε for some ε ∈ (0,1) Let ρ(t) 	 log(e + t)�(t) where � is a
continuous increasing slowly varying function at infinity. Let ρ1 be a slowly varying
function such that

∑∞
1

ρ(n)
nρ1(n)

< ∞ and set ρ̂1(t) = 1/
∫∞
t

ds
sρ1(s)

. Then there are
C1, c1(ρ1) ∈ (0,∞) such that, for all n large enough,

−C1n/�(π(nε/2)) ≤ log�G,ρ(n) ≤ −c(ρ1)n/ρ̂1(π̄(n)).

EXAMPLE 4.5. Assume that G = F 
 H where F is a nontrivial finite group
and H is polycylic with exponential volume growth. Then �G(n) 	 exp(−n/

(logn)2). Hence, for any α > 1 and β > α, we obtain

−C1n/[log(logn)]α−1 ≤ �
G,ρ

log
α

(n) ≤ −cβn/[log(logn)]β
for all n large enough.
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4.2. Volume-based upper bounds. Let G be a locally compact unimodular
group equipped with its Haar measure λ (this group may well not be compactly
generated). Consider the problem of studying the decay of convolution powers of
probability measures of the form

μ =
∞∑
1

piμi,(4.3)

where pi ≥ 0,
∑∞

1 pi = 1 and

μi = φi dλ, ‖φi‖∞ = βi, φi ≥ 0, μi(G) = 1.

In words, μ is a convex linear combination of the probability measures μi ,
i = 1,2, . . . , and these measures are assumed to have bounded densities. It was
observed in [24, 29] that interesting upper bounds for convolution powers of such
measures can sometimes be obtained by elementary means. This is developed fur-
ther below.

Set

σk =∑
i>k

pi, k = 0,1, . . . , σ−1 = +∞,

and

bk = min
i≤k

{βi}, k = 1,2, . . . , b0 = b1,

and consider the function F on (0,∞) [this function depends only on (σi)
∞
0 and

(bi)
∞
0 ] defined by

F(s) = bk if σk < s ≤ σk−1.

The following result is quite versatile and surprisingly sharp when applied to low
moment measures.

PROPOSITION 4.8. Referring to the notation introduced above and assuming
that bi → 0, the density φ(n) = dμ(n)/dλ of the nth convolution power μ(n) of μ

satisfies

∥∥φ(n)
∥∥∞ ≤

∫ ∞
0

e−ns dF (s) =
∞∑
i=1

e−nσi (bi − bi+1).

REMARK 4.9. One important class of examples is obtained by considering a
given increasing sequence of compact sets Bi with

⋃∞
1 Bi = G and setting

dμi = dλBi
= 1

λ(Bi)
1Bi

dλ.

In this case, bi = βi = 1/λ(Bi).
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PROOF OF PROPOSITION 4.8. Write

φ(n) =
( ∞∑

i=1

piφi

)(n)

=
∞∑

k=1

((∑
i≤k

piφi

)(n)

−
( ∑

i≤k−1

piφi

)(n))

=∑
k≥1

((∑
ij≤k

pi1φi1 ∗ · · · ∗ pinφin

)
−
( ∑

ij≤k−1

pi1φi1 ∗ · · · ∗ pinφin

))

=∑
k≥1

( ∑
max{i1,...,in}=k

pi1φi1 ∗ · · · ∗ pinφin

)
.

Next we use Minkowski inequality and the estimate

‖f1 ∗ · · · ∗ fn‖∞ ≤ min{‖fi‖∞}
for functions fi with L1-norm at most 1. This estimate holds on G because we
assume unimodularity of G. It yields∥∥φ(n)

∥∥∞ ≤∑
k≥1

bk

∑
max{i1,...,in}=k

pi1 · · ·pin

=∑
k≥1

bk[(1 − σk)
n − (1 − σk−1)

n]

=∑
k≥1

(1 − σk)
n[bk − bk+1]

≤∑
k≥1

e−nσk [bk − bk+1].
�

We now give some simple applications when G is locally compact, compactly
generated and unimodular (we assume that G is noncompact). Fix a symmet-
ric open set U that contains a generating compact neighborhood of the iden-
tity element, and set |x| = inf{n :x ∈ Un}, with |e| = 0. Thus | · | induces a fa-
miliar word distance on G when G is finitely generated. Observe that we have
λ(U4n) ≥ 2λ(Un). Indeed, if |z| = 3n (such a z does indeed exist!), then the
sets Un and zUn are disjoint and contained in U4n. We consider the probabil-
ity densities φi = λ(Bi)

−11Bi
with Bi = U4i

and set bi = λ(Bi)
−1. Since λ(Bi) ≥

2λ(Bi−1), we have bi ≥ bi − bi+1 ≥ bi/2. Set φ = ∑∞
1 piφi with

∑∞
1 pi = 1

and σk = ∑i>k pi . Fix a nondecreasing function ρ : (0,∞) → (0,∞), and set
ρG = ρ(| · |). With this notation, we have

∀n φ(2n)(e) ≤∑
k≥1

e−2nσkbk(4.4)

and ∫
G

ρGφ dλ =
∫
G

∑
k≥1

pkρGφk dλ ≤∑
k≥1

ρ(4k)pk.(4.5)
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Further, we also have

s

∫
{ρG≥s}

φ dλ ≤ s
∑

ρ(4k−1)≥s

pk.

Hence, assuming that ρ is a doubling function, we have

W(ρ,φ dλ) = sup
s>0

{
s

∫
{ρG≥s}

φ dλ

}
≤ C(ρ) sup

k

{ρ(4k)σk}.(4.6)

These two estimates allow us to derive upper bounds on �G,ρG
in terms of the

volume growth of the group G. Indeed, for a given ρ, (4.5) tells us how to pick
(pi)

∞
1 so that dμ = φ dλ satisfies μ(ρG) < ∞. For this choice of (pi)

∞
1 , (4.4)

yields an upper bound on φ(2n)(e) [hence on �G,ρG
(n)] in terms of (a lower bound

on) the volume growth which determines the sequence (bi)
∞
1 . This approach yields

an alternative proof of Theorem 4.1 (polynomial volume growth) as well as new
results in the super-polynomial volume case.

