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We study the asymptotic behavior of multiscale stochastic gene networks
using weak limits of Markov jump processes. Depending on the time and con-
centration scales of the system, we distinguish four types of limits: continu-
ous piecewise deterministic processes (PDP) with switching, PDP with jumps
in the continuous variables, averaged PDP, and PDP with singular switching.
We justify rigorously the convergence for the four types of limits. The conver-
gence results can be used to simplify the stochastic dynamics of gene network
models arising in molecular biology.

1. Introduction. Modern molecular biology emphasizes the important role
of the gene regulatory networks in the functioning of living organisms. Recent
experimental advances in molecular biology show that many gene products do not
follow deterministic dynamics and should be modeled as random variables [Kepler
and Elston (2001), Kaufmann and van Oudenaarden (2007)].

Markov processes approaches to gene networks dynamics, originating from the
pioneering ideas of Delbrück [Delbrück (1940)], capture diverse features of the
experimentally observed expression variability, such as bursting [Cai, Friedman
and Xie (2006)], various types of steady-state distributions of RNA and protein
numbers [Kaern et al. (2005)], noise amplification or reduction by network prop-
agation [Paulsson (2004), Warren, Tănase-Nicola and ten Wolde (2006)], clock
de-synchronization [Barkai and Leibler (2000)], stochastic transitions in cellular
memory storage circuits [Kaufmann et al. (2007)].

However, the study of the full Markov dynamics of biochemical networks is a
difficult task. Even the simplest Markovian model, such as the production mod-
ule of a single protein, involves tens of variables and biochemical reactions and
an equivalent number of parameters [Kierzek, Zaim and Zielenkiewicz (2001),
Krishna et al. (2005)]. The direct simulation of such models by the Stochastic
Simulation Algorithm (SSA) [Gillespie (1976)] is extremely time consuming.

In order to increase computational efficiency, several accelerated simulation al-
gorithms are hybrid and treat fast biochemical reactions as continuous variables
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[Haseltine and Rawlings (2002), Alfonsi et al. (2005), Alfonsi et al. (2004)]. Simi-
lar approaches reducing fast reactions can be justified by diffusion approximations
for Markov processes [Ball et al. (2006)].

A different hybrid approach is to distinguish between molecular species accord-
ing to their abundances. Species in small amounts can be treated as discrete vari-
ables, whereas species in large amounts can be considered continuous. It has been
proposed that the dynamics of gene networks with well-separated abundances can
be well approximated by piecewise deterministic Markov processes [Radulescu,
Muller and Crudu (2007), Crudu, Debussche and Radulescu (2009)]. Piecewise
deterministic processes (PDP) are used in operational research in relation with op-
timal control and various technological applications [Boxma et al. (2005), Ghosh
and Bagchi (2005), Bujorianu and Lygeros (2004)]. Their popularity in physical,
chemical and biological sciences is also steadily increasing as they provide a natu-
ral framework to deal with intermittent phenomena in many contexts [Radulescu,
Muller and Crudu (2007), Zeiser et al. (2008)].

By looking for the best PDP approximation of a stochastic network of biochem-
ical reactions, and depending on the time scales of the reaction mechanism, we can
distinguish several cases [Crudu, Debussche and Radulescu (2009)]:

• Continuous PDP with switching: continuous variables evolve according to or-
dinary differential equations. The trajectories of the continuous variables are
continuous, but the differential equations depend on one or several discrete vari-
ables. These discrete variables are involved in Markov jumps.

• PDP with jumps in the continuous variables: the same as the previous case, but
the continuous variables can jump as well as the discrete variables.

• Averaged PDP: some discrete variables have rapid transitions and can be aver-
aged. The resulting approximation is an averaged PDP.

• Discontinuous PDP with singular switching: the continuous variable has two
time scalings. The switch between the two regimes is commanded by a discrete
variable. The rapid parts of the trajectory of the continuous variable can be ap-
proximated by discontinuities.

In this paper, we justify rigorously these approximations that were illustrated by
models of stochastic gene expression in Crudu, Debussche and Radulescu (2009).
More precisely, we present several theorems on the weak convergence of bio-
chemical reactions processes toward piecewise deterministic processes of the types
specified above. The resulting piecewise deterministic processes can be used for
more efficient simulation algorithms, and also, in certain cases, can lead to analytic
results for the stochastic behavior of gene networks. Higher-order approximations
of multiscale stochastic chemical kinetics, corresponding to stochastic differen-
tial equations with jumps, are not discussed in this paper. These extensions of our
results will be studied in a forthcoming article.

The structure of this article is as follows. In Section 2, we present the PDP,
a useful theorem on the uniqueness of the solution of a martingale problem and
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the Markov jump model for stochastic regulatory networks. The four remaining
sections discuss the asymptotic behaviors of the models, corresponding to the four
cases presented above.

2. Piecewise deterministic processes. We begin with a brief description of
Piecewise Deterministic Processes (PDP) and collect useful results on these. We
do not consider PDPs in their full generality. The reader is referred to Davis (1993)
for further results.

Standard conditions. In this article, a PDP taking values in E = R
n × N

d is a
process xt = (yt , νt ), determined by its three characteristics:

(1) For all ν ∈ N
d , a C1 vector field in R

n, denoted by Fν , which determines a
unique global flow φν(t, y) in R

n such that, for t > 0,

d

dt
φν(t, y) = Fν(φν(t, y)), φν(0, y) = y ∀y ∈ R

n.

We also use the notation: F(y, ν) = Fν(y).
(2) A jump rate λ :E → R

+ such that, for each x = (y, ν) ∈ E, there exists
ε(x) > 0 such that

∫ ε(x)

0
λ(φν(t, y), ν) dt < ∞.

(3) A transition measure Q :E → P(E), x �→ Q(·;x), where P(E) denotes
the set of probability measures on E. We assume that Q({x};x) = 0 for each
x ∈ E.

From these standard conditions, a right-continuous sample path {xt : t > 0} starting
at x = (y, ν) ∈ E may be constructed as follows. Define

xt (ω) := (φν(t, y), ν) for 0 ≤ t < T1(ω),

where T1(ω) is the realization of the first jump time T1, with the following distri-
bution:

Px(T1 > t) = exp
(
−

∫ t

0
λ(φν(s, y), ν) ds

)
=: H(t, x), t ∈ R

+.

We have then x
T

−
1 (ω)

(ω) = (φν(T1(ω), y), ν), and the post-jump state xT1(ω)(ω) has

the distribution given by

Px(xT1 ∈ A|T1 = t) = Q(A; (φν(t, y), ν))

on the Borel sets A of E.



CONVERGENCE OF STOCHASTIC GENE NETWORKS TO PDP 1825

We then restart the process at xT1(ω)(ω) and proceed recursively according to the
same procedure to obtain a sequence of jump-time realizations T1(ω), T2(ω), . . . .

Between each of two consecutive jumps, xt (ω) follows a deterministic motion,
given by the flow corresponding to the vector field F .

Such a process xt is called a PDP. The number of jumps that occur between the
times 0 and t is denoted by

Nt(ω) = ∑
k

1t≥Tk
(ω).

It can be shown that xt is a strong Markov process with right-continuous, left-
limited sample paths [see Davis (1993)]. The generator A of the process is for-
mally given by

Af (x) = Fν(x) · ∇yf (x) + λ(x)

∫
E

(
f (z) − f (x)

)
Q(dz;x);(1)

for each x = (y, ν) ∈ E, we have denoted by ∇y the gradient with respect to the
variable y ∈ R

n. We do not need a precise description of the domain of A and just
note that A is well defined for f ∈ E , the set of functions f :E → R such that:

(E1) f is bounded,
(E2) for all ν ∈ N

d , f (·, ν) ∈ C1(Rn),
(E3) its derivatives are bounded uniformly in E.

We restrict to such test functions which are sufficient for our analysis. However,
the generator has a much larger domain as shown in Davis (1993), Section 26. In
particular, in all the situations considered here, it can be applied to locally Lipschitz
functions with polynomial growth.

For f ∈ E , we denote by

Lf = sup
y∈Rn

‖Dyf ‖∞ = sup
(y,ν)∈E

‖Dyf (y, ν)‖(2)

the Lipschitz constant of f with respect to the variable y.
The space E is a Banach space when endowed with the norm

‖f ‖E = ‖f ‖∞ + Lf .(3)

If Z is a Banach space, Bb(Z) is the set of bounded Borel-measurable func-
tions on Z; Ck

b(Z) is the set of Ck-differentiable functions on Z, such that the
derivatives, until the kth order, are bounded; Cb(Z) is the set of bounded contin-
uous functions on Z. Also D(R+;Z) is the set of processes defined on R

+ with
right-continuous, left-limited sample paths defined on R

+ and taking values in Z

and C(R+;Z) is the set of continuous processes defined on R
+ and taking values

in Z.
The PDPs considered in this paper will always satisfy the following property:
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HYPOTHESIS 2.1. The three characteristics of the PDP satisfy the standard
conditions given above. The jump rate λ is C1-differentiable with respect to the
variable y ∈ R

n. For every starting point x = (y, ν) ∈ E and t ∈ R
+, we suppose

E(Nt) < ∞.

REMARK 2.2. E(Nt) < ∞ implies in particular that Tk(ω) → ∞ almost
surely. This assumption is usually quite easy to check in applications, but it is
hard to formulate general conditions under which it holds, because of the compli-
cated interaction between F,λ and Q. It can be shown, for instance, that if λ is
bounded, then E(Nt) < ∞ [cf. Davis (1993)].

For some results, we need the following stronger property:

HYPOTHESIS 2.3. The functions F , λ and x �→ λ(x)
∫
E f (z)Q(dz;x), with

f ∈ E , are bounded on E, C1-differentiable with respect to the variable y ∈ R
n

and their derivatives with respect to y are also bounded.

REMARK 2.4. In Hypothesis 2.1, we assume that the jump rates and the vec-
tor fields Fν are C1. Our result extends to the more general assumption that these
functions are locally Lipschitz. This extension requires only technical complica-
tions and notations. We chose the framework of C1 objects to lighten the presen-
tation. We believe that it allows the reader to see more clearly the main ideas of
our work. For instance, our choice allows to consider a set of test functions E con-
sisting of C1 functions. This simplifies the various convergence arguments. Also,
if one wishes to work with locally Lipschitz functions, one has to modify in par-
ticular Hypothesis 2.3 and the proof of Theorem 2.5 in the Appendix.

When Hypothesis 2.3 is satisfied, we set

MF = ‖F‖∞, LF = sup
y∈Rn

‖DyF‖∞,

Mλ = ‖λ‖∞, Lλ = sup
y∈Rn

‖Dyλ‖∞,

and LQ a constant such that, for all f ∈ E and x = (y, ν) ∈ E:
∥∥∥∥Dy

(
λ(x)

∫
E

f (z)Q(dz;x)

)∥∥∥∥∞
≤ LQ‖f ‖E .

Denote by (Pt )t≥0 the transition semigroup associated to the PDP constructed
above and by Px the law of the PDP starting from x ∈ E. Then, Px is a solution of
the martingale problem associated to A in the following sense:

f (xt ) − f (x) −
∫ t

0
Af (xs) ds
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is a local martingale for any f ∈ E [see Davis (1993)]. Moreover, if Hypothesis 2.3
holds, it is a bounded martingale. As usual, we have denoted by (xt )t≥0 the canon-
ical process on D(R+;E). As mentioned above, this statement is true for a much
larger set of test functions.

