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MEASURING REPRODUCIBILITY OF HIGH-THROUGHPUT
EXPERIMENTS1
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Reproducibility is essential to reliable scientific discovery in high-
throughput experiments. In this work we propose a unified approach to mea-
sure the reproducibility of findings identified from replicate experiments and
identify putative discoveries using reproducibility. Unlike the usual scalar
measures of reproducibility, our approach creates a curve, which quantita-
tively assesses when the findings are no longer consistent across replicates.
Our curve is fitted by a copula mixture model, from which we derive a quanti-
tative reproducibility score, which we call the “irreproducible discovery rate”
(IDR) analogous to the FDR. This score can be computed at each set of paired
replicate ranks and permits the principled setting of thresholds both for as-
sessing reproducibility and combining replicates.

Since our approach permits an arbitrary scale for each replicate, it pro-
vides useful descriptive measures in a wide variety of situations to be ex-
plored. We study the performance of the algorithm using simulations and
give a heuristic analysis of its theoretical properties. We demonstrate the ef-
fectiveness of our method in a ChIP-seq experiment.

1. Introduction. High-throughput profiling technologies play an indispens-
able role in modern biology. By studying a large number of candidates in a sin-
gle experiment and assessing their significance using data analytical tools, high-
throughput technologies allow researchers to effectively select potential targets
for further studies. Despite their ubiquitous presence in biological research, it is
known that any single experimental output from a high-throughput assay is often
subject to substantial variability. Reproducibility of high-throughput assays, such
as the level of agreement between results from replicate experiments across (bio-
logical or technical) replicate samples, test sites or experimental or data analytical
platforms, is a constant concern in their scientific applications [e.g., MAQC con-
sortium (2006) in microarray experiments, Park (2009) in ChIP-seq technology].
Metrics that objectively assess the reproducibility of high-thoughput assays are
important for producing reliable scientific discoveries and monitoring the perfor-
mances of data generating procedures.

An important criterion for assessing reproducibility of results from high-
throughput experiments is how reproducibly top ranked signals are reported in
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replicate experiments. These signals and their significance scores, often presented
as the primary results to be accessed by downstream steps, are critical for prioritiz-
ing follow-up studies. A common approach to assess this reproducibility is to com-
pute the Spearman’s pairwise rank correlation coefficient between the significance
scores for signals that pass a prespecified significance threshold on each replicate
[see MAQC consortium (2006) and Kuo et al. (2006) for examples in microarray
studies]. However, the Spearman’s correlation coefficient actually is not entirely
suitable for measuring the reproducibility between two rankings in this type of
application. First, this summary depends on the choice of significance thresholds
and may render false assessments that reflect the effect of thresholds rather than the
data generating procedure to be evaluated. For instance, with everything else being
equal, stringent thresholds generally produce higher rank correlations than relaxed
thresholds when applied to the same data. Although standardizing thresholds in
principle can remove this confounding effect, calibration of scoring systems across
replicate samples or different methods is challenging in practice, especially when
the scores or their scales are incomparable on replicate outputs. Though this diffi-
culty seemingly is associated only with heuristics-based scores, indeed, it is also
present for probabilistic-based scores, such as p-values, if the probabilistic model
is ill-defined. For example, it has been reported in large-scale systematic analyses
that strict reliance on p-values in reporting differentially expressed genes causes an
apparent lack of inter-platform reproducibility in microarray experiments [MAQC
consortium (2006)]. Second, the rank correlation treats all ranks equally, though
the differences in the top ranks seem to be more critical for judging the repro-
ducibility of findings from high-throughput experiments. Alternative measures of
correlation that give more importance to higher ranks than lower ones, for instance,
by weighing the difference of ranks differently, have been developed in more gen-
eral settings [e.g., Blest (2000); Genest and Plante (2003); da Costa and Soares
(2005)] and applied to this application [see Boulesteix and Slawski (2009) for a
review]. However, all these measures are also subject to prespecified thresholds
and raise the question of how to select the optimal weighing scheme.

In this work we take an alternative approach to measure the reproducibility of
results in replicate experiments. Instead of depending on a prespecified thresh-
old, we describe reproducibility as the extent to which the ranks of the signals
are no longer consistent across replicates in decreasing significance. We propose
a copula-based graphical tool to visualize the loss of consistency and localize the
possible breakdown of consistency empirically. We further quantify reproducibil-
ity by classifying signals into a reproducible and an irreproducible group, using a
copula mixture model. By jointly modeling the significance of scores on individual
replicates and their consistency between replicates, our model assigns each signal
a reproducibility index, which estimates its probability to be reproducible. Based
on this index, we then define the irreproducible discovery rate (IDR) and a selec-
tion procedure, in a fashion analogous to their counterparts in multiple testing, to
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rank and select signals. As we will illustrate, the selection by this reproducibility
criterion provides the potential for more accurate classification. The overall re-
producibility of the replicates is described using IDR as the average amount of
irreproducibility in the signals selected.

The proposed approach, indeed, is a general method that can be applied to any
ranking systems that produce scores without ties, though we discuss it in the con-
text of high-throughput experiments. Because our copula-based approach does not
make any parametric assumptions on the marginal distributions of scores, it is
applicable to both probabilistic- and heuristic-based scores. When a threshold is
difficult to determine in a scoring system, for example, heuristic-based scores, it
provides a reproducibility-based criterion for setting selection thresholds.

In the next section we present the proposed graphical tool (Section 2.1), the cop-
ula mixture model and its estimation procedure (Section 2.2), and the reproducibil-
ity criterion (Section 2.3). In Section 3 we use simulations to evaluate the perfor-
mance of our model, and compare with some existing methods. In Section 4 we
apply our method to a data set that motivated this work. The data set was generated
by the ENCODE consortium [ENCODE Project Consortium (2004)] from a ChIP-
seq assay, a high-throughput technology for studying protein-binding regions on
the genome. The primary interest is to assess the reproducibility of several com-
monly used and publicly available algorithms for identifying the protein-binding
regions in ChIP-seq data. Using this data, we compare the reproducibility of these
algorithms in replicate experiments, infer the reliability of signals identified by
each algorithm, and demonstrate how to use our method to identify suboptimal re-
sults. Section 5 is a general discussion. Finally, we present a heuristic justification
of our algorithm on optimality grounds in the supplementary materials [Li et al.
(2011)].

2. Statistical methods. The data that we consider consist of a large number of
putative signals measured on very few replicates of the same underlying stochastic
process, for example, protein binding sites identified on the genomes of biological
replicates in ChIP-seq experiments. We assume that each putative signal has been
assigned a score that relates to the strength of the evidence for the signal to be
real on the corresponding replicate by some data analysis method. The score can
be either heuristic based (e.g., fold enrichment) or probabilistic based (e.g., p-
value). We further assume that all the signals are assigned distinct significance
scores and that the significance scores reasonably represent the relative ranking
of signals. However, the distribution and the scale of the scores are unknown and
can vary on different replicates. We assume without loss of generality that high
scores represent strong evidence of being genuine signals and are ranked high. By
convention, we take the “highest” rank to be 1 and so on. We shall use the scores
as our data.

We assume n putative signals are measured and reported on each replicate. Then
the data consist of n signals on each of the m replicates, with the corresponding
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vector of scores for signal i being (xi,1, . . . , xi,m). Here xi,j is a scalar score for the
signal on replicate j . Our goal is to measure the reproducibility of scores across
replicates and select reliable signals by considering information on the replicates
jointly. In what follows, we focus on the case of two replicates (i.e., m = 2), al-
though the methods in this paper can be extended to the case with more replicates
(see supplementary materials [Li et al. (2011)]).