ALTERNATIVE PROOF OF THEOREM 4.1. We give the details only for �̃G,ρ .
The proofs concerning �G,ρ are similar. Recall that Theorem 4.1 deals with
the case when V (n) 	 nD , and ρ is comparable to either (a) a regularly vary-
ing function with positive index α ∈ (0,2) or (b) a slowly varying of the form
ρ(t) 	 1/

∫∞
t

ds
s�(s)

with � positive and slowly varying. Further, in case (b), we as-

sume that logρ−1(t) 	 tγ ω(t)1+γ for some γ ∈ [0,∞) and positive slowly vary-
ing function ω.

In case (a), set pi = cρ(4i )−1. In case (b) set pi = c�(4i )−1. Then it is easy to
check that

σi =∑
k>i

pk 	 ρ(4i )−1.

Using (4.6), this implies that φ =∑∞
1 piφi satisfies the moment condition

W(ρ,φ dλ) ≤ sup
i

{ρ(4i )σi} < ∞.

Further

φ(2n)(e) ≤ C1
∑
i

e−c1n/ρ(4i )4−iD.(4.7)

In case (a) where ρ(t) 	 (1 + t)2α�(s2)α with α ∈ (0,1) and � positive and slowly
varying, observe that ρ−1(1/u) 	 u−1/2α�#(1/u1/α)1/2 for small u and write

φ(2n)(e) ≤ C1
∑
i

e−c1n/ρ(4i )4−iD ≤ C2

∫ ∞
1

e−c1n/ρ(s) ds

s1+D

≤ C3

∫ 1

0
e−c1nu

(
1

ρ−1(1/u)

)D du

u

≤ C4

∫ ∞
0

e−c1nu

(
u1/α

�#(1/u1/α)

)D/2 du

u
	 C5[n1/α�#(n1/α)]−D/2.
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This yields the desired result, namely,

�̃G,ρ(n) ≤ C[n1/α�#(n1/α)]−D/2

for case (a).
In case (b), write

φ(2n)(e) ≤ C1
∑
i

e−c1n/ρ(4i )−(D/2) log 4−i

2−Di

≤ C2 exp
(
−c2 inf

s>0
{n/ρ(s) + log(e + s)}

)
.

Using the hypothesis concerning ρ−1, observe that

inf
s>0

{n/ρ(s) + log(e + s)} = inf
s>0

{
ns + log

(
e + ρ−1(1/s)

)}
	 inf

s>0
{ns + s−γ ω(1/s)1+γ }

	 nγ/(1+γ )/ω#(n1/(1+γ )).
As stated in Theorem 4.1(2) and under the hypotheses of case (b), this yields

�̃G,ρ(n) ≤ C exp
(−cnγ/(1+γ )/ω#(n1/(1+γ )))

as desired. �

THEOREM 4.10 (The super polynomial case). Assume that λ(Un) ≥ exp(cnθ )

for some c, θ > 0. Then:

(1) Fix α ∈ (0,1), a positive slowly varying function � at infinity, and set ρ(s) =
[(1+s2)�(1+s2)]α . Then there exists C ∈ (0,∞) such that, for all n large enough,

�̃G,ρα (n) ≤ C exp
(−cnθ/(θ+2α)/�#•

(
n2/(θ+2α))α),

where �• = [�#]θ/(θ+2α), and �#• is its de Bruijn conjugate.
(2) Fix α ∈ (0,2). For all β > α, there are constants Cβ, cβ > 0 such that, for

all n large enough, �G,ρα (n) ≤ Cβ exp(−cβnθ/(θ+β)).
(3) For any fixed α > 0 we have �̃

G,ρ
log
α

(n) ≤ C exp(−cn/[logn]α). Further,
for all β > α, there are constants Cβ, cβ > 0 such that, for all n large enough,
�

G,ρ
log
α

(n) ≤ Cβ exp(−cβn/[logn]β).

(4) For any fixed α ∈ (0,1) and c > 0, there is a constant C1 > 0 such that, for
all n large enough, �G,ρ

exp
c,α

(n) ≤ C1 exp(−n/ exp(C1[logn]α))).

PROOF. We prove statement (1). The variations needed for the other state-
ments are straightforward. We have bi ≤ exp(−c4iθ ). Fulfilling the desired mo-
ment conditions forces the choice of the sequence (pi)

∞
1 . For instance, in the first
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case, we take pi = cρ(4i )−1 so that σi 	 ρ(4i )−1. Hence

φ(2n)(e) ≤ C1
∑
i

e−c1(n/ρ(4i )+4iθ )

≤ C2 exp
(
−c2 inf

s>0
{n/ρ(s) + sθ }

)
.

Write

inf
s>0

{n/ρ(s) + sθ } = inf
s>0

{ns + ρ−1(1/s)θ }.

A good approximation of the infimum is obtained by picking s = sn such that
n = (1/sn)ρ

−1(1/sn)
θ . At infinity, ρ−1(t) = t1/2α�#(t1/α)1/2 and thus, at 0,

(1/t)[ρ−1(1/t)]θ = t−(2α+θ)/2α�#(1/t1/α)θ/2.