The following result gives a uniqueness property for this martingale problem. It
will enable us to characterize the asymptotic behavior of our stochastic regulatory
networks.

THEOREM 2.5. If Hypothesis 2.3 is satisfied, then the law of the PDP deter-
mined by F , λ, and Q is the unique solution of the martingale problem associated
to the generator A.

The proof of the theorem is given in the Appendix.

Markov jump model for stochastic regulatory networks: Known results. We
consider a set of chemical reactions Rr , r ∈ R; R is supposed to be finite. These
reactions involve species indexed by a set S = 1, . . . ,M , the number of molecules
of the specie i is denoted by ni and X ∈ N

M is the vector consisting of the ni’s.
Each reaction Rr has a rate λr(X) which depends on the state of the system, de-
scribed by X, and corresponds to a change X → X + γr , γr ∈ Z

M .
Mathematically, this evolution can be described by the following Markov jump

process. It is based on a sequence (τk)k≥1 of random waiting times with exponen-
tial distribution. Setting T0 = 0, Ti = τ1 + · · · + τi , X is constant on [Ti−1, Ti) and
has a jump at Ti . The parameter of τi is given by

∑
r∈R λr(X(Ti−1)):

P(τi > t) = exp
(
− ∑

r∈R
λr(X(Ti−1))t

)
.

At time Ti , a reaction r ∈ R is chosen with probability

λr(X(Ti−1))
/ ∑

r∈R
λr(X(Ti−1))

and the state changes according to X → X + γr :

X(Ti) = X(Ti−1) + γr .

This Markov process has the following generator [see Ethier and Kurtz (1986)]:

Af (X) = ∑
r∈R

[f (X + γr) − f (X)]λr(X).

We do not need a precise description of the domain of A; the above definition
holds, for instance, for functions in Cb(R

M).
In the applications we have in mind, the numbers of molecules have different

scales. Some of the molecules are in small numbers and some are in large numbers.
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Accordingly, we split the set of species into two sets C and D with cardinals MC

and MD . This induces the decomposition N
M = N

MC × N
MD , X = (XC,XD),

γr = (γ C
r , γ D

r ). For i ∈ D, ni is of order 1 while for i ∈ C, ni is proportional to
N where N is a large number. For i ∈ C, setting ñi = ni/N , ñi is of order 1. We
define xC = 1

N
XC and x = (xC,XD). Then x ∈ E = R

MC × N
MD .

We also decompose the set of reactions according to the species involved. We
set R = RD ∪ RC ∪ RDC . A reaction in RD (resp., RC) produces or consumes
only species in D (resp., C). Also, the rate of a reaction in RD (resp., RC) depends
only on XD (resp., xC ). A reaction in RDC has a rate depending on both xC and
XD and produces or consumes, among others, species from C or D.

The rate of a reaction in r ∈ RC is also large and of order N and we set λ̃r =
λr
N

. In some applications, reactions in RD or RDC have a rate of order 1. Then
introducing the new scaled variables, the generator has the form:

Ãf (xC,XD) = ∑
r∈RC

[
f

(
xC + 1

N
γ C
r ,XD

)
− f (xC,XD)

]
Nλ̃r(xC)

+ ∑
r∈RDC

[
f

(
xC + 1

N
γ C
r ,XD + γ D

r

)
− f (xC,XD)

]
λr(xC,XD)

+ ∑
r∈RD

[f (xC,XD + γ D
r ) − f (xC,XD)]λr(XD).

Assuming that the scaled rates λ̃r are continuous with respect to xC , it is not dif-
ficult to see that if N → ∞, the two sets of species decouple. Indeed, reactions in
RDC do not happen sufficiently often and they do not change xC in a sufficiently
large manner. The limit would simply give a set of differential equations for the
continuous variable xC , which evolves without influence of XD . The discrete vari-
able would have its own dynamic made of jumps, with some rates depending on
both xC and XD . These results have been shown by Kurtz (1971, 1978).

In the following sections, we consider more general systems where other types
of reactions may happen and which yield different limiting systems.

3. Continuous piecewise deterministic process. In this section, we assume
that some of the reactions in a subset S1 of RDC are such that their rate is large and
scales with N . We again set λ̃r = 1

N
λr for r ∈ S1. We assume that these equations

do not change XD , in other words,

γ D
r = 0, r ∈ S1.(4)

However, the rate λr depends on XD . Note that this is possible and even frequent
in molecular biology, meaning that reactions of the type S1 recover the reactant,
like in the reaction A → A + B , with A and B discrete and continuous species,
respectively. The more complicated case γ D

r �= 0 is treated in Section 5.
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With the decomposition E = R
MC × N

MD introduced above, the scaled genera-
tor has now the form

ÃNf (xC,XD)

= ∑
r∈RC

[
f

(
xC + 1

N
γ C
r ,XD

)
− f (xC,XD)

]
Nλ̃r(xC)

+ ∑
r∈S1

[
f

(
xC + 1

N
γ C
r ,XD

)
− f (xC,XD)

]
Nλ̃r(xC,XD)(5)

+ ∑
r∈RDC\S1

[
f

(
xC + 1

N
γ C
r ,XD + γ D

r

)
− f (xC,XD)

]
λr(xC,XD)

+ ∑
r∈RD

[f (xC,XD + γ D
r ) − f (xC,XD)]λr(XD).

For f ∈ C1
b(E), we may let N → ∞ and obtain the limit generator

A∞f (xc,XD)

=
( ∑

r∈RC

λ̃r (xC)γ C
r + ∑

r∈S1

λ̃r (xC,XD)γ C
r

)
· ∇xC

f (xC,XD)

+ ∑
r∈RDC\S1

[f (xC,XD + γ D
r ) − f (xC,XD)]λr(xC,XD)

+ ∑
r∈RD

[f (xC,XD + γ D
r ) − f (xC,XD)]λr(XD).

This formal argument indicates that, as N → ∞, the process converges to a con-
tinuous PDP [see (1)]. The state is described by a continuous variable xC and a
discrete variable XD . The discrete variable is a jump process, with some rates de-
pending on both xC and XD , and is piecewise constant. The continuous variable
evolves according to differential equations depending on XD . It is continuous but
the vector field describing its evolution changes when XD jumps.

This is rigorously justified by the following theorem.

THEOREM 3.1. Let xN = (xN
C ,XN

D) be a jump Markov process as above,
starting at xN(0) = (xN

C (0),XN
D(0)). Assume that the jump rates λ̃r , r ∈ RC ∪ S1

and λr , r ∈ RDC \ S1 are C1 functions of xC ∈ R
MC . We define Px0 the law of the

PDP starting at x0 = (xC,0,XD,0) whose jump intensities are

λ(x) = ∑
r∈RD∪RDC\S1

λr(x);
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the transition measure is defined by

∫
E

f (z)Q(dz;x)

= 1

λ(x)

( ∑
r∈RDC\S1

f (xC,XD + γ D
r )λr(xC,XD)

+ ∑
r∈RD

f (xC,XD + γ D
r )λr(XD)

)

for x = (xC,XD), and the vectors fields are given by

FXD
(xC) = ∑

r∈RC

γ C
r λ̃r (xC) + ∑

r∈S1

γ C
r λ̃r (xC,XD).

Assume that Hypothesis 2.1 is satisfied and xN(0) converges in distribution
to x0; then xN converges in distribution to the PDP whose law is Px0 .

PROOF. In the following, we work only with scaled variables and simplify the
notation by omitting the tildes. In other words, we use λr to denote the rate of all
reactions.

The proof is divided into three steps. We begin our proof by supposing that the
jump rates and their derivatives with respect to xC are bounded. Hypothesis 2.3 is
then satisfied. We then prove Theorem 3.1 by a truncation argument.

Step 1: Tightness for bounded reaction rates. We first assume that all rates λr

are bounded as well as their derivatives with respect to xC .
Let xN be a Markov jump process whose generator is given by ÃN .
Without loss of generality, we assume that the initial value of the process is

deterministic: xN(0) = (xN
C (0),XN

D(0)) and converges to x0 = (xC,0,XD,0) in
R

MC × N
MD .

Let (Yr)r∈R be a sequence of independent standard Poisson processes. By
Proposition 1.7, Part 4, and Theorem 4.1, Part 6, of Ethier and Kurtz (1986) we
know that there exist stochastic processes (x̃N )N∈N in D(R+;E) such that

x̃N (t) = xN(0) + ∑
r∈R

γrYr

(∫ t

0
λr(x̃

N(s)) ds

)
, t ≥ 0.

Moreover, for each N , xN and x̃N have the same distribution. Since we consider
only the distributions of the processes, we only consider x̃N in the following and
use the same notation for both processes.
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Using the decomposition xN = (xN
C ,XN

D), we have

xN
C (t) = xN

C (0) + ∑
r∈RC

1

N
γ C
r Yr

(
N

∫ t

0
λ̃r (x

N
C (s)) ds

)

+ ∑
r∈S1

1

N
γ C
r Yr

(
N

∫ t

0
λ̃r (x

N
C (s),XN

D(s)) ds

)

+ ∑
r∈RDC\S1

1

N
γ C
r Yr

(∫ t

0
λr(x

N
C (s),XN

D(s)) ds

)

and

XN
D(t) = XN

D(0) + ∑
r∈RDC\S1

γ D
r Yr

(∫ t

0
λr(x

N
C (s),XN

D(s)) ds

)

+ ∑
r∈RD

γ D
r Yr

(∫ t

0
λr(X

N
D(s)) ds

)
.

We easily prove tightness in D(R+;R
MD) of the laws of (XN

D)N∈N by the same
proof as for Proposition 3.1, Part 6, of Ethier and Kurtz (1986) and by using the fact
that the law of Yr is tight in D(R+;N), for every r ∈ R, according to Theorem 1.4
of Billingsley (1999).

To prove that the laws of (xN
C )N∈N are tight in C(R+;R

MC), we adapt the ar-
gument of Section 2, Part 11, in Ethier and Kurtz (1986).

Let Ỹr (u) = Yr(u) − u be the standard Poisson process centered at its expecta-
tion; we have

xN
C (t) = xN

C (0) + ∑
r∈RC

1

N
γ C
r Ỹr

(
N

∫ t

0
λ̃r (x

N
C (s)) ds

)

+ ∑
r∈S1

1

N
γ C
r Ỹr

(
N

∫ t

0
λ̃r (x

N
C (s),XN

D(s)) ds

)

+
∫ t

0
F(xN

C (s),XN
D(s)) ds

+ ∑
r∈RDC\S1

1

N
γ C
r Yr

(∫ t

0
λr(x

N
C (s),XN

D(s)) ds

)
.

Observe that

sup
u∈[0,A]

1

N
Ỹr(Nu) → 0 a.s.
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for any A ≥ 0. Since λr are bounded, it follows that, for all T > 0,

sup
t∈[0,T ]

∣∣∣∣
∑

r∈RC

1

N
γ C
r Ỹr

(
N

∫ t

0
λ̃r (x

N
C (s)) ds

)

+ ∑
r∈S1

1

N
γ C
r Ỹr

(
N

∫ t

0
λ̃r (x

N
C (s),XN

D(s)) ds

)∣∣∣∣
→ 0 a.s. when N → ∞.

Clearly,

sup
t∈[0,T ]

∣∣∣∣
∑

r∈RDC\S1

1

N
γ C
r Yr

(∫ t

0
λr(x

N
C (s),XN

D(s)) ds

)∣∣∣∣ → 0 a.s.

