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Abstract. We present a new pruning procedure on discrete trees by adding marks on the nodes of trees. This procedure allows us
to construct and study a tree-valued Markov process {G(u)} by pruning Galton—Watson trees and an analogous process {G* (1)} by
pruning a critical or subcritical Galton—Watson tree conditioned to be infinite. Under a mild condition on offspring distributions, we
show that the process {G ()} run until its ascension time has a representation in terms of {G*(u)}. A similar result was obtained by
Aldous and Pitman (Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 637-686) in the special case of Poisson offspring distributions
where they considered uniform pruning of Galton—Watson trees by adding marks on the edges of trees.

Résumé. Nous présentons une nouvelle procédure d’élagage d’arbres discrets en ajoutant des marques sur les noeuds de 1’arbre.
Cette procédure nous permet de définir un processus de Markov {G(u)} a valeurs arbres en élaguant un arbre de Galton—Watson.
Nous définissons également de maniére analogue un processus {G*(u)} en élaguant un arbre de Galton—Watson critique ou sous-
critique conditionné a étre infini. Sous de faibles hypothéses sur la loi de reproduction, nous montrons que le processus {G(u)}
arrété en son temps d’ascension admet une représentation en terme du processus {G*(u)}. Un résultat similaire a été obtenu par
Aldous et Pitman (Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 637-686) dans le cas particulier de lois de reproductions
poissoniennes en considérant un élagage uniforme sur les branches de 1’arbre.
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1. Introduction

Using percolation on the branches of a Galton—Watson tree, Aldous and Pitman constructed by time-reversal in [4]
an inhomogeneous tree-valued Markov process that starts from the trivial tree consisting only of the root and ends
at time 1 at the initial Galton—Watson tree. When the final Galton—Watson tree is infinite, they define the ascension
time A as the first time where the tree becomes infinite. They also define another process by pruning at branches
the tree conditioned on non-extinction and they show that, in the special case of Poisson offspring distribution, some
connections exist between the first process up to the ascension time and the second process.

Using the same kind of ideas, continuum-tree-valued Markov processes are constructed in [2] and an analogous
relation is exhibited between the process obtained by pruning the tree and the other one obtained by pruning the
tree conditioned on non-extinction. However, in that continuous framework, such results hold under very general
assumptions on the branching mechanism.
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Using the ideas of the pruning procedure [2] (which first appeared in [8] for a different purpose), we propose here
to prune a Galton—Watson tree on the nodes instead of the branches so that the connections pointed out in [4] hold for
any offspring distribution.

Let us first explain the pruning procedure. Given a probability distribution p = {p,,n =0,1,...}, let G, be a
Galton—Watson tree with offspring distribution p. Let 0 < u < 1 be a constant. Then, if v is an inner node of G, that
has n offsprings, we cut it (and discard all the sub-trees attached at this node) with probability x"~! independently of
the other nodes. The resulting tree is still a Galton—Watson tree with offspring distribution p® defined by:

pW =uy""lp, forn>1 (1.1)
and
o0
pe’ =1=3"pi. (1.2)
n=1

This particular pruning is motivated by the following lemma whose proof is postponed to Section 5.

Lemma 1.1. Let p and q be two offspring distributions. Let G, and G, be the associated Galton—Watson trees and
let #L, and #L, denote the number of leaves of G, and G, respectively. Then we have that

YN =1, P(G,ec -HL,=N)=P(G, c-[#L, = N) (1.3)

if and only if

W>0,Vn>1 g,=u""'p,.

This lemma can be viewed as the discrete analogue of Lemma 1.6 of [1] that explains the choice of the pruning
parameters for the continuous case. In [3], a similar result for Poisson—Galton—Watson trees was obtained when
conditioning by the total number of vertices, which explains why Poisson—Galton—Watson trees play a key role in [4].

Using the pruning at nodes procedure, given a critical offspring distribution p, we construct in Section 4 a tree-
valued (inhomogeneous) Markov processes (G (1), 0 <u < u) for some u > 1, such that

e the process is non-decreasing,
e for every u, G(u) is a Galton—Watson tree with offspring distribution p(”),
e the tree is critical for u = 1, sub-critical for u < 1 and super-critical for 1 <u <u.

Let us state the main properties that we prove for that process and let us compare them with the results of [4]. We
write (GA (1)) for the tree-valued Markov process defined in [4].

