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Abstract. We prove fluctuation bounds for the particle current in totally asymmetric zero range processes in one dimension with
nondecreasing, concave jump rates whose slope decays exponentially. Fluctuations in the characteristic directions have order
of magnitude t1/3. This is in agreement with the expectation that these systems lie in the same KPZ universality class as the
asymmetric simple exclusion process. The result is via a robust argument formulated for a broad class of deposition-type processes.
Besides this class of zero range processes, hypotheses of this argument have also been verified in the authors’ earlier papers for
the asymmetric simple exclusion and the constant rate zero range processes, and are currently under development for a bricklayers
process with exponentially increasing jump rates.

Résumé. Nous démontrons des bornes sur les fluctuations du courant de particules pour des processus de zero-range unidimen-
sionnels totalement asymétriques avec des taux de sauts concaves dont la pente décroît exponentiellement. Les fluctuations dans
la direction des caractéristiques sont de l’ordre t1/3 en accord avec les prédictions de la classe d’universalité de KPZ. Notre ré-
sultat est obtenu par un raisonnement robuste qui est formulé pour une classe importante de processus de déposition. Au-delà du
processus de zero-range, les hypothèses de notre argument ont aussi été vérifiées dans des articles antérieurs pour le processus
d’exclusion simple asymétrique et le processus de zero-range avec taux constants. Ces hypothèses sont en cours de développement
pour un processus de déposition avec des taux de sauts dont la croissance est exponentielle.
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1. Introduction

This paper studies anomalous current fluctuations of attractive interacting systems in one dimension with one con-
served quantity. The family of models considered includes the asymmetric exclusion, the zero range, misanthrope-type
and many other processes. In the asymmetric case (to be specified later) the Eulerian scaling of such a system leads
to a (deterministic) hyperbolic conservation law with a hydrodynamic flux function H(�). The characteristics of the

1Part of this work was done while M. Balázs was affiliated with the MTA-BME Stochastics Research Group.
2Supported in part by the Hungarian Scientific Research Fund (OTKA) Grants K60708, TS49835, F67729, and by Morgan Stanley Mathematical
Modeling Center.
3Supported in part by the Bolyai Scholarship of the Hungarian Academy of Sciences.
4Supported in part by National Science Foundation Grants DMS-07-01091 and DMS-10-03651, and by the Wisconsin Alumni Research Founda-
tion.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/11-AIHP415
mailto:balazs@math.bme.hu


152 M. Balázs, J. Komjáthy and T. Seppäläinen

conservation law is of particular importance both for the PDE itself and for the underlying stochastic system. Re-
cently, the current fluctuations through the characteristic lines drew much attention. The behavior of these fluctuations
is fundamentally determined by the form of H. Rigorous results exist for examples that fall in two categories.

Order t1/4 fluctuations. When H is linear the fluctuations are of order t1/4 and converge to Gaussian processes
related to fractional Brownian motion. This has been proved for independent particles [17,25,32] and the random
average process [8,19].

Order t1/3 fluctuations. When H′′(�) �= 0 the fluctuations are of order t1/3 and converge to distributions and
processes related to the Tracy–Widom distributions from random matrix theory. The most-studied examples are the
totally asymmetric simple exclusion process (TASEP), the polynuclear growth model and the Hammersley process.
Two types of mathematical work should be distinguished.

(a) Exact limit distributions have been derived with techniques of asymptotic analysis applied to determinantal rep-
resentations of the probabilities of interest. Most of this work has dealt with particular deterministic initial conditions,
and the stationary situation has been less studied. The seminal results appeared in [3] for the last-passage version of
the Hammersley process and in [22] for the last-passage model associated with TASEP. Current fluctuations for sta-
tionary TASEP were analyzed in [20]. Here is a selection of further results in this direction: [4,14,21,23,28]. Recently,
the asymmetric simple exclusion (ASEP) also got within reach of these techniques [34].

(b) Probabilistic approaches exist to prove fluctuation bounds of the correct order. The seminal work [15] was on
the last-passage version of the Hammersley process, and then the approach was adapted to the last-passage model
associated with TASEP [6]. The next step was the development of a proof that works for particle systems: the ASEP
was treated in [13] and the totally asymmetric zero range process (TAZRP) with constant jump rate in [7]. The ASEP
work [13] was the first to prove t1/3 order of fluctuations for a process where particle motion is not restricted to totally
asymmetric. Resolvent methods were also applied in [29,30] to extend the results from nearest neighbor ASEP to
exclusion processes with non nearest neighbor jumps.

The present paper takes a further step toward universality of the t1/3 order of fluctuations in the case H′′(�) �= 0.
We rewrite our earlier proof for ASEP and constant rate TAZRP in a fairly general way, extract and formulate in
general terms a particular feature of these two models that made our proof work. For reasons to be explained later we
call this feature microscopic concavity. With this notion in hand we extend the t1/3 scaling result for a class of totally
asymmetric zero range processes (with nonconstant rates). We remark at this point that jump rates of this example
have a much richer behavior than the constant rates of those featured in anomalous scaling proofs so far. Further
generalizations now only require the verification of microscopic concavity. Product form invariant distributions are
critically important for the method.

The hypothesis of microscopic concavity consists of control of second class particles that is a microscopic coun-
terpart of the macroscopic effect that concavity of H has on characteristics. We make this technically precise in
Section 2.6. Once the microscopic concavity assumption is made the proof works for the entire class of processes.
This then is the sense in which we take a step toward universality. As a by-product, we also obtain superdiffusivity of
the second class particle in the stationary process.

Earlier proofs of t1/3 fluctuations have been quite rigid in the sense that they work only for particular cases of the
models where special combinatorial properties emerge as if through some fortuitous coincidences. There is basically
no room for perturbing the rules of the process. By contrast, the proof given in the present paper works for the whole
class of processes. The hypothesis of microscopic concavity that is required is certainly nontrivial. But it does not seem
to rigidly exclude all but a handful of the processes in the broad class. The estimates that it requires can probably be
proved in different ways for different subclasses of the processes. And the proof itself may evolve further and weaken
the hypothesis required.

To summarize, we are currently able to verify the required hypothesis of microscopic concavity for the following
three subclasses of processes.

(i) The asymmetric simple exclusion process (ASEP). Full details of this case are reported elsewhere [12] and we
give a brief informal description in Section 2.8.1. This proof is somewhat simpler than the earlier one given in [13].

(ii) Totally asymmetric zero range processes (TAZRP) with a concave jump rate function whose slope decreases
geometrically, and may be eventually constant. This example has been out of reach for existing methods, so it is
completely new in this context. It is developed fully in the present paper. As a special case, the result of [7] for the
constant rate TAZRP is also recovered.
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(iii) The totally asymmetric bricklayers process with convex, exponential jump rate. This system satisfies the
analogous microscopic convexity. Due to the fast growth of the jump rate function this example needs more preliminary
work than was sensible to include in the present paper, and so the result will be published separately in the future.

We expect that a broader class of totally asymmetric concave zero range processes should be amenable to further
progress because a key part of the hypothesis can be verified, and only a certain tail estimate is missing. We explain
this in Section 2.8.2.

Interacting particle systems can naturally be given a surface growth representation where integrated particle current
becomes the height of a surface and particle occupations become (negative) discrete gradients of this surface. We found
this picture extremely helpful in visualizing currents and couplings, hence this is the way we introduce and handle the
processes.

This paper has two parts. In the main part we prove the general fluctuation bound under the assumptions needed for
membership in the class of processes and the assumption of microscopic concavity. The remainder of the paper shows
that the assumptions required by the general result are satisfied by a class of zero range processes. Here is a section
by section outline.

In Section 2 we define the general family of processes under consideration, describe the microscopic concavity
property and other assumptions used, and state the general results. Partly as corollaries to the fluctuation bound along
the characteristic we obtain a law of large numbers for a second class particle and limits that show how fluctuations in
noncharacteristic directions on the diffusive scale come directly from fluctuations of the initial state. Section 2.8 de-
scribes two examples. Section 2.8.1 gives a brief description of how the asymmetric simple exclusion process (ASEP)
satisfies the assumptions of our general theorem. (Full details for this example are reported in [12].) Section 2.8.2
describes a class of totally asymmetric zero range processes with concave jump rates that increase with exponentially
decaying slope.

The general theorem is proved in two parts: the upper bound in Section 3 and the lower bound in Section 4.
Section 5 proves a strong law for the second class particle, partly as a corollary of the main fluctuation bounds. We
then return to the zero range example and give a complete proof for this class of processes in Section 6.

The three-part Appendix contains auxiliary computations for the stationary distribution and hydrodynamic flux
function. In particular, if the jump rate function of a zero range process is concave and not linear then the hydrody-
namic flux H satisfies H′′(�) < 0 for all densities 0 < � < ∞.

Notation. We summarize here some notation for easy reference. Z
+ = {0,1,2, . . .}, R

+ = [0,∞). Centering a ran-
dom variable is denoted by X̃ = X − EX. Constants C�, α� do not depend on time, but may depend on the density
parameter � and their values can change from line to line. The numbering of these constants is of no particular
significance and is meant only to facilitate following the arguments.

2. Definitions and results

We define the class of processes studied in this paper, give a list of examples, and discuss some of basic properties.
Then come the hypotheses and main results of this paper, followed by two examples of subclasses of processes for
which the hypotheses can be verified.

2.1. A family of deposition processes

The family of processes we consider is the one described in [11], and we repeat the definition here. We start with the
interface growth picture, but we end up using the height and particle languages interchangeably. For extended-integer-
valued boundaries −∞ ≤ ωmin ≤ 0 and 1 ≤ ωmax ≤ ∞ define the single-site state space

I := {
z ∈ Z: ωmin − 1 < z < ωmax + 1

}
and the increment configuration space

Ω := {
ω = (ωi)i∈Z: ωi ∈ I

}= IZ.
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At times it will be convenient to have notation for the increment configuration δi ∈ Ω with exactly one nonzero entry
equal to 1:

(δi)j =
{

1 for i = j ,
0 for i �= j .

(2.1)

For each pair of neighboring sites i and i +1 of Z imagine a column of bricks over the interval (i, i +1). The height
hi of this column is integer-valued. The components of a configuration ω ∈ Ω are the negative discrete gradients of
the heights: ωi = hi−1 − hi ∈ I .

The evolution is described by jump processes whose rates p and q are nonnegative functions on I × I . Two types
of moves are possible. A brick can be deposited:

(ωi,ωi+1) −→ (ωi − 1,ωi+1 + 1)

hi −→ hi + 1

}
with rate p(ωi,ωi+1), (2.2)

or removed:

(ωi,ωi+1) −→ (ωi + 1,ωi+1 − 1)

hi −→ hi − 1

}
with rate q(ωi,ωi+1). (2.3)

Conditionally on the present state, these moves happen independently at all sites i. We can summarize this information
in the formal infinitesimal generator L of the process ω(·):

(Lϕ)(ω) =
∑
i∈Z

p(ωi,ωi+1) · [ϕ(. . . ,ωi − 1,ωi+1 + 1, . . .) − ϕ(ω)
]

+
∑
i∈Z

q(ωi,ωi+1) · [ϕ(. . . ,ωi + 1,ωi+1 − 1, . . .) − ϕ(ω)
]
. (2.4)

L acts on bounded cylinder functions ϕ :Ω → R (this means that ϕ depends only on finitely many ωi -values).
Thus we have a Markov process {ω(t): t ∈ R

+} of an evolving increment configuration and a Markov process
{h(t): t ∈ R

+} of an evolving height configuration. The initial increments ω(0) specify the initial height h(0) up to
a vertical translation. We shall always normalize the height process so that h0(0) = 0.

In the particle picture the variable ωi(t) represents the number of particles at site i at time t . Step (2.2) represents
a rightward jump of a particle over the edge (i, i +1), while step (2.3) represents a leftward jump. (If negative ω-values
are permitted, one needs to consider particles and antiparticles, with antiparticles jumping in the opposite direction.)
Figure 1 shows a configuration and a possible step with both walls and particles. It is in the particle guise that many of
these processes appear in the literature: simple exclusion processes, zero range processes and misanthrope processes
are examples included in the class studied in this paper.

It will be useful to see that

hi(t) = hi(t) − h0(0) = the net number of particles that have passed, from left to right,

the straight-line space–time path that connects (1/2,0) to (i + 1/2, t). (2.5)

In particular, height increment hi(t) − hi(0) is the cumulative net particle current across the edge (i, i + 1) during
time (0, t].

We impose the following four assumptions (2.6)–(2.9) on the rates.

• The rates p,q : I × I → R
+ must satisfy

p
(
ωmin, ·)≡ p

(·,ωmax)≡ q
(
ωmax, ·)≡ q

(·,ωmin)≡ 0 (2.6)

whenever either ωmin or ωmax is finite. Either both p and q are strictly positive in all other cases, or one of them is
identically zero. The process is called totally asymmetric if either q ≡ 0 or p ≡ 0.
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Fig. 1. The wall and the particles with a possible step.

• The dynamics has a smoothing effect when we assume the following monotonicity:

p(z + 1, y) ≥ p(z, y), p(y, z + 1) ≤ p(y, z),
(2.7)

q(z + 1, y) ≤ q(z, y), q(y, z + 1) ≥ q(y, z)

for y, z, z + 1 ∈ I . Under this property the higher the neighbors of a column, the faster it grows and the longer it
waits for a brick removal, on average. This is the notion of attractivity.

• The next two assumptions guarantee the existence of translation-invariant product-form stationary measures. (Sim-
ilar assumptions were employed by Cocozza-Thivent [16].)
– For any x, y, z ∈ I

p(x, y) + p(y, z) + p(z, x) + q(x, y) + q(y, z) + q(z, x)

= p(x, z) + p(z, y) + p(y, x) + q(x, z) + q(z, y) + q(y, x). (2.8)

– There are symmetric functions sp and sq on I × I , and a function f on I such that f (ωmin) = 0 whenever ωmin

is finite, f (z) > 0 for z > ωmin, and for any y, z ∈ I ,

p(y, z) = sp(y, z + 1)f (y) and
(2.9)

q(y, z) = sq(y + 1, z)f (z).

(Interpret sp(y, z) = sq(y, z) = 0 if y or z > ωmax.) Condition (2.7) implies that f is nondecreasing on I .