It follows that there exists a random constant KN going to zero such that, for
t, t1, t2 ∈ [0, T ], and ‖F‖∞ = supx∈R

MC ×N
MD |F(x)|,

|xN
C (t)| ≤ |xN

C (0)| + ‖F‖∞t + KN a.s.

and

|xN
C (t1) − xN

C (t2)| ≤ ‖F‖∞|t1 − t2| + 2KN a.s.

Tightness of (xN
C )N∈N in C(R+;R

MC) follows by classical criteria [see, e.g.,
Jacod and Shiryaev (1987), Chapter 6, Section 3b].

We conclude, from Jacod and Shiryaev (1987) (Chapter 6, Section 3b), that
{xN }N = {(xN

C ,XN
D)}N is tight in D(R+;E).

Step 2: Identification of limit points for bounded reaction rates. Let x = (xt )t≥0
be the canonical process on D(R+;E), and PN the law of (xN

t )t≥0 on this space,
for each N ∈ N.

We know that for each N ∈ N and ϕ ∈ E ,

ϕ(xt ) − ϕ(x0) −
∫ t

0
ÃNϕ(xs) ds

is a PN -martingale. Equivalently, for each n ∈ N, t1, . . . , tn ∈ [0, r], t ≥ r ≥ 0,
ψ ∈ (Cb(E))n and ϕ ∈ E ,

EPN

((
ϕ(xt ) − ϕ(x0) −

∫ t

0
ÃNϕ(xs) ds

)
ψ(xt1, . . . , xtn)

)

(6)

= EPN

((
ϕ(xr) − ϕ(x0) −

∫ r

0
ÃNϕ(xs) ds

)
ψ(xt1, . . . , xtn)

)
.

Let (PNk
)k be a subsequence which converges weakly to a measure P on

D(R+;E). We know that x is P -almost surely continuous at every t except for a
countable set DP and that for t1, . . . , tn outside DP , PNk

π−1
t1,...,tn

converges weakly
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to Pπ−1
t1,...,tn

where πt1,...,tn is the projection that carries the point x ∈ D(R+;E) to
the point (xt1, . . . , xtn) of R

n.
Therefore, it is easy, using the dominated convergence theorem and weak con-

vergence properties, to let k → ∞ in (6) and obtain for t , t1, . . . , tn, r outside DP :

EP

((
ϕ(xt ) − ϕ(x0) −

∫ t

0
A∞ϕ(xs) ds

)
ψ(xt1, . . . , xtn)

)

(7)

= EP

((
ϕ(xr) − ϕ(x0) −

∫ r

0
A∞ϕ(xs) ds

)
ψ(xt1, . . . , xtn)

)
.

If t ∈ DP , we choose a sequence (tk) outside DP such that tk → t with tk > t .
Then Pπ−1

tk
converges weakly to Pπ−1

t since x is P -a.s. right-continuous in t and
xtk converges almost surely to xt . Then, we use (7) with tk instead of t , let k → ∞
and deduce that (7) also holds for t ∈ DP . Similarly, we show that t1, . . . , tn, r may
be taken in DP .

This shows that the measure P is a solution of the martingale problem associ-
ated to the generator A∞ on the domain E .

Hypothesis 2.3 enables us to apply Theorem 2.5. The martingale problem has
then a unique solution. It follows that the limit P is equal to Px0 , the law of the
PDP, and that the whole sequence (PN)N converges weakly to Px0 .

Step 3: Conclusion. Now, we prove Theorem 3.1 with a truncation argument.
Let θ ∈ C∞(R+) such that{

θ(x) = 1, x ∈ [0,1],
θ(x) = 0, x ∈ [2,∞),

and, for k ≥ 1 and r ∈ R, define

θk(x) = θ

( |x|2
k2

)
, x ∈ E,

and

λk
r (x) = θk(x)λr(x).

Then, the problem with λk
r instead of λr fulfills Hypothesis 2.3. We define xN

k =
(xN

C,k,X
N
D,k) the jump Markov process associated to the jump intensities λk

r , start-
ing at xN(0). By the preceding result, we know that, for all k ∈ N, (xN

k )N∈N con-
verges weakly to the PDP xk in D(R+;E), whose characteristics are the jump
intensities λk

r , with corresponding transition measure, and vector fields (obvious
definitions as in Theorem 3.1).

Then, ((xN
k )k∈N)N∈N converges weakly to (xk)k∈N in D(R+;E)N.

By the Skorohod representation theorem [see Billingsley (1971), Theorem 3.3],
up to a change of probability space, we may assume that for all k ∈ N, (xN

k )N
converges a.s. to xk in D(R+;E).
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Let T > 0 and the stopping times

τ k = inf{t ∈ [0, T ], |xk(t)| ≥ k}
with τ k = T if {t ∈ [0, T ], |xk(t)| ≥ k} = ∅.

Then, for k, l ∈ N

xk(t) = xl(t), t ∈ [0, τ l ∧ τ k] a.s.

so that τ k is a.s. nondecreasing.
Moreover, if x (resp., xN ) are the PDP associated to A∞ (resp., the Markov

jump process associated to ÃN ), then

xk(t) = x(t), t ∈ [0, τ k) a.s.

and if

τ k
N = inf{t ∈ [0, T ], |xN

k (t)| ≥ k}
with τ k

N = T if {t ∈ [0, T ], |xN
k (t)| ≥ k} = ∅, then

xN
k (t) = xN(t), t ∈ [0, τ k

N) a.s.

Let δ > 0. Observing that if τ k−1 > T − δ and dT −δ(x
N
k , xk) < ε, where dT −δ

is the distance on D([0, T − δ];E), then, for enough small ε:

sup
t∈[0,T −δ]

|xN
k (t)| ≤ k a.s.,

then a.s., τ k
N ≥ T − δ and xN

k = xN in [0, T − δ]. Since τ k ≥ τ k−1 > T − δ, we
have also, a.s., xk = x in [0, T − δ] and

dT −δ(x
N, x) < ε.

We deduce that

∀δ > 0 P
(
dT −δ(x

N, x) ≥ ε
) ≤ P(τ k−1 ≤ T − δ) + P

(
dT −δ(x

N
k , xk) ≥ ε

)
.

Finally, we have

P(τ k−1 ≤ T − δ) = P

(
sup

t∈[0,τ k]
|xk(t)| ≥ k − 1

)
≤ P

(
sup

t∈[0,T −δ]
|x(t)| ≥ k − 1

)
.

By Hypothesis 2.1, the PDP x cannot explode in finite time. Thus for k large, this
term is small. Then for large N , the second is small. We deduce that xN converges
in probability to x in the new probability space. Returning in the original proba-
bility space, we obtain that xN converges in distribution to x. �

4. Piecewise deterministic process with jumps. In this section, we assume
that some of the reactions in a subset S2 of RDC are such that γ C

r is large and
scales with N . For the other reactions, we assume that γ C

r is still of order 1. We
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set γ̃ C
r = 1

N
γ C
r for r ∈ S2. The jump rates λr , r ∈ S2 are still assumed to be of

order 1. We define S = S1 ∪ S2.
The scaled generator has now the form

ÃNf (xC,XD)

= ∑
r∈RC

[
f

(
xC + 1

N
γ C
r ,XD

)
− f (xC,XD)

]
Nλ̃r(xC)

+ ∑
r∈S2

[f (xC + γ̃ C
r ,XD + γ D

r ) − f (xC,XD)]λr(xC,XD)

(8)

+ ∑
r∈S1

[
f

(
xC + 1

N
γ C
r ,XD

)
− f (xC,XD)

]
Nλ̃r(xC,XD)

+ ∑
r∈RDC\S

[
f

(
xC + 1

N
γ C
r ,XD + γ D

r

)
− f (xC,XD)

]
λr(xC,XD)

+ ∑
r∈RD

[f (xC,XD + γ D
r ) − f (xC,XD)]λr(XD).

For f ∈ C1
b(E), we may let N → ∞ and obtain the limit generator

Ã∞f (xc,XD) =
( ∑

r∈RC

λ̃r (xC)γ C
r + ∑

r∈S1

λ̃r (xC,XD)γ C
r

)
· ∇xC

f (xC,XD)

+ ∑
r∈S2

[f (xC + γ̃ C
r ,XD + γ D

r ) − f (xC,XD)]λr(xC,XD)

+ ∑
r∈RDC\S

[f (xC,XD + γ D
r ) − f (xC,XD)]λr(xC,XD)

+ ∑
r∈RD

[f (xC,XD + γ D
r ) − f (xC,XD)]λr(XD).

This formal argument indicates that if N → ∞, the process is a piecewise deter-
ministic process with jumps in both xC and XD . In fact, the proof of this can be
done easily thanks to the result of Section 3.

Indeed, let us introduce the following auxiliary system of reactions involving
the variable (x

1,N
C , x

2,N
C ,XN

D) ∈ R
MC × R

MC × N
MD :

• If r ∈ RC , (x
1,N
C , x

2,N
C ,XN

D) → (x
1,N
C + 1

N
γ r
C, x

2,N
C ,XN

D).

• If r ∈ S2, (x
1,N
C , x

2,N
C ,XN

D) → (x
1,N
C , x

2,N
C + γ̃ r

C,XN
D + γ r

D).

• If r ∈ RDC \ S2, (x
1,N
C , x

2,N
C ,XN

D) → (x
1,N
C + 1

N
γ r
C, x

2,N
C ,XN

D + γ r
D).

• If r ∈ RD , (x
1,N
C , x

2,N
C ,XN

D) → (x
1,N
C , x

2,N
C ,XN

D + γ r
D).

The rates of these reactions are λr(x
1,N
C , x

2,N
C ,XN

D) = λr(x
1,N
C + x

2,N
C ,XN

D).
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If we choose the initial data (xN
C (0),0,XN

D(0)), then this system and the original
system are equivalent. Indeed, we recover the value of the original system by the
relation

(xN
C ,XN

D) = (x
1,N
C + x

2,N
C ,XN

D).

Conversely, notice that xN
C is a sum of a pure jump part and of a continuous one so

that given (xN
C ,XN

D), (x
1,N
C , x

2,N
C ,XN

D) can be recovered by isolating from xN
C the

small jumps to obtain x
1,N
C and the jump of order 1 (from S2) to obtain x

2,N
C .

The auxiliary system corresponds to the following generator:

Aauxf (x1
C, x2

C,XD)

= ∑
r∈RC

[
f

(
x1
C + 1

N
γ C
r , x2

C,XD

)
− f (x1

C, x2
C,XD)

]
Nλ̃r(x

1
C + x2

C)

+ ∑
r∈S2

[f (x1
C, x2

C + γ̃ C
r ,XD + γ D

r ) − f (x1
C, x2

C,XD)]λr(x
1
C + x2

C,XD)

+ ∑
r∈S1

[
f

(
x1
C + 1

N
γ C
r , x2

C,XD

)
− f (x1

C, x2
C,XD)

]
Nλ̃r(x

1
C + x2

C,XD)(9)

+ ∑
r∈RDC\S

[
f

(
x1
C + 1

N
γ C
r , x2

C,XD + γ D
r

)
− f (x1

C, x2
C,XD)

]

× λr(x
1
C + x2

C,XD)

+ ∑
r∈RD

[f (x1
C, x2

C,XD + γ D
r ) − f (x1

C, x2
C,XD)]λr(XD).