Setting �• = [�#]θ/(θ+2α), we have sn 	 n−2α/(2α+θ)[�#•(n2/(2α+θ))]−α . Finally,

φ(2n)(e) ≤ C exp
(−c3n

θ/(θ+2α)/�#•
(
n2/(θ+2α))α). �

REMARK 4.11. Note that the hypotheses in Theorem 4.10 and in Theorem 4.3
are notably different. Theorem 4.3 is based on hypotheses regarding the behavior
of φG whereas Theorem 4.10 assumes V (n) ≥ exp(cnθ ). We note that the hypoth-
esis V (n) ≥ exp(cnθ ) implies �G(n) ≤ exp(−cnθ/(2+θ)) [31]. If V (n) ≥ exp(cnθ )

and �G(n) ≥ exp(−Cnθ/(2+θ)), then the upper bound of Theorem 4.10(1) matches
precisely the lower bound of Theorem 3.2.

The next theorem treats the case of groups that have exponential volume growth
(i.e., θ = 1) and such that �G(n) 	 exp(−n1/3). (This is the case, e.g., if G is
polycyclic with exponential volume growth.) This result contains the part of The-
orem 1.6 dealing with ρα , α ∈ (0,2).

THEOREM 4.12. Assume that G has exponential volume growth and satisfies
φG(n) 	 exp(−n1/3).

(1) Fix α ∈ (0,1), a positive slowly varying function � at infinity, and set ρ(s) =
[(1 + s2)�(1 + s2)]α . Then we have

�̃G,ρ(n) 	 exp
(−n1/(1+2α)/�#•

(
n2/(1+2α))α),

where �• = [�#]1/(1+2α), and �#• is its de Bruijn conjugate.
(2) Fix α ∈ (0,2). For all β > α, there are constants Cβ, cβ > 0 such that, for

all n large enough,

Cβ exp
(−cn1/(1+α))≤ �G,ρα (n) ≤ Cβ exp

(−cβn1/(1+β)).
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5. The case of the wreath product (Z/2Z) � Z
d . The wreath product con-

struction provides important examples of groups whose behavior differs from
linear groups. The simplest family of wreath products is (Z/2Z) 
 Z

d . An ele-
ment of this group is a pair (η, k) with η ∈⊕i∈Zd (Z/2Z)i (algebraic sum) and
k ∈ Z

d . In the popular lamplighter interpretation, k is the position of the lamp-
lighter, and η = (ηi)i∈Zd is a configuration of lamps that can be on (ηi = 1)
or off (ηi = 0). Only finitely many lamps can be on. The product is given by
(η, k)(η′, k′) = (η′′, k′′) where k′′ = k + k′ (addition in Z

d ) and η′′
i = ηi + η′

i−k

(addition in Z/2Z). In other words, (Z/2Z) 
 Z
d is the semidirect product of⊕

i∈Zd (Z/2Z)i by Z
d where the action of Z

d on
⊕

i∈Zd (Z/2Z)i is by translation
of the indices. These groups have exponential volume growth.

The aim of this section is to prove the following theorem.

THEOREM 5.1. For any integer d ≥ 1 and α ∈ (0,2), we have

�̃(Z/2Z)
Zd ,ρα
(n) 	 exp

(−nd/(d+α)).
Further, for any β > α, there are constants c,C, cβ,Cβ ∈ (0,∞) such that, for all
n large enough,

c exp
(−Cnd/(d+α))≤ �(Z/2Z)
Zd ,ρα

(n) ≤ Cβ exp
(−cβnd/(d+β)).

We shall see in the proof given below that the lower bounds stated in this the-
orem follow from Theorem 3.2. The interesting part are the upper bounds. These
upper bounds are interesting because they do not follow from the results in Sec-
tions 4.1 and 4.2.

PROOF OF THEOREM 5.1. We can identify Z
d as a subgroup of (Z/2Z) 
Zd in

an obvious way, and we can also identify Z/2Z with (Z/2Z)0 in
⊕

i∈Zd (Z/2Z)i ⊂
(Z/2Z) 
Zd . Hence, any probability measure on Z/2Z or on Z

d can be interpreted
as a measure on (Z/2Z) 
Zd . Following the notation used in [21], if ν is a measure
supported on (Z/2Z)0, and μ a measure supported on Z

d , we set q = ν ∗ μ ∗ ν

in (Z/2Z) 
 Z
d . In [21], it is observed that a famous large deviation theorem, due

to Donsker and Varadhan [8] and concerning the range of certain random walks
on Z

d , implies that

q(2n)(e) 	 exp
(−nd/(d+2)),

when ν is the uniform measure on Z/2Z, and μ is any symmetric measure on Z
d

with finite generating support. By [20], this implies that

�(Z/2Z)
Zd (n) 	 exp
(−nd/(d+2)).(5.1)

Here, we are interested in determining the behavior of

�̃(Z/2Z)
Zd ,ρα
and �(Z/2Z)
Zd ,ρα

, α ∈ (0,2).
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First, consider how the results obtained so far in this paper apply in this case.
Theorem 3.2 readily gives the lower bound

�(Z/2Z)
Zd ,ρα
(n) ≥ �̃(Z/2Z)
Zd ,ρα

(n) ≥ exp
(−C(d,α)nd/(d+α)),(5.2)

because if γ = d/(d + 2), then γα/2 := γ /(γ + (α/2)(1 − γ )) = d/(d + α). We
are faced with the problem of deciding whether or not this is sharp. Can we find
measures with finite ρα-moment and whose convolution powers decay as rapidly
as permitted by this lower bound?

For this purpose, we have so far discussed two methods: (a) the use of subordi-
nation as developed in [4] and (b) direct computation based on volume estimates
(see Theorem 4.10).

The direct computation of Theorem 4.10 provides the upper bounds

�̃(Z/2Z)
Zd ,ρα
(n) ≤ exp

(−Cn1/(1+α))(5.3)

and

�(Z/2Z)
Zd ,ρα
(n) ≤ exp

(−C(β)n1/(1+β)), β > α.(5.4)

When d = 1 (and only in this case), these upper bounds show that the lower bounds
stated in (5.2) are essentially sharp. In particular, we get

exp-pow
(
(Z/2Z) 
 Z, ρα

)= 1/(1 + α), α ∈ (0,2).

