The Annals of Applied Probability

2012, Vol. 22, No. 4, 1650-1692

DOI: 10.1214/11-AAP808

© Institute of Mathematical Statistics, 2012

EXISTENCE OF RANDOM GRADIENT STATES'

BY CODINA COTAR AND CHRISTOF KULSKE
The Fields Institute and Ruhr-University of Bochum

We consider two versions of random gradient models. In model A the in-
terface feels a bulk term of random fields while in model B the disorder enters
through the potential acting on the gradients. It is well known that for gradi-
ent models without disorder there are no Gibbs measures in infinite-volume
in dimension d = 2, while there are “gradient Gibbs measures” describing an
infinite-volume distribution for the gradients of the field, as was shown by
Funaki and Spohn. Van Enter and Kiilske proved that adding a disorder term
as in model A prohibits the existence of such gradient Gibbs measures for
general interaction potentials in d = 2.

In the present paper we prove the existence of shift-covariant gradient
Gibbs measures with a given tilt u € R4 for model A when d > 3 and the
disorder has mean zero, and for model B when d > 1. When the disorder
has nonzero mean in model A, there are no shift-covariant gradient Gibbs
measures for d > 3. We also prove similar results of existence/nonexistence
of the surface tension for the two models and give the characteristic properties
of the respective surface tensions.

1. Introduction.

1.1. The setup. Phase separation in R?*! can be described by effective inter-
face models for the study of phase boundaries at a mesoscopic level in statistical
mechanics. Interfaces are sharp boundaries which separate the different regions of
space occupied by different phases. In this class of models, the interface is mod-
eled as the graph of a random function from Z¢ to Z or to R (discrete or continuous
effective interface models). For background and earlier results on continuous and
discrete interface models without disorder, see, for example, [7-9, 12, 14, 16, 18]
and references therein. In our setting, we will consider the case of continuous in-
terfaces with disorder as introduced and studied previously in [29] and [21]. Note
also that discrete interface models in the presence of disorder have been studied,
for example, in [4] and [5]. We will introduce next our two models of interest.
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In our setting, the fields ¢(x) € R represent height variables of a random inter-
face at the site x € Z¢. Let A be a finite set in Z¢ with boundary

OA:={x ¢ A,|x —y|=1forsome y e A}
(1.1)

d
where [lx — yll =} xi — yil-
i=1
On the boundary we set a boundary condition ¥ such that ¢ (x) = 1 (x) for x € 0A.
Let (2, F,P) be a probability space; this is the probability space of the disor-
der, which will be introduced below. We denote by the symbol E the expectation
w.rt. P.
Our two models are given in terms of the finite-volume Hamiltonian on A.

(A) For model A the Hamiltonian is

1
HYIEN9) =5 3 V(e —eM)+ X Vi@ —y)
x,yeA XeEA,yeIA

(1.2) l[x—yl=1 [x—y|=1

1
+5 2 E@ew),
xeA
where the random fields (§(x)),cz« are assumed to be i.i.d. real-valued ran-
dom variables, with finite nonzero second moments. The disorder configuration
(§(x))ecza denotes an arbitrary fixed configuration of external fields, modeling a
“quenched” (or frozen) random environment. We assume that V € C 2(R) is an
even function with quadratic growth at infinity:

(1.3) V(s)> As> — B, seR,
for some A > 0, B € R. We assume also that there exists C» > 0 such that
(1.4) V"(s) < C, for all s € R.

(B) Foreachbond (x, y) € Z¢ x Z%, |x — y| = 1, we define the measurable map
V&), ) (8):(w,s) € 2 x R— R. Then V(‘jj’ » is a random real-valued function and
V(‘;’ y) are assumed to be i.i.d. random variables as (x, y) ranges over the bonds.
Let BE‘;C’ ) be a family of 1.i.d. real-valued random variables with E| B y)| < oo.
We assume that for some given A, C> > 0, V(. ) obey for P-almost every w € 2

the following bounds, uniformly in the bonds (x, y):
(1.5) As* = B@ ) V2 ) (s) <Cps>  foralls eR.