An attempt at covering this broad class of processes raises the uncomfortable point that there is no unified existence
proof for this entire class. Different constructions in the literature place various boundedness or growth conditions
on p and q and the space I , and result in various degrees of regularity for the semigroup. (Among key references are
Liggett’s monograph [27], and articles [1,9] and [26].) These existence matters are beyond the scope of this paper.
Yet we wish to give a general proof for fluctuations that in principal works for all processes in the family, subject to
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the more serious assumptions we explain in Section 2.6. To avoid extraneous technical issues we make the following
blanket assumptions on the rates p and q to be considered.

• We assume that the increment process ω(t), and the corresponding height process h(t) with normalization h0(0) =
0, that obey Poisson rates p and q as described by (2.2) and (2.3), can be constructed with cadlag paths in a subspace
Ω̃ of tempered increment configurations (i.e. configurations that obey some restrictive growth conditions).

• The subspace Ω̃ is of full measure under the invariant distributions μθ defined in Section 2.4.
• It is also possible to construct jointly several versions of the process with initial configurations from the space Ω̃

and with joint evolution obeying basic coupling (described in Section 2.3).
• Rates p and q have all moments under the invariant distributions μθ . In fact arguments like Lemma C.2 of the

Appendix provide this when f does not grow faster than exponential on Z
+ and does not decrease faster to zero

than exponential on Z
−.

The reader will see that our proofs in Sections 3–6 do not make any analytic demands on the semigroup and its
relation to the generator. We only use couplings, counting of particle currents and simple Poisson bounds.

Two identities from article [11] play a key role in this paper, given as (2.19) and (2.20) in Section 2.5. These iden-
tities hold for all processes in the family under study. The proofs given in [11] use generator calculations which may
not be justified for all these processes. However, these identities can also be proved by counting particles and taking
limits of finite-volume processes ([12] contains an example). Such a proof should be available with any reasonable
construction of a process. Hence we shall not hesitate to use the results of [11].

2.2. Examples

To give concrete meaning to the general formulation of the previous section we describe some basic examples. The
type of state space I distinguishes three cases that we call generalized exclusion, misanthrope and bricklayers pro-
cesses. In all cases there are two parameters 0 ≤ p,q ≤ 1 such that p + q = 1. Asymmetric processes have p �= q .
These are the processes for which our results are relevant.

1. Generalized exclusion processes. These are the cases where both ωmin and ωmax are finite.

• The asymmetric simple exclusion process (ASEP) introduced by F. Spitzer [33] is defined by ωmin = 0,ωmax = 1,
f (z) = 1{z = 1}, sp(y, z) = p · 1{y = z = 1} and sq(y, z) = q · 1{y = z = 1}. This produces the familiar rates

p(y, z) = p · 1{y = 1, z = 0} and q(y, z) = q · 1{y = 0, z = 1}.
Here ωi ∈ {0,1} is the occupation number for site i, p(ωi,ωi+1) is the rate for a particle to jump from site i to
i + 1, and q(ωi,ωi+1) is the rate for a particle to jump from site i + 1 to i. These rates have values p and q ,
respectively, whenever there is a particle to perform the above jumps, and there is no particle on the terminal site
of the jumps. Conditions (2.7) and (2.8) are also satisfied by these rates.

• Particle–antiparticle exclusion process. Let ωmin = −1, ωmax = 1. Take f (−1) = 0, f (0) = c (creation),
f (1) = a (annihilation) where c and a are positive rates with c ≤ a/2,

sp(0,1) = sp(1,0) = p, sp(0,0) = pa

2c
, sp(1,1) = p

2
,

sq(0,1) = sq(1,0) = q, sq(0,0) = qa

2c
, sq(1,1) = q

2

and sp, sq zero in all other cases. These result in rates

p(0,0) = pc, p(0,−1) = p(1,0) = pa

2
, p(1,−1) = pa,

q(0,0) = qc, q(−1,0) = q(0,1) = qa

2
, q(−1,1) = qa

and zero in all other cases. If ωi is the number of particles at site i, with ωi = −1 meaning the presence of
an antiparticle, then this model describes an asymmetric exclusion process of particles and antiparticles with
annihilation and particle–antiparticle pair creation. These rates also satisfy our conditions.
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One can imagine other generalizations with bounded numbers of particles and/or antiparticles per site.
2. Generalized misanthrope processes have ωmin > −∞,ωmax = ∞.

• Zero range process. Take ωmin = 0,ωmax = ∞, an arbitrary nondecreasing function f : Z+ → R
+ such that

f (0) = 0,

sp(y, z) ≡ p and sq(y, z) ≡ q,

p(y, z) = pf (y) and q(y, z) = qf (z).

Again, ωi represents the number of particles at site i. Depending on this number, a particle jumps from i to the
right with rate pf (ωi), and to the left with rate qf (ωi). These rates trivially satisfy conditions (2.7) and (2.8).

3. General deposition processes have ωmin = −∞ and ωmax = ∞. The height differences between adjacent columns
can be arbitrary integers. Antiparticles are needed for a particle representation of the process.

• Bricklayers process. Let f : Z → R
+ be nondecreasing and satisfy

f (z) · f (1 − z) = 1 for all z ∈ Z.

The values of f for positive z’s thus determine the values for nonpositive z’s. Let

sp(y, z) = p + p

f (y)f (z)
and sq(y, z) = q + q

f (y)f (z)
,

which results in

p(y, z) = pf (y) + pf (−z) and q(y, z) = qf (−y) + qf (z).

The following picture motivates the name bricklayers process. At each site i stands a bricklayer who lays a brick
on the column to his left at rate pf (−ωi) and on the column to his right at rate pf (ωi). Each bricklayer also
removes a brick from his left at rate qf (ωi) and from his right at rate qf (−ωi). Conditions (2.7) and (2.8) hold
for the rates.

These were examples for which our theorem holds, provided the hypotheses on microscopic concavity to be de-
scribed below can be verified.

2.3. Basic coupling

In basic coupling the joint evolution of n processes ωm(·), m = 1, . . . , n, is defined in such a manner that the processes
“jump together as much as possible.” The joint rates are determined as follows, given the current configurations
ω1,ω2, . . . ,ωn ∈ Ω̃ . Consider a step of type (2.2) over the edge (i, i + 1). Let m 
→ 	(m) be a permutation that orders
the rates of the individual processes for this move:

r(m) ≡ p
(
ω

	(m)
i ,ω

	(m)
i+1

)≤ p
(
ω

	(m+1)
i ,ω

	(m+1)
i+1

)≡ r(m + 1), 1 ≤ m < n.

Set also the dummy value r(0) = 0. Now the rule is that independently for each m = 1, . . . , n, at rate r(m)− r(m−1),
precisely processes ω	(m), ω	(m+1), . . . ,ω	(n) execute move (2.2), and processes ω	(1),ω	(2), . . . ,ω	(m−1) do not. The
combined effect of these joint rates creates the correct marginal rates, that is, process ω	(m) executes this move with
rate r(m).

Notice also that, due to (2.7), a jump of ωa without ωb can only occur if p(ωb
i ,ω

b
i+1) < p(ωa

i ,ωa
i+1) which implies

ωa
i > ωb

i or ωa
i+1 < ωb

i+1. The result of this step (2.2) then cannot increase the number of discrepancies between the
two processes, hence the name attractivity for (2.7). In particular, a sitewise ordering ωa

i ≤ ωb
i ∀i ∈ Z is preserved by

the basic coupling.
One can check that moves of type (2.3) with rates q obey the same attractivity property.
The differences between two processes are called second class particles. Their number is nonincreasing. In par-

ticular, if ωa
i ≥ ωb

i for each i ∈ Z, then the second class particles are conserved. In view of (2.5), in this case the net
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number of second class particles that pass from left to right across the straight-line space–time path from (1/2,0) to
(i + 1/2, t) equals the growth difference(

ha
i (t) − ha

0(0)
)− (

hb
i (t) − hb

0(0)
)= ha

i (t) − hb
i (t) (2.10)

between the two processes ωa(·) and ωb(·).
A special case that is of key importance to us is the situation where only one second class particle is present between

two processes.

2.4. Translation invariant stationary product distributions

The results of this paper concern stationary processes with particular product-form marginal distributions that we
define in this section. For many cases it has been proved that these measures are the only extremal translation-invariant
stationary distributions. Following some ideas in Cocozza-Thivent [16], we first consider the nondecreasing function f

whose existence was assumed in (2.9). For I � z > 0 define

f (z)! :=
z∏

y=1

f (y),

while for I � z < 0 let

f (z)! := 1∏0
y=z+1 f (y)

,

and then f (0)! := 1. This definition satisfies f (z)! · f (z + 1) = f (z + 1)! for all z ∈ I . Let

θ̄ :=
{

log
(
lim infz→∞

(
f (z)!)1/z)= limz→∞ log(f (z)), if ωmax = ∞

∞, else

and

θ :=
{

log
(
lim supz→∞

(
f (−z)!)−1/z)= limz→∞ log

(
f (−z)

)
, if ωmin = −∞

−∞, else.

By monotonicity of f , we have θ̄ ≥ θ . The case θ̄ = θ would imply that ωmin = −∞, ωmax = ∞, and f is a constant.
Notice that (2.7) and (2.9) imply that sp is nonincreasing in its variables, but p is nondecreasing in its first variable.
Hence a constant f results in an sp that does not depend on its first variable. But then by its symmetric property
it does not depend on its second variable either, and we conclude that a constant f implies constant rates p (and,
similarly, q). We exclude this uninteresting case by postulating

assume f to be such that θ < θ̄ . (2.11)

For θ ∈ (θ, θ̄ ) define the state sum

Z(θ) :=
∑
z∈I

eθz

f (z)! < ∞. (2.12)

Let the product-distribution μθ on Ω = IZ have marginals

μθ(z) = μθ {ω :ωi = z} := 1

Z(θ)
· eθz

f (z)! (z ∈ I ). (2.13)

Assumptions (2.6), (2.7), (2.8), (2.9) imply that for θ ∈ (θ, θ̄ ) the product distribution μθ is stationary for the process
generated by (2.4) (see [11]; notice that the top display on page 443 of [11] is incorrect, to get the correct identity,
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multiply with the cylinder functions and take expectation). For some calculations in the Appendix it will be convenient
to note that the family {μθ } can be obtained by exponentially weighting a probability measure μθ0 for a fixed value
θ0 ∈ (θ, θ̄ ).

Pθ ,Eθ ,Varθ ,Covθ will refer to laws of a process evolving in this stationary distribution. In the Appendix we show
that the density

�(θ) := Eθ (ω)

is a strictly increasing, infinitely differentiable function of the parameter θ that maps the interval (θ, θ̄ ) onto the
interval (ωmin,ωmax). (The following point should cause no confusion: the single-site state space I consists of the
integers between ωmin and ωmax, including endpoints if finite, but for density values the interval (ωmin,ωmax) is an
interval of real numbers.) For most cases we shall use the density �, rather than θ , for parameterizing the stationary
distributions. Accordingly, μ�,P�,E�,Var�,Cov� will refer to laws of a density � stationary process.

2.5. Hydrodynamics and some exact identities

The hydrodynamic flux is defined as

H(�) := E�
(
p(ω0,ω1) − q(ω0,ω1)

)
. (2.14)

H(�) is the expected net rate at which a given column grows, or at which particles pass any fixed lattice edge from
left to right in a stationary density-� process. We show smoothness of H in Section C of the Appendix. It is expected,
and in many instances proved, that asymmetric members of our class satisfy the conservation law

∂T �(T ,X) + ∂X H
(
�(T ,X)

)= 0

in the Eulerian-scaled time and space variables T and X, see e.g. Rezakhanlou [31] or Bahadoran, Guiol, Ravishankar
and Saada [2]. The characteristic speed is the velocity with which small perturbations of the solution of this PDE
propagate, and is given by

V � := H′(�). (2.15)

A particular expectation we shall need several times is

E�
(
hi(t)

)= H(�)t − �i, t ≥ 0, i ∈ Z. (2.16)

For i = 0 this follows from (2.5), and in general from the i = 0 case together with ωj (t) = hj−1(t) − hj (t).
When a stationary process is perturbed by adding a second class particle at the origin at time zero, we obtain two

processes, ω−(·) and ω(·). It is not a priori clear what the initial joint distribution of the occupation variables ω−
0 (0),

ω0(0) should be. For ASEP there is no ambiguity due to the simplicity of the single-site state space: the only way to
have a discrepancy is to set ω−

0 (0) = 0, ω0(0) = 1. A useful generalization of this distribution to the broader class of
processes involves the following family of probability measures on I introduced in [11]:

μ̂�(y) := 1

Var�(ω0)

ωmax∑
z=y+1

(z − �)μ�(z), y ∈ I. (2.17)

An empty sum is zero by convention and so if ωmax < ∞, μ̂�(ωmax) = 0. Consequently there is room for an additional
particle under the μ̂� distribution, in the sense that if ω ∼ μ̂� then also ω + 1 ∈ I .

To our knowledge these distributions μ̂� do not possess any invariance properties. Their virtue is that they make
identities (2.19) and (2.20) below true. We show in Section B of the Appendix that both μ� and μ̂� are stochastically
monotone in the density �. (There is, however, no stochastic domination between μ� and μ̂� in general.)

Denote by E the expectation w.r.t. the evolution of a pair (ω−(·),ω(·)) started with initial data (recall (2.1))

ω−(0) = ω(0) − δ0 ∼
(⊗

i �=0

μ�

)
⊗ μ̂�, (2.18)
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and evolving under the basic coupling. This pair will always have a single second class particle whose position is
denoted by Q(t). In other words, ω−(t) = ω(t) − δQ(t). Corollaries 2.4 and 2.5 of [11] state that

Var�
(
hi(t)

)= Var�(ω) · E
∣∣Q(t) − i

∣∣ (2.19)

and

E
(
Q(t)

)= V � · t (2.20)

for any i ∈ Z and t ≥ 0. Note in particular that in (2.19) the variances are taken in a stationary process, while the
expectation of Q(t) is taken in the coupling with initial distribution (2.18). These two identities follow from the
definition of our models together with translation invariance and the product structure of the stationary distribution.