For d ≥ 2, (5.3) and (5.4) fail to match (5.2) for a good reason: Theorem 4.10 is
based solely on a volume hypothesis and thus cannot provide more subtle infor-
mation that is based on the particular structure of these wreath products.

The subordination technique of [4] fails to give good upper bounds for a differ-
ent reason related to the fact that, for simple random walks on wreath products such
as (Z/2Z) 
 Zd with d > 1, the rate of escape to infinity is much faster than

√
n.

See the discussion in [4].
Thus, the two techniques used earlier in this paper to provide upper bounds

on �G,ρα and �̃G,ρα both fail to match the lower bound (5.2) when d ≥ 2. The
following argument shows that (5.2) is sharp nonetheless. For each α ∈ (0,2) let
μα be the probability measure on Z

d given by

μα(k) = c(d,α)

(1 + ‖k‖2)(d+α)/2 , k ∈ Z
d,‖k‖2 =

d∑
1

k2
i .

The theorem of Donsker and Varadhan ([8], Theorem 1) implies that, for any fixed
s and n large enough,

E(e−sD#
n) 	 exp

(−nd/(d+α)).
Here D#

n is the number of visited sites up to time n for the random walk on Z
d

driven by μα .
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For any fixed β ∈ (0,2), this, together with [21], Theorem 3.1, implies that the
measure qβ = ν ∗ μβ ∗ ν on (Z/2Z) 
 Z

d satisfies

q(2n)(e) 	 exp
(−nd/(d+β)).

It is plain that the measure qα has finite weak-ρα-moment W(ρα, qα) < ∞, and
that qβ has finite ρα-moment if and only if β > α. To check this, notice that qα

is almost entirely concentrated on Z
d inside (Z/2Z) 
 Z

d . Thus these measures
provide witnesses to the fact that

�̃(Z/2Z)
Zd ,ρα
(n) ≤ C1 exp

(−c1n
d/(d+α))

and that, for each β > α, α ∈ (0,2),

�(Z/2Z)
Zd ,ρα
(n) ≤ Cβ exp

(−cβnd/(d+β)).
These are the desired upper bounds. �

In particular it follows that

exp-pow
(
(Z/2Z) 
 Z

d, ρα

)= d

d + α
, d = 1,2, . . . , α ∈ (0,2).

It is interesting to note that the optimal measure qα that we have exhibited above
is spread out only in a very small part of the group, that is, in the directions of the
lamplighter moves Z

d .

APPENDIX: ULTRACONTRACTIVITY, FUNCTIONAL CALCULUS AND
VON NEUMANN TRACE

A.1. Spectral theory. Let T be a self-adjoint operator acting on a Hilbert
space H . We denote by ET

I its spectral projector associated with the open set
I ⊂ R, and by ET

s = ET
(−∞,s) the associated (left-continuous) spectral resolution

of T so that

T =
∫ +∞
−∞

s dET
s .

In the cases of interest to us, T is actually a bounded operator so that ET
(a,b) = 0

if max{a,−b} is larger than ‖T ‖. For any continuous function m : R → C, the
operator m(T ) with domain Df = {u ∈ H :

∫ |m(s)|2 d〈ET
s u,u〉 < ∞} is defined

by

m(T ) =
∫ +∞
−∞

m(s) dET
s ,

where this integral is obtained as the strong limit of finite Riemann sums. Further,
note that if m is real valued, then m(T ) is self-adjoint and

E
m(T )
(a,b) = ET

m−1(a,b)
.
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A.2. The von Neumann algebra V (G). We will make fundamental use of
the notion of von Neumann trace for certain operators in the von Neumann al-
gebra V (G) generated by the right translations rg :f �→ f (·g) acting on L2(G).
By construction, V (G) is equipped with a faithful semifinite normal trace τ de-
fined as follows. Let S be a nonnegative Hermitian element in V (G) [i.e., a self-
adjoint element satisfying 〈Su,u〉 ≥ 0 for every u ∈ L2(G)]. If S1/2 = Ra for some
a ∈ L2(G), set τ(S) = ‖a‖2

2. Otherwise, set τ(S) = +∞. See [7], page 97. Since
S1/2 = Ra , Ra is self-adjoint. This is equivalent to say that the function a ∈ L2(G)

satisfies a = ǎ [where ǎ(x) = ā(x−1), x ∈ G]. Hence

τ(S) =
∫
G

|a|2 dλ = a ∗ a(e).

Note that, as the convolution of two functions in L2(G), the function a ∗ a is
bounded and continuous (i.e., admits a continuous representative) and that S acts
on φ ∈ Cc(G) by Sφ = φ ∗ [a ∗ a].

Let S,T be two Hermitian nonnegative elements in V (G) such that S ≤ T .
Then τ(S) ≤ τ(T ). In particular, if T has finite trace and spectral decomposition

T =
∫ ∞

0
s dET

s ,

then ET
(s,+∞) is in V (G) and has finite trace for all s > 0 since sET

(s,+∞) ≤ T .

Note that, in general (i.e., when G is not countable), ET∞ = I does not have finite
trace.

If T is Hermitian of the form T = Ra∗ǎ , then

τ(T ) = a ∗ ǎ(e) =
∫ +∞

0
s d
[−τ
(
ET

(s,∞)

)]= ∫ +∞
0

τ
(
ET

(s,∞)

)
ds.

This follows from the well-known properties of spectral resolutions and the fact
that τ is a normal trace [this means that τ has the property that, for any positive
Hermitian T and any increasing filtering set F of positive Hermitian elements with
supremum T , supF τ(S) = τ(T )].