This generator is of the form as in Section 3 but the discrete variable is now
(x2

C,XD). Using the results proved in this section, we thus obtain that this aux-
iliary system of reaction converges in distribution to the piecewise continuous de-
terministic process given by the generator

Aaux,∞f (x1
C, x2

C,XD)

=
( ∑

r∈RC

λ̃r (x
1
C + x2

C,XD)γ C
r + ∑

r∈S1

λ̃r (x
1
C + x2

C,XD)γ C
r

)

× ∇x1
C
f (x1

C, x2
C,XD)

+ ∑
r∈S2

[f (x1
C, x2

C + γ̃ C
r ,XD + γ D

r ) − f (x1
C, x2

C,XD)]λr(x
1
C + x2

C,XD)

+ ∑
r∈RDC\S

[f (x1
C, x2

C,XD + γ D
r ) − f (x1

C, x2
C,XD)]λr(x

1
C + x2

C,XD)

+ ∑
r∈RD

[f (x1
C, x2

C,XD + γ D
r ) − f (x1

C, x2
C,XD)]λr(XD).
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Going back to the original variables, that is, setting xC = x1
C + x2

C , we deduce that
the original system converges in distribution to the piecewise deterministic process
with generator Ã∞.

To obtain this convergence, we suppose that the jump intensities are C1-
differentiable with respect to the variable x1

C and that the limit PDP satisfies Hy-
pothesis 2.1.

5. Averaging. In this section, we examine the case when (4) is not satis-
fied by all the discrete variables. In this case, the previous results are not valid.
We introduce the decomposition XD = (X1

D,X2
D) ∈ N

MD,1 × N
MD,2 and γ D

r =
(γ D,1

r , γ D,2
r ) such that

γ D,1
r = 0, r ∈ S1.

This replaces (4). The continuous variable xC follows the same characteristics as
in Section 3.

In the set of the reactions S1, the discrete variable X2
D has fast motion, its jump

rates are of order N and its jumps are of order 1.
More precisely, for r ∈ S1, the state changes according to

(xC,X1
D,X2

D) →
(
xC + 1

N
γ C
r ,X1

D,X2
D + γ D,2

r

)

with the rate Nλ̃r(xC,X1
D,X2

D).
We now have the following generator for the process:

ÃNf (xC,X1
D,X2

D)

= ∑
r∈RC

[
f

(
xC + 1

N
γ C
r ,X1

D,X2
D

)
− f (xC,X1

D,X2
D)

]
Nλ̃r(xC)

+ ∑
r∈S1

[
f

(
xC + 1

N
γ C
r ,X1

D,X2
D + γ D,2

r

)
− f (xC,X1

D,X2
D)

]

× Nλ̃r(xC,X1
D,X2

D)

+ ∑
r∈RDC\S1

[
f

(
xC + 1

N
γ C
r ,X1

D + γ D,1
r ,X2

D + γ D,2
r

)
(10)

− f (xC,X1
D,X2

D)

]

× λr(xC,X1
D,X2

D)

+ ∑
r∈RD

[f (xC,X1
D + γ D,1

r ,X2
D + γ D,2

r ) − f (xC,X1
D,X2

D)]

× λr(X
1
D,X2

D).
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This new model combines slow and fast motions. This leads to double time scale
evolution which can be further simplified. Contrary to the previous sections, we
cannot take the formal limit of this generator. The idea is to average in fast discrete
variables X2

D , and focus on the slow variables (xC,X1
D), in order to obtain a much

simpler averaged generator.
To this aim, we introduce the following generator depending on (xC,X1

D):

AxC,X1
D
h(X2

D) = ∑
r∈S1

[h(X2
D + γ D,2

r ) − h(X2
D)]λ̃r (xC,X1

D,X2
D).

We assume that for all (xC,X1
D), the process associated to the generator AxC,X1

D

is ergodic with a unique invariant measure, denoted by νxC,X1
D

.
Then we define the averaged jump rates:

λ̄r (xC,X1
D) =

∫
N

MD,2
λ̃r (xC,X1

D,X2
D)νxC,X1

D
(dX2

D), r ∈ S1,

λ̄r (xC,X1
D) =

∫
N

MD,2
λr(xC,X1

D,X2
D)νxC,X1

D
(dX2

D), r ∈ RDC \ S1,(11)

λ̄r (xC,X1
D) =

∫
N

MD,2
λr(X

1
D,X2

D)νxC,X1
D
(dX2

D), r ∈ RD.

We present now the main result of this section.

THEOREM 5.1. Let xN = (xN
C ,XN

D,1,X
N
D,2) be a jump Markov process with

generator ÃN , starting at xN(0) = (xN
C (0),XN

D,1(0),XN
D,2(0)). Assume that:

• For all (xC,X1
D), the process associated to the generator AxC,X1

D
is ergodic

with a unique invariant measure.
• There exist K1 > 0 and K2 > 0 such that, for every s ∈ R

+, (xC,X1
D,X2

D) ∈
R

MC × N
MD,1 × N

MD,2 , and for every bounded function g satisfying the center-
ing condition ∫

N
MD,2

g(X2
D)νxC,X1

D
(dX2

D) = 0,(12)

we have

P
xC,X1

D
s g(X2

D) < K1e
−K2s‖g‖∞,

where (P
xC,X1

D
s )s is the semigroup associated to AxC,X1

D
.

• If g is a bounded function satisfying the centering condition (12), the Poisson
equation∑

r∈S1

[h(xC,X1
D,X2

D + γ D,2
r ) − h(xC,X1

D,X2
D)]λ̃r (xC,X1

D,X2
D) = g(X2

D)
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has a solution given by

h(xC,X1
D,X2

D) = −
∫ ∞

0
P

xC,X1
D

s g(X2
D)ds

and this solution is Lipschitz with respect to xC , uniformly in X1
D .

• The jump rates λ̃r , r ∈ RC ∩ S1, and λr , r ∈ RDC \ S1, and λ̄r , r ∈ RDC ∪ RD ,
are C1 with respect to xC .

• For every bounded B set of R
MC × N

MD,1 the functions λ̃r (·, ·,X2
D), r ∈

RC ∩ S1, and λr(·, ·,X2
D), r ∈ RDC \ S1, and λ̄r (·, ·,X2

D), r ∈ RDC ∪ RD ,
are bounded and Lipschitz with constants depending on B but not on X2

D .
• λ,Q and F satisfy Hypothesis 2.1.
• (xN

C (0),X
1,N
D (0)) converges in distribution to x0 in R

MC × N
MD,1 .

Define Px0 the law of the PDP starting at x0 = (xC,0,X
1
D,0) whose jump intensities

are

λ(xC,X1
D) = ∑

r∈(RDC\S1)∪RD

λ̄r (xC,X1
D)

with transition measure:∫
E

f (z)Q(dz;xC,X1
D)

= 1

λ(xC,X1
D)

∑
r∈(RDC\S1)∪RD

f (xC,X1
D + γ D,1

r )λ̄r (xC,X1
D)

and vectors fields:

FX1
D
(xC) = ∑

r∈RC

γ C
r λ̃r (xC) + ∑

r∈S1

γ C
r λ̄r (xC,X1

D).

Then (xN
C ,X

1,N
D ) converges in distribution in D(R+;R

MC ×N
MD,1) to the PDP

whose law is Px0 .

REMARK 5.2. The last two assumptions are similar to those made previously.
The first three assumptions guarantee that it is possible to average with respect to
the variable X2

D . The first two state that the dynamic associated to the generator
AxC,X1

D
is exponentially mixing, uniformly with respect to (xC,X1

D); the third one
then follows if AxC,X1

D
depends smoothly on xC .

PROOF OF THEOREM 5.1. The steps of the proof are similar to the proof of
Theorem 3.1. We begin by supposing that all the jump rates are bounded as well
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as their derivatives. This hypothesis will be removed at the end of the proof. We
take E = R

MC × N
MD,1 .

Step 1: Tightness. The proof of the tightness of the laws of (xN
C ,XN

D,1) is similar
to that in Section 3, and is left to the reader.

Step 2: Identification of limit points. Since we are interested in the evolution of
(xC,X1

D), it is natural to consider, for the generator ÃN , test functions f (xC,X1
D)

depending only on those variables. Unfortunately, some terms of order 1 depending
on the variable X2

D remain. To overcome this problem, we introduce “perturbed
test functions” [see Papanicolaou, Stroock and Varadhan (1976), Kushner (1994),
Fouque et al. (2007)]:

fN(xC,X1
D,X2

D) = f (xC,X1
D) + 1

N
f 1(xC,X1

D,X2
D)

with f ∈ E and f independent of X2
D . We temporarily need that f is also C2 with

bounded second derivatives with respect to xC . The function f 1 is chosen such
that the formal limit of ÃNfN(xC,X1

D,X2
D) does not depend on X2

D .
This can be done by taking f 1 such that

∑
r∈S1

[f 1(xC,X1
D,X2

D + γ D,2
r ) − f 1(xC,X1

D,X2
D)]λ̃r (xC,X1

D,X2
D)

(13)
= gxC,X1

D
(X2

D)

with

gxC,X1
D
(X2

D)

=
( ∑

r∈S1

γ C
r λ̄r (xC,X1

D) − γ C
r λ̃r (xC,X1

D,X2
D)

)
· ∇xC

f (xC,X1
D)

+ ∑
r∈RDC\S1

[f (xC,X1
D + γ D,1

r ) − f (xC,X1
D)]

(14)
× (

λ̄r (xC,X1
D) − λr(xC,X1

D,X2
D)

)
+ ∑

r∈RD

[f (xC,X1
D + γ D,1

r ) − f (xC,X1
D)]

× (
λ̄r (xC,X1

D) − λr(X
1
D,X2

D)
)
.

Since the jump rates are assumed to be bounded, gxC,X1
D

is clearly bounded. Also,
the function gxC,X1

D
is zero mean with respect to the invariant distribution, that is,

gxC,X1
D

satisfy (12).
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Then, the function f 1 satisfying (13) exists under our assumptions. Moreover,
it is not difficult to check that f 1 is Lipschitz with respect to xC , uniformly with
respect to X1

D .

Limiting infinitesimal generator. We now return to the analysis of the limiting
problem. We denote by Px,N the law of (xN

C ,XN
D,1,X

N
D,2); then

fN(xC(t),X1
D(t),X2

D(t)) − fN(xC(0),X1
D(0),X2

D(0))

−
∫ t

0
ÃNfN(xC(s),X1

D(s),X2
D(s)) ds

is a Px,N martingale. Equivalently, for each n ∈ N, t1, . . . , tn ∈ [0, r], t ≥ r ≥ 0,
ψ ∈ (Cb(E))n,

EPx,N

((
fN(xt ) − fN(x0) −

∫ t

0
ÃNfN(xs) ds

)
ψ(xt1, . . . , xtn)

)

(15)

= EPx,N

((
fN(xr) − fN(x0) −

∫ r

0
ÃNfN(xs) ds

)
ψ(xt1, . . . , xtn)

)
.