2.6. Microscopic concavity

From now on fix the jump rates p,q : I × I → R
+ that define the process in question, assumed to satisfy all the

assumptions discussed thus far. The t1/3 current or height fluctuations are expected when the hydrodynamic flux
H(�) is strictly concave or convex. In this paper we discuss only the strictly concave case. This implies that the
characteristic speed V � = H′(�) is a decreasing function of density �:

λ < � �⇒ V λ > V �. (2.21)

The microscopic counterpart of a characteristic is the motion of a second class particle. Our key assumption that
we term microscopic concavity is that the ordering (2.21) can also be realized at the particle level as an ordering be-
tween two second class particles introduced into two processes at densities λ and �. Since this is now a probabilistic
notion, there are several possible formulations, ranging from almost sure (Qλ(t) ≥ Q�(t) in a coupling) to distribu-
tional formulations. Assumption 2.1 below gives the precise technical form in which this paper utilizes this notion of
microscopic concavity. It stipulates that the ordering of second class particles is achieved by processes that evolve on
the labels of auxiliary second class particles, and also requires some control of the tails of these random labels.

We do not imagine that this precise formulation will be the right one for all processes. We take it as a starting
point and future work may lead to alternative formulations. Assumption 2.1 has the virtue that its requirements can be
verified for some interesting processes.

Let λ < � be two densities. Proposition B.4 in the Appendix gives the stochastic domination μ̂λ ≤ μ̂� . Define
μ̂� + 1 as the measure that gives weight μ̂�(z − 1) to an integer z such that ωmin < z < ωmax + 1. Let μ̂λ,� be
a coupling measure with marginals μ̂λ and μ̂� + 1 and with the property

μ̂λ,�
{
(y, z): ωmin − 1 < y < z < ωmax + 1

}= 1. (2.22)

Let also μλ,� be a coupling measure of site-marginals μλ and μ� of the invariant distributions, with

μλ,�
{
(y, z): ωmin − 1 < y ≤ z < ωmax + 1

}= 1, (2.23)

this is possible by Corollary B.3 of the Appendix. Note the distinction that under μ̂λ,� the second coordinate is strictly
above the first.

To have notation for inhomogeneous product measures on IZ, let λ = (λi)i∈Z and � = (�i)i∈Z denote sequences

of density values, with λi and �i assigned to site i. The product distribution with marginals μ̂λ0,�0 at the origin and
μλi,�i at other sites is denoted by

μ̂
λ,� :=

(⊗
i �=0

μλi,�i

)
⊗ μ̂λ0,�0 . (2.24)

Measure μ̂
λ,� gives probability one to the event{(

η(0),ω(0)
)
: η0(0) < ω0(0), and ηi(0) ≤ ωi(0) for 0 �= i ∈ Z

}
.
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The initial configuration (η(0),ω(0)) will always be assumed a member of this set, and the pair process (η(t),ω(t))

evolves in basic coupling. In general μ̂
λ,� is not stationary for this joint evolution.

The discrepancies between these two processes are called the ω − η (second class) particles. The number of such
particles at site i at time t is ωi(t) − ηi(t). In the basic coupling the ω − η particles are conserved, in the sense that
none are created or annihilated. We label the ω−η particles with integers, and let Xm(t) denote the position of particle
m at time t . The initial labeling is chosen to satisfy

· · · ≤ X−1(0) ≤ X0(0) = 0 < X1(0) ≤ · · · .
We can specify that X0(0) = 0 because under μ̂

λ,� there is an ω − η particle at site 0 with probability 1. During the
evolution we keep the positions Xi(t) of the ω − η particles ordered. To achieve this we stipulate that

whenever an ω−η particle jumps from a site, if the
jump is to the right the highest label moves, and if
the jump is to the left the lowest label moves.

(2.25)

Here is the precise form of microscopic concavity for this paper. The assumption states that a certain joint construc-
tion of processes (that is, a coupling) can be performed for a range of densities in a neighborhood of a fixed density �.
Recall (2.1) for the definition of the configuration δ.

Assumption 2.1. Given a density � ∈ (ωmin,ωmax), there exists γ0 > 0 such that the following holds. For any λ and �

such that � − γ0 ≤ λi ≤ �i ≤ � + γ0 for all i ∈ Z, a joint process (η(t),ω(t), y(t), z(t))t≥0 can be constructed with
the following properties.

• Initially (η(0),ω(0)) is μ̂
λ,�-distributed and the joint process (η(·),ω(·)) evolves in basic coupling.

• Processes y(·) and z(·) are integer-valued. Initially y(0) = z(0) = 0. With probability one

y(t) ≤ z(t) for all t ≥ 0. (2.26)

• Define the processes

ω−(t) := ω(t) − δXy(t)(t)
and η+(t) := η(t) + δXz(t)(t)

. (2.27)

Then both pairs (η, η+) and (ω−,ω) evolve marginally in basic coupling.
• For each γ ∈ (0, γ0) and large enough t ≥ 0 there exists a probability distribution ν�,γ (t) on Z

+ satisfying the tail
bound

ν�,γ (t){y: y ≥ y0} ≤ Ctκ−1γ 2κ−3y−κ
0 (2.28)

for some fixed constants 3/2 ≤ κ < 3 and C < ∞, and such that if � − γ ≤ λi ≤ �i ≤ � + γ for all i ∈ Z, then we
have the stochastic bounds

y(t)
d≤ ν�,γ (t) and z(t)

d≥ −ν�,γ (t). (2.29)

Let us clarify some of the details in this assumption.
Equation (2.27) says that Qη(t) := Xz(t)(t) is the single second class particle between η and η+, while Q(t) :=

Xy(t)(t) is the one between ω− and ω. The first three bullets say that it is possible to construct jointly four processes
(η, η+,ω−,ω) with the specified initial conditions and so that each pair (η,ω), (η, η+) and (ω−,ω) has the desired
marginal distribution, and most importantly so that

Qη(t) = Xz(t)(t) ≥ Xy(t)(t) = Q(t). (2.30)

This is a consequence of (2.26) because the ω − η particles Xi(t) stay ordered.
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The tail bound (2.28) is formulated in this somewhat complicated fashion because this appears to be the weakest
form our present proof allows. In our currently available examples ν�,γ (t) is actually a fixed geometric distribution.
However, we expect that other examples will require more complicated bounds and so including this generality is
sensible.

The assumptions made imply η(t) ≤ ω(t) a.s., and by (2.27)

η(t) ≤ η+(t) ≤ ω(t) and η(t) ≤ ω−(t) ≤ ω(t) a.s.

In our actual constructions of the processes η,η+,ω−,ω for ASEP (Section 2.8.1 and [12]), for a class of totally
asymmetric zero range processes (Section 6) and for the totally asymmetric bricklayers process with exponential rates
(future work) it turns out that the triples (η, η+,ω) and (η,ω−,ω) evolve also in basic coupling, but the full joint
evolution (η, η+,ω−,ω) does not.

As already explained, the microscopic concavity idea is contained in inequality (2.26). There is also a sense in
which the tail bounds (2.29) relate to concavity of the flux. Consider the situation λi ≡ λ < � ≡ �i . We would expect
the ω − η particle X0(·) to have average and long-term velocity

R(λ,�) = H(�) − H(λ)

� − λ
,

the Rankine–Hugoniot or shock speed. By concavity H′(�) = V � ≤ R(λ,�) ≤ V λ = H′(λ). A strict microscopic
counterpart would be y(t) ≤ 0 ≤ z(t). But this condition is overly restrictive. The only cases we know to satisfy it are
the totally asymmetric simple exclusion process and the totally asymmetric zero range process with constant rate. The
distributional bounds (2.29) are natural relaxations of y(t) ≤ 0 ≤ z(t).

By the same token, perhaps the way to covering more examples with our approach involves a similar distributional
weakening of (2.26), but this seems less straightforward.

2.7. Results

We need a few more assumptions and then we can state the main result. Constants C�, α� will not depend on time, but
might depend on the density parameter �, and their values can change from line to line. We are now working with a
fixed member of the class of processes described in Section 2.1 with rate functions p,q : I × I → R

+. Recall that H is
the hydrodynamic flux defined in (2.14). In the Appendix we show H is infinitely differentiable under the restrictions
on the rates placed in Section 2.1.

Assumption 2.2. The rates p,q and density � ∈ (ωmin,ωmax) have the following properties.

• The jump rate functions p and q satisfy assumptions (2.6), (2.7), (2.8), (2.9) and (2.11) discussed in Sections 2.1
and 2.4.

• H′′(�) < 0.
• Let (ω−,ω) be a pair of processes in basic coupling, started from distribution (2.18), with second class particle

Q(t). Then there exist constants 0 < α0,C0 < ∞ such that

P
{∣∣Q(t)

∣∣> K
}≤ C0 · t2

K3
(2.31)

whenever K > α0t and t is large enough.

As mentioned, our results are valid only for asymmetric processes. The assumption of asymmetry is implicitly
contained in H′′(�) < 0. Symmetric processes have H(�) ≡ 0. Exponential tail bounds for |Q(t)| that imply assump-
tion (2.31) hold automatically if the rates p,q have bounded increments because the rates for Q come from these
increments of p and q . Here is the main result.
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Theorem 2.3. Let Assumptions 2.1 and 2.2 hold for density �. Let the processes (ω−(t),ω(t)) evolve in basic coupling
with initial distribution (2.18) and let Q(t) be the position of the second class particle between ω−(t) and ω(t). Then
there is a constant C1 = C1(�) ∈ (0,∞) such that for all 1 ≤ m < 3,

1

C1
< lim inf

t→∞
E|Q(t) − V �t |m

t2m/3
≤ lim sup

t→∞
E|Q(t) − V �t |m

t2m/3
<

C1

3 − m
. (2.32)

Diffusive fluctuations are characterized by a variance of order t . The estimates above show that the second class
particle has variance of order t4/3, this is called superdiffusivity.

Next some corollaries. Notation �X� stands for the lower integer part of X.

Corollary 2.4 (Current variance). Under Assumptions 2.1 and 2.2, there is a constant C1 = C1(�) > 0, such that

1

C1
< lim inf

t→∞
Var�(h�V �t�(t))

t2/3
≤ lim sup

t→∞
Var�(h�V �t�(t))

t2/3
< C1.

This follows from (2.19) with the choice m = 1.

Corollary 2.5 (Law of Large Numbers for the second class particle). Under Assumptions 2.1 and 2.2, the Weak
Law of Large Numbers holds in a density-� stationary process:

Q(t)

t

d→ V �. (2.33)

If the rates p and q have bounded increments, then almost sure convergence also holds in (2.33) (Strong Law of Large
Numbers).

The Weak Law is a simple consequence of Theorem 2.3. The Strong Law will be proved in Section 5.

Corollary 2.6 (Dependence of current on the initial configuration). Under Assumptions 2.1 and 2.2, for any V ∈ R

and α > 1/3 the following limit holds in the L2 sense for a density-� stationary process:

lim
t→∞

h�V t�(t) − h�V t�−�V �t�(0) − t (H(�) − �H′(�))

tα
= 0. (2.34)

Recall that

h�V t�−�V �t�(0) =

⎧⎪⎨⎪⎩
∑0

i=�V t�−�V �t�+1 ωi(0) if V < V �,

0 if V = V �,

−∑�V t�−�V �t�
i=1 ωi(0) if V > V �

(2.35)

only depends on a finite segment of the initial configuration. Limit (2.34) shows that on the diffusive time scale t1/2

only fluctuations from the initial distribution are visible: these fluctuations are translated rigidly at the characteristic
speed V � . Proof of (2.34) follows by translating h�V t�(t) − h�V t�−�V �t�(0) to h�V �t�(t) − h0(0) = h�V �t�(t) and by
applying Corollary 2.4. From (2.34), (2.35) and the i.i.d. initial {ωi} follow a limit for the variance and a central limit
theorem (CLT), which we record in our final corollary.

Corollary 2.7 (Central Limit Theorem for the current). Under Assumptions 2.1 and 2.2, for any V ∈ R in
a density-� stationary process

lim
t→∞

Var�(h�V t�(t))
t

= Var�(ω) · ∣∣V � − V
∣∣=: D, (2.36)

and the Central Limit Theorem also holds: the centered and normalized height h̃�V t�(t)/
√

t · D converges in distribu-
tion to a standard normal.
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For ASEP the CLT, the limiting variance (2.36) and the appearance of initial fluctuations on the diffusive scale were
proved by P. A. Ferrari and L. R. G. Fontes [18]. For convex rate zero range and bricklayers processes Corollary 2.7
was proved by M. Balázs [5].

Remark on the convex case. Our results and proofs work in the analogous way in the case where the flux is convex
and the corresponding microscopic convexity is assumed.

2.8. Two examples that satisfy microscopic concavity

Presently we have verified all the hypotheses of Theorem 2.3 for two classes of processes.

2.8.1. The asymmetric simple exclusion process
The asymmetric simple exclusion process (ASEP) was the first example described in Section 2.2. It has two parameters
0 ≤ p �= q ≤ 1 such that p + q = 1. To be specific let us take p > q so that on average particles prefer to drift to the
right. The invariant measure μ� is the Bernoulli distribution with parameter 0 ≤ � ≤ 1, while μ̂� is concentrated on
zero for any �. The hydrodynamic flux is strictly concave: H(�) = (p − q)�(1 − �).

The detailed construction of the processes y(t) and z(t) needed for Assumption 2.1 can be found in [12]. Here it is
in a nutshell.

Given the background process (η(·),ω(·)) and the second class particles {Xm(·)} between them, the processes y(·)
and z(·) are nearest-neighbor random walks on the labels {m} with rates p and q . Walk y(·) has bias to the left (rate p

to the left, rate q to the right) and walk z(·) has bias to the right (rate p to the right, rate q to the left). Their jumps are
restricted so that jumps between labels m and m + 1 are permitted only when Xm and Xm+1 are adjacent. The clocks
governing these jumps are coupled so that the ordering y ≤ z is preserved.

Since a second class particle in ASEP is bounded by a rate one Poisson process, (2.31) holds.
We gave an earlier proof of Theorem 2.3 for ASEP in [13]. The present general proof evolved from that earlier one.

2.8.2. Totally asymmetric zero range process with jump rates that increase with exponentially decaying slope
This class is completely new in the sequence of models for which t1/3-scaling of current fluctuations have been
verified. Models in this class have a richer behavior than either ASEP or the totally asymmetric zero range process
(TAZRP) with constant rate. As explained in Section 2.2, in a TAZRP one particle is moved from site i to site i + 1
at rate f (ωi), and no particle jumps to the left (our convention for total asymmetry is p = 1 − q = 1). The jump rate
f : Z+ → R

+ is nondecreasing, f (0) = 0, and f (z) > 0 for z > 0. Assume further that f is concave.
As we shall see later in Section 6, one aspect of microscopic concavity, namely the ordering of second class

particles, can be achieved for any TAZRP with a nondecreasing concave jump rate. Indeed, up to Lemma 6.2 in
Section 6 we only use monotonicity and concavity of the rates f . Thus for concave TAZRP only the tail control (2.28)
and (2.29) of the label processes remains to be provided. For this part we currently need a stronger hypothesis, detailed
in the next assumption.