Strictly speaking, the trace τ is defined only on nonnegative Hermitian ele-
ments. However, the set of Hermitian nonnegative elements with finite trace is the
positive part of a two-sided ideal m of V (G), and there is a unique linear form
defined on this two-sided ideal which coincides with the trace on nonnegative
Hermitian elements. Abusing notation, we denote this extension by τ :m → R.
If a, b ∈ L2(G) and Ra,Rb ∈ V (G), then RaRb ∈ m and τ(Ra ∗ Rb) = b ∗ a(e).
See [7], Theorem 1, page 97. In particular, if φ = φ̌ ∈ L1(G)∩L2(G) and T = Rφ ,
then, for any n = 2,3, . . . , T n = Rφ(n) has finite trace and

φ(n)(e) = τ(T n).(A.1)
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A.3. Ultracontractivity. Let φ = φ̌ ∈ L1(G) ∩ L2(G) be a symmetric prob-
ability density. Let T = Rφ :f �→ f ∗ φ be the operator of right convolution by φ

acting on L2(G). This is an Hermitian element of V (G) with norm at most 1. Its
powers T n, n ≥ 2, are of finite trace and the function

n �→ τ(T n) = φ(n)(e)

is of interest to us because it quantifies the ultracontractivity of the operators T 2n,
n ≥ 1. Indeed, we have

sup
‖f ‖1≤1

{‖T 2nf ‖∞} = ‖T 2n‖1→∞ = φ(2n)(e).

We assume throughout that φ(2n)(e) → 0, which simply means that φ is not sup-
ported on a compact subgroup of G. As a consequence ‖T nf ‖∞ → 0 for any
f ∈ L2(G). In particular, there are no nontrivial functions in L2(G) such that
Tf = ±f .

Let ET
s ,EI−T

s , s ∈ R, be the left-continuous spectral resolutions of T and I −T

and note that

T n =
∫ 2

0
(1 − s)n dEI−T

s , ET
(1−b,1−a) = EI−T

(a,b), 0 ≤ a < b ≤ ∞,

with lims↘0 EI−T
s = ET[1,∞) = 0 because there are no L2(G)-solutions of T u = u.

Note also that the projection valued measure dEI−T
s could have an atom at s = 1

[corresponding to L2(G)-functions satisfying T u = 0] but that this atom is irrele-
vant to the integral formula m(T ) = ∫ 2

0 m(1− s) dEI−T
s as long as m is continuous

and satisfies m(0) = 0. Observe further that (1 − s)2EI−T
s ≤ T 2 for s ∈ [0,1] so

that EI−T
s has finite trace for all s ∈ [0,1). Similarly EI−T

(s,2) has finite trace for
s ∈ (1,2).

Using this fact we define the nondecreasing, nonnegative functions Nφ : [0,

1) → [0,+∞) by

Nφ(s) = τ(EI−T
s ) = τ

(
ET

(1−s,∞)

)
, s ∈ (0,1).(A.2)

The following lemma is proved in [4]. It indicates that the part of the spectrum of
T near −1 does not play a crucial role in estimating φ(2n)(e) [this uses the fact that
φ(k)(e) ≥ 0].

LEMMA A.1 (See, e.g., [4], Proposition 3.1). Assume that φ is a symmetric
probability density in L2(G). Then∫ 1

0
(1 − s)2n dNφ(s) ≤ φ(2n)(e) ≤ 2

∫ 1

0
(1 − s)2(n−1) dNφ(s).(A.3)
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Thanks to this Laplace transform type relation, the behavior of n �→ φ(2n)(e) as
n tends to infinity and the behavior of Nφ(s) as s tends to 0 are related to each
other. The following statements are appropriate versions of classical results. See
[2, 4, 5] for details.

For θ = 0 or +∞, we let Rα(θ) be the set of regularly varying functions of
index α at θ . If � is a slowly varying function at infinity, we let �# be its de Bruijn
conjugate. See [5], Theorem 1.5.13. For simple applications, we observe that if
�(x) ∼ �(x�(x)) at infinity, then �# ∼ 1/�. For instance, this applies to �(x) =
(logx)β , β ∈ R. See [5], Corollary 2.3.4. In the following result, ϕ and N are
abstract functions but, applications we have in mind, ϕ(k) = φ(2k)(e) and N = Nφ

as in Lemma A.1.

PROPOSITION A.2. Let the nondecreasing function N : (0,1) → (0,+∞)

and nonincreasing function ϕ : {1,2, . . .} → (0,+∞) be related by

∀k > k0 c

∫ 1

0
(1 − s)k dN(s) ≤ ϕ(k) ≤ C

∫ 1

0
(1 − s)k−k0 dN(s)

for some k0, c,C ∈ (0,∞).

(1) Fix α > 0, and let � be a slowly varying function at infinity. There exists
a c1 ∈ (0,1) such that ϕ(k)kα�(k) ≥ c1 [resp., ϕ(k)kα�(k) ≤ c1] for all k large
enough if and only if there exists a constant c2 ∈ (0,1) such that N(s)s−α�(1/s) ≥
c2 [resp., N(s)s−α�(1/s) ≤ c2] for all s > 0 small enough.

(2) Fix α ∈ (0,1), and let � be a slowly varying function at infinity. There exists
a constant c1 ∈ (0,1) such that

[− logϕ(k)][kα/�(k1−α)]−1 ≥ c1 (resp., ≤c1) for large enough k,

if and only if there exists a constant c2 ∈ (0,1) such that

[− logN(s)][sα�#(1/s)]1/(1−α) ≥ c2 (resp., ≤c2)

for small enough s > 0.

(3) Let M , π and t �→ t/π(t) be continuous increasing functions on (0,∞)

which tend to infinity at infinity and such that

π−1(t) 	 tM(t) at infinity.(A.4)

The following two properties are equivalent:

(a) there exists c1 ∈ (0,∞) such that

− logN(s) ≥ c1M(c1/s) [resp., − logN(s) ≤ c1M(c1/s)]

for all s small enough;
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(b) there exists c2 ∈ (0,∞) such that

− logϕ(n) ≥ c2n/π(n/c2) [resp., − logϕ(n) ≤ c2n/π(n/c2)]

for all n large enough.