In Section 3, we compute the forward transition probabilities and the forward transition rates for that process and
exhibit a martingale that will appear several times (see Corollary 3.4). For a tree t, we set

(I — u@)#L)

M(u,t)= o)
Dy

, (1.4)

where #L£(t) denotes the number of leaves of t and 1 (u) if the mean of offsprings in G (). Then, the process
(M(u, g(u)), O0<u< 1)

is a martingale with respect to the filtration generated by G. In [4], the martingale that appears (Corollary 23) for
Poisson—Galton—Watson trees is (1 — u(u))#GAF (u).
When the tree G(u) is super-critical, it may be infinite. We define the ascension time A by:

A =inf{u € [0, a], #G (u) = oo}
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with the convention inf @ = iz. We can then compute the joint law of A and G4 (i.e. the tree just before it becomes
infinite), see Proposition 4.6: we set F (1) the extinction probability of G(u) and we have for u € [0, i)

P(A<u)=1-F@u),
P(G(A—) =t|A =u) = M, OP(G(@) =1t)

with & = u F (u). These results are quite similar with those of Lemma 22 of [4]. They must also be compared to the
continuous framework, Theorems 6.5 and 6.7 of [2].

When we have p(()”) = 0, then the final tree G(iz) is a.s. infinite. We consider the tree G*(1) which is distributed
as the tree G(1) conditioned on non-extinction. From this tree, by the same pruning procedure, we construct a non-
decreasing tree-valued process (G*(u),0 < u < 1). We then prove the following representation formula (Proposi-
tion 4.7):

(Q(u), 0<u< A) 4 (g*(uy),O <u<F'a- y)),

where y is a r.v., uniformly distributed on (0, 1), independent of {G*(«): 0 < o < 1} and F(u) =1— F(u). This
result must also be compared to a similar result in [4], Proposition 26:

(G ). 0<u <A) < (g”*ww, O<u< alfgyy)),

or to its continuous analogue, Corollary 8.2 of [2].

Let us stress again that, although the results are very similar, those in [4] only hold for Poisson—Galton—Watson
trees whereas the results presented here hold for any offspring distribution.

The paper is organized as follows. In the next section, we recall some notation for trees and define the pruning
procedure at nodes. In Section 3, we define the processes G and G* and in Section 4 we state and prove the main
results of the paper. Finally, we prove Lemma 1.1 in Section 5.

2. Trees and pruning
2.1. Notation for trees

We present the framework developed in [9] for trees, see also [7] or [4] for more notation and terminology. Introduce
the set of labels

e¢]

w={Jmv)"

n=0

where N* = {1, 2, ...} and by convention (N*)" = {@&}.

An element of WV is thus a sequence w = (w', ..., w") of elements of N, and we set |w| = n, so that |w| represents
the generation of w or the height of w. If w = (wl,...,wm) and v = (vl, ..., V") belong to W, we write wv =
(w',...,w™, v!,...,v") for the concatenation of w and v. In particular w@ = @w = w. The mapping 7 : W \
(@} — Wis defined by 7w ((w', ..., w") = (w',...,w" ) if n > 1 and 7((w')) = @, and we say that 77 (w) is the
father of w. We set 7°(w) = w and 7" (w) = 7"~ (7w (w)) for 1 <n < |w|. In particular, avl(w) = 2.

A (finite or infinite) rooted ordered tree t is a subset of ¥V such that

(1) get.

2) wet\{g} = n(w) et.

(3) For every w € t, there exists a finite integer k,,t > 0 such that, for every j € N, wj € tif and only if 0 < j <kt
(kyt is the number of children of w € t).
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Let T* denote the set of all such trees t. Given a tree t, we call an element in the set t C YV a node of t. Denote
the height of a tree t by |t| := max{|v|: v € t}. For h > 0, there exists a natural restriction map rj, : T® — T” such that
rpt={v et: |v| <h}, where T" := {t € T®: |t| < h}. In particular, TO = {&}.

We denote by #t the number of nodes of t. Let

T::{teTOO: #t<oo}

be the set of all finite trees. Then T = [ ;2 , T".
We define the shifted subtree of t above v by

Tot:={w: vw € t}.

For n > 0, let gen(n, t) be the nth generation of individuals in t. That is
gen(n, t) 1= {v et: |v| :n}.

We say that w € t is a leaf of t if k,,t = 0 and set
L) :={wet:k,t=0}

So L(t) denotes the set of leaves of t and #£(t) is the number of leaves of t. .
We say that w € t is an inner node of t if it is not a leaf (i.e. k,t > 0) and we denote by t' the set of inner nodes of
tie.

t =t\ L(¢).