If replicates measure the same underlying stochastic process, then for a rea-
sonable scoring system, the significance scores of genuine signals are expected to
be ranked not only higher but also more consistently on the replicates than those
of spurious signals. When ranking signals by their significance scores, a (high)
positive association is expected between the ranks of scores for genuine signals.
A degradation or a breakdown of consistency between ranks may be observed
when getting into the noise level. This change of association provides an internal
indicator of the transition from real signal to noise. We will use this information in
measuring the reproducibility of signals.

In this section we first present a graphical tool (Section 2.1) for visualizing the
change of association and localizing the possible breakdown of association, em-
pirically without model assumptions. We then present a model-based approach
(Section 2.2), which quantifies the heterogeneity of association and leads to a re-
producibility criterion for threshold selection.

2.1. Displaying the change of association. As we mentioned, the bivariate as-
sociation between the significance scores is expected to be positive for significant
signals, then transits to zero when getting into noise level. By visualizing how
association changes in the decreasing order of significance, one may localize the
transition of association and describe reproducibility in terms of how soon con-
sistency breaks down and how much empirical consistency departs from perfect
association before the breakdown.

Rank-based graphs are useful tools for displaying bivariate dependence struc-
ture, because they are invariant with respect to monotone transformations of the
variables and are thus scale free. Earlier papers have proposed rank-based graph-
ical tools, such as the Chi-plot [Fisher and Switzer (1985, 2001)] and the Kendall
plot [Genest and Boies (2003)], for visualizing the presence of association in sam-
ples from continuous bivariate distributions. Related to nonparametric tests of in-
dependence, these graphs primarily are designed for detecting bivariate depen-
dence by representing the presence of association as departures from the pattern
under independence. The type and the level of simple bivariate association may
be inferred by comparing the patterns of dependence observed in these plots with
the prototypical patterns in Fisher and Switzer (1985, 2001), Genest and Boies
(2003). However, these graphs are less informative, when heterogeneity of associ-
ation, such as the one described here, is present. (See Figure 2 in Section 2.1.2 for
an illustration on a real data set with mixed populations.)

We now present our rank-based graph, which we refer to as a correspondence
curve, intended to explicitly display the aforementioned change of association.
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2.1.1. Correspondence curves. Let (X1,1,X1,2), . . . , (Xn,1,Xn,2) be a sample
of scores of n signals on a pair of replicates. Define

�n(t, v) = 1

n

n∑
i=1

1
(
Xi,1 > x(�(1−t)n�),1,Xi,2 > x(�(1−v)n�),2

)
,(2.1)

0 < t ≤ 1,0 < v ≤ 1,

where x(�(1−t)n�),1 and x(�(1−v)n�),2 denote the order statistics of X1 and X2, re-
spectively. �n(t, v) essentially describes the proportion of the pairs that are ranked
both on the upper t% of X1 and on the upper v% of X2, that is, the intersection
of upper ranked identifications. As consistency usually is deemed a symmetric
notion, we will just focus on the special case of t = v and use the shorthand
notation �n(t) in what follows. In fact, �n(t, v) is an empirical survival copula
[Nelson (1999)], and �n(t) is the diagonal section of �n(t, v) [Nelson (1999)].
(See Section 2.2.1 for a brief introduction of copulas.) Define the population ver-
sion �(t) ≡ limn �n(t). Then �(t) and its derivative � ′(t), which represent the
change of consistency, have the following properties. (See supplementary materi-
als [Li et al. (2011)] for derivation.)

Let R(Xi,1) and R(Xi,2) be the ranks of Xi,1 and Xi,2, respectively.

(1) If R(Xi,1) = R(Xi,2) for Xi,j ∈ (F−1
j (1 − t),F−1

j (1 − t0)], j = 1,2, with
0 ≤ t0 ≤ t ≤ 1, �(t) = �(t0) + t − t0 and � ′(t) = 1.

(2) If R(Xi,1) ⊥ R(Xi,2) for Xi,j ∈ (F−1
j (1 − t),F−1

j (1)], j = 1,2, with 0 ≤
t ≤ 1, �(t) = t2 and � ′(t) = 2t .

(3) If R(Xi,1) = R(Xi,2) for Xi,j ∈ (F−1
j (1 − t0),F

−1
j (1)] and R(X1) ⊥

R(X2) for Xi,j ∈ (F−1
j (0),F−1

j (1 − t0)], j = 1,2, with 0 ≤ t0 ≤ 1, then for

t0 ≤ t ≤ 1, �(t) = t2−2t t0+t0
1−t0

and � ′(t) = 2(t−t0)
1−t0

.

The last case describes an idealized situation in our applications, where all the
genuine signals are ranked higher than any spurious signals, and the ranks on the
replicates are perfectly correlated for genuine signals but completely independent
for spurious signals. The same properties are approximately followed in the corre-
sponding sample version �n and � ′

n with finite differences replacing derivatives.
To visualize the change of consistency with the decrease of significance, a curve

can be constructed by plotting the pairs (t,�n(t)) [or (t,� ′
n(t))] for 0 ≤ t ≤ 1. The

resulting graphs, which we will refer to as a correspondence curve (or a change
of correspondence curve, resp.), depend on Xi,1 and Xi,2 only through their ranks,
and are invariant to both location and scale transformation on Xi,1 and Xi,2. Corre-
sponding to the three special cases described earlier, the curves have the following
patterns:

(1) When R(Xi,1) and R(Xi,2) are perfectly correlated for i = 1, . . . , n, all
points on the curve of �n will fall on a straight line of slope 1, and all points
on the curve of � ′

n will fall on a straight line with slope 0.
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(2) When R(Xi,1) and R(Xi,2) are independent for i = 1, . . . , n, all points on
the curve of �n will fall on a parabola t2, and all points on the curve of � ′

n fall on
a straight line of slope of 2t .

(3) When R(Xi,1) and R(Xi,2) are perfectly correlated for the top t0n observa-
tions and independent for the remaining (1− t0)n, top t0n points fall into a straight
line of slope 1 on the curve of �n and slope 0 on the curve of � ′

n, and the rest

(1 − t0)n points fall into a parabola �n(t) = t2−2t t0+t0
1−t0

(t > t0) on the curve of �n

and a straight line of slope 2(t−t0)
1−t0

on the curve of � ′
n.

These properties show that the level of positive association and the possible
change of association can be read off these types of curves. For the curve of �n,
strong association translates into a nearly straight line of slope 1, and lack of as-
sociation shows as departures from the diagonal line, such as curvature bending
toward the x-axis [i.e., �n(t) < t]; if almost no association is present, the curve
shows a parabolic shape. Similarly, for the curve of � ′

n, strong association trans-
lates into a nearly straight line of slope 0, and lack of association shows as a line
with a positive slope. The transition of the shape of the curves, if present, indi-
cates the breakdown of consistency, which provides guidance on when the signals
become spurious.

2.1.2. Illustration of the correspondence curves. We first demonstrate the
curves using an idealized case (Figure 1), where R(X) and R(Y ) agree perfectly
for the top 50% of observations and are independent for the remaining 50% of ob-
servations. The curves display the pattern described in case 3 above. The transition
of the shape of the curves occurs at 50%, which corresponds to the occurence of the
breakdown of consistency. Transition can be seen more visibly on the curve of � ′

n

by the gap between the disjoint lines with 0 and positive slopes, which makes � ′
n a

FIG. 1. An illustration of the correspondence profile in an idealized case, where top 50% are gen-
uine signals and bottom 50% are noise. In this case, all signals are ranked higher than noise; two
rank lists have perfect correspondence for signals and no correspondence for noise. (a) Correspon-
dence curve. (b) Change of correspondence curve.
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better choice for inspecting and localizing the transition than �n, especially when
the transition is less sharp. More simulated examples are presented in Section 3 to
illustrate the curves in the presence and absence of the transition of association in
more realistic settings.