Assumption 2.8. Let p = 1 − q = 1. Assume the jump rate function f of a totally asymmetric zero range process has
these properties:

• f (0) = 0 < f (1),
• f is nondecreasing: f (z + 1) ≥ f (z),
• f is concave with an exponentially decreasing slope: there is an 0 < r < 1 such that for each z ≥ 1 such that

f (z) − f (z − 1) > 0,

f (z + 1) − f (z)

f (z) − f (z − 1)
≤ r. (2.37)

The case where f becomes constant above some z0 is included.

Theorem 2.9. Under Assumption 2.8, a stationary totally asymmetric zero range process satisfies the conclusions of
Theorem 2.3, and the conclusions of Corollaries 2.4, 2.5, 2.6 and 2.7.
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A class of examples of rates that satisfy Assumption 2.8 are

f (z) = 1 − exp
(−βzϑ

)
, β > 0, ϑ ≥ 1.

Another example is the most basic, constant rate TAZRP with f (z) = 1{z > 0}. For this last case a proof has already
been given in [7].

To prove Theorem 2.9 we need to check Assumptions 2.1 and 2.2 of Theorem 2.3. The construction of the label
processes y(t) and z(t) and verification of Assumption 2.1 are done in Section 6. Assumption 2.2 requires only a few
comments. The properties of the rates required in the first bullet of Assumption 2.2 are straightforward. Since f is
concave and cannot be linear due to (2.37), Proposition C.1 in the Appendix implies that H′′(�) < 0 for each � > 0.
Concavity of f implies bounded jump rates for the second class particle Q(t), hence a simple Poisson bound gives
(2.31).

The remainder of the paper is devoted to proofs. The next two sections prove Theorem 2.3, after that we prove the
Strong Law for the second class particle, and then we return to finish the proof of Theorem 2.9.

3. Upper bound of the main theorem

In this section we prove the upper bound of (2.32). We first give a sketch of the proof. As in Section 2.6 on microscopic
concavity, we consider the second class particle Q(t) in a pair of processes (ω−,ω) at density �. Additionally there
is a positive density of other second class particles that arise from a coupling of (ω−,ω) with a third process η at
density λ ∈ (� − γ0, �). We emphasize that the coupled (η,ω) is not stationary. This is not only because we modified
the marginals at the origin to μ̂� and μ̂λ from (2.17), but more fundamentally because i.i.d. product measures are not
stationary for the coupled evolution. Nevertheless, the marginal processes ω and η are close enough to their stationary
product distributions so that we can calculate conveniently.

The ω − η second class particles are conserved during the evolution, and their current is the difference between
the currents (heights) of the ω and the η processes. Careful coupling makes it possible to compare Q(t) with the
position of a tagged ω − η second class particle X0(t). Fluctuation bounds for Q(t) are derived through several steps:
a deviation of Q(t) implies a similar deviation for X0(t), which results in a deviation of height differences hω − hη .
The probability of this is bounded by Chebyshev’s inequality which brings in variances of the currents hζ and hη .
These variances are further turned into the first moment of Q(t) essentially via (2.19) and (2.20). Now the loop is
closed, as deviations of Q(t) are bounded by the centered first absolute moment of Q(t). Along the way we see that
the sharpest bound is obtained with λ = � − c · u/t for a constant c. We also mention in advance that the critical
part of our estimate comes from the order of magnitude u ∼ t2/3, thus � − λ ∼ t−1/3. With this choice the means
for currents and second class particle velocities that we use for centering provide factors of just the right order for
successful completion of the estimation.

Density � is fixed. Let λ ∈ (�,� − γ0) and apply Assumption 2.1 with constant sequences �i ≡ � and λi ≡ λ for all
i ∈ Z. Notations P,E,Var,Cov will refer to the coupled four-process evolution described in Assumption 2.1, while
P�,E�,Var�,Cov� will refer to a density � stationary process. Abbreviate

Ψ (t) := E
∣∣Q(t) − ⌊

V �t
⌋∣∣. (3.1)

The requirement that (ω−,ω) obey the basic coupling was included in Assumption 2.1. Consequently Ψ (t) is the
m = 1 expectation of (2.32).

The following lemma does the main work towards the upper bound. We keep H′′(�) explicitly in the estimates,
because its nonvanishing is the key feature behind the t1/3-fluctuations.

Lemma 3.1. There exist positive constants α1, α2, t0 such that for each t > t0 and integer u such that α2
√

t < u < α1t ,

P
{
Q(t) >

⌊
V �t

⌋+ u
}≤ C5

t2 H′′(�)2

u4

{
Ψ (t) + u

}+ C4
t2

u3
. (3.2)
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Proof. We start with an integer u > 0, and write

P
{
Q(t) >

⌊
V �t

⌋+ u
}≤ P

{
y(t) ≥ k

}+ P
{
Xk(t) ≥ Q(t) >

⌊
V �t

⌋+ u
}
. (3.3)

The event {Xk(t) > �V �t� + u} implies that among the Xm’s at most particles X1, . . . ,Xk−1 have passed the path
(s(�V �t� + u) + 1/2)0≤s≤1 from right to left. Each such passing decreases hω�V �t�+u(t) − h

η
�V �t�+u(t) by one (recall

the statement around (2.10)). Hence we can bound the probability in (3.3) by

P
{
y(t) ≥ k

}+ P
{
hω�V �t�+u(t) − h

η
�V �t�+u(t) > −k

}
.

We introduce two more processes: ηeq is a stationary process started with initial data η
eq
i (0) = ηi(0) for i �= 0,

while η
eq
0 (0) is μλ distributed independently of everything. ωeq is a stationary process started with ω

eq
i (0) = ωi(0)

for i �= 0, and ω
eq
0 (0) is μ� distributed independently of everything. Include these in the basic coupling of (η,ω) and

write

hω�V �t�+u(t) − h
η
�V �t�+u(t) = hωeq

�V �t�+u(t) − h
ηeq

�V �t�+u(t) + hω�V �t�+u(t)

− hωeq

�V �t�+u(t) − h
η
�V �t�+u(t) + h

ηeq

�V �t�+u(t).

Basic coupling implies

hω�V �t�+u(t) − hωeq

�V �t�+u(t) ≤ ∣∣ω0(0) − ω
eq
0 (0)

∣∣≤ ∣∣ω0(0)
∣∣+ ∣∣ωeq

0 (0)
∣∣ and

h
ηeq

�V �t�+u(t) − h
η
�V �t�+u(t) ≤ ∣∣ηeq

0 (0) − η0(0)
∣∣≤ ∣∣ηeq

0 (0)
∣∣+ ∣∣η0(0)

∣∣.
We bound the stationary expectations using (2.16), (2.15) and Taylor’s formula. This is a crucial computation, which
shows that on the characteristic position (that would be case u = 0), expectation of the height difference is only
O(� − λ)2, without constant and first-order expression of the densities.

E�hωeq

�V �t�+u(t) − Eλh
ηeq

�V �t�+u(t)

= H(�)t − (⌊
V �t

⌋+ u
)
� − H(λ)t + (⌊

V �t
⌋+ u

)
λ

≤ t
(

H(�) − H(λ) + H′(�)(λ − �)
)+ u(λ − �) + C1

≤ − t

2
H′′(�)(� − λ)2 + u(λ − �) + C2t (� − λ)3 + C1.

H can be differentiated arbitrarily many times, as we show in Section C of the Appendix. Constant C1 above bounds
errors from discarded integer parts. Recall that tilde stands for the centered random variable. Collecting terms we
continue from (3.3) as follows.

P
{
Q(t) >

⌊
V �t

⌋+ u
} ≤ P

{
y(t) ≥ k

}+ P
{
h̃ωeq

�V �t�+u(t) − h̃
ηeq

�V �t�+u(t) > −k + t

2
H′′(�)(� − λ)2 + u(� − λ)

− C2t (� − λ)3 − C1 − ∣∣η0(0)
∣∣− ∣∣ηeq

0 (0)
∣∣− ∣∣ω0(0)

∣∣− ∣∣ωeq
0 (0)

∣∣}
≤ P

{
y(t) ≥ k

}+ P
{
h̃ωeq

�V �t�+u(t) − h̃
ηeq

�V �t�+u(t) >
t

2
H′′(�)(� − λ)2 + u

2
(� − λ)

}
+ P

{∣∣η0(0)
∣∣+ ∣∣ηeq

0 (0)
∣∣+ ∣∣ω0(0)

∣∣+ ∣∣ωeq
0 (0)

∣∣
> −k + u

2
(� − λ) − C2t (� − λ)3 − C1

}
.
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From now on we use the specific assumption H′′(�) < 0. We maximize the terms on the right-hand side of the
probability of h̃’s by the choice

� − λ = −u

2t H′′(�)
.

To stay within the range of densities covered by Assumption 2.1 we must ensure that λ > � − γ0. So we introduce
a small constant α1 > 0 and restrict our calculations to the case u < α1t . Then

P
{
Q(t) >

⌊
V �t

⌋+ u
}

≤ P
{
y(t) ≥ k

}+ P
{
h̃ωeq

�V �t�+u(t) − h̃
ηeq

�V �t�+u(t) >
−u2

8t H′′(�)

}
+ P

{∣∣η0(0)
∣∣+ ∣∣ηeq

0 (0)
∣∣+ ∣∣ω0(0)

∣∣+ ∣∣ωeq
0 (0)

∣∣> −k − 1

4H′′(�)
· u2

t
+ C2

H′′(�)3
· u3

t2
− C1

}
.

Now we set

k =
⌊ −1

8H′′(�)
· u2

t

⌋
,

and assume α2
√

t < u < α1t for a possibly smaller α1 and a large enough α2. That allows us to unify the right-hand
side of the inequality in the last line. Thus for all large u and t with α2

√
t < u < α1t

P
{
Q(t) >

⌊
V �t

⌋+ u
} ≤ P

{
y(t) ≥

⌊ −1

8H′′(�)
· u2

t

⌋}
+ P

{
h̃ωeq

�V �t�+u(t) − h̃
ηeq

�V �t�+u(t) >
−u2

8t H′′(�)

}
+ P

{∣∣η0(0)
∣∣+ ∣∣ηeq

0 (0)
∣∣+ ∣∣ω0(0)

∣∣+ ∣∣ωeq
0 (0)

∣∣> C3
u2

t

}
.

Assumption (2.28) allows us to bound the first probability on the right by C4t
2/u3 (take γ = � − λ). Apply

Chebyshev’s inequality on the second line and Markov’s inequality on the third one:

P
{
Q(t) >

⌊
V �t

⌋+ u
} ≤ 64

t2 H′′(�)2

u4
Var

(
hωeq

�V �t�+u(t) − h
ηeq

�V �t�+u(t)
)+ C3

t

u2
+ C4

t2

u3

≤ 128
t2 H′′(�)2

u4

{
Var�

(
hωeq

�V �t�+u(t)
)+ Varλ

(
h

ηeq

�V �t�+u(t)
)}+ C4

t2

u3
.

The term C3t/u
2 was subsumed under C4t

2/u3 due to the condition u < α1t . The variances here are taken under the
stationary distributions of the processes ηeq and ωeq. That allows us to apply (2.19), whose right-hand side takes us
back to the four-process coupling under measure P. Recall (3.1).

P
{
Q(t) >

⌊
V �t

⌋+ u
} ≤ C5

t2 H′′(�)2

u4

{
E
∣∣Q(t) − ⌊

V �t
⌋− u

∣∣+ E
∣∣Qη(t) − ⌊

V �t
⌋− u

∣∣}+ C4
t2

u3

≤ C5
t2 H′′(�)2

u4

{
E
∣∣Q(t) − ⌊

V �t
⌋∣∣+ E

∣∣Qη(t) − ⌊
V �t

⌋∣∣+ 2u
}+ C4

t2

u3

= C5
t2 H′′(�)2

u4

{
Ψ (t) + 2u + E

∣∣Qη(t) − ⌊
V �t

⌋∣∣}+ C4
t2

u3
.

The variable Qη(t) above is the location of a single discrepancy between the process η and one started initially with
η+(0) = η(0) + δ0.
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It remains to relate E|Qη(t)−�V �t�| to Ψ (t). This is where part (2.30) of Assumption 2.1 is a key point. Compute
now in the four-process coupling of η,η+,ω−,ω described in Assumption 2.1. Use (2.30) and Taylor expansion of H
again:

E
∣∣Qη(t) − ⌊

V �t
⌋∣∣ ≤ E

(
Qη(t) − Q(t)

)+ Ψ (t)

= (
H′(λ) − H′(�)

)
t + Ψ (t)

≤ H′′(�) · (λ − �)t + C6(� − λ)2t + Ψ (t)

= u

2
+ C6

u2

t
+ Ψ (t) ≤

(
1

4
+ C6α1

)
u + Ψ (t). (3.4)

The last inequality used u < α1t . Substitute this back into the previous display and rename constants. This finishes
the proof of (3.2) and completes the lemma. �

Completely analogous arguments lead to the same upper bound for the lower tail of Q(t), and together we get the
following bound on the tail of the absolute deviation, still for α2

√
t < u < α1t :

P
{∣∣Q(t) − ⌊

V �t
⌋∣∣> u

}≤ C5
t2 H′′(�)2

u4

{
Ψ (t) + u

}+ C4
t2

u3
.

Next we relax the restriction to integral u and the upper limit on it:

Lemma 3.2. There are positive constants α2, t0 such that for all t > t0 and all real u > α2
√

t ,

P
{∣∣Q(t) − ⌊

V �t
⌋∣∣> u

}≤ C5
t2 H′′(�)2

u4

{
Ψ (t) + u

}+ C4
t2

u3
.