Let us now consider a subsequence (P̃x,Nk
)k of (P̃x,N )N , the laws of (xN

C ,
XN

D,1), which weakly converges to a measure P̃x on D(R+;R
MC × N

MD,1).
It is clear that fN converges to f , uniformly on E. Moreover, the continuity and

boundedness properties of f 1 ensure that ÃNfN converges on E toward Ã∞f ,
where

Ã∞f (xC,X1
D)

=
( ∑

r∈RC

γ C
r λ̃r (xC) + ∑

r∈S1

γ C
r λ̄r (xC,X1

D)

)
· ∇xC

f (xC,X1
D)(16)

+ ∑
r∈(RDC\S1)∪RD

[f (xC,X1
D + γ D,1

r ) − f (xC,X1
D)]λ̄r (xC,X1

D).

It is the generator of a PDP whose characteristics have been averaged in fast vari-
able X2

D .
Equation (15) gives, as Nk → ∞:

E
P̃x

((
f (xt ) − f (x0) −

∫ t

0
Ã∞f (xs) ds

)
ψ(xt1, . . . , xtn)

)

(17)

= E
P̃x

((
f (xr) − f (x0) −

∫ r

0
Ã∞f (xs) ds

)
ψ(xt1, . . . , xtn)

)
.

Recall that we have assumed that f is C2 with respect to xC . It is easy to prove
that (17) holds for any f ∈ E by choosing a sequence (fn) in E such that, for all n,
fn is C2 with bounded second derivatives and fn and ∇fn are uniformly bounded
and converge pointwise to f and ∇f .
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The measure P̃x is then a solution of the martingale problem associated to the
generator Ã∞ on the domain of the functions in E independent of X2

D .
By Theorem 2.5, the martingale problem has then a unique solution. We can

then deduce that (P̃x,N )N converges weakly to Px0 , the law of the PDP defined in
Theorem 5.1.

Step 3: Conclusion. Since the jump rates are assumed to be bounded and Lips-
chitz on bounded sets of E uniformly in X2

D , we can remove the more restrictive
boundedness assumption on the jump rates as in Section 3. We then conclude as in
Section 3. Theorem 5.1 is proved. �

6. Discontinuous PDP and singular switching. In this section, our system
has two time scales. The switching between fast and slow dynamics is governed
by the state of a discrete variable. For simplicity, we suppose now that there is no
other discrete variable and denote by θ , taking values in {0,1}, this unique discrete
variable which governs the time scale of the continuous variables.

The number of molecules belonging to species C is again assumed to be of
order N , and we continue to write xC = XC

N
.

Let us split RDC into two sets RDC = S1 ∪S0. Reactions in S1 have rates scaling
with N . They change XC (γ C

r �= 0) but do not change the value of θ . When θ = 0,
the rates of all reactions from RC ∪ S1 is of order N . When θ = 1, some reactions
from S1 (inactive for θ = 0) become active with much faster rates of order N

ε
,

where ε is a new parameter, assumed to be small. On the other hand, for the same
models, the reactions in S0 do not change XC (γ C

r = 0, r ∈ S0) but do change
the value of θ and have rates that can depend on XC (ensuring feedback control
of XC).

Then for r ∈ S1, we introduce the rescaled reaction rates

λ̃r (xC,0) = 1

N
λr(xC,0),

λ̃r (xC,1) = ε

N
λr(xC,1).

Similarly for r ∈ RC

λ̃r(xC) = 1

N
λr(xC).

For models in which the discrete variables take only two states, θ ∈ {0,1},
S0 contains two reactions. The rate of the reaction in S0 changing θ from state 1 to
state 0 is assumed to be of order 1

ε
and we also set

λ̃θ (xC,1) = ελθ (xC,1).

The rate of the opposite reaction changing θ from state 0 to state 1 is assumed to
be of order 1 and is written λθ(xC,0).
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In these conditions, the generator of the process has the following form:

ÃN,εf (xC,0)

= ∑
r∈S1

[
f

(
xC + 1

N
γ C
r ,0

)
− f (xC,0)

]
Nλ̃r(xC,0)

+ ∑
r∈RC

[
f

(
xC + 1

N
γ C
r ,0

)
− f (xC,0)

]
Nλ̃r(xC)

+ [f (xC,1) − f (xC,0)]λθ(xC,0)

and

ÃN,εf (xC,1)

= 1

ε

∑
r∈S1

[
f

(
xC + 1

N
γ C
r ,1

)
− f (xC,1)

]
Nλ̃r(xC,1)

+ ∑
r∈RC

[
f

(
xC + 1

N
γ C
r ,1

)
− f (xC,1)

]
Nλ̃r(xC)

+ 1

ε
[f (xC,0) − f (xC,1)]λ̃θ (xC,1).

At the limit (for high N and small ε), we will show that the discrete process θ

inducing kicks in the continuous variable xC is almost surely equal to 0. We are
interested in the limit distribution of the process xC .

We introduce the vector fields

F(xC) = ∑
r∈S1

γ C
r λ̃r (xC,0) + ∑

r∈RC

γ C
r λ̃r (xC),

F1(xC) = ∑
r∈S1

γ C
r λ̃r (xC,1),

and the flow φ1(t, xC) associated to F1.
We now state the main result of this section.

THEOREM 6.1. Let xN,ε = (x
N,ε
C , θN,ε) be a jump Markov process with

values in R
MC × {0,1}, with generator ÃN,ε , starting at xN,ε(0) = (x

N,ε
C (0),

θN,ε(0)). Assume that the following assumptions hold:

(i) x
N,ε
C (0) converges in distribution to xC(0) in R

MC as N → ∞ and ε → 0.
(ii) θN,ε(0) converges in distribution to 0 as N → ∞ and ε → 0.

(iii) There exists α > 0, such that

λ̃θ (xC,1) ≥ α ∀xC ∈ R
MC .

Assume also that either (iv) or (v) holds:
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(iv) The jump rates λ̃r (·), r ∈ RC , and λ̃r (·,0), λ̃r (·,1), r ∈ S1, have at most
linear growth and λθ(xC,0) is bounded: there exists M1 ≥ 0 such that, for xC ∈
R

MC ,

λ̃r (xC) ≤ M1(|xC | + 1), r ∈ RC,

λ̃r(xC,0) ≤ M1(|xC | + 1), r ∈ S1,

λ̃r (xC,1) ≤ M1(|xC | + 1), r ∈ S1,

and

λθ (xC,0) ≤ M1.

(v) The jump rates λ̃r (·), r ∈ RC , and λ̃r (·,0), r ∈ S1, λθ (xC,0) have at most
linear growth, and λ̃r (·,1), r ∈ S1, is bounded: there exists M2 ≥ 0 such that, for
xC ∈ R

MC ,

λ̃r (xC) ≤ M2(|xC | + 1), r ∈ RC,

λ̃r (xC,0) ≤ M2(|xC | + 1), r ∈ S1,

λθ (xC,0) ≤ M2(|xC | + 1)

and

λ̃r (xC,1) ≤ M2, r ∈ S1.

Then (x
N,ε
C ) converges in distribution in Lp([0, T ];R

MC), for any ∞ > p ≥ 1,
to the PDP whose generator is given by

Ã∞ϕ(xC) = F(xC) · ∇xC
ϕ(xC)

+ λθ(xC,0)

∫ ∞
0

(
ϕ(φ1(t, xC)) − ϕ(xC)

)
λ̃θ (φ1(t, xC),1)

× e− ∫ t
0 λ̃θ (φ1(s,xC),1) ds dt

for every ϕ ∈ C1
b(RMC).

REMARK 6.2. The PDP associated to the generator Ã∞ has discontinuities
which are not present for the process x

N,ε
C . They only appear at the limit ε → 0.

Therefore, the convergence does not occur in D(R+;R
MC); indeed creation of

discontinuities cannot occur in D(R+;R
MC). As shown below, it is possible to

show tightness, then weak convergence of the process x
N,ε
C in Lp([0, T ];R

MC).
Unfortunately, this topology does not imply a uniform bound on the processes and
we cannot get rid easily of the boundedness assumptions on the reaction rates as
was done in the preceding sections.

Therefore, we have to assume the extra assumption (iv) or (v). These are
technical. They are used at the end of the proof to obtain a bound on (xN

C ) in
L∞([0, T ];R

MC). The linear growth of the jump rate is verified for a large class
of models in molecular biology.
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The boundedness of λθ(xC,0) in (iv) is a restrictive assumption but it is sat-
isfied in the case that λθ(xC,0) does not depend on xC . This applies to systems
with negative feedback such as self-repressed gene promoters, for which only the
transition of θ from 1 to 0 is controlled by the protein repressor.

Also, the boundedness assumption of λ̃r (·,1) for r ∈ S1 in (v) is restrictive.
Such assumption is satisfied when λ̃r (·,1) do not depend on xC . Lifting the bound-
edness of λθ(xC,0) in (v) is necessary for systems with positive feedback, such as
self-induced gene promoters. In such cases, considering that λ̃r (·,1) do not depend
on xC stands for the rather usual situation when the concentration of the regula-
tor influences the transitions between various states of the promoter, but not the
production rates of these states.

Thus, in spite of the above restrictions, the results of this section cover a large
class of models [e.g., all the models analyzed in Crudu, Debussche and Radulescu
(2009)].

PROOF OF THEOREM 6.1. The proof is divided into four steps. Again, we start
with the extra assumption that all the jump rates are uniformly bounded together
with their derivatives with respect to xC . This assumption will be relaxed in step 5.

Step 1: Limit of θN,ε . We begin with the test-function

f (xC,0) = 0, f (xC,1) = 1 ∀xC ∈ R
MC .

Then, ÃN,εf (xC, θ) = λθ (xC,0)1θ=0 − 1
ε
λ̃θ (xC,1)1θ=1 and

M(t) = 1θN,ε(t)=1 − 1θN,ε(0)=1

−
∫ t

0

(
λθ (x

N,ε
C (s),0)1θN,ε(s)=0 − 1

ε
λ̃θ (x

N,ε
C (s),1)1θN,ε(s)=1

)
ds

is a martingale. We then deduce, for every T > 0 and t ∈ [0, T ],
α

ε
E

(∫ t

0
1θN,ε(s)=1 ds

)
≤ MλT + 1,(18)

where Mλ is the supremum bound of λθ (·,0). Then, θN,ε → 0 in L1(� ×
[0, T ]; {0,1}) when ε → 0 and N → ∞. In particular, (θN,ε)N,ε is tight in
L1([0, T ; {0,1}).

Step 2: Tightness of x
N,ε
C . For all t ∈ [0, T ], we write

x
N,ε
C (t) = x

N,ε
C (0) + ∑

r∈RC

γ C
r

N
Yr

(∫ t

0
Nλ̃r(x

N,ε
C (s)) ds

)

+ ∑
r∈S1

γ C
r

N
Yr

(∫ t

0
Nλ̃r(x

N,ε
C (s),0)1θN,ε(s)=0

+ N

ε
λ̃r(x

N,ε
C (s),1)1θN,ε(s)=1 ds

)
,
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where (Yr)r∈RC∪S1 are independent standard Poisson processes. Then

|xN,ε
C (t)| ≤ |xN,ε

C (0)| + ∑
r∈RC

|γ C
r |
N

Yr(NMT )

(19)

+ ∑
r∈S1

|γ C
r |
N

Yr

(
NM

(
T + 1

ε

∫ T

0
1θε,N (s)=1 ds

))
,

where M is the supremum bound of λ̃r , r ∈ RC ∪ S1. Since supt∈[0,T ] 1
N

Yr(Nt) is
almost surely bounded, using (18) and (19), we have for all K > 0, for N large
enough and ε small enough:

P

(
sup
[0,T ]

|xε,N
C (t)| ≥ K

)
≤ ε(K),

where ε(K) → 0 if K → ∞.
We introduce BV(0, T ) the space of functions of bounded variations on [0, T ],

with its norm defined for f ∈ BV(0, T ) by

‖f ‖BV(0,T ) = ‖f ‖L1([0,T ])

+ sup
{∑

i

|f (ti+1) − f (ti)|, (ti)i finite subdivision of [0, T ]
}
.