We now compare the � ′
n plot with the Chi-plot and the K-plot using a real ex-

ample considered in Kallenberg and Ledwina (1999), Fisher and Switzer (2001),
Genest and Boies (2003). This data set consists of 28 measurements of size of the
annual spawning stock of salmon and corresponding production of new catchable-
sized fish in the Skeena River. It was speculated by Fisher and Switzer (2001)
to contain a mixed populations with heterogeneous association. Though the dis-
similarity of Chi-plot or K-plot to their prototypical plots [cf. Fisher and Switzer
(2001); Genest and Boies (2003)] suggests the data may involve more than sim-
ple monotone association [Fisher and Switzer (2001); Genest and Boies (2003)],
neither of these plots manifest heterogeneity of association. In the � ′

n curve [Fig-
ure 2(d)], the characteristic pattern of transition is observed at about t = 0.5, which
indicates that the data is likely to consist of two groups, with roughly the top 50%
from a strongly associated group and the bottom 50% from a weakly associated
group. It agrees with the speculation in Fisher and Switzer (2001).

FIG. 2. Rank scatterplot (a), Chi-plot (b), K-plot (c) and the change of correspondence curve (d)
for salmon data, which consists of 28 measurements of size of the annual spawning stock of salmon
and corresponding production of new catchable-sized fish in the Skeena River. The curve of � ′

n is
produced by taking derivative on the spline that fits �n with df = 6.4.
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2.2. Inferring the reproducibility of signals. In this section we present a sta-
tistical model that quantifies the dependence structure and infers the reliability of
signals. Throughout this section, we will suppose, for simplicity, that we are deal-
ing with a sample of i.i.d. observations from a population. Though this is in fact
unrealistic in many applications, in particular, for the signals from genome-wide
profiling (e.g., ChIP-seq experiments), where observations are often dependent,
the descriptive and graphical value of our method remains, as we are concerned
with first order effects.

In general, genuine signals tend to be more reproducible and score higher than
spurious ones. The scores on replicates may be viewed as a mixture of two groups,
which differ in both the strength of association and the level of significance. Re-
call that in these applications, the distributions and the scales of scores are usually
unknown and may vary across data sets. To model such data, a semiparametric
copula model is appropriate, in which the associations among the variables are
represented by a simple parametric model but the marginal distributions are esti-
mated nonparametrically using their ranks to permit arbitrary scales. Though using
ranks, instead of the raw values of scores, generally causes some loss of informa-
tion, this loss is known to be asymptotically negligible [Lehmann (2006)]. In view
of the heterogeneous association in the genuine and spurious signals, we further
model the heterogeneity of the dependence structure in the copula model using a
mixture model framework.

Before proceeding to our model, we first provide a brief review of copula mod-
els, and refer to Joe (1997) and Nelson (1999) for a modern treatment of copula
theory.

2.2.1. Copulas. The multivariate function C = C(u1, . . . , up) is called a cop-
ula if it is a continuous distribution function and each marginal is a uniform dis-
tribution function on [0,1]. That is, C : [0,1]p → [0,1], with C(u) = P(U1 ≤
u1, . . . ,Up ≤ up), in which each Uj ∼ Unif[0,1] and u = (u1, . . . , up). By Sklar’s
theorem [Sklar (1959)], every continuous multivariate probability distribution can
be represented by its univariate marginal distributions and a copula, described us-
ing a bivariate case as follows.

Let X1 and X2 be two random variables with continuous CDFs F1 and F2. The
copula C of X1 and X2 can be found by making the marginal probability integral
transforms on X1 and X2 so that

C(u1, u2) = F(F−1
1 (u1),F

−1
2 (u2)), u1, u2 ∈ [0,1],(2.2)

where F is the joint distribution function of (X1,X2), F1 and F2 are the marginal
distribution functions of X1 and X2, respectively, and F−1

1 and F−1
2 are the right-

continuous inverses of F1 and F2, defined as F−1
j (u) = inf{z :Fj (z) ≥ u}. That

is, the copula is the joint distribution of F1(X1), F2(X2). These variables are
unobservable but estimable by the normalized ranks Fn1(X1), Fn2(X2) where
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Fn1, Fn2 are the empirical distribution functions of the sample. The function
δC(t, t) = C(t, t) is usually referred to as the diagonal section of a copula C. We
will use the survival function of the copula C, C̄(u1, u2) = P(U1 > 1 − u1,U2 >

1 − u2), which describes the relationship between the joint survival function
[F̄ (x1, x2) = P(X1 > x1,X2 > x2)] and its univariate margins (F̄j = 1 − Fj ) in
a manner completely analogous to the relationship between univariate and joint
functions, as C̄(u1, u2) = F̄ (F̄−1

1 (u1), F̄
−1
2 (u2)). The sample version of (2.2) is

called an empirical copula [Deheuvels (1979); Nelson (1999)], defined as

Cn

(
i

n
,
j

n

)
= 1

n

n∑
k=1

1
(
xk,1 ≤ x(i),1, xk,2 ≤ x(j),2

)
, 1 ≤ i, j ≤ n,(2.3)

for a sample of size n, where x(i),1 and x(j),2 denote order statistics on each coor-
dinate from the sample. The sample version of survival copulas follows similarly.

This representation provides a way to parametrize the dependence structure be-
tween random variables separately from the marginal distributions, for example,
a parametric model for the joint distribution of u1 and u2 and a nonparametric
model for marginals. Copula-based models are natural in situations where learning
about the association between the variables is important, but the marginal distribu-
tions are assumably unknown. For example, the 2-dimensional Gaussian copula C

is defined as

C(u1, u2|ρ) = �2(�
−1(u1),�

−1(u2)|ρ),(2.4)

where � is the standard normal cumulative distribution function, �2(·, ·|ρ) is
the cumulative distribution function for a bivariate normal vector (z1, z2) ∼
N

((
0
0

)
,
(

1
ρ

ρ
1

))
, and ρ is the correlation coefficient. Modeling dependence with

arbitrary marginals F1 and F2 using the Gaussian copula (2.4) amounts to assum-
ing data is generated from latent variables (z1, z2) by setting x1 = F−1

1 (�(z1)) and
x2 = F−1

2 (�(z2)). Note that if F1 and F2 are not continuous, u1 and u2 are not uni-
form. For convenience, we assume that F1 and F2 are continuous throughout the
text.

2.2.2. A copula mixture model. We now present our model for quantifying
the dependence structure and inferring the reproducibility of signals. We assume
throughout this part that our data is a sample of i.i.d. bivariate vectors (xi,1, xi,2).

We assume the data consists of genuine signals and spurious signals, which in
general correspond to a more reproducible group and a less reproducible group. We
use the indicator Ki to represent whether a signal i is genuine (Ki = 1) or spurious
(Ki = 0). Let π1 and π0 = 1 − π1 denote the proportion of genuine and spurious
signals, respectively. Given Ki = 1, we assume the pairs of scores for genuine
(resp., spurious) signals are independent draws from a continuous bivariate dis-
tribution with density f1(·, ·) [resp., f0(·, ·), given Ki = 0] with joint distribution
F1(·, ·) [resp., F0(·, ·)]. Note, however, that even if the marginal scales are known,
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Ki would be unobservable so that the copula is generated by the marginal mixture
(with respect to Ki), Fj = π0F

0
j + π1F

1
j , where Fj is the marginal distribution

of the j th coordinate and Fk
j is the marginal distribution of the corresponding kth

component.
Because genuine signals generally are more significant and more reproducible

than spurious signals, we expect the two groups to have both different means
and different dependence structures between replicates. We assume that, given
the indicator Ki , the dependence between replicates for genuine (resp., spurious)
signals is induced by a bivariate Gaussian distribution z1 = (z1,1, z1,2) [or resp.,
z0 = (z0,1, z0,2)]. The choice of Gaussian distribution for inducing the dependence
structure in each component is made based on the observation that the dependence
within a component in the data we consider generally is symmetric and that an as-
sociation parameter with a simple interpretation, such as the correlation coefficient
for a Gaussian distribution, is natural.