We assume also that for each fixed w € 2 and for each bond (x, y), V(‘;’ y € C%(R)
is an even function. Then for model B we define the Hamiltonian for each fixed
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w € Q by

1
Hllol@) =5 Y V&,le@ —e®)
x,yeA,|x—y|=1

+ > Vi (o) =¥ ().

xelA,yedA,|x—y|=1

(1.6)

The two models above are prototypical ways to add randomness which pre-
serve the gradient structure, that is, the Hamiltonian depends only on the gradient
field (¢(x) — (p(y))x7y€Zd’|x_y|:1. Note that for d = 1 our interfaces can be used
to model a polymer chain; see, for example, [11]. Disorder in the Hamiltonians
models impurities in the physical system. Models A and B can be regarded as
modeling two different types of impurities, one affecting the interface height, the
other affecting the interface gradient.

The rest of the Introduction is structured as follows: in Section 1.2 we define
in detail the notions of finite- and infinite-volume (gradient) Gibbs measures for
model A, in Section 1.3 we sketch the corresponding notions for model B, in Sec-
tion 1.4 we introduce the notion of surface tension for the two models, and in
Section 1.5 we present our main results and their connection to the existing litera-
ture.

1.2. Gibbs measures and gradient Gibbs measures for model A.

1.2.1. ¢-Gibbs measures. Let Cp (RZd) denote the set of continuous and
bounded functions on R%. The functions considered are functions of the interface
configuration ¢, and continuity is with respect to each coordinate ¢(x), x € Z¢, of
the interface. For a finite region A C Z¢, let dp, = [Tiea de(x) be the Lebesgue
measure over R%.

Let us first consider model A only, and let us define the ¢-Gibbs measures for
fixed disorder &.

DEFINITION 1.1 (Finite-volume ¢-Gibbs measure). For a finite region A C
74, the finite-volume Gibbs measure v y[&] on ]RZd with given Hamiltonian
H[&]:= (H;\p [ED ACZd yeRZ with boundary condition i for the field of height

variables (¢(x)),cz« over A, and with a fixed disorder configuration &, is defined
by

1
(1.7) VR [E1(de) := —— exp{—H [€1(#)} dpady (dpzi o),
Z} &)

where

Z{1€):= [, expl—HY1€)¢)) dpndy gz )
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and

Sy (dpzap) =[] Sy (dex)).
xeZA\A

It is easy to see that the growth condition on V guarantees the finiteness of the
integrals appearing in (1.7) for all arbitrarily fixed choices of &.

DEFINITION 1.2 (¢-Gibbs measure on 74). The probability measure v[£] on
RZ is called an (infinite-volume) Gibbs measure for the p-field with given Hamil-
tonian H[€]:= (H)[£])
DLR equation

ACZd 1 cRZ (¢-Gibbs measure for short), if it satisfies the

(1.8) / V[E1(dY) f v/ [£1(dp) F ) = / V[E1(dg) F (),
for every finite A C Z¢ and for all F € Cy(RZ).

We discuss next the case of interface models without disorder, that is, with
E(x) =0 for all x € 74 in model A. Let v}f [E=0],A € 74, denote the finite-
volume Gibbs measure for A and with boundary condition . Then an infinite-
volume Gibbs measure v[£€ = 0] exists under condition (1.3) only when d > 3, but
not for d = 1, 2, where the field “delocalizes” as A 74 (see [13]).

In the case of interfaces with disorder as in model A, it has been proved in [21]
that the ¢-Gibbs measures do not exist when d = 2. A similar argument as in [21]
can be used to show that ¢-Gibbs measures do not exist for model A whend = 1.