Given a probability distribution p = {p,,n =0, 1, ...} with p; < 1, following [4], call a random tree G, a Galton—
Watson tree with offspring distribution p if the number of children of & has distribution p:

PkgGp,=n)=p, Vn=0

and for each h = 1,2, ..., conditionally given r,G = th e T, forv e gen(h, th), k,Gp are i.i.d. random variables
distributed according to p. That means

P(ra1G =tlrnG =rpt) = l_[ Pit,  te Tt
verpt\rp—t
where the product is over all nodes v of t of height #. We have then
PG=0=]]put teT, 2.1
vet

where the product is over all nodes v of t.
2.2. Pruning at nodes

Let 7 be a tree in T. For 0 < u < 1, a random tree 7 (1) is called a node pruning of T with parameter u if it is
constructed as follows: conditionally given 7 =t, t € T*, for 0 < u < 1, we consider a family of independent random
variables (£}, v € t) such that

w1 if kot > 1,

P(€3=1)=1—P(53=O)={1, if kot =0,

and define

vl
T (u) := (@} U !uet\{@}:]‘[s;n(v)=1}. (2.2)

n=1
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This means that if a node v belongs to 7' (1) and £ =1, then vj, j =0, 1,..., k,(t), all belong to 7 () and if £ =0,
then all subsequent offsprings of v will be removed with the subtrees attached to these nodes. Thus 7 (u) is a random
tree, 7 (u) C 7 and we have for every v € W,

n>1,

n—]l .
Pk,vT () =nveT ), T =t) = u tkyt=ni _ = 2.3
( vT (1) | () ) {l{kvt=0}‘|’(1_“kut 1)1{kvtzl}, n—=0. (2.3)
We also have that for 2> 1 and t € T,
P(rT () =t T =1) :P< [T &= 1) = uZvenno G40, (2.4)

ven(h,t)

where n(h,t) :={v et k,t>1and|v| <h}.
If 7 is a Galton—Watson tree, we have the following proposition.

Proposition 2.1. If 7 is a Galton—Watson tree with offspring distribution {p,,n > 0}, then T (u) is also a Galton—
Watson tree with offspring distribution {p,(Lu), n > 0} defined by (1.1) and (1.2).

Proof. By (2.3),

P(koTw)=0)=P(T ={2})+ Y _(1—u" "PkgT =n)=po+ Y _(1—u""")pa,

n=1 n=1

which is equal to p(()“). Forn>1,

P(koT (u) =n) =u"'PkaT =n) =u""' p,.

The fact that {£]/} are, conditionally on 7 independent random variables, gives that for each h = 1,2, ..., condition-
ally given r,7 (1) = t" e T", for v e t" with |[v| = h, k,7 (1) are independent. Meanwhile, again by (2.3),

P(kyT (u) = n|ry T (u) = t")

N ur P, T =n) = pl, ifn>1,
T PhT =0+ X (1w PRT =k) = pi”, ifn=0.

Then the desired result follows readily. (]

3. A tree-valued Markov process
3.1. A tree-valued process given the terminal tree

Let 7 be a tree in T°°. We want to construct a T*-valued stochastic process {7 («): 0 < u < 1} such that

e T(H=T,
e forevery 0 <uj <upy <1, 7 (u1) is a node pruning of 7 (1) with pruning parameter uy/u;.

Recall that 77 is the set of the inner nodes of 7. Let (£,,ve 7)) bea family of independent random variables such
that, for every v € G,

P&, <u) =ubT 1
Then, for every u € [0, 1], we set

Tw)={veT VI <n <], &) <u}.
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We call the process (7 (1), 0 < u < 1) a pruning process associated with 7. Let us remark that, contrary to the
process of [4], the tree 7 (0) may not be reduced to the root as the nodes with one offspring are never pruned. More
precisely, if we denote by (1)" the n-uple (1,1, ..., 1) € (N*)" with the convention (1)° = @, we have

T(0)={()",n < suplk,VI <k, kG =1}}

with the convention sup & = 0.
We deduce from Formula (2.4) the following proposition:

Proposition 3.1. We have that

liml Tw)y=7T a.s., 3.1

where the limit means that for almost every w in the basic probability space, for each h there exists a u(h, w) < 1 such
that rpT (u, w) =rp 7T (w) forall u(h, w) <u < 1.

3.2. Pruning Galton—Watson trees

Let p ={pn,,n=0,1,...} be an offspring distribution. Let G be a Galton—Watson tree with offspring distribution p.
Then we consider the process (G(u),0 < u < 1) such that, conditionally on G, the process is a pruning process
associated with G.