Proof. Any u ≥ 1 is less than twice its integer part. Hence by simply increasing the constants Ci , for all large t and
all real u ∈ (α2

√
t, α1t),

P
{∣∣Q(t) − ⌊

V �t
⌋∣∣> u

}≤ C5
t2 H′′(�)2

u4

{
Ψ (t) + u

}+ C4
t2

u3
. (3.5)

Recall (2.31). When α1 < α0 +2|V �|+2, assume α1t ≤ u < (α0 +2|V �|+2)t . Then α2
√

t < u ·α1/(α0 +2|V �|+
2) < α1t for large enough t , and (3.5) still holds for u replaced by u · α1/(α0 + 2|V �| + 2):

P
{∣∣Q(t) − ⌊

V �t
⌋∣∣> u

} ≤ P
{∣∣Q(t) − ⌊

V �t
⌋∣∣> u · α1

α0 + 2|V �| + 2

}
≤ C5

t2 H′′(�)2

u4

{
Ψ (t) + u

}+ C4
t2

u3

via modifying the constants by factors of α1/(α0 + 2|V �| + 2).
Finally, the case u ≥ (α0 + 2|V �| + 2)t will not be relevant for us hence, due to the fact that u − |�V �t�| > α0t ,

we can use (2.31):

P
{∣∣Q(t) − ⌊

V �t
⌋∣∣> u

}≤ P
{∣∣Q(t)

∣∣> u − ∣∣⌊V �t
⌋∣∣}≤ C7

t2

(u − |�V �t�|)3
≤ C8

t2

u3
.

Combining the above cases we get the statement for all u > α2
√

t . �
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Proof of the upper bound of Theorem 2.3. We now fix r > 0, 1 ≤ m < 3, and write

E
(∣∣Q(t) − ⌊

V �t
⌋∣∣m) =

∫ ∞

0
P
{∣∣Q(t) − ⌊

V �t
⌋∣∣m > v

}
dv

≤ rmt(2/3)m + m

∫ ∞

rt2/3

(
C5

t2 H′′(�)2

u4

{
Ψ (t) + u

}+ C4
t2

u3

)
um−1 du

= rmt(2/3)m + mC5 H′′(�)2

4 − m
rm−4t (2/3)m−2/3Ψ (t) + mC5 H′′(�)2 + C4

3 − m
rm−3t (2/3)m.

First choose m = 1 and r large enough to get Ψ (t) ≤ Ct2/3. Then insert this bound back into the last line of the display
to get the bound for general 1 ≤ m < 3. �

4. Lower bound of the main theorem

We begin again with an informal preview of the proof. The proof of the lower bound of (2.32) uses similar ideas as
the upper bound proof, but with an extra twist. The starting point is a pair of processes (ξ, ξ+) at density λ with one

second class particle Q(−n)(t) between them started from position −n. Coupled to this pair is a process ζ ≥ ξ that is
mostly in density � > λ, except that we set ζ = ξ on the interval −n + 1,−n + 2, . . . ,0. The position −n is chosen
so that the λ-characteristic −n + V λt started from −n satisfies V λt − n = V �t − u for a large enough u > 0 so that
the upper bound makes the event Q(−n)(t) < V �t likely. Reasoning as we did for the upper bound, from this event we
can deduce an inequality for the current difference between the ζ and the ξ processes. In order to turn this inequality
into a deviation that can be bounded by Chebyshev’s inequality as in the upper bound proof, we change the ζ process
into a stationary process by introducing the appropriate Radon–Nikodym density for the initial distribution. As in the
upper bound proof, the useful perturbation of density is of the order � − λ = bt−1/3.

Density � is fixed again, and λ ∈ (� −γ0, �) is a varying auxiliary density. We let the jointly defined four processes
(η, η+,ω−,ω) be exactly as defined in the upper bound proof of Section 3, namely, as given by Assumption 2.1 with

constant densities λi ≡ λ and �i ≡ �. The initial distribution of (η,ω) is μ̂
λ,� of (2.24). Two second class particles

start from the origin: Qη between processes η and η+, and Q between processes ω− and ω. The quantity of primary
interest is abbreviated, as before, by Ψ (t) = E|Q(t) − �V �t�|.

To prove the lower bound of (2.32) it suffices, by Jensen’s inequality, to prove the case m = 1. This means showing
that Ψ (t) ≥ Ct2/3 for large t and a constant C > 0.

4.1. Perturbing a segment initially

For this proof we need to introduce another coupled system and invoke Assumption 2.1 once more. By concavity of
the flux characteristic speeds V � = H′(�) and V λ = H′(λ) satisfy V � ≤ V λ. Throughout this section u > 0 denotes
a positive integer, and

n = ⌊
V λt

⌋− ⌊
V �t

⌋+ u.

Recall definitions (2.22) and (2.23) of the single-site coupling measures. Let (ξ(·), ζ (·)) be a pair of processes that
obeys the basic coupling, and whose initial distribution is the product measure(⊗

i<−n

μλ,�

)(⊗
i=−n

μ̂λ,�

)( ⊗
−n<i≤0

μλ,λ

)(⊗
0<i

μλ,�

)
.

This initial measure complies with the pattern in (2.24), but translated n sites to the left so that μ̂λ,� is the distribution at
site −n instead of the origin. A few points about this initial state: ξ(0) has the stationary density-λ product distribution
except at site −n where it is μ̂λ-distributed. ζ (0) has the product distribution with marginals μ� , except at sites
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{−n + 1, . . . ,0} where the parameter � switches to λ, and at site −n where it has distribution μ̂� + 1. At sites
−n < i ≤ 0 μλ,λ forces ξi(0) = ζi(0).

We add a second class particle to the process ξ(·), start it at site −n and denote its position at time t by Q(−n)(t).
Let ξ+(t) := ξ(t) + δQ−n(t).

As described in Section 2.6 the ζ − ξ second class particles are labeled and their ordered positions denoted by
{Xm(t)}. The labeling is chosen to satisfy initially

· · · ≤ X−1(0) ≤ X0(0) = −n < 0 < X1(0) ≤ X2(0) ≤ · · · . (4.1)

Thus initially X0(0) = −n = Q(−n)(0). We invoke Assumption 2.1 to have a label process z(t) with tail bound (2.29)
such that Q(−n)(t) = Xz(t)(t). (Here ξ plays the role of η and ζ plays the role of ω of Assumption 2.1.)

As before, the heights (or currents, recall (2.5)) of the processes ξ(·) and ζ (·) are denoted by h
ξ
�V t� and h

ζ
�V t�,

respectively. The first observation is that Q(−n) gives one-sided control over the difference of these currents.

Lemma 4.1. For any i ∈ Z

Q(−n)(t) ≤ i implies h
ζ
i (t) − h

ξ
i (t) ≤ −z(t).

Proof. Recall again, from (2.5) and the statement around (2.10), that the height difference h
ζ
i (t) − h

ξ
i (t) equals the

net number of second class particle passings of the path (si + 1/2)0≤s≤1 from left to right. That is, each left-to-right
passing increases h

ζ
i (t) − h

ξ
i (t) while each right-to-left passing decreases it.

Suppose z(t) ≤ 0. Then (4.1) and Xz(t)(t) = Q(−n)(t) ≤ i imply that only those second class particles with labels
z(t) + 1, z(t) + 2, . . . ,0 could have passed the path (si + 1/2)0≤s≤1 from left to right. The claim follows.

If z(t) > 0, then Xz(t)(t) = Q(−n)(t) ≤ i implies that at least those second class particles with labels 1,2, . . . , z(t)

have crossed the path (si + 1/2)0≤s≤1 from right to left. Again the claim follows. �

Let ω̂(·) be a process started from the product distribution (
⊗

i �=−n μ�) ⊗ (μ̂� + 1). The next lemma compares the
initial distributions of ζ and ω̂. No coupling of ζ and ω̂ is proposed or required.

Lemma 4.2. There exist constants γ = γ (�) > 0 and C1(�) < ∞ such that for all λ ∈ (� − γ,�) and all events A

the following inequality holds:

P{ζ ∈ A} ≤ P{ω̂ ∈ A}1/2 · exp
{
C1(�)n(� − λ)2}.

Proof. We use the Cauchy–Schwarz inequality below to perform a change of measure on the distribution of the ζ

process. First we condition on the initial ζ -configuration at sites {−n + 1,−n + 2, . . . ,−1,0}.

P{ζ ∈ A} =
∑

z−n+1,...,z−1,z0

P
{
ζ ∈ A|ζ−n+1(0) = z−n+1, . . . , ζ0(0) = z0

}

×
[

0∏
i=−n+1

μ�(zi)

]1/2 0∏
i=−n+1

μλ(zi)

[μ�(zi)]1/2

≤
[ ∑

z−n+1,...,z0

[
P
{
ζ ∈ A|ζ−n+1(0) = z−n+1, . . . , ζ0(0) = z0

}]2
0∏

i=−n+1

μ�(zi)

]1/2

×
[ ∑

z−n+1,...,z0

0∏
i=−n+1

[μλ(zi)]2

μ�(zi)

]1/2

≤
[ ∑

z−n+1,...,z0

P
{
ζ ∈ A|ζ−n+1(0) = z−n+1, . . . , ζ0(0) = z0

} 0∏
i=−n+1

μ�(zi)

]1/2
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×
[ ∑

z−n+1,...,z0

0∏
i=−n+1

[μλ(zi)]2

μ�(zi)

]1/2

= P{ω̂ ∈ A}1/2 ·
[ ∑

z−n+1,...,z0

0∏
i=−n+1

[μλ(zi)]2

μ�(zi)

]1/2

.

The last inequality came from dropping the square. For the last equality note that the distributions of the initial
configurations {ω̂i(0)} and {ζi(0)} are product-form and agree outside the interval {−n + 1,−n + 2, . . . ,−1,0}.
Thus conditioned on the initial values in {−n + 1,−n + 2, . . . ,−1,0} these processes have identical conditional
probabilities.

To complete the proof we bound the last factor in brackets. Recall formulas (2.12) and (2.13) for the state sum and
the site-marginals. Without the power 1/2 the factor in brackets equals

∑
z−n+1,...z0

(
Z(θ(�))

Z(θ(λ))2

)n 0∏
i=−n+1

e(2θ(λ)−θ(�))zi

f (zi)! =
(

Z(2θ(λ) − θ(�))Z(θ(�))

Z(θ(λ))2

)n

.

In the Appendix we show that logZ(θ) and θ(�) are infinitely differentiable. Let ε = θ(�) − θ(λ). By local Lipschitz
continuity of the function θ(�), the interval (θ(λ) − ε, θ(λ) + ε) is in (θ, θ̄ ) with a small enough choice of γ . There
exists some θ ∈ (θ(λ) − ε, θ(λ) + ε) such that

log

(
Z(2θ(λ) − θ(�))Z(θ(�))

Z(θ(λ))2

)
= logZ

(
θ(λ) − ε

)+ logZ
(
θ(λ) + ε

)− 2 logZ
(
θ(λ)

)
= 1

2

d2

dθ2
logZ(θ)ε2 ≤ C1(�) · (� − λ)2.

Thus we get the bound(
Z(2θ(λ) − θ(�))Z(θ(�))

Z(θ(λ))2

)n

≤ exp
{
C1(�) · n(� − λ)2}. �

4.2. Completion of the proof of the lower bound

The gist of the proof is to get upper bounds on the complementary probabilities P{Q(−n)(t) > �V �t�} and
P{Q(−n)(t) ≤ �V �t�}. As stated u is an arbitrary but positive integer and n = �V λt� − �V �t� + u.

Lemma 4.3.

P
{
Q(−n)(t) >

⌊
V �t

⌋}≤ Ψ (t)

u
+ C2t (� − λ)

u
+ 2

u
.

Proof. Distributionwise the system (ξ , ξ+,Q(−n)) is a translate of (η, η+,Qη), and so

P
{
Q(−n)(t) >

⌊
V �t

⌋} = P
{
Q(−n)(t) + n − ⌊

V λt
⌋

> u
}

= P
{
Qη(t) − ⌊

V λt
⌋

> u
}≤ E(|Qη(t) − �V λt�|)

u

≤ E(|Qη(t) − Q(t)|)
u

+ E(|Q(t) − �V �t�|)
u

+ �V λt� − �V �t�
u

.

Use (2.30) precisely as was done in (3.4) to conclude that the first term equals

u−1E
(
Qη(t) − Q(t)

)= u−1t
(
H ′(λ) − H ′(�)

)= −u−1H ′′(ν)t (� − λ)
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for some ν ∈ (λ,�). The second term is Ψ (t)/u, and the third term is similarly estimated by −u−1H ′′(ν)t (� − λ) +
2/u, the last part coming from discarded integer parts. Setting C2 := 2 maxν∈[�−γ,�] −H ′′(ν) finishes the proof. �

Notice that H ′′(�) < 0 was crucial in the previous proof, as well as in the following lemma, and the final proof
thereafter. These points show where the proof fails for symmetric systems – recall that these would have lower-order
current fluctuations on the characteristics.

Lemma 4.4. Let K = K(t) satisfy 0 < K < − 1
3 tH ′′(�)(� − λ)2. Then for small enough γ > 0, large enough t , and

λ ∈ (� − γ,�),

P
{
Q(−n)(t) ≤ ⌊

V �t
⌋} ≤ Var�(ω0)

1/2Ψ (t)1/2

−(1/3)tH ′′(�)(� − λ)2 − K
· eC1n(�−λ)2

+ C4

−(1/6)tH ′′(�)(� − λ)2 − C3t (� − λ)3 − �
· eC1n(�−λ)2

+ Varλ(η0)Ψ (t)

K2/4
+ C6t (� − λ)

K2
+ C5

K − 4|λ| + Ctκ−1γ 2κ−3K−κ .

Proof. Lemma 4.1 leads to

P
{
Q(−n)(t) ≤ ⌊

V �t
⌋} ≤ P

{
h

ζ
�V �t�(t) − h

ξ
�V �t�(t) ≤ −z(t)

}
≤ P

{−z(t) ≥ K/4
}

(4.2)

+ P
{
h

ζ
�V �t�(t) ≤ K + t

(
H(λ) − λH ′(�)

)}
(4.3)

+ P
{
h

ξ
�V �t�(t) > 3K/4 + t

(
H(λ) − λH ′(�)

)}
. (4.4)

To bound (4.2) we use the assumed distribution bound (2.28) on z(t) and get

P
{−z(t) ≥ K/4

}≤ Ctκ−1γ 2κ−3K−κ .

Apply Lemma 4.2 to line (4.3) to bound it by the probability of the process ω̂:

(4.3) ≤ [
P
{
hω̂�V �t�(t) ≤ K + t

(
H(λ) − λH ′(�)

)}]1/2 · eC1n(�−λ)2
.