1.2.2. V-Gibbs measures. We note that the Hamiltonian H}\p [£] in model A,

respectively, H}’\ﬁ [@] in model B, changes only by a configuration-independent
constant under the joint shift ¢ (x) — @ (x) + c of all height variables ¢ (x), x € 74,
with the same ¢ € R. This holds true for any fixed configuration &, respectively, w.
Hence, finite-volume Gibbs measures transform under a shift of the boundary con-
dition by a shift of the integration variables. Using this invariance under height
shifts, we can lift the finite-volume measures to measures on gradient configura-
tions, that is, configurations of height differences across bonds, defining the gra-
dient finite-volume Gibbs measures. Gradient Gibbs measures have the advantage
that they may exist, even in situations where the Gibbs measure does not. Note
that the concept of Vg-measures is general and does not refer only to the disor-
dered models. For example, in the case of interfaces without disorder V¢-Gibbs
measures exist for all d > 1.
We next introduce the bond variables on 74 Let

(ZhY* = {b = (xp, yb)|xp, yb € Z, || x5 — Y|l = 1, b directed from x;, to ys};
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note that each undirected bond appears twice in (Z4)*. For ¢ = (¢(x)) 74 and
b= (xp, yp) € (Z4)*, we define the height differences Vo(b) := ¢(yp) — @ (xp).
The height variables ¢ = {¢(x):x € Z¢} on Z? automatically determine a field
of height differences Vo = {Vp(b):b € (Z4)*}. One can therefore consider the
distribution u of Ve-field under the ¢-Gibbs measure v. We shall call u the V-
Gibbs measure. In fact, it is possible to define the V¢-Gibbs measures directly by
means of the DLR equations and, in this sense, V¢-Gibbs measures exist for all
dimensions d > 1.

A sequence of bonds C = {b(l), b?, ..., b(”)} is called a chain connecting x
and y, x,y € 74, if Xp, =X, Vi) = Xpa+n for 1 <i <n —1and y,m =y. The
chain is called a closed loop if y,m = x,0). A plaquette is a closed loop A =
(D @ p3) p®1 such that {xp»,i=1,...,4} consists of four different points.

The field n = {n(b)} € RZD* is said to satisfy the plaquette condition if

nb)=—n(=b)  forallbe (Z%)* and
(1.9)
Z n() =0 for all plaquettes A in Z¢,
beA

where —b denotes the reversed bond of b. Let

(1.10) x=1{ne RZ)" which satisfy the plaquette condition}
and let L%, r > 0, be the set of all € R(Zd)* such that

|n|%.= Z |n(b)|ze—2r“)€b” < 00.
be(Z4)*

We denote x, = x N L% equipped with the norm | - |,. For ¢ = (¢(x)), <z« and
b € (Z%)*, we define 7(b) := Vo(b). Then Vo = {Vp(b) : b € (Z?)*} satisfies the
plaquette condition. Conversely, the heights ¢7¢© ¢ RZ’ can be constructed from
height differences n and the height variable ¢(0) at x =0 as

(1.11) O x) = > n(b)+90),
bECO,x

where Cp_, is an arbitrary chain connecting 0 and x. Note that ¢7¢© is well de-
fined if n = {n(b)} € x.

Let Cy(x) be the set of continuous and bounded functions on x, where the
continuity is with respect to each bond variable 7 (b), b € (Z9)*.

DEFINITION 1.3 (Finite-volume V¢-Gibbs measure). The finite-volume V-
Gibbs measure in A (or more precisely, in A*) with given Hamiltonian H[£] :=
(H K [ED Aczd, pey - With boundary condition p € x and with fixed disorder config-
uration &, is a probability measure ,uf\[é] on x such that for all F € Cp(x), we
have

(1.12) /X WALEIAD F) = [, v 1810 F(Tg).
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where 1 is any field configuration whose gradient field is p.