EXAMPLE A.1. The reason behind considering these elaborate statements is
the nature of the known results concerning φ(2n)(e) when φ is symmetric com-
pactly supported. Here is a small selection of specific examples of interest.

(1) The properties

φ(2n)(e) 	 n−D/2 at infinity

and

Nφ(s) 	 sD/2 at zero

are equivalent. These properties hold when φ is compactly supported, and G has
polynomial volume growth of degree D.

(2) The properties

φ(2n)(e) 	 exp(−n1/3) at infinity

and

Nφ(s) 	 exp(−1/s1/2) at zero

are equivalent. These properties hold whenever φ is compactly supported with
generating support and G is virtually polycyclic with exponential volume growth.

(3) The properties

φ(2n)(e) 	 exp
(−nd/(d+2)[logn]2/(d+2)) at infinity

and

Nφ(s) 	 exp(−s−d/2[log 1/s]) at zero

are equivalent. They hold, for instance, when G = Z 
 Z
d (the lamplighter group

with street map Z
d and lamps in Z).

See [1, 2, 9, 10, 21, 31]. Remarkably enough, the first two types of behaviors are
the only possibilities for unimodular amenable Lie groups and for finitely gener-
ated amenable discrete subgroups of Lie groups; see, for example, [26] and the
references therein.
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A.4. Functional calculus. Let T = Rφ :f �→ f ∗φ be a convolution operator
with a symmetric probability density φ ∈ L2(G). Consider a function ψ : [0,2] →
[0,2] that is increasing, continuous with continuous derivative and which satisfies
ψ(0) = 0, ψ(1) = 1, ψ(2) < 2. With such a function we associate the operator

ψ(I − T ) =
∫ 2

0
ψ(s) dEI−T

s

and

Tψ = I − ψ(I − T ), T = Rφ.(A.5)

LEMMA A.3. Let φ ∈ L2(G) be a symmetric probability density. Let ψ : [0,

2] → [0,2] satisfies ψ(0) = 0, ψ(1) = 1, ψ(2) < 2 and assume that ψ is in-
creasing and continuous with continuous derivative. Then Tψ defined at (A.5)
is in V (G), and T n

ψ has finite trace for all n ≥ 2. Further, if φ = ξ ∗ ξ with

ξ = ξ̌ ∈ L2(G) ∩ L1(G), then T = Rφψ with φψ = (φψ )̌ ∈ L2(G) and Rφψ

bounded on L2(G).

PROOF. Note that the operators ψ(I − T ) and Tψ belong to the von Neu-
mann algebra V (G). Further, from the elementary fact that |1 − ψ(s)| ≤ C|1 − s|
on [0,2], for some C ∈ (0,∞), we deduce that T 2k

ψ is a Hermitian nonnegative
element in V (G) which is dominated by

CR2
φ = C2

∫ 2

0
|1 − s|2 dEI−T

s .

This last Hermitian element has finite trace equal to Cτ(R2
φ) = Cφ(2)(e). Hence,

T 2k
ψ has finite trace for n ≥ 2. This implies that T

(2k+1)
ψ has (extended) finite trace.

If φ = ξ ∗ ξ , then T is Hermitian nonnegative and of finite trace. Further Tψ

is also Hermitian nonnegative and dominated by CT . Hence Tψ = R2
a with a ∈

L2(G), Ra bounded on L2(G) and ǎ = a. In particular, Tψ = Rφψ with φψ = a ∗
a ∈ L2(G). This function is not a probability density, in general. It is a probability
density when ψ is a Bernstein function; see, for example, [4], Section 3.4, and [17],
Section 3.9. �

LEMMA A.4. Let φ ∈ L2(G) be a symmetric probability density such that
limn→∞ φ(2n)(e) = 0. Let ψ : [0,2] → [0,2] be nonnegative increasing, continu-
ous with continuous derivative and such that ψ(0) = 0, ψ(1) = 1, ψ(2) < 2. Then
the operator Tψ ∈ V (G) defined at (A.5) is such that T n

ψ has finite trace and,
setting

N
ψ
φ = Nφ ◦ ψ−1,(A.6)

we have

τ(T n
ψ) =

∫ 1

0
(1 − s)n dN

ψ
φ (s) + O(an), a = ψ(2) − 1 ∈ [0,1).(A.7)
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REMARK A.5. The hypothesis ψ(2) < 2 insures that the contribution coming
from the spectrum of I − Rφ that lies in the interval (1,2) is exponentially small.
If Rφ is nonnegative [as a Hermitian operator on L2(G)], the value of ψ in the
interval (1,2) becomes completely irrelevant and

τ(T n
ψ) =

∫ 1

0
(1 − s)n dN

ψ
φ (s).

PROOF OF LEMMA A.4. Since R2
φ = ∫ 2

0 |1 − ψ(s)|2 dEI−T
s has finite trace

equal to φ(2)(e), the the nondecreasing functions Nφ(s) = τ(EI−T
s ) [see defi-

nition (A.2)] and N
�
φ(s) = τ(EI−T

(2−s,2)) are finite for all s ∈ (0,1). Further, since

φ(2n)(e) → 0, we have Nφ(0) = 0 [i.e., there are no L2(G) solutions to Tf = f ].
Hence,

τ(T n
ψ) =

∫ 1

0

(
1 − ψ(s)

)n
dNφ(s) +

∫ 1

0

(
1 − ψ(2 − s)

)n
dN

�
φ(s).

The second integral is bounded by∣∣∣∣∫ 1

0

(
1 − ψ(2 − s)

)n
dN

�
φ(s)

∣∣∣∣≤ ∫ 1

0
|1 − ψ(2 − s)|2 dN

�
φ(s)|ψ(2) − 1|n−2.