As in the proof of Lemma 3.1 we compare with a coupled stationary processes to get precise bounds:

hω̂�V �t�(t) = h̃ωeq

�V �t�(t) + [
hω̂�V �t�(t) − hωeq

�V �t�(t)
]

+ [
Ehωeq

�V �t�(t) − t
(
H(�) − �H ′(�)

)]+ t
(
H(�) − �H ′(�)

)
≥ h̃ωeq

�V �t�(t) − ∣∣ω̂−n(0)
∣∣− ∣∣ωeq

−n(0)
∣∣− |�| + t

(
H(�) − �H ′(�)

)
.

After the equality sign, the absolute value of the first term in brackets is not larger than |ω̂−n(0) − ω
eq
−n(0)| ≤

|ω̂−n(0)| + |ωeq
−n(0)|. The second term in brackets is between −|�| and |�| due to the integer part in �V �t�. Con-

sequently

hω̂�V �t�(t) ≤ K + t
(
H(λ) − λH ′(�)

)
implies

h̃ωeq

�V �t�(t) − ∣∣ω̂−n(0)
∣∣− ∣∣ωeq

−n(0)
∣∣ ≤ K + t

[
H(λ) − H(�) + H ′(�)(� − λ)

]+ |�|

≤ K + 1

2
tH ′′(�)(� − λ)2 + C3t (� − λ)3 + |�|.
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Then, we cut the event into two parts according to the value of |ω̂−n(0)| + |ωeq
−n(0)| and we use (2.19) to bound the

variance of Var[hωeq

�V �t�(t)] by the function Ψ (t).

(4.3) ≤
[

P�

{
h̃ωeq

�V �t�(t) ≤ K + 1

3
tH ′′(�)(� − λ)2

}]1/2

· eC1n(�−λ)2

+
[

P
{∣∣ω̂−n(0)

∣∣+ ∣∣ωeq
−n(0)

∣∣> −1

6
tH ′′(�)(� − λ)2 − C3t (� − λ)3 − |�|

}]1/2

· eC1n(�−λ)2

≤ Var�(hωeq

�V �t�(t))1/2

−(1/3)tH ′′(�)(� − λ)2 − K
· eC1n(�−λ)2 + [E(|ω̂−n(0)| + |ωeq

−n(0)|)2]1/2

−(1/6)tH ′′(�)(� − λ)2 − C3t (� − λ)3 − |�| · eC1n(�−λ)2

≤ Var�(ω0)
1/2Ψ (t)1/2

−(1/3)tH ′′(�)(� − λ)2 − K
· eC1n(�−λ)2 + C4

−(1/6)tH ′′(�)(� − λ)2 − C3t (� − λ)3 − |�| · eC1n(�−λ)2
.

Now we turn to (4.4). To reduce h
ξ
�V �t� to the current of the density-λ equilibrium process h

ηeq

�V �t� and to get rid of the
integer part errors we argue as before.

h
ξ
�V �t� = h̃

ηeq

�V �t� + [
h

ξ
�V �t� − h

ηeq

�V �t�
]+ [

Eλh
ηeq

�V �t� − t
(
H(λ) − λH ′(�)

)]+ t
(
H(λ) − λH ′(�)

)
.

h
ξ
�V �t�(t) differs by at most |ξ−n(0) − η

eq
−n(0)| ≤ |ξ−n(0)| + |ηeq

−n(0)| from h
ηeq

�V �t�(t). Taking integer parts again into
account, giving another error term |λ|, line (4.4) is bounded from above by

P
{
h̃

ηeq

�V �t�(t) + ∣∣ξ−n(0)
∣∣+ ∣∣ηeq

−n(0)
∣∣+ |λ| ≥ 3K/4

}
.

Then, we cut the event into two parts and use Markov’s inequality in the second one:

(4.4) ≤ Pλ
{
h̃

ηeq

�V �t�(t) ≥ K/2
}+ P

{∣∣ξ−n(0)
∣∣+ ∣∣ηeq

−n(0)
∣∣> K/4 − |λ|}≤ Varλ(hηeq

�V �t�)
K2/4

+ C5

K − 4|λ| .

We can use (2.19) again to continue with

(4.4) ≤ Varλ(ξ0)E(|Qη(t) − �V �t�|)
K2/4

+ C5

K − 4|λ| .

Repeating the first two steps of calculation (3.4) we can write

E
(∣∣Qη(t) − ⌊

V �t
⌋∣∣)≤ E

(∣∣Qη(t) − Q(t)
∣∣)+ E

(∣∣Q(t) − ⌊
V �t

⌋∣∣)≤ Ct(� − λ) + Ψ (t).

So, we finally get

(4.4) ≤ Varλ(η0)Ψ (t)

K2/4
+ C6t (� − λ)

K2
+ C5

K − 4|λ| . �

Proof of the lower bound of Theorem 2.3. As observed in the beginning of this section, it suffices to prove that

lim inf
t→∞ t−2/3Ψ (t) > 0. (4.5)

In the last two lemmas take

u = ⌈
ht2/3⌉, � − λ = bt−1/3 and K = bt1/3,
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where h and b are large, in particular b large enough to have b < − 1
3H ′′(�)b2 so that K satisfies the assumption of

Lemma 4.4. Then

n = ⌊
V λt

⌋− ⌊
V �t

⌋+ u ≤ (
H ′(λ) − H ′(�)

)
t + u + 2 = −H ′′(�)(� − λ)t + u + C7t (� − λ)2 + 2

≤ (−H ′′(�)b + h
)
t2/3 + C7b

2t1/3 + 3 ≤ C8t
2/3

for large enough t . With these definitions we can simplify the outcomes of Lemma 4.3 and Lemma 4.4 to the inequal-
ities

P
{
Q(−n)(t) >

⌊
V �t

⌋}≤ C
Ψ (t)

t2/3
+ C2b

h
+ 2

ht2/3
(4.6)

and

P
{
Q(−n)(t) ≤ ⌊

V �t
⌋}≤ C

(
Ψ (t)

t2/3

)1/2

+ C
Ψ (t)

t2/3
+ C6

b
+ C5

bt1/3
+ Cbκ−3. (4.7)

The new constant C depends on b and h.
The lower bound (4.5) now follows because the left-hand sides of (4.6) and (4.7) add up to 1 for each fixed t , while

we can fix b large enough and then h large enough so that C2b/h+C6/b+Cbκ−3 < 1 (recall κ < 3). Then t−2/3Ψ (t)

must have a positive lower bound for all large enough t . This completes the proof of Theorem 2.3. �

5. Strong Law of Large Numbers for the second class particle

This section proves the Strong Law of Large Numbers (Corollary 2.5). We assume that the jump rates of the second
class particle are bounded, i.e.,

p(y + 1, z) − p(y, z), p(y, z) − p(y, z + 1)

q(y, z + 1) − q(y, z), q(y, z) − q(y + 1, z)

}
≤ C ∀ωmin ≤ y, z < ωmax. (5.1)

This means that the second class particle has at most rate C to jump to the right and to the left, respectively, implying
that starting at any time t , it can be bounded by rate C Poisson processes that start from its position Q(t).

Proof of Corollary 2.5. Let ε, δ > 0. Define the events

An :=
{∣∣∣∣Q(n1+δ)

n1+δ
− V �

∣∣∣∣> ε/2

}
for n ∈ N. Then, Markov’s inequality and Theorem 2.3 imply, for 1 ≤ m < 3 and large n,

P{An} = P
{∣∣Q(

n1+δ
)− V �n1+δ

∣∣m > (ε/2)mn(1+δ)m
}

≤ 1

(ε/2)mn(1+δ)m
· E

[∣∣Q(
n1+δ

)− V �n1+δ
∣∣m]

≤ C1

(3 − m)(ε/2)m
· 1

nm(1+δ)/3
,

which is summable if (1 + δ)m > 3. Here δ can be chosen arbitrarily small by taking m close to 3. By the Borel–
Cantelli Lemma there exists a.s. n0 ∈ N such that

∀n ≥ n0

∣∣∣∣Q(n1+δ)

n1+δ
− V �

∣∣∣∣< ε/2. (5.2)
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Using this we show that a.s. there exists n1 ∈ N such that∣∣∣∣Q(t)

t
− V �

∣∣∣∣< ε for all real t ≥ n
(1+δ)
1 . (5.3)

Let n ≥ n0 and suppose there exists some t ∈ [n1+δ, (n + 1)1+δ) such that (5.3) fails: |Q(t) − V �t | ≥ εt . Together
with (5.2) we have, if n is large,∣∣Q(t) − Q

(
n1+δ

)∣∣ ≥ ∣∣Q(t) − V �t
∣∣− ∣∣Q(

n1+δ
)− V �n1+δ

∣∣− ∣∣V �t − V �n1+δ
∣∣

≥ εt − ε/2 · n1+δ − ∣∣V �
∣∣(t − n1+δ

)≥ ε

4
n1+δ. (5.4)

The jump rates (5.1) (both left and right) of Q are bounded by C. However, the event (5.4) implies that at least
� ε

4n1+δ� many left jumps or this many right jumps happen in the time interval [n1+δ, (n + 1)1+δ). For large n, the
length of this interval is smaller than 2(1+ δ)nδ . Let N(·) be a rate C Poisson process. Then for large n the probability
of the event (5.4) is bounded from above by

2P
{
N
(
2(1 + δ)nδ

)≥ ε

4
n1+δ

}
≤ 2P

{
eN(2(1+δ)nδ) ≥ eε/4·n1+δ}

≤ 2e−ε/4·n1+δ

E
[
eN(2(1+δ)nδ)

]
= 2e−ε/4·n1+δ · e(e−1)2C(1+δ)nδ

.

This quantity is summable over n, so the Borel–Cantelli Lemma implies that a.s. (5.3) holds eventually. Since this is
true for each ε > 0, the Strong Law of Large Numbers holds. �

6. Microscopic concavity for a class of totally asymmetric concave exponential zero range processes

In this section we verify that Assumption 2.1 can be satisfied under Assumption 2.8, and thereby complete the proof
of Theorem 2.9.

The task is to construct the processes y(t) and z(t) with the requisite properties. First let the processes (η(·),ω(·))
evolve in the basic coupling so that ηi(t) ≤ ωi(t) for all i ∈ Z and t ≥ 0. We consider as a background process this
pair with the labeled and ordered ω−η second class particles · · · ≤ X−2(t) ≤ X−1(t) ≤ X0(t) ≤ X1(t) ≤ X2(t) ≤ · · ·.

At each time t ≥ 0 this background induces a partition {Mi (t)} of the label space Z into intervals indexed by sites
i ∈ Z, with partition intervals given by

Mi (t) := {
m: Xm(t) = i

}
.

(For simplicity we assumed infinitely many second class particles in both directions, but no problem arises in case we
only have finitely many of them.) Mi (t) contains the labels of the second class particles that reside at site i at time t ,
and can be empty. The labels of the second class particles that are at the same site as the one labeled m form the
set MXm(t)(t) =: {am(t), am(t) + 1, . . . , bm(t)}. The processes am(t) and bm(t) are always well defined and satisfy
am(t) ≤ m ≤ bm(t).

Let us clarify these notions by discussing the ways in which am(t) and bm(t) can change.

• A second class particle jumps from site Xm(t−)−1 to site Xm(t−). Then this one necessarily has label am(t−)−1,
and it becomes the lowest labeled one at site Xm(t−) = Xm(t) after the jump. Hence am(t) = am(t−) − 1.

• A second class particle, different from Xm, jumps from site Xm(t−) to site Xm(t−)+1. Then this one is necessarily
labeled bm(t−), and it leaves the site Xm(t−), hence bm(t) = bm(t−) − 1.

• The second class particle Xm is the highest labeled on its site, that is, m = bm(t−), and it jumps to site Xm(t−)+1.
Then this particle becomes the lowest labeled in the set MXm(t−)+1 = MXm(t), hence am(t) = m. In this case bm(t)

can be computed from bm(t) − am(t) + 1 = ωXm(t)(t) − ηXm(t)(t), the number of second class particles at the site
of Xm after the jump.
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We fix initially y(0) = z(0) = 0. The evolution of (y, z) is superimposed on the background evolution (η,ω, {Xm})
following the general rule below: Immediately after every move of the background process that involves the site where
y resides before this move, y picks a new value from the labels on the site where it resides after the move. Thus y

itself jumps only within partition intervals Mi . But y joins a new partition interval whenever it is the highest X-label
on its site and its “carrier” particle Xy is forced to move to the next site on the right. This is the situation when
y(t−) = by(t−)(t−) and at time t an ω − η move from this site happens. (Recall that the choice of X-particle to move
is determined by rule (2.25). In the present case there is only one type of ω − η move: the highest label from a site
moves to the next site on the right.) All this works for z in exactly the same way.

Next we specify the probabilities that y and z use to refresh their values. When y and z reside at separate sites,
they refresh independently. When they are together in the same partition interval, they use the joint distribution in the
third bullet below.

• Whenever any change occurs in either ω or η at site Xy(t−)(t−) and, as a result of the jump, ay(t−)(t) �= az(t−)(t),
that is, y(t−) and z(t−) belong to different parts after the jump then, independently of everything else,

y(t) :=

⎧⎪⎨⎪⎩
ay(t−)(t), with pr.

f (ωXy(t−)(t)
(t)−1)−f (ηXy(t−)(t)

(t))

f (ωXy(t−)(t)
(t))−f (ηXy(t−)(t)

(t))
,

by(t−)(t), with pr.
f (ωXy(t−)(t)

(t))−f (ωXy(t−)(t)
(t)−1)

f (ωXy(t−)(t)
(t))−f (ηXy(t−)(t)

(t))

(6.1)

when the denominator is nonzero, and y(t) := ay(t−)(t) when the denominator is zero.
• Whenever any change occurs in either ω or η at site Xz(t−)(t−) and, as a result of the jump, ay(t−)(t) �= az(t−)(t),

that is, y(t−) and z(t−) belong to different parts after the jump then, independently of everything else,

z(t) :=

⎧⎪⎨⎪⎩
bz(t−)(t) − 1, with pr.

f (ωXz(t−)(t)
(t))−f (ηXz(t−)(t)

(t)+1)

f (ωXz(t−)(t)
(t))−f (ηXz(t−)(t)

(t))
,

bz(t−)(t), with pr.
f (ηXz(t−)(t)

(t)+1)−f (ηXz(t−)(t)
(t))

f (ωXz(t−)(t)
(t))−f (ηXz(t−)(t)

(t))

(6.2)

when the denominator is nonzero, and z(t) := bz(t−)(t) when the denominator is zero. When ωXz(t−)(t)(t) =
ηXz(t−)(t)(t) + 1, bz(t−)(t) − 1 is not an admissible value but in this case the probability in the first line is zero.