DEFINITION 1.4 [Vg-Gibbs measure on (Z<¢)*]. The probability measure
w[€] on x is called an (infinite-volume) gradient Gibbs measure with given Hamil-
tonian H[&] := (HK (D Acze pey (V-Gibbs measure for short), if it satisfies the
DLR equation

(1.13) / ulE1(dp) / WA LENdn) F(n) = / WIE1dn) F (),
for every finite A C Z4 and for all F € Cp( X).

REMARK 1.5. Throughout the rest of the paper, we will use the notation ¢, ¥
to denote height variables and n, p to denote gradient variables.

For v € Z4, we define the shift operators: 7, for the heights by (t,¢)(y) :=
o(y —v) for y € Z9 and ¢ € R’ 7, for the bonds by (t,1)(b) := n(b — v) for
be (Zd)* and n € x, and t, for the disorder configuration by (7,£)(y) :=&(y —v)
foryeZ? and £ € RZ’,

We are now ready to define the main object of interest of this paper: the random
(gradient) Gibbs measures.

DEFINITION 1.6 [Translation-covariant random (gradient) Gibbs measures for
model A]. A measurable map & — v[§] is called a translation-covariant random
Gibbs measure if v[£€] is a ¢-Gibbs measure for P-almost every &, and if

/ v[r,E1(dg) F(g) = / V[E1(dg) F (zy9),

for all v € Z4 and for all F € C,(RZ").
A measurable map & — u[£] is called a translation-covariant random gradient
Gibbs measure if u[£] is a Vp-Gibbs measure for P-almost every &, and if

/M[TUS](dn)F(n)Z/M[S](dn)F(fvn),
for all v € Z¢ and for all F € Cp(x).

The above notion generalizes the notion of a translation-invariant (gradient)
Gibbs measure to the setup of disordered systems.

1.3. Gibbs measures and gradient Gibbs measures for model B. The no-
tions of finite-volume (gradient) Gibbs measure and infinite-volume (gradient)
Gibbs measure for model B can be defined similarly as for model A, with
(V(‘jc”y))(x7y)ezdxzd, w € €2, playing a similar role to § € RZd, and with o replac-
ing & in Definitions 1.1-1.4. Once we specify the action of the shift map 7, in



1656 C. COTAR AND C. KULSKE

this case, we can also define the notion of translation-covariant random (gradient)
Gibbs measure, with w € 2 replacing & € RZ* in Definition 1.6.

Let 7,, v € Z¢, be a shift-operator and let w € Q be fixed. We will denote by
v[tyw] the infinite-volume Gibbs measure with given Hamiltonian H[w](¢) :=
(H}f [@](7v®)) \ 74 JeRZ This means that we shift the field of disorded poten-
tials on bonds from V(‘;’y) to V&’ Huyt)- Similarly, we will denote Py ultyw]
the infinite-volume gradient Gibbs measure with given Hamiltonian H[w](n) :=
(H,l\) [w](fvn))ACzd’peR(Zd)* .

1.4. Surface tension. The surface tension physically measures the macro-
scopic energy of a surface with tilt u € R?, that is, a d-dimensional hyperplane
located in R4*+! with normal vector (—u,l) e R49*! In other words, it measures
the free-energy cost in creating an interface with a given tilt.

Formally, let Ay = [-N,N]? N Z4, N €N, be a hypercube of side length
2N + 1 with boundary dAy. We enforce a fixed tilt u € R? by imposing the
boundary condition ¥, (x) = x - u for x € d A . The finite-volume surface tension
oy [&] for model A is then defined for fixed disorder & as

1
[AN]

oI = ———1og [ exp(~H}"[€])dgn,

(1.14)

[AN]

where we recall that dpa y =[] e, ¥(x). We are interested in the existence and
&-independence of the limit:

ol§lu) = lim opy[&](u).

When it exists, the limit o [£](«) is called (infinite-volume) surface tension.
For model B the surface tension oy, [w](u), respectively, o[w](u), is defined

similarly, with @ € Q in place of £ € RZd, in the above definitions for model A.