Since T 2 = ∫ 2
0 |1 − ψ(s)|2 dEI−T

s has finite trace φ(2)(e) and |1 − ψ(2 − s)| ≤
C|1 − s|, we obtain that∫ 1

0
|1 − ψ(2 − s)|2 dN

�
φ(s) ≤ Cφ(2)(e).

This yields the desired estimate since, by hypothesis, |ψ(2) − 1| < 1. �

To illustrate this lemma, we treat the following simple test case.

THEOREM A.6. Let φ ∈ L2(G) be a symmetric positive probability density
such that

φ(2n)(e) 	 n−D/2 at infinity.

Let ψ : [0,2] → [0,2] be nonnegative increasing, continuous with continuous
derivative and such that ψ(0) = 0, ψ(1) = 1, ψ(2) < 2. Assume further that
ψ(s) 	 (s/�(1/s))α at 0, where α ∈ (0,∞) and � a positive function, slowly vary-
ing at infinity with de Bruijn conjugate �#. Then

τ(T n
ψ) 	 [n1/α�#(n1/α)]−D/2 at infinity.

PROOF. This follows easily from Proposition A.2 and Lemma A.4, together
with [5], Proposition 1.5.15. �

Similar considerations, together with the arguments developed in [2], Lem-
ma 2.3, Proposition 2.5, yield the following result which is most useful when
dealing with super-polynomial behaviors.
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THEOREM A.7. Let φ ∈ L2(G) be a symmetric positive probability density.
Let π : (0,∞) → (0,∞) be such that π and t �→ t/π(t) are continuous increasing
functions which tend to infinity at infinity. Let ψ : [0,2] → [0,2] be nonnegative in-
creasing, continuous with continuous derivative and such that ψ(0) = 0, ψ(1) = 1,
ψ(2) < 2. Set

π−1
ψ (t) = tψ−1(1/t)π−1(1/ψ−1(1/t)

)
.(A.8)

(1) Assume that there exists c1 ∈ (0,∞) such that, for n large enough,

− logφ(2n)(e) ≥ c1n/π(n).

Then there exists c2 ∈ (0,∞) such that, for n large enough,

− log τ(T n
ψ) ≥ c2n/πψ(c2n).

(2) Assume that there exists C1 ∈ (0,∞) such that, for n large enough,

− logφ(2n)(e) ≤ C1n/π(n).

Then there exists C2 ∈ (0,∞) such that, for n large enough,

− log τ(T n
ψ) ≤ C2n/πψ(n/C2).

PROOF. Let us observe that for a bijection π , the two properties (a) π and
t �→ t/π(t) are increasing, and (b) t �→ π−1(t)/t is increasing, are equivalent.
Further, given that ψ is positive increasing, property (a) for π implies (b) for π

which implies (b) for πψ which finally implies (a) for πψ . The result now easily
follows from Proposition A.2 and Lemma A.4. �

It is useful to illustrate Theorem A.7 with some concrete examples. Note that
Theorem A.7 allows us to treat upper and lower bounds separately. For simplicity,
we write down the examples in the context of the rough equivalence 	.

EXAMPLE A.2. Assume that − logφ(2n)(e) 	 logn and that ψ(t) 	 1/�(1/t)

where � is an increasing slowly varying function tending to infinity at infinity and
such that

log�−1(t) 	 tγ ω(t)1+γ ,

where γ ∈ [0,∞) and ω is a slowly varying function at infinity with de Bruijn
conjugate ω#. Then

− log τ(T n
ψ) 	 nγ/(1+γ )/ω#(n1/(1+γ )).

EXAMPLE A.3. Assume that

− logφ(2n)(e) 	 nγ , γ ∈ (0,1),
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and that

ψ(t) 	 tα/�(1/t), α ∈ [0,∞),

where � is an increasing slowly varying function at infinity such that, for every
a > 0, �(ta) 	 �(t). Then

− log τ(T n
ψ) 	 [n/�(n)]γα , γα = γ

γ + α(1 − γ )
.

EXAMPLE A.4. Assume that

− logφ(2n)(e) ≤ n/π(n)

with π positive increasing.

• Assume that π(t) = t1−γ �(t) with γ ∈ (0,1] and � slowly varying and satisfying
�(ta) 	 �(t) for all a > 0. Then, for any α ∈ (0,1) and ψ(t) = tα , we have

− log τ(T n
ψ) ≤ [n/�(n)α/γ ]γα , γα = γ

γ + α(1 − γ )
.

The cases γ = 1 and γ ∈ (0,1) should be treated separately using slightly dif-
ferent arguments. See [4], Theorem 3.4, for a similar computation.

• Assume that π is regularly varying of index less than 1. Then for any positive
increasing slowly varying �, ψ = 1/�(1/t), and any ε ∈ (0,1), we have (see [4],
Theorem 3.4, for a similar computation)

− log τ(T n
ψ) ≤ Cεn/�(π(Cεn

ε)).

A.5. Trace and comparison. Let T1, T2 be self-adjoint contractions that be-
long to a von Neumann algebra V equipped with a faithful semifinite normal
trace τ . For i = 1,2, let E

I−Ti
s , s ∈ [0,∞), be the (left-continuous) spectral pro-

jectors of I − Ti , so that Ti = ∫∞
0 (1 − s) dE

I−Ti
s . The following result is crucial

for our purpose. It is the von Neumann version of a classical finite-dimensional
spectral comparison theorem. We set

Ni(s) = τ(EI−T i
s ), s > 0, i = 1,2.

Note that it can well be the case that Ni(s) = ∞.