As the scores from F1(·, ·) are expected to be higher than the scores from
F0(·, ·), we assume z1 has a higher mean than z0. Since spurious signals are pre-
sumably less reproducible, we assume corresponding signals on the replicates to
be independent, that is, ρ0 = 0; whereas, since genuine signals usually are posi-
tively associated between replicates, we expect ρ1 > 0, though ρ1 is not required
to be positive in our model. It also seems natural to assume that the underlying la-
tent variables, reflecting replicates, have the same marginal distributions. Finally,
we note that if the marginal scales are unknown, we can only identify the differ-
ence in means of the two latent variables and the ratio of their variances, but not the
means and variances of the latent variables. Thus, the parametric model generating
our copula can be described as follows:

Let Ki ∼ Bernoulli(π1) and (zi,1, zi,2) be distributed as(
zi,1
zi,2

) ∣∣∣ Ki = k ∼ N

((
μk

μk

)
,

(
σ 2

k ρkσ
2
k

ρkσ
2
k σ 2

k

))
, k = 0,1,(2.5a)

where μ0 = 0, μ1 > 0, σ 2
0 = 1, ρ0 = 0, 0 < ρ1 ≤ 1.

Let

ui,1 ≡ G(zi,1) = π1

σ1
�

(
zi,1 − μ1

σ1

)
+ π0�(zi,1),

(2.5b)

ui,2 ≡ G(zi,2) = π1

σ1
�

(
zi,2 − μ1

σ1

)
+ π0�(zi,2).

Our actual observations are

xi,1 = F−1
1 (ui,1),

(2.5c)
xi,2 = F−1

2 (ui,2),

where F1 and F2 are the marginal distributions of the two coordinates, which are
assumed continuous but otherwise unknown.
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Thus, our model, which we shall call a copula mixture model, is a semiparamet-
ric model parametrized by θ = (π1,μ1, σ

2
1 , ρ1) and (F1,F2). The corresponding

mixture likelihood for the data is

L(θ) =
n∏

i=1

[π0h0(G
−1(F1(xi,1)),G

−1(F2(xi,2)))

+ π1h1(G
−1(F1(xi,1)),G

−1(F2(xi,2)))](2.6a)

=
n∏

i=1

[c(F1(xi,1),F2(xi,2))g(G−1(F1(xi,1)))g(G−1(F2(xi,2)))],(2.6b)

where

c(u1, u2) = π0h0(G
−1(u1),G

−1(u2)) + π1h1(G
−1(u1),G

−1(u2))

g(G−1(u1))g(G−1(u2))
(2.7)

is a copula density function with

h0 ∼ N

((
0
0

)
,

(
1 0
0 1

))
and h1 ∼ N

((
μ1
μ1

)
,

(
σ 2

1 ρ1σ
2
1

ρ1σ
2
1 σ 2

1

))
,

G is defined in (2.5b) and g is the density function of G. Note that G depends
on θ .

Given the parameters θ , the posterior probability that a signal i is in the irrepro-
ducible group can be computed as

Pr
(
Ki = 0 | (xi1, xi2); θ) = π0h0(G

−1(F1(xi,1),G
−1(F2(xi,2))))∑

k=0,1 πkhk(G−1(F1(xi,1),G−1(F2(xi,2))))
.(2.8)

We estimate values for these classification probabilities by estimating the param-
eters θ using an estimation procedure described in Section 2.2.3, and substituting
these estimates into the above formulas.

The idea of using a mixture of copulas to describe complex dependence struc-
tures is not entirely new. For example, the mixed copula model [Hu (2006)] in eco-
nomics uses a mixture of copulas [Cmix(u1, u2 | (θ1, . . . , θk)) = ∑k

i=1 C(u1, u2 |
θi)] to generate flexible fits to the dependence structures that do not follow any
standard copula families. In this model, all the copulas in Cmix are assumed to have
identical marginal distributions. In contrast, the copula in our model not only has
mixed associations, but also allows different associations to occur with different
marginal distributions (F 0

j and F 1
j ), thus can be viewed as a generalization of the

case with the same marginal distribution. In addition, our modeling goal is to clus-
ter the observations into groups with homogeneous associations, instead of data
fitting. This difference in marginal distributions calls for nonstandard estimation,
which we expect to be efficient, as we shall see in Section 2.2.3.
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2.2.3. Estimation of the copula mixture model. In this section we describe an
estimation procedure that estimates the parameters θ in (2.6) and the membership
Ki of each observation.

A common strategy to estimate the association parameters in semiparametric
copula models is a “pseudo-likelihood” approach, which is described in broad,
nontechnical terms by Oakes (1994). In this approach, the empirical marginal dis-
tribution functions F̂j , after rescaling by multiplying by ( n

n+1 ) to avoid infinities,
are plugged into the copula density in (2.6b), ignoring the terms involving g. The
association parameters are then estimated by maximizing the pseudo-copula like-
lihood. Genest, Ghoudi and Rivest (1995) showed, without specifying the algo-
rithms to compute them, that under certain technical conditions, the estimators ob-
tained from this approach are consistent, asymptotically normal, and fully efficient
only if the coordinates of the copula are independent.

We adopt a different approach which, in principle, leads to efficient estimators
under any choice of parameters and F1, F2. Note that the estimation of the associ-
ation parameter ρ1 depends on the estimation of μ1, σ

2
1 and π1 due to the presence

of the mixture structure on marginal distributions, which makes the log-likelihood
(2.6) difficult to maximize directly. Our approach is to estimate the parameters
θ̂ by maximizing the log-likelihood (2.6) of pseudo-data G−1( n

n+1 F̂i,j ; θ), where
F̂i,j ≡ F̂j (xi,j ).

As the latent variables z0,j and z1,j in our model form a mixture distribution,
it is natural to use an expectation–maximization (EM) algorithm [Dempster, Laird
and Rubin (1977)] to estimate the parameters θ̂ and infer the status of each pu-
tative signal for pseudo-data. In our approach, we first compute the pseudo-data
G−1( n

n+1 F̂i,j ; θ0) from some initialization parameters θ(0), then iterate between
two stages: (1) maximizing θ based on the pseudo-data using EM and (2) updating
the pseudo-data. The detailed procedure is given in the supplementary materials
[Li et al. (2011)]. The EM stage may be trapped in local maxima, and the stage
of updating pseudo-data may not converge from all starting points. However, in
the simulations we performed (Section 3), it behaves well and finds the global
maxima, when started from a number of initial points.

We sketch in the supplementary materials [Li et al. (2011), Section 2] a heuristic
argument that a limit point of our algorithm close to the true value satisfies an equa-
tion whose solution is asymptotically efficient. Although our algorithm converges
in practice, we have yet to show its convergence in theory. However, a modification
which we are investigating does converge to the fixed point mentioned above. This
work will appear elsewhere.