• Whenever any change occurs in either ω or η at sites Xy(t−)(t−) or Xz(t−)(t−) and, as a result of the jump,

ay(t−)(t) = az(t−)(t), that is, y(t−) and z(t−) belong to the same part after the jump, that is, Xy(t−)(t) = Xz(t−)(t)

then, independently of everything else,

(
y(t)

z(t)

)
:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ay(t−)(t)

by(t−)(t) − 1

)
, with pr.

f (ωXy(t−)(t)
(t))−f (ηXy(t−)(t)

(t)+1)

f (ωXy(t−)(t)
(t))−f (ηXy(t−)(t)

(t))
,(

ay(t−)(t)

by(t−)(t)

)
, with pr.

f (ηXy(t−)(t)
(t)+1)−f (ηXy(t−)(t)

(t))

f (ωXy(t−)(t)
(t))−f (ηXy(t−)(t)

(t))

− f (ωXy(t−)(t)
(t))−f (ωXy(t−)(t)

(t)−1)

f (ωXy(t−)(t)
(t))−f (ηXy(t−)(t)

(t))
,(

by(t−)(t)

by(t−)(t)

)
, with pr.

f (ωXy(t−)(t)
(t))−f (ωXy(t−)(t)

(t)−1)

f (ωXy(t−)(t)
(t))−f (ηXy(t−)(t)

(t))

(6.3)

when the denominator is nonzero, and(
y(t), z(t)

) := (
ay(t−)(t), by(t−)(t)

)
when the denominator is zero. When ωXz(t−)(t)(t) = ηXz(t−)(t)(t) + 1, bz(t−)(t) − 1 is not an admissible value but in
this case the probability in the first line is zero.

The fact that the numbers on the right hand-sides are probabilities follows from ωi(t) > ηi(t) on the sites i in question,
and from the monotonicity and concavity of f . The above moves for y and z always occur within labels at a given
site. This determines whether the particle Q(t) := Xy(t)(t) or Qη(t) := Xz(t)(t) is the one to jump if the next move
out of the site is an ω − η move.
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We prove that the above construction has the properties required in Assumption 2.1.

Lemma 6.1. The pair (ω−,ω) := (ω − δXy
,ω) obeys basic coupling, as does the pair (η, η+) := (η, η + δXz

).

Proof. We write the proof for (ω−,ω). We need to show that, given the configuration (η,ω, {Xm}, y), the jump rates
of (ω−,ω) are the ones prescribed in basic coupling (Section 2.3) and by (2.2). Leftward jumps of type (2.3) do not
happen in the system under discussion. Since the jump rate function p depends only on its first argument, jumps out
of sites i �= Q happen for ω− and ω with the same rate p(ω−

i ,ω−
i+1) = f (ω−

i ) = f (ωi) = p(ωi,ωi+1). The only point
to consider is jumps out of site i = Q.

Since the last time any change occurred at site i, y chose values according to (6.1) or (6.3). Notice that (6.1) and
(6.3) give the same marginal probabilities for this choice. Hence

y took on value ay with probability
f (ωi − 1) − f (ηi)

f (ωi) − f (ηi)
(6.4)

and

y took on value by with probability
f (ωi) − f (ωi − 1)

f (ωi) − f (ηi)
, (6.5)

as given in (6.1), or y took on value ay in the case f (ωi) = f (ηi). According to the basic coupling of η and ω, the
following jumps can occur over the edge (i, i + 1):

• With rate p(ωi,ωi+1) − p(ηi, ηi+1) = f (ωi) − f (ηi), when positive, ω jumps without η. The highest labeled
second class particle, Xby jumps from site i to site i + 1.
– With probability (6.5) Xy = Q jumps with Xby . In this case

ω−
i (t−) = ωi(t−) − 1 = ωi(t) = ω−

i (t)

since the difference Q disappears from site i. Also,

ω−
i+1(t−) = ωi+1(t−) = ωi+1(t) − 1 = ω−

i+1(t),

since the difference Q appears at site i + 1. So in this case ω undergoes a jump but ω− does not, and the rate is

[
f (ωi) − f (ηi)

] · f (ωi) − f (ωi − 1)

f (ωi) − f (ηi)
= f (ωi) − f

(
ω−

i

)
.

– With probability (6.4) Xy = Q does not jump with Xby , since it has label ay and not by (this probability is zero
if ωi = ηi + 1). In this case ω− and ω perform the same jump and it occurs with rate

[
f (ωi) − f (ηi)

] · f (ωi − 1) − f (ηi)

f (ωi) − f (ηi)
= f

(
ω−

i

)− f (ηi).

• With rate p(ηi, ηi+1) = f (ηi), both η and ω jump over the edge (i, i + 1). No change occurs in the ω − η particles,
hence no change occurs in Q. This implies that the process ω− jumps as well.

Summarizing we see that the rate for (ω−,ω) to jump together over (i, i + 1) is f (ω−
i ), and the rate for ω to jump

without ω− is f (ωi) − f (ω−
i ). This is exactly what basic coupling requires.

A very similar argument can be repeated for (η, η+). �

Lemma 6.2. Inequality (2.26) y ≤ z holds in the above construction.

Proof. Since no jump of y or z moves one of them into a new partition interval, the only situation that can jeopardize
(2.26) is the simultaneous refreshing of y and z in a common partition interval. But this case is governed by step (6.3)
which by definition ensures that y ≤ z. �
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So far in this section everything is valid for a general zero range process with nondecreasing concave jump rate.
Now we use the special convexity requirement (2.37). With r ∈ (0,1) from (2.37), define the geometric distribution

ν(m) :=
{

(1 − r)rm, m ≥ 0,
0, m < 0.

(6.6)

Lemma 6.3. Conditioned on the process (η,ω), the bounds y(t)
d≤ ν and z(t)

d≥ −ν hold for all t ≥ 0.

The proof of this lemma is achieved in three steps.

Lemma 6.4. Let Y be a random variable with distribution ν, and fix integers a ≤ b and η < ω so that ω − η =
b − a + 1. Apply the following operation to Y :

(i) if a ≤ Y ≤ b, apply the probabilities from (6.1) (equivalently, (6.4) and (6.5)) with parameters a, b, η,ω to pick
a new value for Y ;

(ii) if Y < a or Y > b then do not change Y .

Then the resulting distribution ν∗ is stochastically dominated by ν.

Proof. There is nothing to prove when b = a, hence we assume b > a or, equivalently, ω − η = b − a + 1 ≥ 2. It is
also clear that ν∗(m) = ν(m) for m < a or m > b. We need to prove, in view of the distribution functions,

m∑
	=a

ν∗(	) ≥
m∑

	=a

ν(	) or, equivalently,
b∑

	=m

ν∗(	) ≤
b∑

	=m

ν(	)

for all a ≤ m ≤ b. Notice that ν∗ gives zero weight on values a < m < b (if any), therefore the left hand-side of the
second inequality equals ν∗(b) for a < m ≤ b. Hence the above display is proved once we show

ν∗(b) ≤ ν(b), that is,

f (ω) − f (ω − 1)

f (ω) − f (η)
·

b∑
	=a

ν(	) ≤ ν(b), (6.7)

see (6.1). When f (ω) = f (ω − 1), there is nothing to prove. Hence assume f (ω) > f (ω − 1) which by concavity
implies that f has positive increments on {η, . . . ,ω}. If b < 0 then both sides are zero. If b ≥ 0 then we have, by
(2.37),

ν(	) ≤ ν(b) · r	−b ≤ ν(b) ·
ω−1∏

z=ω−b+	

f (z) − f (z − 1)

f (z + 1) − f (z)
= ν(b) · f (ω − b + 	) − f (ω − b + 	 − 1)

f (ω) − f (ω − 1)

for each 	 ≤ b. The first inequality also takes into account possible ν(	) = 0 values for negative 	’s. With this we can
write

b∑
	=a

ν(	) ≤ ν(b) · f (ω) − f (ω − b + a − 1)

f (ω) − f (ω − 1)

which becomes (6.7) via ω − η = b − a + 1. �

We repeat the lemma for z(t).

Lemma 6.5. Let Z be a random variable of distribution −ν, and fix integers a ≤ b, η < ω so that ω − η = b − a + 1.
Operate on Z as was done for Y in Lemma 6.4, but this time use the probabilities from (6.2) with parameters a, b, η,ω.
Let −ν∗ be the resulting distribution. Then ν∗ is stochastically dominated by ν.
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Proof. Again, we assume b > a or, equivalently, ω − η = b − a + 1 ≥ 2. It is also clear that ν∗(−m) = ν(−m) for
m < a or m > b. We need to prove

m∑
	=a

ν∗(−	) ≤
m∑

	=a

ν(−	)

for all a ≤ m ≤ b. Notice that −ν∗ gives zero weight on values a ≤ 	 < b − 1 (if any), therefore the left hand-side
of the inequality equals 0 for a ≤ m < b − 1, ν∗(b − 1) for m = b − 1, and agrees to the right hand-side for m = b.
Hence the above display is proved once we show

ν∗(−b) ≥ ν(−b), that is,

f (η + 1) − f (η)

f (ω) − f (η)
·

b∑
	=a

ν(−	) ≥ ν(−b), (6.8)

see (6.2). We have, by (2.37),

ν(−	) ≥ ν(−b) · rb−	 ≥ ν(−b) ·
η+b−	∏
z=η+1

f (z)>f (z−1)

f (z + 1) − f (z)

f (z) − f (z − 1)
= ν(−b) · f (η + 1 + b − 	) − f (η + b − 	)

f (η + 1) − f (η)

for each 	 ≤ b. The first inequality also takes into account possible ν(−b) = 0 values for positive b’s. With this we
can write

b∑
	=a

ν(−	) ≥ ν(−b) · f (η + 1 + b − a) − f (η)

f (η + 1) − f (η)

which becomes (6.8) via ω − η = b − a + 1. �

Lemma 6.6. The dynamics defined by (6.1) or (6.2) is attractive.

Proof. Following the same realizations of (6.1), we see that two copies of y(·) under a common environment can
be coupled so that whenever they get to the same part Mi , they move together from that moment. The same holds
for z(·). �

Proof of Lemma 6.3. Initially y(0) = 0 by definition, which is clearly a distribution dominated by ν of (6.6). Now we
argue recursively: by time t the distribution of y(t) was a.s. only influenced by finitely many jumps of the environment,

which resulted in distributions ν1, then ν2, then ν3, etc. Suppose νk

d≤ ν, and let ν∗ be the distribution that would result

from ν by the (k + 1)st jump. Then νk+1
d≤ ν∗ by νk

d≤ ν and Lemma 6.6, while ν∗ d≤ ν by Lemma 6.4. A similar
argument proves the lemma for z(·). �

Appendix A: Convexity and total positivity

This section derives a general convexity result for exponentially tilted measures. Let ν be a nondegenerate probability
measure on R and assume that for some open interval I ⊆ R,

Y(θ) =
∫

eθxν(dx) < ∞ for all θ ∈ I . (A.1)



180 M. Balázs, J. Komjáthy and T. Seppäläinen

For θ ∈ I define the exponentially tilted measures νθ by∫
g dνθ = Y(θ)−1

∫
g(x)eθxν(dx)

(for bounded Borel test functions g). The nondegeneracy assumption (that ν is not supported on a single point) and
(A.1) guarantee that

�(θ) =
∫

xνθ (dx)

is a finite, continuous, strictly increasing function that maps I onto a nontrivial open interval J . For � ∈ J the inverse
function is denoted by θ(�).

Let ψ be a measurable function on R, and assume (by shrinking I if necessary) that∫
|ψ |dνθ < ∞ for all θ ∈ I .

Since |x|k ≤ k!ε−k(eεx + e−εx) for any ε > 0 and I is an open interval, it follows that
∫ |ψ ||x|k dνθ < ∞ for all k ≥ 0

and θ ∈ I . Consequently as a function of θ the integral
∫

ψ dνθ has derivatives of all orders.
A particular case is ψ(x) = x which gives the infinite differentiability of �(θ). Let us also note the infinite differen-

tiability of the inverse function θ(�). Since �′(θ) is the variance of the distribution νθ , �′(θ) > 0 by the nondegeneracy
of ν, and so directly from the definition of the derivative θ ′(�) = 1/�′(θ(�)). Repeated use of basic differentiation
rules produces all derivatives θ(n)(�). Notice that this argument shows a uniform lower and upper bound of �′(θ), that
is, Lipschitz continuity of both �(θ) and θ(�) on bounded closed intervals.

Define

Ψ (�) =
∫

ψ dνθ(�).

Ψ is also infinitely differentiable as a composite of two such functions.

Theorem A.1. Assume ψ is a convex function on R. Then Ψ is convex on J . Assume furthermore that no linear
function g(x) = ax + b satisfies ψ = g ν-a.e. Then Ψ ′′(�) > 0 for all � ∈ J and in particular Ψ is strictly convex
on J .

Proof. The proof can be reduced to the theory of total positivity. In what follows, citations and terminology are from
Karlin’s monograph [24]. The claims made in our Theorem A.1 follow from applying Theorem 3.5(a)–(c) from p. 285
of [24] to the operator

T ψ(�) =
∫

ψ dνθ(�) =
∫

R

K(�,x)ψ(x)ν(dx), � ∈ J ,

where the kernel is defined by K(�,x) = Y(�(θ))−1eθ(�)x . The property of the kernel K that gives the result is
extended total positivity (ETP) of order 3. This is the requirement of strict positivity on certain types of determinants
of partials of dimensions up to 3 × 3: for all (�, x) ∈ J × R,

K∗
n entries(︷ ︸︸ ︷
�, . . . , �

x, . . . , x

)
= det

1≤i,j≤n

[
∂i+j−2

∂�i−1∂xj−1
K(�,x)

]
> 0 for n = 1,2,3. (A.2)

We argue this in stages.
We first observe that the kernel L(θ, x) = Y(θ)−1eθx on I × R is ETP of all orders. Recall that the Wronskian of

n functions f1, . . . , fn is the n × n determinant

W [f1, . . . , fn](x) = det
1≤i,j≤n

[
f

(j−1)
i (x)

]
.
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If u is another function, the Wronskian satisfies the identity

W [uf1, . . . , ufn](x) = u(x)nW [f1, . . . , fn](x). (A.3)

To justify (A.3), Leibniz’s rule

(ufi)
(j−1) =

j∑
k=1

(
j − 1

k − 1

)
f

(k−1)
i u(j−k) (1 ≤ j ≤ n)

implies that the matrix A = [(ufi)
(j−1)(x)]1≤i,j≤n is the product of the matrices

B = [
(fi)

(k−1)(x)
]

1≤i,k≤n
and C =

[(j − 1

k − 1

)
u(j−k)(x)1{k ≤ j}

]
1≤k,j≤n

.