PROPOSITION A.8. Referring to the above setting and notation, let T1, T2 be
self-adjoint contractions that belong to the von Neumann algebra V equipped with
a faithful semifinite normal trace τ . Assume that

(I − T1) ≤ C(I − T2)

and that T2 is nonnegative. Then we have

∀s ∈ [0,1) N2(s) ≤ N1(Cs).(A.9)
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PROOF. Recall that, for any bounded self-adjoint operator S ∈ V , ES
(a,b)

denotes the spectral projector associated to S and the interval (a, b). By con-
vention, the left-continuous spectral resolution of S is ES

s = ES
(−∞,s) so that

S = ∫+∞
−∞ s dES

s and ES
(a,b) = ∫(a,b) dES

s . According to [6], Lemma 3, if S1, S2

are nonnegative self-adjoint operators such that S2 ≤ S1 then (allowing for the
possibility that the traces in question are infinite)

∀s > 0 τ
(
E

S2
(s,∞)

)≤ τ
(
E

S1
(s,∞)

)
.(A.10)

By hypothesis, we have I − T1 ≤ C(I − T2), which we write

T2 ≤ I − C−1(I − T1).

Applying (A.10) to S2 = T2, S1 = I − C−1(I − T1) (T2 is nonnegative by hypoth-
esis and this implies that S2, S1 are also nonnegative) and using the simple fact
that

E
I−C−1(I−T1)
(s,∞) = E

T1
(1−C(1−s),∞),

we obtain

∀s > 0 τ
(
E

T2
(s,∞)

)≤ τ
(
E

T1
(1−C(1−s),∞)

)
.

Translating this inequality in terms of the spectral functions

Ni(s) = τ
(
E

I−Ti

(−∞,s)

)= τ
(
E

Ti

(1−s,∞)

)
,

we obtain

∀s ∈ [0,1) N2(s) ≤ N1(Cs). �

COROLLARY A.9. Referring to the above setting and notation, assume that
T1, T2 are nonnegative and that there exist an integer k0 and a constant C ≥ 1 such
that

τ(T
k0
1 ), τ (T

k0
2 ) < ∞ and I − T1 ≤ C(I − T2).

Then, for all n ≥ k0,

τ(T n
2 ) ≤ 2C2τ

(
T

�n/2C�
1

)+ 2e−(n/16C)+k0/8(τ(T
k0
2 ) + 2C2τ(T

k0
1 )
)
.

PROOF. We have

τ(T n
i ) =

∫ 1

0
(1 − s)n dNi(s)

= n

∫ ε

0
(1 − s)n−1Ni(s) ds + (1 − ε)nNi(ε)

+
∫ 1

ε
(1 − s)n dNi(s).
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Since (1 − s)k0Ni(s) ≤ τ(T
k0
i ) and

∫ 1
0 (1 − s)k0 dNi(s) = τ(T

k0
i ), we obtain that∣∣∣∣τ(T n

i ) − n

∫ ε

0
(1 − s)n−1Ni(s) ds

∣∣∣∣≤ 2(1 − ε)n−k0τ(T
k0
i )

for any real n ≥ k0. Now, set c = 1/8C, and use Proposition A.8 and the elemen-
tary inequality (1 − s) ≤ (1 − Cs)1/2C , s ∈ [0, c], to write

n

∫ c

0
(1 − s)n−1N2(s) ds ≤ n

∫ c

0
(1 − Cs)(n−1)/2CN1(Cs) ds

≤ Cn

∫ 1/8

0
(1 − s)(n−1)/2CN1(s) ds

≤ 2C2(n/2C)

∫ 1/8

0
(1 − s)(n/2C)−1N1(s) ds.

It thus follows that

τ(T n
2 ) ≤ 2C2τ(T

n/2C
1 ) + 2

(
1 − 1

8C

)n−k0

τ(T
k0
2 ) + 4C2

(
1 − 1

8

)(n/2C)−k0

τ(T
k0
1 ).

This yields the desired result. �

In applications of Corollary A.9, one may want to relax the hypothesis that
T1, T2 are nonnegative. This is possible thanks to the following result.

COROLLARY A.10. Referring to the above setting and notation, assume that
there exist an integer k0 and a constant C ≥ 1 such that

τ(T
k0

1 ), τ (T
k0
2 ) < ∞ and I − T1 ≤ C(I − T2).

Assume further that τ(T k
2 ) ≥ 0 for all k ≥ k0. Then there are constants C1,C2

depending only on upper bounds on C,τ(T
k0
1 ), τ (T

k0
2 ) and such that

τ(T 2n
2 ) ≤ C1

(
τ
(
T

2�n/C2�
1

)+ e−n/C2
)

for all n large enough.

PROOF. Set S = 1
2(T 2

2 + T 3
2 ) = 1

2T 2
2 (T2 + I ). This is a Hermitian nonnega-

tive contraction. Further τ(S2n) = 2−2n∑2n
0
(2n

i

)
τ(T 6n−i

2 ). Since � �→ τ(T 2�
2 ) is

decreasing (e.g., by spectral theory) and τ(T 2�+1
2 ) ≥ 0 (by hypothesis), we have

τ(S2n) ≥ 1

22n

∑
k∈2N∩[2n,6n]

(
2n

k

)
τ(T k

2 ) ≥ 1

2
τ(T 6n

2 ).

This shows that it suffices to estimate τ(S2n) by τ(T
2�cn�
1 ) for some c > 0. This

will follow from Corollary A.9 applied to the Hermitian nonnegative contractions
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T = T 2
1 , S = 1

2(T 3
2 + T 2

2 ), if we can prove that I − T ≤ 4C(I − S). This last
inequality follows immediately from the hypothesis I − T1 ≤ C(I − T2) because
I − T = I − T 2

1 ≤ 2(I − T1) and I − T2 ≤ 2(I − S). The last two inequalities
follows from spectral theory and the elementary inequalities 1 − s2 ≤ 2(1 − s) and
1 − s ≤ 2 − s3 − s2, s ∈ [−1,1]. �
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