2.3. Irreproducible identification rate. In this section we derive a repro-
ducibility criterion from the copula mixture model in Section 2.2.2 based on an
analogy between our method and the multiple hypothesis testing problem. This
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criterion can be used to assess the reproducibility of both individual signals and
the overall replicate outputs.

In the multiple hypothesis testing literature, the false discovery rate (FDR) and
its variants, including positive false discovery rate (pFDR) and marginal false dis-
covery rate (mFDR), are introduced to control the number of false positives in the
rejected hypotheses [Benjamini and Hochberg (1995); Storey (2002); Genovese
and Wasserman (2002)]. In the FDR context, when hypotheses are independent
and identical, the test statistics can be viewed as following a mixture distribution
of two classes, corresponding to whether or not the statistic is generated according
to the null hypothesis [e.g., Efron (2004); Storey (2002)]. Based on this mixture
model, the local false discovery rate, which is the posterior probability of being in
the null component Lfdr(·) = (1 − π)f0(·)/f (·), was introduced to compute the
individual significance level [Efron (2004)]. Sun and Cai (2007) show, again for
the i.i.d. case, that Lfdr is also an optimal statistic in the sense that the threshold-
ing rule based on Lfdr controls the marginal false discovery rate with the minimum
marginal false nondiscovery rate.

As in multiple hypothesis testing, we also build our approach on a mixture
model and classify the observations into two classes. However, the two classes
have different interpretation and representation: The two classes represent irrepro-
ducible measurements and reproducible measurements in our model, in contrast to
nulls and nonnulls in the multiple testing context, respectively.

In analogy to the local false discovery rate, we define a quantity, which we call
the local irreproducible discovery rate, to be

idr(xi,1, xi,2) = π0h0(G
−1(F1(xi,1)),G

−1(F2(xi,2)))∑
k=0,1 πkhk(G−1(F1(xi,1)),G−1(F2(xi,2)))

.(2.9)

This quantity can be thought of as the a posteriori probability that a signal is not
reproducible on a pair of replicates [i.e., (2.8)], and can be estimated from the
copula mixture model.

Similarly, we define the irreproducible discovery rate (IDR) in analogy to the
mFDR,

IDR(γ ) = P(irreproducible | i ∈ Iγ )
(2.10)

= π0
∫
Iγ

dH0(G
−1(F1(xi,1)),G

−1(F2(xi,2)))∫
Iγ

dH(G−1(F1(xi,1)),G−1(F2(xi,2)))
,

where Iγ = {(xi,1, xi,2) : idr(xi,1, xi,2) < γ }, H0 and H are the CDF of density
functions h0 and h = π0h0 + π1h1, respectively. For a desired control level α, if
(x(i),1, x(i),2) are the pairs ranked by idr values, define l = max{i : 1

i

∑i
j=1 idrj ≤

α}. By selecting all (x(i),1, x(i),2) (i = 1, . . . , l), we can think of this procedure
as giving an expected rate of irreproducible discoveries no greater than α. It is
analogous to the adaptive step-up procedure of Sun and Cai (2007) for the multiple
testing case.
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This procedure essentially amounts to re-ranking the identifications according
to the likelihood ratio of the joint distribution of the two replicates. The resulting
rankings are generally different from the ranking of the original significance scores
on either replicate.

Unlike the multiple testing procedure, our procedure does not require xi,j to be
p-values; instead, xi,j can be any scores with continuous marginal distributions.
When p-values are used as scores, our method can also be viewed as a method
to combine p-values. We compare our method and two commonly-used p-value
combinations through simulations in Section 3.

3. Simulation studies.

3.1. Illustration of correspondence curves. To show the prototypical plots of
more realistic cases, we use simulated data to compare and contrast the curves
in presence and absence of the transition of association described in Section 2.1.
(Figure 3). The case where no transition occurs is illustrated using two single-
component bivariate Gaussian distributions with homogeneous association, ρ = 0
[Figure 3(a)] and ρ = 0.8 [Figure 3(b)], respectively. The presence of the transition
is illustrated using two two-component bivariate Gaussian mixtures, whose lower
ranked component has independent coordinates (i.e., ρ0 = 0) and the higher ranked
component has positively correlated coordinates with ρ1 = 1 [Figure 3(c)] and
ρ1 = 0.8 [Figure 3(d)], respectively.

As in the idealized example (Figure 1), the characteristic transition of curves
is observed when the transition of association is present [Figure 3(c), (d)], but not
seen when the data consists of only one component with homogeneous association.
This shows that the transition of the shape of the curve may be used as an indicator
for the presence of the transition of association.

3.2. Copula mixture model. We first use simulation studies to examine the
performance of our approach. In particular, we aim to assess the accuracy of our
classification, to evaluate the benefit of combining information between replicates
over using only information on one replicate, and to assess the robustness of our
method to the violation of one of its underlying model assumptions. In each sim-
ulation, we also compare the performance with two existing methods for combin-
ing significance scores across samples. However, as existing combination methods
can be applied to only p-values, we use p-values as the significance scores in the
comparison, though our method can be applied to arbitrary scores with continous
marginal distributions. Here we consider the scenario when the p-values are not
well calibrated but are reflective of the relative strength of evidence that the signals
are real, and assess the accuracy of thresholds selected by all methods of compar-
ison. These simulations also provide a helpful check on the convergence of our
estimation procedure.
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FIG. 3. Behavior of correspondence curves when data consists of homogeneous and heterogeneous
association. From left to right, the three columns are the scatterplot of ranks, the curve of � and the
curve of � ′. (a) Bivariate Gaussian distribution with ρ = 0. (b) Bivariate Gaussian distribution with
ρ = 0.8. (c) A mixture of two bivariate Gaussian distributions with marginals on both coordinates as
f0 = N(0,1) and f1 = N(3,1), ρ0 = 0 and ρ1 = 1 and mixing proportion π1 = 0.5. (d) A mixture
of two bivariate Gaussian distributions with marginals on both coordinates as f0 = N(0,1) and
f1 = N(2,1), ρ0 = 0 and ρ1 = 0.8 and mixing proportion π1 = 0.5. The curve of � ′

n is produced by
taking the derivative on the spline that fits �n with df = 6.4.

In each simulation study, we generate a sample of n pairs of signals on two
replicates. Each pair of observed signals (Zi1,Zi,2) (i = 1, . . . , n) is a noisy real-
ization of a latent signal Zi , which is independently and identically generated from



REPRODUCIBILITY OF HIGH-THROUGHPUT EXPERIMENTS 1767

the following normal mixture model:

Ki ∼ Bernoulli(π1),

Zi | Ki = k ∼ N(μk, τ
2
k ), k = 0, . . . ,K − 1,

(3.1)
Zi,j | Ki = k,Zi = Zi + εijk, j = 1,2,

εijk ∼ N(0,ω2
k).

As can easily be seen from the joint distribution of (Zi,1,Zi,2) | Ki ,(
Zi,1
Zi,2

) ∣∣∣ Ki = k ∼ N

((
μk

μk

)
,

(
τ 2
k + ω2

k ρk(τ
2
k + ω2

k)

ρk(τ
2
k + ω2

k) τ 2
k + ω2

k

))
,

k = 0, . . . ,K − 1,

where ρk = τ 2
k

τ 2
k +ω2

k

; this model is in fact a reparameterization of our model (2.5a)

when K = 2: (Zi,1,Zi,2) directly corresponds to the latent Gaussian variables
in (2.5a) when setting μ0 = 0,μ1 > 0, τ 2

k + ω2
k = 1, ρ0 = 0 and k = 0,1. When

K > 2, this model is convenient for simulating data from multiple components
and investigating the robustness of our method to the violation of the assumption
that the data consists of a reproducible and an irreproducible component. After
Zi,j is simulated, we transform Zi,j to a Student’s t distribution by a probability
integral transformation F−1

t5
(G(Zi,j )), where Ft5 is the cdf of t distribution with

df = 5 and G is as defined in (2.5b). We then obtain p-values from a one-sided
z-test for H0 :μ = 0 vs H1 :μ > 0, and use them as the significance score Xi,j .
This procedure is equivalent to applying a z-test to a t distribution, thus generating
p-values that are not calibrated but are reflective of the relative strength of evi-
dence that the signals are real. It is equivalent to letting F−1

j (·) = 1 − �(F−1
t5

(·))
in (2.5c) for our model.