Since the processes Yr are nondecreasing, we obtain for a subdivision of [0, T ],
denoted by 0 = t0 < t1 < · · · < tn = T ,

n−1∑
i=0

|xε,N
C (ti+1) − x

ε,N
C (ti)|

≤
n−1∑
i=0

∑
r∈RC

|γ C
r |
N

[
Yr

(∫ ti+1

0
Nλ̃r(x

ε,N
C (s)) ds

)

− Yr

(∫ ti

0
Nλ̃r(x

ε,N
C (s),0) ds

)]

+
n−1∑
i=0

∑
r∈S1

|γ C
r |
N

[
Yr

(∫ ti+1

0
Nλ̃r(x

ε,N
C (s),0)1θε,N (s)=0

+ N

ε
λ̃r(x

ε,N
C (s),1)1θε,N (s)=1 ds

)

− Yr

(∫ ti

0
Nλ̃r(x

ε,N
C (s),0)1θε,N (s)=0

+ N

ε
λ̃r(x

ε,N
C (s),1)1θε,N (s)=1 ds

)]



CONVERGENCE OF STOCHASTIC GENE NETWORKS TO PDP 1847

= ∑
r∈RC

|γ C
r |
N

Yr

(∫ T

0
Nλ̃r(x

ε,N
C (s),0) ds

)

+ ∑
r∈S1

|γ C
r |
N

Yr

(∫ T

0
Nλ̃r(x

ε,N
C (s),0)1θε,N (s)=0

+ N

ε
λ̃r(x

ε,N
C (s),1)1θε,N (s)=1 ds

)
.

It is then easy to prove that for all K > 0, for N large enough and ε small
enough:

P
(‖xN,ε

C ‖BV(0,T ) ≥ K
) ≤ ε(K),

where ε(K) → 0 if K → ∞.
The set {f ∈ BV(0, T ), such that ‖f ‖BV(0,T ) ≤ K} is relatively compact in

L1([0, T ]) [see, e.g., Giusti (1984)], and the set{
f ∈ BV(0, T ), such that ‖f ‖∞ ≤ K and ‖f ‖BV(0,T ) ≤ K

}
is relatively compact in Lp([0, T ]) for 1 < p < ∞. We then conclude that the
family of processes (x

N,ε
C )N,ε is tight in Lp([0, T ]), 1 ≤ p < ∞.

Step 3: Identification of the limit distribution of x
N,ε
C . Since we are interested in

the limit distribution of x
N,ε
C , we introduce test-functions depending only on the

continuous variable xC ∈ R
MC . We then define

f (xC,0) = ϕ(xC), xC ∈ R
MC,

where ϕ ∈ C1
b(RMC).

We want to define f (·,1) such that
∑
r∈S1

[
f

(
xC + 1

N
γ C
r ,1

)
− f (xC,1)

]
Nλ̃r(xC,1) − λ̃θ (xC,1)f (xC,1)

+ ε
∑

r∈RC

[
f

(
xC + 1

N
γ C
r ,1

)
− f (xC,1)

]
Nλ̃r(xC)(20)

= −λ̃θ (xC,1)ϕ(xC).

Drawing inspiration from the preceding section, we introduce the process yN,ε(·,
x) starting from x, and whose generator is

AN,εψ(y) = ∑
r∈S1

[
ψ

(
y + 1

N
γ C
r

)
− ψ(y)

]
Nλ̃r(y,1)

+ ε
∑

r∈RC

[
ψ

(
y + 1

N
γ C
r

)
− ψ(y)

]
Nλ̃r(y).
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By a slight extension of a result of Kurtz (1971), we know that for all x ∈ R
MC ,

T > 0 and δ > 0,

P

(
sup
s≤T

|yN,ε(s, x) − φ1(s, x)| > δ
)

−−−−−−→
N→∞,ε→0

0.(21)

Remember that φ1(·, x) is the flow associated to the vector field F1(x) =∑
r∈RDC

γ C
r λ̃r (x,1) and starting at x.

We also introduce the semigroup (P
N,ε
t )t≥0 defined on Bb(R

MC) by

P
N,ε
t ψ(x) := E

(
ψ(yN,ε(t, x))e− ∫ t

0 λ̃θ (yN,ε(s,x),1) ds).
It is classical that (P

N,ε
t )t≥0 satisfies the semigroup property and that

d

dt
P

N,ε
t ψ(x) = AN,εP

N,ε
t ψ(x) − λ̃θ (x,1)P

N,ε
t ψ(x),

x ∈ R
MC,ψ ∈ C 1

b(RMC), t ∈ R
+.

Then we propose:

f (xC,1) :=
∫ ∞

0
P N,ε

s (λ̃θ (·,1)ϕ)(xC) ds.

Since λ̃θ (·,1) is bounded below by α > 0, f (·,1) is well defined. Moreover f (·,1)

satisfies (20). Indeed,

AN,εf (xC,1) − λ̃θ (xC,1)f (xC,1)

=
∫ ∞

0
AN,εP

N,ε
t (λ̃θ (·,1)ϕ)(xC) − λ̃θ (xC,1)P

N,ε
t (λ̃θ (·,1)ϕ)(xC) dt

=
∫ ∞

0

d

dt
P

N,ε
t (λ̃θ (·,1)ϕ)(xC) dt

= lim
t→∞P

N,ε
t (λ̃θ (·,1)ϕ)(xC) − (λ̃θ (·,1)ϕ)(xC)

= −(λ̃θ (·,1)ϕ)(xC).

This test-function f satisfies:

ÃN,εf (xC,1) = 0

and

ÃN,εf (xC,0) = ∑
r∈RDC

[
f

(
xC + 1

N
γ C
r ,0

)
− f (xC,0)

]
Nλ̃r(xC,0)

+
[∫ ∞

0
P

N,ε
t (λ̃θ (·,1)ϕ)(xC) dt − ϕ(xC)

]
λθ(xC,0).
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Since f ∈ Cb(E), f is in the domain of ÃN,ε , for all N,ε. Then, for all 0 ≤
t1, . . . , t� ≤ t and ψ ∈ Cb(R

MC×�)

E

([
f (x

N,ε
C (t), θN,ε(t)) − f (x

N,ε
C (0), θN,ε(0))

−
∫ t

0
ÃN,εf (x

N,ε
C (s),0)1θN,ε(s)=0 ds

]
ψ(x

N,ε
C (t1), . . . , x

N,ε
C (t�))

)
(22)

= 0.

We now are looking for a possible formulation for the limiting generator. For
all x ∈ R

MC and uniformly in t ∈ [0, T ], for all T > 0, we have

P
N,ε
t (λ̃θ (·,1)ϕ)(x) −−−−−−→

N→∞,ε→0
(λ̃θ (·,1)ϕ)(φ1(t, x))e− ∫ t

0 λ̃θ (φ1(s,x),1) ds .

Indeed,

P
N,ε
t (λ̃θ (·,1)ϕ)(x) − (λ̃θ (·,1)ϕ)(φ1(t, x))e− ∫ t

0 λ̃θ (φ1(s,x),1) ds

= E
(
(λ̃θ (·,1)ϕ)(yN,ε(t, x))e− ∫ t

0 λ̃θ (yN,ε(s,x),1) ds

− (λ̃θ (·,1)ϕ)(φ1(t, x))e− ∫ t
0 λ̃θ (yN,ε(s,x),1) ds)

+ E
(
(λ̃θ (·,1)ϕ)(φ1(t, x))e− ∫ t

0 λ̃θ (yN,ε(s,x),1) ds

− (λ̃θ (·,1)ϕ)(φ1(t, x))e− ∫ t
0 λ̃θ (φ1(s,x),1) ds)

= a + b

and it can be shown that for all δ > 0, and t ≤ T ,

|a| ≤ δLλ̃θ (·,1)ϕ + 2‖λ̃θ (·,1)ϕ‖∞P

(
sup
s≤T

|yN,ε(s, x) − φ1(s, x)| > δ
)

and

|b| ≤ ‖λ̃θ (·,1)ϕ‖∞
(
T δLλ̃θ (·,1) + 2P

(
sup
s≤T

|yN,ε(s, x) − φ1(s, x)| > δ
))

,

where Lλ̃θ (·,1)ϕ and Lλ̃θ (·,1) are the Lipschitz constants of the functions λ̃θ (·,1)ϕ

and λ̃θ (·,1).
By (21) and the dominated convergence theorem, we deduce that

ÃN,εf (xC,0) −−−−−−→
N→∞,ε→0

Ã∞ϕ(xC).

The tightness in Lp([0, T ]) × L1([0, T ]; {0,1}) of the family of processes
(x

N,ε
C , θN,ε)N,ε , and the Skorohod representation theorem imply the existence of

a subsequence which converges almost surely in Lp([0, T ]) × L1([0, T ]; {0,1})
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to (xC,0) ∈ Lp([0, T ])×L1([0, T ]; {0,1}). This almost sure convergence implies
that a new subsequence can be extracted such that

(x
Nk,εk

C (t), θNk,εk ) −−−→
k→∞ (xC(t),0)

almost surely, and for almost all t ∈ [0, T ]. To simplify notation, this subsequence
is still denoted by x

N,ε
C .

Taking N → ∞ and ε → 0 in (22), we deduce by the dominated convergence
theorem, the boundedness of f and ψ , and the hypothesis on x

N,ε
C (0) and θN,ε(0):

E
([f (x

N,ε
C (t), θN,ε(t)) − f (x

N,ε
C (0), θN,ε(0))]ψ(x

N,ε
C (t1), . . . , x

N,ε
C (t�))

)
−−−−−−→
N→∞,ε→0

E
([ϕ(xC(t)) − ϕ(xC(0))]ψ(xC(t1), . . . , xC(t�))

)

for almost all t ∈ [0, T ] and almost all 0 ≤ t1, . . . , tl ≤ t . We now prove that

ÃN,εf (x
N,ε
C (s),0)1θN,ε(s)=0 −−−−−−→

N→∞,ε→0
Ã∞ϕ(xC(s))(23)

almost surely, and for almost all s ∈ [0, T ].
First, for s ∈ [0, T ], t ∈ R

+, we write

P
N,ε
t (λ̃θ (·,1)ϕ)(x

N,ε
C (s)) − (λ̃θ (·,1)ϕ)(φ1(t, xC(s)))e− ∫ t

0 λ̃θ (φ1(u,xC(s)),1) du

= E
[
(λ̃θ (·,1)ϕ)(yN,ε(t, x

N,ε
C (s)))e− ∫ t

0 λ̃θ (yN,ε(u,x
N,ε
C (s)),1) du]

− E
[
(λ̃θ (·,1)ϕ)(φ1(t, xC(s)))e− ∫ t

0 λ̃θ (yN,ε(u,x
N,ε
C (s)),1) du]

+ E
[
(λ̃θ (·,1)ϕ)(φ1(t, xC(s)))e− ∫ t

0 λ̃θ (yN,ε(u,x
N,ε
C (s)),1) du]

− (λ̃θ (·,1)ϕ)(φ1(t, xC(s)))e− ∫ t
0 λ̃θ (φ1(u,xC(s)),1) du

= a1 + b1.