1.5. Main results. A main question in interface models is whether the fluc-
tuations of an interface, that is, restricted to a finite-volume will remain bounded
when the volume tends to infinity, so that there is an infinite-volume Gibbs mea-
sure (or gradient Gibbs measure) describing a localized interface. This question
is well understood in shift-invariant continuous interface models without disorder,
and it is the purpose of this paper to study the same question for interface models
with disorder.

When there is no disorder, it is known that the Gibbs measure v[£ = 0] does
not exist in infinite-volume for d = 1, 2, but the gradient Gibbs measure [ = 0]
does exist in infinite-volume for d > 1. The latter fact is equivalent to saying that
the infinite-volume measure exists constrained on ¢(0) = 0. On the question of
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uniqueness of gradient Gibbs measures, Funaki and Spohn [16] showed that a
gradient Gibbs measure is uniquely determined by the tilt. This result has been
extended to a certain class of nonconvex potentials by Cotar and Deuschel in [8].

For (very) nonconvex V, new phenomena appear: There is a first-order phase
transition from uniqueness to nonuniqueness of the Gibbs measures (at tilt zero),
as shown in [3] and [8]. The transition is due to the temperature which changes the
structure of the interface. This phenomenon is related to the phase transition seen
in rotator models with very nonlinear potentials exhibited in [30] and [31], where
the basic mechanism is an energy-entropy transition.

What happens in the random models A and B? In [21] the authors showed that
for model A there is no disordered infinite-volume random Gibbs measure for d =
1, 2. This statement is not surprising since there exists no ¢-Gibbs measure without
disorder. More surprising is the fact that, as proved in [29], for model A there
is also no disordered shift-covariant gradient Gibbs measure when d = 1, 2. The
question is now what will happen for model A when d > 3 to the (gradient) Gibbs
measure, that is, known to exist without disorder, once we allow for a random
environment?

For model B, one can reason similarly as for d = 1, 2 in model A (see Theo-
rem 1.1 in [21]) to show that there exists no infinite-volume random Gibbs measure
if d =1, 2. We are interested here in the question whether there exists a random
infinite-volume gradient Gibbs measure for d > 1, 2.

To give an intuitive idea of what we can expect, we look next in some detail
at model A in the special case of a Gaussian (gradient) Gibbs measure where
V (s) = s2/2. In this case one can do explicit computations, and for any fixed con-
figuration &, the finite-volume Gibbs measure with zero boundary condition vf)\ €]
has expected value

/vf)\[s](dw)(w(x)) =Y Ga(x,2)6(z)  forevery fixed x € A,

zZEA

where G A (x, y) denotes the Green’s function (see Section 2.1 below for a rigorous
definition). Due to the properties of the Green’s function, the right-hand side of
the equation above diverges as |A| — oo for d = 3,4 by the Kolmogorov three
series theorem. This hints to the nonexistence in d = 3, 4 of the infinite-volume
¢-Gibbs measure, which is proved in the Appendix for the Gaussian case. For the
corresponding gradient Gibbs measure M?\ [£], the expected value

/M?\ [E1dn) (9(x) — (1)) = D (Ga(x,2) — Ga(y,2))E(2)
zeA

for every fixed (x, y) € (ZH* N (A x A),

converges as |A| — oo for d > 3 and diverges for d = 1, 2. Coupled with standard
tightness arguments, this convergence for d > 3 gives the existence of the infinite-
volume gradient Gibbs measure in the Gaussian case.
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The main result of our paper, on the existence of shift-covariant gradient Gibbs
measures with given tilt u € RY, is the following:

THEOREM 1.7. (a) (Model A) Let d > 3, E(£(0)) =0 and u € RY. Assume
that V satisfies (1.3) and (1.4). Then there exists at least one shift-covariant ran-
dom gradient Gibbs measure & — &) with tilt u, that is, with

E(/Mﬁ@@ﬂ@)ZWd%—%)
(1.15)
for all bonds b = (xy, yp) € (Z9)*.