With p-values as the significance score, our method can also be viewed as a
way to combine p-values for ranking signals by their consensus. The two most
commonly-used methods for combining p-values of a set of independent tests are
Fisher’s combined test [Fisher (1925)] and Stouffer’s z method [Stouffer et al.
(1949)]. In Fisher’s combination for the given one-sided test, the test statistic
Qi = −2

∑m
j=1 log(pi,j ) for each pair of signals has the χ2

2m distribution un-
der H0, where pi,j is the p-value for the ith signal on the j th replicate, m is
the number of studies and m = 2 here. In Stouffer’s method, the test statistic
Si = 1√

m

∑m
j=1 �−1(1 − pi,j ) has distribution N(0,1) under H0, where � is the

standard normal CDF. For each pair of signals, we compute Qi (Si , resp.) and
its corresponding p-values p

Q
i (pS

i , resp.), then estimate the corresponding false

discovery rates (FDR) by computing q-values [Storey (2003)] based on p
Q
i (pS

i ,
resp.), using R package “qvalue.” FDR is estimated similarly for p-values on the
individual replicates.
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TABLE 1
Simulation parameters and parameter estimation in the simulation studies of 100 data sets. Each
data set consists of 10,000 pairs of observations. The simulation parameters are estimated from a

ChIP-seq data set. In all simulations, μ0 = 0, σ 2
0 = 1 and ρ0 = 0. In S1–S3, π0 = 1 − π1. S4 has a

third component with μ2 = 0, σ 2
0 = 1, ρ2 = 0.64, π2 = 0.07 and π0 = 1 − π1 − π2. The table

shows the mean and the standard deviation of the estimated parameters over the
100 data sets using our model

π1 ρ1 μ1 σ 2
1

S1 True parameter 0.650 0.840 2.500 1.000
Estimated values 0.648 (0.005) 0.839 (0.005) 2.524 (0.033) 1.003 (0.024)

S2 True parameter 0.300 0.400 2.500 1.000
Estimated values 0.302 (0.004) 0.398 (0.024) 2.549 (0.037) 1.048 (0.032)

S3 True parameter 0.050 0.840 2.500 1.000
Estimated values 0.047 (0.004) 0.824 (0.026) 2.536 (0.110) 0.876 (0.087)

S4 True parameter 0.650 0.840 3.000 1.000
Estimated values 0.669 (0.005) 0.850 (0.005) 3.021 (0.031) 1.058 (0.029)

For our method, we classify a call as correct (or incorrect), when a genuine (or
spurious) signal is assigned an idr value smaller than an idr threshold. Correspond-
ingly, for a call from individual replicates, Fisher’s method or Stouffer’s method,
the same classification applies, when its corresponding q-value is smaller than the
threshold. We compare the discriminative power of these methods by assessing
the trade-off between the number of correct and incorrect calls made at various
thresholds.

In an attempt to generate realistic simulations, we first estimated parameters
from a ChIP-seq data set (described in Section 4 using the model in Section 2.2),
then simulated the signals on a pair of replicates using the sampling model (3.1).
We performed four simulations, S1, S2, S3 and S4, as follows, with simulation
parameters in Table 1:

S1 This simulation was designed to demonstrate performance when the data are
generated from the same copula mixture model we use for estimation. Data
were simulated from the model (3.1) with K = 2, using the parameters esti-
mated from the ChIP-seq data set considered below. The resulting data con-
tained π1 = 65% signals and π0 = 35% noise.

S2 A simulation to assess performance of our method when the correlation be-
tween genuine signals is low. Data were simulated as in S1 (K = 2), except
that ρ1 = 0.4 and π1 = 0.3.

S3 A simulation to assess performance of our method when only a small propor-
tion of real but highly correlated signals are present. Data were simulated as in
S1 (K = 2), except that π1 = 0.05.



REPRODUCIBILITY OF HIGH-THROUGHPUT EXPERIMENTS 1769

S4 Here simulation parameters were chosen to illustrate a scenario when repro-
ducible noise is present in addition to random noise and real signals. The goal
is to assess the sensitivity of our method to deviations from the assumption that
genuine signals are reproducible and noise is irreproducible. Data were simu-
lated from a three-component model (i.e., K = 3) using (3.1), where π2 = 7%
reproducible noise is added as the third component with ρ2 = 0.64, μ2 = 0 and
σ 2

2 = 1, and the parameters for signals and random noise are as in S1, except
π0 = 28% and μ1 = 3.

For each parameter set, we simulated 100 data sets, each of which consists of
two replicates with 10,000 signals on each replicate. In each simulation, we ran
the estimation procedure from 10 random initializations, and stopped the proce-
dure when the increment of log-likelihood is <0.01 in an iteration or the number
of iterations exceeds 100. All the simulations converge, when starting points are
close to the true parameters. The results that converge to the highest likelihood are
reported.

3.2.1. Parameter estimation and calibration of IDR. In S1–S3, the parameters
estimated from our models are close to the true parameters (Table 1). The only
exception is that σ1 was underestimated when the proportion of true signals is
small, π1 = 0.05, a case hard to distinguish from that of a single component.

The irreproducible discovery rate as a guide for the selection of the signals
needs to be well calibrated. To check the calibration of thresholds, we compare the
actual frequency of false calls, that is, empirical FDR, with the estimated IDR for
our method and with the q-values for other methods (Figure 4, left column).

As shown in Figure 4, the original significance scores and other combination
methods are overly conservative in their estimated FDR in all simulations, whereas
our method is reasonably well calibrated in S1, S2 and S3. When reproducible
noise is present (S4), our method slightly overestimates the proportion and the
correlation of the real signals, and underestimates the empirical FDR (Figure 4-
S4). This reflects that the data contains some artifacts that receive reproducible
high scores on their original measures and consequently receive relatively low idr
values. These artifacts are difficult to distinguish from genuine signals. We will
compare the discriminative power of all four methods in the next section.

3.2.2. Comparison of discriminative power. To assess the benefit of combin-
ing information on replicates and compare with existing methods of combining
p-values, we compared our method with the p-values on individual replicates,
Fisher’s method and Stouffer’s method, by assessing the trade-off between the
numbers of correct and incorrect calls made at various thresholds. As a small num-
ber of false calls is desired in practice, the comparison focuses on the performance
in this region.

In all simulations, our method consistently identifies more true signals than
the original significance score and the two p-value combination methods, at a
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FIG. 4. Calibration of IDR (Left) and comparison of discriminative power (Right) in simulation
studies. Left: Estimated error rate (x-axis: IDR for our method and FDR for other methods) is com-
pared with the actual frequency of false identifications (y-axis). Right: The number of correct and
incorrect calls made at various thresholds in simulation studies. Incorrect calls: The number of spu-
rious signals assigned idr values smaller than the thresholds (our method) or with q-values smaller
than the cutoffs (other methods). Correct calls: The number of genuine signals assigned idr values
smaller than the thresholds (our method) or with q-values smaller than the cutoffs (other methods).
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given number of false calls in the studied region. Even when reproducible arti-
facts are present (S4) or only a small proportion of genuine signal is present (S3),
our method still outperforms all methods compared here.