Then for each u € [0, 1], G(u) is a Galton—Watson tree with offspring distribution p(”). Let g(s) denote the gener-
ating function of p. Then the distribution of G(u) is determined by the following generating function

gu(s)=1—g@)/u+gus)/u, 0<u=xl. (3.2)
3.3. Forward transition probabilities

Let L(u) be the set of leaves of G(u). Fix « and 8 with 0 <« < 8 < 1. Let us define

B B

(1= (/BN py p
Pap(k) = @ fork>1 and py(0)= ((’a)
Py Py

We define a modified Galton—Watson tree in which the size of the first generation has distribution p, g, while these
and all subsequent individuals have offspring distribution p®). More precisely, let N be a random variable with law
Pa,p and let (7;, k € N*) be a sequence of i.i.d. Galton—Watson trees with offspring distribution p® independent
of N. Then we define the modified Galton—Watson tree G, g by

N
Gup =12} Ulk. 1<k <N}U | J{kw, w e Ti}. 3.3)
k=1

Let (G, pVE L(a)) be, conditionally given G (), i.i.d. modified Galton—Watson trees. We set

G =0@u |J {vw:wegy,}. (3.4)
veLl(a)

That is G (B) is a random tree obtained by adding a modified Galton—Watson tree g“ on each leaf v of G(«). The

following proposition, which implies the Markov property of {G(u),0 <u <1}, descrlbes the transition probabilities
of that tree-valued process.

Proposition 3.2. For every 0 <a < B < 1, (G(@), G(8)) < (G(a), G(B)).
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Proof. Let o < f8, let h € N* and let s and t be two trees of T/ such that s can be obtained from t by pruning at nodes.
Then, by definition of the pruning procedure, we have

P(raG(a) =s,rmG(B) =t) = H ka H( )Utl H <]_(%>km>

ver_it veL(s)\L(t)
(@) (B) )Mt
o
= l_[ Pt l_[ Py, l—[ (1 - <E) l{kvt>0})
vest ver,_t\st veL(s),|v|<h
@ ) ®) o\
o
=[Irce TT wie I1 P (1 <E> hm»m)
vest verp—1t\s veLl(s),|v|<h
8 kt—1
pkut o v
= 1_[ p(a) 1_[ p]?jt) l_[ @ (1 — (E) l{kut>0})
Ver,_is verp_it\s veLl(s),|vi<h Po
=1 »2 T1 220 T1  pestkon.
VErp—18 verp—1t\s veL(s),|v|<h

The definition of G (B) readily implies

Pd@ =s.nd@B == [] p&2 T[] »&i Tl pestt)

VETp—18 ver,—1t\s veL(s),|v|<h

which ends the proof. g

Let #£(u) denote the number of leaves of G(u). The latter proposition together with the description of G readily
imply

(g<a),#£(ﬁ))i<g(a), 3 #e( ;,ﬂ)) (3.5)
vel(a)

We can also describe the forward transition rates when the trees are finite. If s and t are two trees and if v € L(s),
we define the tree obtained by grafting t on v by

r(s,v;t) :=sU {vw, w et}.
We also define, for s € T, v € L(s) and k € N*, the set of trees
r(s, v; te(00)) := {r(s, v; t), kgt =k, #t = oo},

Corollary 3.3. Lets e T,te T, t#£ {3} and let v € L(s). Then the transition rate at time u from s to ¥ (s, v; t) is given
by

ot—1P(Gw) =1t
qu(s— r(s, v b)) := o (3.6)
u p
0
Lets €T, v e L(s) and k > 1. Then the transition rate at time u from s to the set r(s, v; t; (00)) is
k—11— F(u)*
qu(s = r(s, v; tk(00))) == — Tpl(c"), 3.7
Do

and no other transitions are allowed.
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Proof. Letse T, te T, t# {@} and let v € L(s). By Proposition 3.2, we have
P(G(u) =5, G(u +du) =x(s,v: 1)) = P(G(u) =s, G(u + du) = r(s, v; 1))

= P(g(u) = S)]P( I:,M+du = t) 1_[ P( lE‘u+du = {@})
veL(s)\{v}

= P(g(u) = S)]P)(g;’u_,’_du = t)pu,u+du (0)#L(S)—l .
Using (3.3), we get

P(G(u + du) =r(s, v; )|G(u) =s)

Puu+du(kgt) -
= IP)(g(u +du) = t)%pu,u+du (0)#[:(5) !

kot

1 u kot—1 p(()u+du) #L(s)—1
:P(g(u+du):t)—<l—< ) )( )
p(()”) u+du p(()”)

1 d
~ P(G) = t) —5 (kort — HE.
Py u

du—0
This gives Formula (3.6).