By upper-triangularity detC = u(x)n. Then the corresponding determinant identity det(A) = det(B) · det(C) is pre-
cisely (A.3).

Now we can verify the ETP property of kernel L, utilizing (A.3):

det
1≤i,j≤n

[
∂i+j−2

∂xi−1∂θj−1
L(θ, x)

]
= det

1≤i,j≤n

[
∂j−1

∂θj−1

{
Y(θ)−1θi−1eθx

}]
= Y(θ)−nenθxW

[
1, θ, . . . , θn−1]

= Y(θ)−nenθx

n−1∏
j=1

j ! > 0.

To go from L(θ, x) to K(�,x) = L(θ(�), x), consider the 3 × 3 determinant that appears in (A.2), apply the chain
rule and a row operation:∣∣∣∣∣ K Kx Kxx

K� K�x K�xx

K�� K��x K��xx

∣∣∣∣∣ =
∣∣∣∣∣ L Lx Lxx

Lθθ� Lθxθ� Lθxxθ�

Lθθ θ
2
� + Lθθ�� Lθθxθ

2
� + Lθxθ�� Lθθxxθ

2
� + Lθxxθ��

∣∣∣∣∣
=
∣∣∣∣∣ L Lx Lxx

Lθθ� Lθxθ� Lθxxθ�

Lθθ θ
2
� Lθθxθ

2
� Lθθxxθ

2
�

∣∣∣∣∣= θ3
�

∣∣∣∣∣ L Lx Lxx

Lθ Lθx Lθxx

Lθθ Lθθx Lθθxx

∣∣∣∣∣> 0.

The last inequality is by the ETP property of kernel L and the strict positivity θ� > 0 of the derivative. The 1 × 1 and
2 × 2 determinants in (A.2) are principal minors of the determinant above and are positive by the same reasoning.

We have shown that the kernel K has the ETP property of order 3. In addition to ETP, Theorem 3.5 from p. 285 of
[24] requires the hypotheses∫

K(�,x)ν(dx) = 1 and
∫

K(�,x)xν(dx) = a� + b

for some a > 0 and b ∈ R. The first one is true by virtue of the normalization Y(θ)−1, and the second one with a = 1
and b = 0 by the definition of �(θ). The proof is now completed by an appeal to Theorem 3.5 from p. 285 of [24]. �

These convexity properties can also be proved in an elementary way by developing suitable correlation inequalities.
Such a proof is given in the note [10]. We are indebted to an anonymous referee of that note for pointing out the
connection with total positivity.

Subsequent sections of the appendix extract from Theorem A.1 consequences for the processes we study.
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Appendix B: Monotonicity of measures

In this part of the appendix we show that the measures μ� and μ̂� defined in (2.13) and (2.17), respectively, are
stochastically monotone as functions of �. We start with a simple lemma.

Lemma B.1. Fix a function ϕ(ω) on Z, bounded by a polynomial. Then Eθ (ϕ(ω)) is differentiable in θ on (θ, θ̄ ), and

d

dθ
Eθ

(
ϕ(ω)

)= Covθ
(
ϕ(ω),ω

)
.

Proof. Convergence of the series involved in Eθ (ϕ(ω)) can be verified via the ratio test, even after differentiating the
terms. Since μθ is the exponentially weighted version of μθ0 for some θ0, we have

d

dθ
Eθϕ(ω) = d

dθ

Eθ0(ϕ(ω) · e(θ−θ0)ω)

Eθ0e(θ−θ0)ω

= Eθ0(ϕ(ω) · ω · e(θ−θ0)ω)

Eθ0e(θ−θ0)ω
− Eθ0

(
ϕ(ω) · e(θ−θ0)ω

) · Eθ0(ω · e(θ−θ0)ω)

[Eθ0 e(θ−θ0)ω]2
= Covθ

(
ϕ(ω),ω

)
. �

Corollary B.2. For any θ < θ < θ̄ , the state sum (2.12) satisfies

d

dθ
logZ(θ) = 1

Z(θ)

ωmax∑
z=ωmin

z
eθz

f (z)! = Eθ (ω) =: �(θ), (B.1)

d2

dθ2
logZ(θ) = d

dθ
�(θ) = Varθ (ω). (B.2)

The function �(θ) is strictly increasing and maps (θ, θ̄ ) onto (ωmin,ωmax).

Proof. Everything is already covered except the last surjectivity statement. Due to the monotonicity and continuity
one only needs to show convergence at the boundaries θ , θ̄ to ωmin, ωmax. First let us consider the case when θ̄ < ∞.
Then ωmax = ∞ and Fatou’s lemma implies

lim inf
θ↗θ̄

Z(θ) = lim inf
θ↗θ̄

∑
z∈I

eθz

f (z)! ≥
∑
z∈I

lim inf
θ↗θ̄

eθz

f (z)! =
∑
z∈I

eθ̄z

f (z)! = ∞

since for z > 0

eθ̄z

f (z)! =
z∏

y=1

eθ̄

f (y)
≥ 1

by definition of θ̄ and f being nondecreasing. This shows that logZ(θ) takes on arbitrarily large values as θ ↗ θ̄ . We
also know that it is a smooth and convex function on (θ, θ̄ ) (see (B.2)). This implies that its derivative (B.1) is not
bounded from above i.e., arbitrarily large � values can be achieved. The same reasoning works in case θ > −∞ for
arbitrarily large negative � values.

When θ̄ = ∞ then, regardless whether ωmax is finite or infinite, fix any 0 ≤ y < ωmax and write

�(θ) = Eθ
(
ω · 1{ω > y})+ Eθ

([ω]+ · 1{ω ≤ y})− Eθ
([ω]− · 1{ω ≤ y})

≥ (y + 1) · Pθ (ω > y) − Eθ
([ω]− · 1{ω ≤ y})

≥ (y + 1) − (y + 1) · Pθ (ω ≤ y) −
√

Eθ
(([ω]−)2) ·

√
Pθ (ω ≤ y)

≥ (y + 1) − (y + 1) · Pθ (ω ≤ y) −
√

Eθ0
(([ω]−)2) ·

√
Pθ (ω ≤ y) (B.3)
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for a fixed θ < θ0 < θ . The last inequality follows by monotonicity of μθ in θ and ([ω]−)2) being a nonincreasing
function of ω. For any ωmin − 1 < z ≤ y and θ > θ ,

μθ(z)

μθ (y + 1)
=

y∏
x=z

μθ (x)

μθ (x + 1)
=

y∏
x=z

f (x + 1)

eθ
≤
(

f (y + 1)

eθ

)y−z+1

.

Given 0 ≤ y < ωmax and 1 > ε > 0, there is a large enough θ which makes the last fraction smaller than ε. With such
a choice we have

Pθ {ω ≤ y} =
y∑

z=ωmin

μθ(z) ≤ μθ(y + 1)

y∑
z=ωmin

εy−z+1 ≤ ε · 1 − εy−ωmin+1

1 − ε
.

Therefore, for the case of a finite ωmax, choosing y = ωmax −1 and large θ makes (B.3) arbitrarily close to ωmax. When
ωmax = ∞, the argument shows that �(θ) ≥ y + 1 can be achieved for any y ≥ 0. A similar computation demonstrates
that any density towards ωmin can be reached when θ = −∞. �

Corollary B.3. The measures μ� are stochastically nondecreasing in �.

Proof. Since � and θ are strictly increasing functions of each other, it is equivalent to show monotonicity of μθ . This
follows if we can show 0 ≤ d

dθ
Eθ (ϕ(ω)) for an arbitrary bounded nondecreasing function ϕ. Lemma B.1 transforms

this derivative into the covariance of ϕ(ω) and ω, which is nonnegative due to ϕ being nondecreasing. �

Monotonicity of μ̂� requires somewhat more of a convexity argument.

Proposition B.4. The family of measures μ̂� , defined in (2.17), is stochastically nondecreasing in �.

Proof. Start by rewriting the definition:

μ̂�(y) = E�([ω − �] · 1{ω > y})
Var�(ω)

= Cov�(ω,1{ω > y})
Cov�(ω,ω)

=
d

dθ
Pθ {ω > y}

d
dθ

�(θ)

∣∣∣∣
θ=θ(�)

= d

d�
P�{ω > y}.

Let us denote the μ̂�-expectation by Ê� . Fix a bounded nondecreasing function ϕ. We need to show

0 ≤ d

d�
Ê�ϕ(ω).

We compute a different expression for this derivative. Passing the derivative through the sum in the third equality
below is justified because the series involved are dominated by certain geometric series, uniformly over θ in small
open neighborhoods. This follows from the definitions of θ and θ̄ and the assumption θ < θ(�) < θ̄ .

Ê�ϕ(ω) =
ωmax∑

y=ωmin

ϕ(y) · d

d�
P�{ω > y} =

ωmax∑
y=ωmin

ϕ(y) · d

d�

[
P�{ω > y} − 1{0 ≥ y}]

= d

d�

ωmax∑
y=ωmin

ϕ(y) · [P�{ω > y} − 1{0 ≥ y}]= d

d�
E�

ωmax∑
y=ωmin

ϕ(y) · [1{ω > y} − 1{0 ≥ y}]

= d

d�
E�

ωmax∑
y=ωmin

ϕ(y) · [1{ω > y > 0} − 1{0 ≥ y ≥ ω}]= d

d�
E�

[
ω−1∑
y=1

ϕ(y) −
0∑

y=ω

ϕ(y)

]
= d

d�
E�Φ(ω).
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Above we introduced the function

Φ(x) =
x−1∑
y=1

ϕ(y) −
0∑

y=x

ϕ(y),

with the convention that empty sums are zero. To conclude the proof, notice that Φ(x + 1) − Φ(x) = ϕ(x). Thus
a nondecreasing function ϕ determines a (nonstrictly) convex function Φ with Φ(1) = 0, and vice-versa. Hence
Theorem A.1 establishes that

d

d�
Ê�ϕ(ω) = d2

d�2
E�Φ(ω) ≥ 0. �

Appendix C: Regularity properties of the hydrodynamic flux function

For the zero range process defined among the examples in Section 2.2, the hydrodynamic (macroscopic) flux function
H : R+ → R

+ of (2.14) is given by

H(�) = E�f (ω).

The results of Section A for f now read as follows:

Proposition C.1. If the jump rate f of the zero range process is convex (or concave), then the flux H is also convex
(or concave, respectively). Moreover, in this case H′′(�) > 0 (or H′′(�) < 0, respectively) for all � > 0 if and only if
f is not a linear function.

Parts of this proposition were proved with coupling methods in [5].
Next we show in the general case that H(�) is well defined, and is infinitely differentiable. (We use third derivatives

in the proof of Theorem 2.3.) The function H(�) is, in general, the expected net growth rate w.r.t. μ� as defined in
(2.14). We show that the series making up this expectation is finite, even after differentiating its terms. This will then
lead to smoothness of H(�).

Lemma C.2. Let g(y, z) ≥ 0 be any function on Z × Z, bounded by a polynomial in |y| and |z|. Then for any
θ < θ < θ̄ ,

Eθ
[(

p(ω0,ω1) + q(ω0,ω1)
)
g(ω0,ω1)

]
< ∞.

Proof. We deal with the first part that contains p, the one with q can be treated analogously. The sum we are looking
at is

ωmax∑
y=ωmin+1

ωmax−1∑
z=ωmin

p(y, z) · g(y, z) · eθ(y+z)

f (y)! · f (z)! · 1

Z(θ)2
.

These sums are certainly convergent if ωmin and ωmax are both finite. When this is not the case we split both summa-
tions at zero, and convergence is established on the four quadrants of the plane. We use (2.7) and the corollary

p(y, z) = p(z + 1, y − 1) · f (y)

f (z + 1)
for ωmin < y ≤ ωmax and ωmin ≤ z < ωmax

of (2.9), and we consider empty sums to be zero.
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• y > 0, z > 0: In this case

p(y, z) ≤ p(y,0) = p(1, y − 1) · f (y)

f (1)
≤ p(1,0) · f (y)

f (1)
,

and the corresponding part of the summation is bounded by

p(1,0)

f (1)
·
ωmax∑
y=1

ωmax−1∑
z=1

g(y, z) · eθ(y+z)

f (y − 1)! · f (z)! · 1

Z(θ)2
.

• y ≤ 0, z > 0: In this case

p(y, z) ≤ p(1,0),

and the corresponding part of the summation is bounded by

p(1,0) ·
0∑

y=ωmin+1

ωmax−1∑
z=1

g(y, z) · eθ(y+z)

f (y)! · f (z)! · 1

Z(θ)2
.

• y ≤ 0, z ≤ 0: In this case

p(y, z) ≤ p(1, z) = p(z + 1,0) · f (1)

f (z + 1)
≤ p(1,0) · f (1)

f (z + 1)
,

and the corresponding part of the summation is bounded by

p(1,0)f (1) ·
0∑

y=ωmin+1

0∑
z=ωmin

g(y, z) · eθ(y+z)

f (y)! · f (z + 1)! · 1

Z(θ)2
.

• y > 0, z ≤ 0: In this case

p(y, z) = p(z + 1, y − 1) · f (y)

f (z + 1)
≤ p(1,0) · f (y)

f (z + 1)
,

and the corresponding part of the summation is bounded by

p(1,0) ·
ωmax∑
y=1

0∑
z=ωmin

g(y, z) · eθ(y+z)

f (y − 1)! · f (z + 1)! · 1

Z(θ)2
.

Convergence of each of these bounds for θ < θ < θ̄ is established e.g. by the ratio test. �

Notice that a similar argument gives finite higher moments of the rates when log(f ) is at most linear in both
directions on Z.

Corollary C.3. H(�) is infinitely differentiable at all � ∈ (ωmin,ωmax).

Proof. By the previous lemma the series

F(θ) := H
(
�(θ)

)= 1

Z(θ)2
·

ωmax∑
y,z=ωmin

(
p(y, z) − q(y, z)

) eθ(y+z)

f (y)! · f (z)! ,

is convergent and infinitely differentiable. Since H(�) = F(θ(�)) and � 
→ θ(�) is infinitely differentiable as well,
the claim follows. �
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