4. Applications on real data.

4.1. Comparing the reproducibility of multiple peak callers for ChIP-seq exper-
iments. We now consider an application arising from a collaborative project with
the ENCODE consortium [ENCODE Project Consortium (2004)]. This project has
three primary goals: comparing the reproducibility of multiple algorithms for iden-
tifying protein-binding regions in ChIP-seq data (described below), selecting bind-
ing regions using a uniform criterion for data from different sources (e.g., labs),
and identifying experiment results in poor quality.

We now state the background of ChIP-Seq data in more detail and refer to Park
(2009) for a recent review. A ChIP-seq experiment is a high-throughput assay to
study protein binding sites on DNA sequences in a genome. In a typical ChIP-
seq experiment, DNA regions that are specifically bound by the protein of interest
are first enriched by immunoprecipitation, then the enriched DNA regions are se-
quenced by high-throughput sequencing, which generates a genome-wide scan of
tag counts that correspond to the level of enrichment at each region. The relative
significance of the regions are determined by a computational algorithm (usually
referred to as a peak caller), largely according to local tag counts, based on either
heuristics or some probabilistic models. The regions whose significance are above
some prespecified threshold then are identified. To date, more than a dozen of the
peak callers have been published. Some common measures of significance are fold
enrichment, p-value or q-value [Storey (2003)].

Though these scores may reflect the relative strength of evidence for putative
binding regions to be real, determination of a proper threshold is not straightfor-
ward, especially for heuristic-based scores, where arbitrary judgment often has to
be involved. In fact, this difficulty could also exist for probabilistic-based scores
if the underlying probabilistic models are inadequate to capture the complexity of
the data. Because tuning parameters for each data set are usually infeasible due
to lack of ground truth, default thresholds are often used in practice, though they
may not be the optimal choices for the data to be analyzed. Ideally, an objective
performance assessment should reflect the behavior of peak callers instead of the
effect of thresholds.

Here we use the binding regions identified at untuned thresholds in a CTCF
ChIP-seq experiment (described below) to illustrate how our method is used for
assessing and comparing the reproducibility of peak callers when tuning thresh-
olds are unavailable, for setting a reproducibility-based threshold that is appliable
to both heuristic and probabilistic-based significance scores, and for identifying
results with low reproducibility. A detailed analysis on a comprehensive set of
ENCODE data will appear elsewhere.
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4.1.1. Description of the data. In this comparison the ChIP-seq experiments
of a transcription factor CTCF from two biological replicates were generated from
the Bernstein Laboratory at the Broad Institute on human K526 cells. Peaks were
identified in biology labs, using nine commonly used and publicly available peak
callers, namely, Peakseq [Rozowsky et al. (2009)], MACS [Zhang et al. (2008)],
SPP [Kharchenko, Tolstorukov and Park (2008)], Fseq [Boyle et al. (2008)],
Hotspot [Thurman et al. (2011)], Erange [Mortazavi et al. (2008)], Cisgenome
[Ji et al. (2008)], Quest [Valouev et al. (2008)] and SISSRS [Jothi et al. (2008)],
using their default significance measures and default parameter settings with ei-
ther default thresholds (all peak callers except Hotspot) or more relaxed thresholds
(Hotspot). Among them, Peakseq and SPP use q-value, MACS, Hotspot and SIS-
SRS use p-value, and the rest use fold enrichment, as their significance measures.
Only the outputs from peak callers were available for our analysis.

The peaks generated from different algorithms have substantially different
peak widths. SPP and SISSRS generate peaks with fixed width of 100 bp and
40 bp, respectively; all other algorithms generate peaks with varying peak width
(median = 130–760 bp). Because wider peaks are more likely to hit true binding
sites by chance than shorter peaks, we normalized peak width by truncating the
peaks wider than 40 bp down to intervals of 40 bp centered at the reported sum-
mits of peaks, so that reproducibility is compared on the same basis. The choice
of 40 bp was made because the peak caller with the narrowest average peak width
in our comparison reports peaks with a fixed width of 40 bp. Prior to applying
our method, peaks on different replicates are paired as identifying the same bind-
ing region, if their coverage regions overlap (i.e., overlap ≥ 1 bp). Because peaks
without matches do not have replicate measurements and are apparently irrepro-
ducible, here we elected to assess reproducibility of paired peaks in our analysis.
Around 23–78% of peaks are retained for this analysis.

4.2. Results.

4.2.1. Correspondence profiles. Figure 5 shows the correspondence profiles
for the nine peak callers. By referring to the prototypical plots in Figure 3, five peak
callers (Peakseq, MACS, SPP, Fseq and Hotspot) show the characteristic transition
from strong association to near independence [Figure 5(b)]. As described in Sec-
tion 2.1, when heterogeneity of association is present, a high reproducibility trans-
lates to late occurrence of the transition to a segment with a positive slope. Accord-
ing to how much down the rank list the transition is observed, the three peak callers
that show the highest reproducibility on this data set are Peakseq, MACS and SPP
(Figure 5). For the other four peak callers (Erange, Cisgenome, Quest and SIS-
SRS), the curves display a less clear transition and report substantially fewer (re-
producible) peaks. This indicates that the default thresholds for these peak callers
are likely to be too stringent to reach the breakdown of consistency, and that the re-
ported peaks have relatively low reproducibility across replicates. This conclusion
was confirmed later by biological verification (see Section 4.2.3).
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FIG. 5. The change of correspondence (� ′
n) along the decreasing order of significance, plotted

for 9 peak callers on a CTCF ChIP-seq experiment from ENCODE. X-axis: The rank list of peaks
identified on a replicate. Y -axis: � ′

n.

4.2.2. Inference from the copula mixture model. We applied the copula mix-
ture model to the peaks identified on the replicates for each peak caller. As data
may consist of only one group with homogeneous association, we also estimated
the fit using a one-component model that corresponds to setting π1 = 1,μ1 = 0
and σ 2

1 = 1 in (2.5). We then tested for the smallest number of components com-
patible with the data, using a likelihood ratio test statistic (λ = L2

L1
), where L2 and

L1 are the likelihood of two-component and one-component models, respectively.
With mixture models, it is well known that the regularity conditions do not hold
for 2 log(λ) to have its usual asymptotic Chi-square null distribution. We therefore
used a parametric bootstrap procedure to obtain appropriate p-values [McLachlan
(1987)]. In our procedure, 100 bootstrap samples were sampled from the null
distribution under the one component hypothesis using the parametric bootstrap,
where the parameter estimate was obtained by maximizing the pseudo-likelihood
of the data under the null hypothesis of the one-component model. Then p-values
were obtained by referring to the distribution of the likelihood ratio computed
from the bootstrap samples. Table 2 summarizes the parameter estimation from
both models and the bootstrap results.

Based on the likelihood ratio test, it seems that the one-component model fits
the results from SISSRS, Quest and Cisgenome better, and the two-component
model fits the results from other peak callers. This is consistent with the pattern of
transition in the correspondence profiles (Figure 5).