A similar computation replacing P(G(u) =t) by P#G(u) = colkzGu) =k) =1 — F(u)* gives Formula (3.7).
Another similar computation gives that, if t is obtained by grafting two trees (or more) on the leaves of s,

P(g(u +du) =t|G(u) = s) = o(du)
and it is clear by construction that, in all the other cases,
P(G(u +du) =t|G(u) =s) =0. 0

Let us define
o0
pGw =Y kp" (3.8)
k=1

if it exists the mean of p("). We set u; = sup{u € [0, 1], w(u) < 1}. Recall the definition of function M in (1.4).
Corollary 3.4. The process

(M(u,g(u)),05u<u1) 3.9)
is a martingale with respect to the filtration generated by {G(u),0 <u < uy}.

Proof. First, by the branching property of Galton—Watson process, foreachn > 1,0 <u < u; and £ > n,

P(#L(u) = LlkaG(u) =n) = ]P’(Z L= z),
i=1

where L1, Ly, ... are i.i.d. copies of #L(u). This gives

E[#L@)] = pi” + E[kaG ) |E[H#Lw)]
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which implies

0
E#Lw)] = —2— (3.10)

)

A straightforward computation gives that the mean of the offspring distribution py g is

(B — p()
Mo p =" -
Do

By the same reasoning, (3.3) and (3.5) imply, for 0 <« < 8 < uj,

E[#L(B)|G (@) ]| = #L()E[#L( 5,,3)] =#L(c)(pa.p(0) + na pE[#L(B)])
., p(()ﬁ)
=# .8 (0 o f————
(oc)(p B0) + ,ﬂl_ﬂ(ﬁ)>

by (3.10). Then the martingale property of (3.9) follows from a simple calculation. (]
3.4. Pruning a Galton—Watson tree conditioned on non-extinction

Let p be a critical or sub-critical offspring distribution with mean w such that pg < 1. We define the size-biased

probability distribution p* of p by

kp
/1/ 9

i = k>0.
Let G be a Galton—Watson tree with offspring distribution p. For a tree t, we denote by Z,t = #gen(n, t) the
number of individuals in the nth generation of t. We first recall a result in [6].

Proposition 3.5 (Kesten [6], Aldous and Pitman [4]).

(i) The conditional distribution of G given {Z,G > 0} converges, as n tends to +00, toward the law of a random
Sfamily tree G specified by

P(rnG® =t) = u "(Zp)P(rnG =1t) Vte T h>o0.

(ii) Almost surely G contains a unique infinite path (& = Vy, Vi, Va, ...) such that w(Vy41) = Vy, for every
h=0,1,2,....

(iii) The joint distribution of (Vy, Vi, Va,...) and G is determined recursively as follows: for each h =
0,1,2,..., given (Vy, V1, Va, ..., Vi) and r,G®, the numbers of children (k,G*°, v € gen(h, G°)) are independent
with distribution p for v # Vy,, and with the size-biased distribution p* for v = Vy; given also the numbers of children
k,G for v € gen(h, G*), the vertex V41 has uniform distribution on the set {(Vy,,i),1 <i < ky, G*}.

We say that G is the Galton—Watson tree associated with p conditioned on non-extinction. We then define the
process (G*(u), 0 <u < 1) as a pruning process associated with G>°. By Proposition 3.1, G*(1—) = G*(1) = G*°(1)
almost surely. And since there exists a unique infinite path, we get that G*(u) is finite almost surely forall 0 <u < 1.

The distribution of G*(u) for fixed u is given in the following proposition. Let us recall that w(«) is the mean of
p® defined in (3.8).

Proposition 3.6. Foreach0<u <1,

1 1) —
P(g*(u)Zt)z( > /L(l)wl)u( ) (u)lL(u)P(g(“)=t)v teT. (3.11)
veLl(t) Py
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Proof. We prove (3.11) inductively. First, note that
P(kaG*(1) =n) = pj =npa/p(1).
Then
PG () = (2)) = Y (1 — " )P(ke G (1) = n) = (u(1) — u(w) /(D).

n>1

Since P(G(u) = (@) = pi*, (3.11) holds for t = ().
On the other hand, by Proposition 3.5, we have