For all δ > 0, T1 > 0, and 0 ≤ t ≤ T1,

|a1| ≤ δLλ̃θ (·,1)ϕ

+ 2‖λ̃θ (·,1)ϕ‖∞P

(
sup
u≤T1

|yN,ε(u, x
N,ε
C (s)) − φ1(u, xC(s))| > δ

)
,

and if t ≥ T1,

|a1| ≤ 2‖λ̃θ (·,1)ϕ‖∞e−αT1 .

Similarly, for 0 ≤ t ≤ T1,

|b1| ≤ ‖λ̃θ (·,1)ϕ‖∞

×
(
T1δLλ̃θ (·,1) + 2P

(
sup
u≤T1

|yN,ε(s, x
N,ε
C (s)) − φ1(s, xC(s))| > δ

))
,
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and if t ≥ T1,

|b1| ≤ 2‖λ̃θ (·,1)ϕ‖∞e−αT1 .

We choose T1 sufficiently large and then δ small enough and have almost surely,
for all s ∈ [0, T ], t ∈ R

+:

P
N,ε
t (λ̃θ (·,1)ϕ)(x

N,ε
C (s)) − (λ̃θ (·,1)ϕ)(φ1(t, xC(s)))e− ∫ t

0 λ̃θ (φ1(u,xC(s)),1) du

−−−−−−→
N→∞,ε→0

0.

By the dominated convergence theorem, we have almost surely, for almost all s ∈
[0, T ],

∫ ∞
0

P N
t (λ̃θ (·,1)ϕ)(x

N,ε
C (s)) dt

−−−−−−→
N→∞,ε→0

∫ ∞
0

(λ̃θ (·,1)ϕ)(φ1(t, xC(s)))e− ∫ t
0 λ̃θ (φ1(u,xC(s)),1) du dt.

Since ϕ ∈ C1
b(RMC), we obtain (23).

By the dominated convergence theorem, we conclude finally that

E

([
ϕ(xC(t)) − ϕ(xC(0)) −

∫ t

0
Ã∞ϕ(xC(s)) ds

]
ψ(xC(t1), . . . , xC(t�))

)
= 0

for almost all t, t1, . . . , tl such that t ∈ [0, T ] and 0 ≤ t1 · · · tl ≤ t .

Step 4: Uniqueness of the solution of the martingale problem. By Theorem 2.5,
proved in a weaker sense in the Appendix, we conclude that the limit xC , more
exactly a version of xC , is the PDP whose generator is given by Ã∞.

Step 5: Conclusion. We now relax the assumptions on the boundedness of the
jump rates and their derivatives. Without loss of generality, we assume that x

N,ε
C (0)

are deterministic. We derive an estimate on the supremum of |xN,ε
C (t)| on [0, T ]

for T > 0.
We first assume that (iv) holds. We again write that

M(t) = 1θN,ε(t)=1 − 1θN,ε(0)=1 −
∫ t

0
λθ(x

N,ε
C (s),0)1θN,ε(s)=0

− 1

ε
λ̃θ (x

N,ε
C (s),1)1θN,ε(s)=1 ds

is a martingale. We have as in step 1:

α

ε
E

(∫ T

0
1θN,ε(s)=1 ds

)
≤ 1 + M1T .(24)
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For all t ∈ [0, T ], we write using the same notations as above:

x
N,ε
C (t) = x

N,ε
C (0) + ∑

r∈RC

γ C
r

N
Yr

(∫ t

0
Nλ̃r(x

N,ε
C (s)) ds

)

+ ∑
r∈S1

γ C
r

N
Yr

(∫ t

0
Nλ̃r(x

N,ε
C (s),0)1θN,ε(s)=0

+ N

ε
λ̃r(x

N,ε
C (s),1)1θN,ε(s)=1 ds

)
,

where (Yr)r∈RDC
are independent standard Poisson processes, and thanks to the

linear growth assumptions on the jump rates

|xN,ε
C (t)| ≤ |xN,ε

C (0)| + ∑
r∈RC

|γ C
r |
N

Yr

(
NM1

∫ t

0

(|xN,ε
C (s)| + 1

)
ds

)

+ ∑
r∈S1

|γ C
r |
N

Yr

(
NM1

∫ t

0

(|xN,ε
C (s)| + 1

)
ds

+ M1
N

ε

∫ t

0

(|xN,ε
C (s)| + 1

)
1θN,ε(s)=1 ds

)
.

By the law of large numbers Yr (t)
t

are almost surely convergent to 1. They are
therefore almost surely bounded on [1,∞). We deduce that there exists a random
C1 such that

|xN,ε
C (t)| ≤ |xN,ε

C (0)|

+ C1

(∫ t

0

(|xN,ε
C (s)| + 1

)
ds + 1

ε

∫ t

0

(|xN,ε
C (s)| + 1

)
1θN,ε(s)=1 ds

)
.

Then by the Gronwall lemma:

sup
t∈[0,T ]

|xN,ε
C (t)| ≤ exp

(
C1

∫ T

0

(
1 + 1

ε
1θN,ε(s)=1

)
ds

)(|xN,ε
C (0)| + 1

)
.

Since |xN,ε
C (0)| is bounded with respect to N and ε, by Markov inequality and (24),

we deduce easily

P

(
sup

t∈[0,T ]
|xN,ε

C (t)| ≥ K
)

→ 0

as K → ∞ uniformly in N and ε.
It is now easy to use a truncation argument similar to—and in fact easier than—

the one used in step 3 of the proof of Theorem 3.1 to conclude.
Assume now that (v) holds. Inequality (24) is no more valid; instead we have

α

ε
E

(∫ T

0
1θN,ε(s)=1 ds

)
≤ 1 + M2

∫ t

0

(
E(|xN,ε

C (s)|) + 1
)
ds.(25)
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We use the test function f (xC,0) = f (xC,1) = |xC | in the generator and de-
duce that

M̃(t) = |xN,ε
C (t)| − |xN,ε

C (0)|

−
∫ t

0

∑
r∈S1

(∣∣∣∣xN,ε
C (s) + γ C

r

N

∣∣∣∣ − |xN,ε
C (s)|

)
Nλ̃r(x

N,ε
C ,0)1θN,ε(s)=0 ds

+
∫ t

0

1

ε

∑
r∈S1

(∣∣∣∣xN,ε
C (s) + γ C

r

N

∣∣∣∣ − |xN,ε
C (s)|

)
Nλ̃r(x

N,ε
C ,1)1θN,ε(s)=1 ds

+
∫ t

0

∑
r∈RC

(∣∣∣∣xN,ε
C (s) + γ C

r

N

∣∣∣∣ − |xN,ε
C (s)|

)
Nλ̃r(x

N,ε
C ) ds

is a martingale. By the triangle inequality and the assumptions on the jump rates,
we get

E(|xN,ε
C (t)|) ≤ E(|xN,ε

C (0)|) + M2

∫ t

0

∑
r∈RC∪S1

|γ C
r |(E(|xN,ε

C (s)|) + 1
)
ds

+ M2

ε

∑
r∈S1

|γ C
r |E

(∫ t

0
1θN,ε(s)=1 ds

)
.

Then, using (25),

E(|xN,ε
C (t)|) ≤ E(|xN,ε

C (0)|) + M3 + M4

∫ t

0
E(|xN,ε

C (s)|) ds

for t ∈ [0, T ] and with some constants M3,M4 which could be written explicitly
in terms of γ C

r , α, M2 and T . By the Gronwall lemma, we obtain

E(|xN,ε
C (t)|) ≤ eM4T

(
E(|xN,ε

C (0)|) + M3
)
.

Inserting this in (25), we have obtained a similar bound as (24) was allowed to
conclude with in the case when (iv) was the assumption. We thus can conclude
similarly. �

APPENDIX: PROOF OF THEOREM 2.5

Let x = (xt )t≥0 denote the canonical process on D(R+;E). Recall that we say
that a probability measure P on D(R+;E) is solution of the martingale problem
associated to the generator A if, for all f ∈ E ,

f (xt ) − f (x0) −
∫ t

0
Af (xs) ds

is a P -martingale.
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Let (Pt )t≥0, Px and Ā denote the semigroup, the probability measure and the
infinitesimal generator associated to the PDP whose characteristics are F , λ, Q,
and starting from x ∈ E.

We need the following:

PROPOSITION A.1. Assume that Hypothesis 2.3 holds; then, for all t ∈ R
+,

f ∈ E , Ptf is also in E and

‖Ptf ‖∞ ≤ ‖f ‖∞,(26)

|Ptf (y1, ν) − Ptf (y2, ν)| ≤ c‖f ‖E eKt |y1 − y2|, y1, y2 ∈ R
n, ν ∈ N

d,(27)

for some constants c and K depending only on the characteristics of the PDP.

PROOF. Equation (26) is clear. Let us define, for f ∈ E and ψ ∈ Bb(R
+ ×E):

Gf ψ(t, x) = Ex

(
f (xt )1t<T1 + ψ(t − T1, xT1)1t≥T1

)
= f (φν(t, y), ν)H(t, x)

+
∫ t

0

∫
E

ψ(t − s, z)Q(dz;φν(s, y), ν)λ(φν(s, y), ν)H(s, x) ds

for (t, x) ∈ R
+ × E, with x = (y, ν). Then, according to Lemma 27.3 of Davis

(1993),

Gn
f ψ(t, x) = Ex

(
f (xt )1t<Tn + ψ(t − Tn, xTn)1t≥Tn

)
and

lim
n→∞Gn

f ψ(t, x) = Ptf (x).

We then deduce by dominated convergence and the strong Markov property:

Ptf (x) = f (φν(t, y), ν)H(t, x)
(28)

+
∫ t

0

∫
E

Pt−sf (z)Q(dz;φν(s, y), ν)λ(φν(s, y), ν)H(s, x) ds.

That is, P·f : t �→ Ptf is a fixed point of Gf .
For T > 0, we introduce the Banach space ET = L∞([0, T ], E ), with the norm

‖ψ‖ET
= sup

t∈[0,T ]
e−αt (‖ψ(t, ·)‖∞ + Lψ(t,·)

)
,

where α will be fixed hereafter.
For t ∈ [0, T ], (y, ν) ∈ E, we set qt (y, ν) = f (φν(t, y), ν)H(t, y, ν). Then

q : t �→ qt is in ET . Indeed,

|H(t, y, ν)| ≤ 1, (y, ν) ∈ E, t ∈ [0, T ].
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Also, from the Gronwall lemma, we have that φν is differentiable with respect to
y and

|Dyφν(t, y)| ≤ eLF t , (y, ν) ∈ E, t ∈ [0, T ].
Then we have, for (y, ν) ∈ E, t ∈ [0, T ],

|DyH(t, y, ν)| ≤
∫ t

0
|Dy{λ(φν(s, y), ν)}|ds ≤ Lλ

∫ t

0
|Dyφν(s, y)|ds

≤ Lλ

LF

(eLF t − 1).

Hence if α > LF ,

‖q‖ET
≤

(
Lf + Lλ

LF

‖f ‖∞
)

+ ‖f ‖∞.