To select binding sites, we rank putative peaks by the values of local idr and
compute the irreproducible discovery rate (IDR) for peaks selected at various local
idr cutoffs using (2.10), as described in Section 2.3. We illustrate the IDR as a
function of the numbers of top peaks (ranked by local idr) for all peak callers
in Figure 6. For a given IDR level, one can determine the number of peaks to
be called from this plot, regardless of what type of scores are used to measure
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TABLE 2
Parameters estimated from the copula mixture model and the one-component model, and model
selection for determining the number of components. (π1, ρ1,μ1, σ1) are parameters estimated
from the copula mixture model; ρ is estimated from the single-component model. The number of

components is selected using a likelihood ratio test and the p-value of the test statistics is
determined using a parametric bootstrap approach based on 100 bootstrap samples

Peakseq MACS SPP Fseq Hotspot Cisgenome Erange Quest Sissrs

π1 0.69 0.84 0.77 0.74 0.69 0.85 0.72 0.72 1
ρ1 0.89 0.89 0.88 0.82 0.88 0.65 0.81 0.67 0.24
μ1 2.27 2.07 2.28 2.12 1.62 2.05 2.04 2.01 7.27
σ1 0.87 1.34 1.05 0.86 0.64 1.35 0.90 1.39 0.03

ρ 0.87 0.87 0.86 0.83 0.78 0.66 0.80 0.66 0.23

p-value 0 0 0 0 0 1 0 1 1

the significance of peaks. For example, at 5% IDR, the top 27,500 peaks with
the smallest local idr can be called using MACS. Using the same reproducibility
criterion, peaks can be selected for other peak callers similarly.

We also compare the overall reproducibility of different peak callers using Fig-
ure 6. For example, while Peakseq, MACS and SPP on average have about 3%
irreproducible peaks when selecting the top 25,000 peaks, most of the other peak
callers have already reached a much higher IDR before identifying the top 10,000
peaks. According to the number of peaks identified before reaching 5% IDR, the
three most reproducible peak callers on this data set are Peakseq, MACS and SPP,

FIG. 6. Irreproducible discovery rate (IDR) at different numbers of selected peaks, plotted at var-
ious idr cutoffs for eight peak callers on a CTCF Chip-seq experiment from ENCODE. Peaks are
selected using local idr. X-axis: The rank list of peaks, ranked by local idr, Y -axis: Irreproducible
discovery rate (IDR). SISSRS is not shown because its results are highly inconsistent and all peaks
are grouped into a low correlation group.
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then followed by Fseq, then others. This result is consistent with the graphical
comparison based on the correspondence profile (Figure 5).

4.2.3. Evaluating the biological relevance of the reproducibility assessment.
To evaluate the biological relevance of our reproducibility assessment, we check
the accuracy of peak identifications using external biological information. Be-
cause a complete list of true binding regions is not known for the examined data
set, the accuracy of peak identifications is assessed using high-confidence bind-
ing motifs computationally predicted using sequence information [Kheradpour
et al. (2007)], which is a commonly used device in this setting [e.g., Zhang et al.
(2008); Kharchenko, Tolstorukov and Park (2008), among many others]. Though
high-confidence motifs are not required to be bound and true binding sites are
not required to exhibit a motif signature, the high-confidence motif instances
are assumed, standard in this context, to contain a representative subset of true
binding regions and are expected to have a relatively high occurrence in high-
scored ChIP-seq peaks [Kharchenko, Tolstorukov and Park (2008)]. We selected
ChIP-seq peaks reported by each peak caller at various IDR thresholds, and ex-
amined the number of high-confidence motifs (FDR ≤ 0.1 at the PWM thresh-
old of p-value = 1

410 ) that coincide with the reported ChIP-seq peaks (defined as
overlap ≥ 1 bp) (Figure 7).

For the peak callers whose reported peaks fit the two-component model (i.e.,
Peakseq, MACS, SPP, Fseq and Hotspot), we marked the number of ChIP-seq
peaks selected at IDR = 5%. For these algorithms, the motif occurrences first in-
crease with the increase of reported ChIP-seq peaks, then plateau before reaching
the default thresholds (Figure 7). The mark of 5% IDR approximately corresponds

FIG. 7. The coverage of high-confidence CTCF motif at different numbers of selected ChIP-seq
peaks, plotted at various idr cutoffs for nine peak callers on a CTCF Chip-seq experiment from
ENCODE. The bars on the curves of Peakseq, MACS, SPP, Fseq and Hotspot show the number of
peaks selected at IDR = 0.05. No selection is made for the rest of the peak callers because model
selection favors the one-component model for peaks identified by these callers.
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to the occurrences of the plateau, with few additional motif occurrences if more
ChIP-seq peaks are called.

On the other hand, for the peak callers (Erange, Cisgenome, Quest and SIS-
SRS) whose peaks fit the one-component model, the motif occurrence still shows
an increasing trend at default thresholds. This confirms the observation from cor-
respondence curves (Figure 5) that the default thresholds for these peak callers are
likely to be overly stringent for this data set.

Overall, the results of this analysis agree with the assessment from our repro-
ducibility comparison: the three peak calling results with the highest reproducibil-
ity (SPP, Peakseq and MACS) in Figure 6 show the highest rates of motif occur-
rence among all algorithms of comparison; the ones that are reported to be less
reproducible do show lower rates of motif occurrence. This illustrates the potential
of our method as a quality measure.

5. Discussion. We have presented a new statistical method for measuring
the reproducibility of results in high-throughput experiments and setting selec-
tion thresholds using a reproducibility criterion. Using simulated and real data,
we have illustrated the potential of our method for providing reproducibility as-
sessment that is not confounded with prespecified threshold choices, determining
biologically relevant thresholds, improving the accuracy of signal identification,
and identifying suboptimal results.

As no assumption is made on the scale of the scores, the proposed method is
applicable for any scoring system that produces continuous ranking to reflect the
relative ordering of the signals. It provides a principled way to select signals that
are scored on heuristic measures, and complements the thresholds determined on
individual replicates. Moreover, because consistency between replicates is an in-
ternal standard that is independent of the scoring schemes and comparable across
data sets, the proposed reproducibility criterion is suited for setting uniform stan-
dards for selecting signals for data from multiple sources, such as consortium stud-
ies. Because our measure of consistency is not confounded by platform-dependent
thresholds, inter-platform consistency can be assessed easily.

Of course, reproducibility is only a necessary but not a sufficient condition to
accuracy. If replicates are generated in the presence of a systematic bias that in-
troduces false association, the threshold derived from this procedure may under-
estimate the empirical false discovery rate. Though the thresholds determined by
our method show reasonable biological relevance in the data examined here and
many other ENCODE ChIP-seq experiments (to appear in another manuscript), we
emphasize that some cares are necessary to ensure that the replicates maintain the
level of independence that they should.

We also note that the reproducibility of outputs from a data-analytical method
(e.g., a peak caller) on replicate samples reflects the combined properties of the
method and the samples. As the behavior of the data-analytical method may vary
across different samples, the reproducibility assessment in our example should be



REPRODUCIBILITY OF HIGH-THROUGHPUT EXPERIMENTS 1777

interpreted as being specific to the studied data set, instead of a general conclusion.
A detailed comparison of the performance of peak callers has been evaluated on a
comprehensive set of data and will appear elsewhere.

The algorithm to implement the estimation strategy outlined in Section 2.2.3 is
provided as supplemental material to this article. An R package is downloadable
at the following website: http://cran.r-project.org/web/packages/idr/index.html.

SUPPLEMENTARY MATERIAL

Supplementary materials for Measuring reproducibility of high-through-
put experiments (DOI: 10.1214/11-AOAS466SUPP; .pdf). This supplement con-
sists of four parts. Part 1 describes the algorithm for estimating parameters in our
copula mixture model. Part 2 provides a theoretical justification for the efficiency
of our estimator for the proposed copula mixture model when n is large. Part 3 de-
rives the properties of the correspondence curves in Section 2.1.1. Part 4 provides
an extension of our model to the case with multiple replicates.
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