Moreover | €] satisfies the integrability condition

(1.16) E/M[S](dn)(n(b))z <00 forall bonds b € (Z%)*.

(b) (Model B) Let d > 1 and u € R¢. Assume that V satisfies (1.5). Then there

exists at least one shift-covariant random gradient Gibbs measure w — plw]
with tilt u, that is, with

ldfmmwmw0=wM—m>
(1.17)
for all bonds b = (x, yp) € (Z9)*.

Moreover u|w] satisfies the integrability condition

(1.18) IE/,u[a)](dn)(n(b))2 <0 for all bonds b € (Zd)*.

For model A we also show by similar arguments as in [29] the following:

THEOREM 1.8 (Model A). Letd > 3 and assume that E(£(0)) # 0. Then there
exists no shift-covariant gradient Gibbs measure [&] with

E‘/u[é](dn)V/(n(b))‘ <0 forall bonds b= (x,y) € (Zd)*.

The techniques used to prove existence in the nonrandom continuous interface
model are based on the Brascamp-Lieb inequality and on shift-invariance, which
techniques do not work in our random settings; the lack of shift-invariance in our
models means that the Brascamp-Lieb inequality is not enough to ensure tightness
of the finite-volume gradient Gibbs measures (/,L'X[‘é 1), respectively, of (u’;\[a)]),
as is the case in the model without disorder (see the Appendix for a more detailed
explanation of the Brascamp—Lieb inequality and why it fails in the case of our
models in a disordered setting). We will prove the existence result for model A
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and sketch it for model B. To prove our result for model A, we are using surface
tension bounds to establish tightness of a sequence of spatially averaged finite-
volume gradient Gibbs measures for each realization of the disorder, whose limit
along a deterministic subsequence we extract (using a result in [20]) and we prove
that it is a shift-covariant random gradient Gibbs measure.

To complement our analysis of the two models, we will also investigate un-
der what assumptions on the disorder &, respectively, on V(‘;’ oY the surface ten-
sion o [£](u), respectively, o[w](u), exists and under what assumptions it does
not exist. Moreover we will prove that when it exists, the surface tension is P-
a.s. independent of the disorder. The surface tension bounds established in Theo-
rem 3.1(b) are used later to prove tightness of the finite-volume spatially averaged
Gibbs measures, averaged over the disorder. To state our surface tension result, let
a,l eZd,az(al,...,ad),lz(11,...,ld),withai <l;,i=1,2,...,d,and let

(1.19) A=z eZ%a; <z, <l foralli=1,2,...,d}.

For any n € Z, we denote by a + n := (a; + n,...,as + n) and by an :=
(ain, ..., aqn). In view of Theorem 3.1(a) and of Remark 3.2 below, we have

THEOREM 1.9 (Model A). The infinite-volume surface tension does not exist
ifd=1,2o0rifd >3 and E(§(0)) #0.

For d > 3 and E(£(0)) = 0, we prove

THEOREM 1.10. (1) (Model A) Let d > 3 and assume that E(E(0)) =0 and
u € R, Then if V satisfies (1.3) and (1.4), we have:

(@) ol&l(u) :=limy_ o0 oay[§]1(u) exists for P-almost all & and in L' and

. 1 . 1
ol€](w) = lim — lim — > O (a—tman (1),
n—>oo p¢ m—oo m .
a;eN,1<a;<m,i=1,....,d
where the limits in m — oo and in n — 0o are in L.

(b) ol&](u) is independent of &, with
ol&](u) = Nlim E(oay[E1(w)) =:0(u) for P-almost all §.

(2) (Model B) Let d > 1. Then o [w](u) satisfies (a)—(b) above, with w replacing &
in the results.