P(T,G* (1) =ty = V) =P(G* =t)
and

P(T,6%(1) =tjv # Vj,)) = PG =1)
which gives

P(T,G*(u) =tlv € G*(u), v = Vjy) =P(G* () =1t) (3.12)
and

P(T,G* () =ty € G*(u), v # Vjy) = P(Gw) = t), (3.13)
respectively. Meanwhile, since G(u) is a Galton—Watson tree,

P(T,Gw) =ty € Gw)) = P(Gu) =t),

which implies

PG =t)=p [] P(Gw =T). (3.14)

1<j<kgt

For some 4 > 0, assume that (3.11) holds for all trees in T". By (3.12) and (3.13), we have for t € Th+1 \T",

kot
]P’(g*(u) = t) = P(kgg*(u) = kgt) ZP(Vl <j<kgt, T(j)g*(u) =THtIV1 = i)]P’(Vl =1)
i=1

kot

1
= Pl Z(P(g*(”) =Tot)- ] P@Gw= T(./>t)>
ot j£i, 1<j<kgt
JFLI= )=k
Phot & L u() = pw)
ot -
- - . : P(G(u) = T(;)t)>
w(D iX_;veLX(;mt)<M(l)l | P(()) 1<}:[kzt ]

1 )M(l)—u(u)
=( X = P (Gu) =t),
<u/e£(t)“(1)| I+ P(())

where the last equality follows from (3.14) and the facts

U {ivive LTy} =L

1<i<kgt

and |iv|=|v|+ 1. Since T = Uflozl T", (3.11) follows inductively. O
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Remark 3.7. If G is a critical Galton—Watson tree (u(1) = 1) with py < 1, Formula (3.11) becomes

#LA)(1 — (u))
P

P(G* () =t) = P(Gu) =t) = M(u, )P(G(u) =t).

In other words, the law of G*(u) is absolutely continuous with respect to the law of G(u) with density the martingale
of Corollary 3.4.

4. The ascension process and its representation

In this section, we consider a critical offspring distribution p with p; < 1 and set

~+00
1= uZO,Zuk_lpkfl .
k=1

Remark 4.1. We have I = [0, u] with u > 1. Indeed, as the all the coefficients of the sum are non-negative, either the
sum converges at the radius of convergence R and is continuous on [0, R], or it tends to infinity when u — R. In the
latter case, there is a unique u < R for which the generating function takes the value 1 (by continuity). In the former
case, either the value of the generating function at R is greater than 1 and the previous argument also applies, or the
value of the generating function at R is less than 1 and u = R.

Let us give some examples:

Example 4.2 (The binary case). We consider the critical offspring distribution p defined by po = p2» = 1/2 (each
individual dies out or gives birth to two children with equal probability). In that case, we have

+00 1
> i = g
k=1

and hence we have u =2, I =1[0,2] and p(()z) =0.

Example 4.3 (The geometric case). We consider the critical offspring distribution p defined by

{Pk=0!ﬂkl Jork =1,
po=1- 15

Then, for every u, p™ is still of that form. As the offspring distribution p is critical, we must have a = (1 — )2,
0 < B < 1. In that case, we have

+00 2
Z 4 d=p8)

pkuk = 1— gu
k=1

and hence we have u =2 — B, I =0, u], p(()ﬁ) =0.
Example 4.4. We consider the critical offspring distribution p defined by

p=23% fork =1,

po=1-372pr.

then u =1 and p(()';) = po > 0.
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For u € I, let us define

@ _ k-1
, k>1,
{ P =t P = (4.1)

) _q _ Zk 1 pliu).

Then, for u € I, p™ is still an offspring distribution, it is sub-critical for u < 1, critical for # = 1 and super-critical
foru > 1.

We consider a tree-valued process (G(u),u € I) such that the process (G(tu),t € [0, 1]) is a pruning process
associated with G(u). Then this process G satisfies the following properties:

e forevery u € I, G(u) is a Galton—Watson tree with offspring distribution p(”),
e forevery o, B €1, o < B, G() is a pruning of G(B).

We now consider {G(u), u € I} as an ascension process with the ascension time
A :=inf{u € I,#G(u) = oo}

with the convention inf @ = u.

The state in the ascension process at time u is G(u) if 0 < u < A and t(oco) if A <u where t(co) is a state
representing any infinite tree. Then the ascension process is still a Markov process with countable state-space T U
{t(co0)}, where t(oco) is an absorbing state.

Denote by F(u) the extinction probability of a Galton—Watson process with offspring distribution p®), which is
the least non-negative root of the following equation with respect to s

s=gu(s)=1—gi)/u+gi(us)/u, (4.2)

where g1 is the generating function associated with the offspring distribution p and g, is the generating function
associated with p®.