If ψ ∈ ET , we then easily show that Gf ψ ∈ ET . Moreover, if ψ1,ψ2 ∈ ET , we have

‖Gf ψ1(t, ·) − Gf ψ2(t, ·)‖∞ ≤ Mλ

∫ t

0
‖ψ1(t − s, ·) − ψ2(t − s, ·)‖∞ ds.(29)

Also, it is easy to see that

‖DyGf ψ1(t, ·) − DyGf ψ2(t, ·)‖∞ ≤ κ

∫ t

0
eLF s‖ψ1(t − s, ·) − ψ2(t − s, ·)‖E ds,

where κ is a constant depending only on the characteristics of the PDP.
Then we easily deduce that

‖Gf ψ1 − Gf ψ2‖ET

≤ κ1 sup
t∈[0,T ]

e−αt

(∫ t

0
eα(t−s) ds +

∫ t

0
eα(t−s)eLF s ds

)
‖ψ1 − ψ2‖ET

≤ κ1

(
1

α
+ 1

α − LF

)
‖ψ1 − ψ2‖ET

,

where κ1 is a constant depending only on the characteristics of the PDP. We now
choose α sufficiently large and deduce from the Picard theorem that Gf has a
unique fixed point in ET . This fixed point is the limit Gn

f ψ for any ψ ∈ ET . Thus
P·f : t �→ Ptf is that fixed point, and is then in ET .

The Lipschitz constant LPtf of Ptf can easily be found with the preceding
results and the Gronwall lemma. �

The infinitesimal generator Ā of Pt is characterized by [cf., e.g., Ethier and
Kurtz (1986), Part 1, Section 2]:

(μ − Ā)−1f =
∫ ∞

0
e−μtPtf dt, μ > 0, f ∈ Cb(E).(30)
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Let f ∈ E , μ > K and ϕ = (μ − Ā)−1f ; then ϕ ∈ D(Ā) and

Ptϕ(x) − ϕ(x)

t
−−−→

t→0
Āϕ(x), x ∈ E.

By Proposition A.1, it is easy to see that if Hypothesis 2.3 is satisfied, (μ− Ā)−1

maps E into itself if μ > K . In particular, ϕ ∈ E and for all x ∈ E:

ϕ(xt ) − ϕ(x) −
∫ t

0
Aϕ(xs) ds(31)

is a Px -martingale.
It follows that, for all x ∈ E, and t ∈ R

+,

Ptϕ(x) − ϕ(x)

t
= 1

t

∫ t

0
Ex(Aϕ(xs)) ds.

Since Aϕ(xs) is Px-a.s. bounded and continuous on [0, T1[, we deduce that

Ptϕ(x) − ϕ(x)

t
−−−→

t→0
Aϕ(x), x ∈ E.

It follows that

Aϕ(x) = Āϕ(x), x ∈ E.

REMARK A.2. In fact, we do not need that (31) defines a Px -martingale. This
can be weakened and replaced by the following:

For all x ∈ E, ϕ ∈ E and for t ∈ T, where T is a dense subset of R
+:

Ptϕ(x) − ϕ(x) =
∫ t

0
Ex(Aϕ(xs)) ds.(32)

In that case, we can define a sequence (tn)n such that tn ∈ T for all n and tn → 0
as n → ∞. Taking n → ∞ in the equality

Ptnϕ(x) − ϕ(x)

tn
= 1

tn

∫ tn

0
Ex(Aϕ(xs)) ds,

we obtain, since Aϕ(xs) is Px -a.s. bounded and continuous on [0, T1[,
Āϕ(x) = Aϕ(x), x ∈ E.

We now use a classical argument [see, e.g., Ethier and Kurtz (1986), Part 4,
Section 4]. Let P̃x be another solution of the martingale problem. By the same
reasoning as before, let f ∈ E , μ > K and ϕ = (μ − Ā)−1f ; then

ϕ(xt ) − ϕ(x) −
∫ t

0
Aϕ(xs) ds

is a P̃x -martingale.
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Let us write

Ẽx

(
ϕ(xt ) −

∫ t

0
Aϕ(xs) ds

)
= ϕ(x).

Multiply this identity by μe−μt and integrate on [0,∞) to obtain

Ẽx

(∫ ∞
0

e−μt (μϕ(xt ) − Aϕ(xt )
)
dt

)
= ϕ(x).

Since Āϕ = Aϕ, we deduce, from (30),

Ẽx

(∫ ∞
0

e−μtf (xt ) dt

)
= ϕ(x) =

∫ ∞
0

e−μtPtf (x) dt, μ > K.

By injectivity of the Laplace transform, this implies

Ẽx(f (xt )) = Ptf (x) for almost all t ≥ 0, for all x ∈ E.

We have proved that the law of a solution of the martingale problem at a fixed
time t in a dense set of R

+ is uniquely determined. This implies uniqueness for
the martingale problem [see Billingsley (1999), Section 14].

REMARK A.3. Again, the hypothesis that P̃x is a solution of the martingale
problem can be weakened and replaced by the following:

Ẽx

(
ϕ(xt ) − ϕ(x) −

∫ t

0
Aϕ(xs) ds

)
= 0

for x ∈ E and almost all t ∈ R
+. The previous calculations are similar, since the

Lebesgue integral is null over a negligible set.

REFERENCES

ALFONSI, A., CANCÈS, E., TURINICI, G., DI VENTURA, B. and HUISINGA, W. (2004). Exact
simulation of hybrid stochastic and deterministic models for biochemical systems. Research Re-
port RR-5435, INRIA.

ALFONSI, A., CANCÈS, E., TURINICI, G., DI VENTURA, B. and HUISINGA, W. (2005). Adaptive
simulation of hybrid stochastic and deterministic models for biochemical systems. In CEMRACS
2004—Mathematics and Applications to Biology and Medicine. ESAIM Proceedings 14 1–13
(electronic). EDP Sci., Les Ulis. MR2226797

BALL, K., KURTZ, T. G., POPOVIC, L. and REMPALA, G. (2006). Asymptotic analysis of multi-
scale approximations to reaction networks. Ann. Appl. Probab. 16 1925–1961. MR2288709

BARKAI, N. and LEIBLER, S. (2000). Biological rhythms: Circadian clocks limited by noise. Nature
403 267–268.

BILLINGSLEY, P. (1971). Weak Convergence of Measures: Applications in Probability. Confer-
ence Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics
5. SIAM, Philadelphia, PA. MR0310933

BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
MR1700749

BOXMA, O., KASPI, H., KELLA, O. and PERRY, D. (2005). On/off storage systems with state-
dependent input, output, and switching rates. Probab. Engrg. Inform. Sci. 19 1–14. MR2104547

http://www.ams.org/mathscinet-getitem?mr=2226797
http://www.ams.org/mathscinet-getitem?mr=2288709
http://www.ams.org/mathscinet-getitem?mr=0310933
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=2104547


1858 CRUDU, DEBUSSCHE, MULLER AND RADULESCU

BUJORIANU, M. and LYGEROS, J. (2004). General stochastic hybrid systems: Modelling and opti-
mal control. In Proc. 43th Conference in Decision and Control. IEEE Press, New York.

CAI, L., FRIEDMAN, N. and XIE, X. S. (2006). Stochastic protein expression in individual cells at
the single molecule level. Nature 440 358–362.

CRUDU, A., DEBUSSCHE, A. and RADULESCU, O. (2009). Hybrid stochastic simplifications for
multiscale gene networks. BMC Syst. Biol. 3 89.

DAVIS, M. H. A. (1993). Markov Models and Optimization. Monographs on Statistics and Applied
Probability 49. Chapman & Hall, London. MR1283589

DELBRÜCK, M. (1940). Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8 120–124.
ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes. Characterization and Convergence.

Wiley, New York. MR0838085
FOUQUE, J.-P., GARNIER, J., PAPANICOLAOU, G. and SØLNA, K. (2007). Wave Propagation and

Time Reversal in Randomly Layered Media. Stochastic Modelling and Applied Probability 56.
Springer, New York. MR2327824

GHOSH, M. K. and BAGCHI, A. (2005). Modeling stochastic hybrid systems. In System Modeling
and Optimization. IFIP 166 269–280. Kluwer Academic, Boston, MA. MR2155316

GILLESPIE, D. T. (1976). A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. J. Comput. Phys. 22 403–434. MR0503370

GIUSTI, E. (1984). Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathe-
matics 80. Birkhäuser, Basel. MR0775682

HASELTINE, E. L. and RAWLINGS, J. B. (2002). Approximate simulation of coupled fast and slow
reactions for stochastic chemical kinetics. J. Chem. Phys. 117 6959–6969.

JACOD, J. and SHIRYAEV, A. N. (1987). Limit Theorems for Stochastic Processes. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288.
Springer, Berlin. MR0959133

KAERN, M., ELSTON, T. C., BLAKE, W. J. and COLLINS, J. J. (2005). Stochasticity in gene ex-
pression: From theories to phenotypes. Nat. Rev. Genet. 6 451–464.

KAUFMANN, B. and VAN OUDENAARDEN, A. (2007). Stochastic gene expression: From single
molecules to the proteome. Current Opinion in Genetics and Development 17 107–112.

KAUFMANN, B. B., YANG, Q., METTETAL, J. T. and VAN OUDENAARDEN, A. (2007). Heritable
stochastic switching revealed by single-cell genealogy. Plos Biol. 5 1973–1980.

KEPLER, T. B. and ELSTON, T. C. (2001). Stochasticity in transcriptional regulation: Origins, con-
sequences, and mathematical representations. Biophys. J. 81 3116–3136.

KIERZEK, A. M., ZAIM, J. and ZIELENKIEWICZ, P. (2001). The effect of transcription and trans-
lation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J. Biol.
Chem. 276 8165–8172.

KRISHNA, S., BANERJEE, B., RAMAKRISHNAN, T. and SHIVASHANKAR, G. (2005). Stochastic
simulations of the origins and implications of long-tailed distributions in gene expression. PNAS
102 4771–4776.

KURTZ, T. G. (1971). Limit theorems for sequences of jump Markov processes approximating ordi-
nary differential processes. J. Appl. Probab. 8 344–356. MR0287609

KURTZ, T. G. (1978). Strong approximation theorems for density dependent Markov chains.
Stochastic Process. Appl. 6 223–240. MR0464414

KUSHNER, H. (1994). Approximation and Weak Convergence Methods for Random Processes. MIT
Press, Cambridge.

PAPANICOLAOU, G. C., STROOCK, D. and VARADHAN, S. R. S. (1976). Martingale approach to
some limit theorems. In Statistical Mechanics and Dynamical Systems. Duke Turbulence Conf.,
Duke Univ. Math. Series III 1–120. Duke Univ. Press, Durham, NC.

PAULSSON, J. (2004). Summing up the noise in gene networks. Nature 427 415–418.

http://www.ams.org/mathscinet-getitem?mr=1283589
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=2327824
http://www.ams.org/mathscinet-getitem?mr=2155316
http://www.ams.org/mathscinet-getitem?mr=0503370
http://www.ams.org/mathscinet-getitem?mr=0775682
http://www.ams.org/mathscinet-getitem?mr=0959133
http://www.ams.org/mathscinet-getitem?mr=0287609
http://www.ams.org/mathscinet-getitem?mr=0464414


CONVERGENCE OF STOCHASTIC GENE NETWORKS TO PDP 1859

RADULESCU, O., MULLER, A. and CRUDU, A. (2007). Théorèmes limites pour des processus de
Markov à sauts. synthèse des resultats et applications en biologie moleculaire. Tech. Sci. Inform.
26 443–469.
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