We set
F(u)=1-F(u). (4.3)
Thus
uF )+ gi(u—uF@W) =g ). (4.4)

The distribution of the ascension process is determined by the transition rates (3.6) and
(u) k
Gu(s — t(c0)) = (u) Z(k ~Dp (1 - Fa)h). 4.5)

Define the conjugate i by
u=ukF@w) foruel. (4.6)
In particular, for u < 1, F (1) = 1 and consequently & = u. On the contrary, for u > 1, Proposition 4.5 shows that

n<l.
We can restate Eq. (4.4) into

g1() —g1(w) =i —u. 4.7

Notice that this equation with the condition i < 1 characterizes u.
We first prove the following result which is already well known, see for instance [5], p. 52. We just restate this
property in terms of our pruning parameter.
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Proposition 4.5. Foranyu e l,u>1

P(Gu)=t)=FwP(G@) =t), teT.

In other words, the law of G(u) conditioned to be finite is G (i), which explains the term conjugate for i.

Proof of Proposition 4.5. By (2.1), we have
PGw=0= [] r- [1 r"
vet\L(t) veLl(t)
and by (4.6),
P(G(i) =t).

()

p(()u) )#E(t)
Py

P(Gu) =t) = F(u)—@uet\at)(kut—l))(

We also have

Py =13 F@! ' p{ =14 py”/F(u) — gu(Fw)/F () = p§” / F (u).

k=1

Then the desired result follows from the fact that given a tree t € T,

#LH) =1+ Z (kyt — 1).
vet\L(t)

In what follows, we will often suppose that
Py’ =0,

which is equivalent to the condition

+00
D @ =1
k=1

and which implies that G(u) is infinite.

(4.8)

(4.9)

(4.10)

We can however give the law of A and of the tree G(A—) just before the ascension time in general, this is the

purpose of the next proposition.

Proposition 4.6. Foru € [1,u) andte T,
P(A <u)=F(u),
P(G(A—) =t|A =u) = M (i, )P(G(@) =t),
P(#G(A—) < +oo|A=u) = 1.
Furthermore, under assumption (4.10),
P(A<u)=1

and

A~

A -
(A, Z) = (A F) L (F' 1 =y),y),

where F~1:0, 11 = [1, ] is the inverse function ofF and y is a r.v. uniformly distributed on (0, 1).

@11
4.12)
(4.13)

4.14)

4.15)
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Proof. We have
P(A <u)=P(#G(u) = 00) = F(u)

which gives (4.11).
By the definition of F (1) in Formula (4.2) and the implicit function theorem, function F is differentiable on (1, i).
This gives for u € (1, i)

P(A edu)=—F'(u)du
and differentiating (4.2) gives
u(l— gl (@) F' () =1-g ) — Fu)(1 — g @)). (4.16)

By (4.5), we have fort € T

P(G(A—)=t, A edu) = #‘C(Lg(g‘):t) > k= Dp (1 = F*) du. 4.17)
Upg k=2
Now, using (4.8), we have
P(G(A—)=t, A e du) = #E(t)P(g(ﬁi): DF ) Y k= Dp (1 = F)*) du.
up k=2

Easy computations give

810 _ pg) @) + £
u u

Y k= Dp (1 - Fu*) = gjw) —
k=2

= —F'wu(l - g @) +1— F) + M

=—F'(wu(l - g @)

using first Eq. (4.16) and then Eq. (4.7).
This finally gives

#LWOP(G (@) =) F (u)
- ()
Py

P(G(A—)=t,Aedu) = F'(u)(1 — g\ (@) du

_#LOPG@) =1

= TF/(M)(l — (@) du
Dy

by Eq. (4.9), which yields (4.12).
Summing (4.12) over all finite trees t gives

P(#G(A—) < +00lA =u) =E[M (i, G(@))] =1

by the martingale property, which is (4.13).
Finally, (4.11) gives

P(A=i) =P(Vu <ii,A>u) = lim | — F(u) = F(i—).

u—u

As F is non-increasing, F (u—) indeed exists. Moreover, we have by taking the limit in (4.2)

F(a—) = ga(F@u-))
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and, by assumption (4.10), the only fixed points of g; are 0 and 1, which gives (4.14).
This together with Formula (4.11) also give

ALF L F A -y,
Thus (A, F(A) £ (F~'(1 = ), 1 — ). So we have
(A, F(A) = (A, 1= F(A) £ (FT' (1 =), p),
which is just (4.15). O

With Remark 3.7 and Proposition 4.6 in hand, we have the following representation of the ascension process
{G(x): 0 <a < A} under assumption (4.10).

Proposition 4.7. Under assumption (4.10), we have

{6a).0<u <A} £ (G uy): 0<su< F7'(1 - p)}, (4.18)
where y is a rv. with uniform distribution on (0, 1), independent of {G*(u): 0 <u < 1}.
Proof. Let {G*(#): 0 <u < 1} be independent of A. Then by Remark 3.7,

P(G*(A) =t|A =a) =P(G* (@) =t) = M(a, HP(G(a) = ).

Thus it follows from (4.12) that (A, G(A—)) 2

everyteT,0<a<land0<pB <u,

(A, G* (A)). On the other hand, by the definition of node-pruning, for

P((G(sB).0 <5 <1) € 1G(B) =t) = P((0*(s), 0 <5 < 1) € |G*(@) = 1).
Thus conditioning on the terminal value implies
[G), 0 <u < A} £ {G*(Au/A): 0<u < A).
Then (4.18) follows from (4.15). O

Example 4.8 (Binary case). If p = 18, + %50, then it =2 and G(u) is a Galton—Watson tree with binary offspring
distribution 58 + (1 — 5)8¢ for 0 < u < 2. In this case, we have

2
Fuy==~1

and the ascension time A is distributed as

F”(l—y)zi,
14+y

where y is a uniform random variable on (0, 1). A’s density is given by
, 2
fO)y=—F@)= t—21[1,2](t).

Example 4.9 (Geometric case). We suppose that the critical offspring distribution p is of the form

pe=0—=pB)*B Y fork>1,  py=8.
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In that case, we have

P =1 =B2wp*" fork=>1,

) _q _ (1=p)?
Py =1="=p>
u =2 — B, and assumption (4.10) is statisfied.
We then get
2—u—-pg1
Fuy=2—"—F1

l—uB u

and the ascension time A has density

<2 - (1-p)°B
u? (1 —upB)?

)1[1,2—,3](M)-

5. Proof of Lemma 1.1

Let G, be a Galton—Watson tree with offspring distribution p such that p; < 1.
If t is a tree, we denote by (aj, az, ..., a,) the numbers of offsprings of the inner nodes. Its number of leaves is
then

ar+---+ay,—m—+1.
If t is a tree with n leaves, we have
PGy =) = pa, - Pa, Py
and therefore
P#L, =n)=C,(n)py
with

Com)="D_ Pay*** Pay-

t#L(t)=n
Then we have, for every n such that C,(n) #0,

Pay " Pay, _Qal"'Qam' (5.1)

PG =Ly =m) =PG, =ty =m = == "

First, let us suppose that
PG, =ti#L, =n) =P(G, =ti#L, =n).

For n = 1, all the trees with one leaf are those with one offspring at each generation until the last individual dies.
Therefore,

PG, =t#L,=1)=PG, =t#L;,=1) < Vk=0, plf(l—m)=fﬁ(1—fm
— Pi1=(q1.

We set ng = inf{n > 2, p,, > 0}. We then set u = (qno/pno)l/("o_l).
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If the only non-zero terms of p are pg, p1 and p,,, the relation

qn = M"_lpn

is trivally true for every n > 1.
In the other cases, let n > ng such that p,, > 0 and let N be the integer defined by:

N=2(n—-1)(nop—1).

Let us consider first a tree t that has N 4 1 leaves, n — 1 inner nodes with ng offsprings and ng — 1 inner nodes with
n offsprings. Applying (5.1) to that tree gives

no—1 n—1_no—1

PZJIPn _ ny 4n
Co(N+1) Cy(N+1)

Then, let us consider another tree with N + 1 leaves composed of 2(n — 1) inner nodes with ng offsprings. For that
new tree, (5.1) gives
2(n—1 2(n—1
pn(()n ) . Qnén )

C,(N+1)  CuN+1)

Dividing the two latter equations gives

n—1
qn=1u Pn-

It remains to remark that this identity also holds when n = ny and when p, = 0.
Conversely, let us suppose that g, = u” ! p,, for every n > 1. Let n such that C p(n) # 0. Then, for every t with n
leaves, we have

da, * " " Ya, = ualilpal e Mamilp:;,,,
— ua1+"'+am_mpal <+ Pa
=u" " Pa; " Pay-
We then have C,(n) = u”’ICp (n) and

qal .”qam — un_lpal .”pam — pul .“pam
Cy(n) u1C,(n) Cp(n)

)

that is

P(G, =t#L, =n) =P(G, = t#L, = n).
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