The presence of the disorder and of the Green’s functions make the question
of existence of the surface tension more delicate to handle than in the nonrandom
case, where the answer is fairly straightforward. In order to prove existence of the
surface tension for our disordered system, we prove (almost)-subadditivity of the
finite-volume surface tension, in order to apply ergodic theorems for subadditive
processes.
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A natural question to ask is whether in our disordered models a random gradient
Gibbs measure is uniquely determined by the tilt as in the nonrandom settings
of [8] or [16]. This is work in progress by the same authors and will be addressed
in a future paper.

The rest of the paper is organized as follows: In Section 2 we recall the def-
inition and some basic properties of the Green’s function and we prove a strong
law of large numbers (SLLN) involving the Green’s function, which are necessary
for the proof of our main Theorem 1.7 and for the surface tension results; we also
recall in Section 2 two subadditivity propositions used for the proof of the sur-
face tension existence. In Section 3, we study model A. In Section 3.1, we prove
Theorem 3.1, and, respectively, Theorem 1.10, for nonexistence and, respectively,
for existence of the surface tension. In Section 3.2, we formulate and prove Theo-
rem 1.7, our main result on the existence of shift-covariant random gradient Gibbs
measures. Section 4 deals with the corresponding results for model B. Finally, the
Appendix explains why the infinite-volume Gibbs measure for model A does not
exist for d = 3, 4, and provides a more detailed explanation of the Brascamp—Lieb
inequality.

2. Preliminary notions.

2.1. Green functions on Z¢. We first review a few facts about Green’s func-
tions.

Let A be an arbitrary subset in Z¢ and let x € A be fixed. Let P, and E, be
the probability law and expectation, respectively, of a simple random walk X :=
(Xk)k>0 starting from x € 74 Green’s function G 4 (x, y) is the expected number
of visits to y € A of the walk X killed as it exits A, that is,

‘L’A—l o
GA(X,y)ZEx[Z 1(xk=y):|=sz(xk=y,k<m), yeZ’,
k=0 k=0

where 74 = inf{k > 0: X} € A°}. We will state first some well-known properties
of the Green’s functions. To avoid exceptional cases when x = 0, let us denote by
1|x|[ = max{|x|, 1}, where |x| is the Euclidian norm.

PROPOSITION 2.1.
(1) Ifd >3, then imy_.00 Gy (x,y) :=G(x,y) exists forall x,y € 7% and as
|x —y| — oo,

aqd

Ty 2 +O0(x — '™,

G(x,y)=

with ag = m, where wg is the volume of the unit ball in R,
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(ii) Let B, = {x € Z%:|x| < r}; then for x € By

E10 iJFO(L>+O(l> ifd=2
S TR NTET! N/ -

OxIP =N 1 oqixll'™))],  ifd =3.

Gpy(0,x) =

(d —2)wq
Let e > 0. If x € B(1—¢)N, the following inequalities hold:
Gy (0,0) = Gpy(x,x) < Gp,y(0,0).

(iii) Ga(x,y) =Ga(y,x).
(iv) Ga(x,y) <Gp(x,y),if ACB.
(v) If x € By, then

N? — x> <E,(zgy) < (N + )2 — |x|%.

For proofs of (i), (iii) and (iv) from Proposition 2.1 above we refer to Chapter 1
from [22], for proof of (ii) we refer to Lemma 1 from [23] and for proof of (v) we
refer to Lemma 2 from [23].

The result we state next will be used to prove Theorem 3.1.

PROPOSITION 2.2. There exists Ng sufficiently large such that for all N > Ny,
we have

d+1

d+2

2
’lUsz(N—l)d S Z GAN(xv .Y)S (N\/E)ddwd[(N—i_l)z_ d]j_2j|

X, yEAN

PROOF. Note first that since G g, is symmetric, we have
2.1 Ex(tgy) = Y. Gpy(x,y)= > Gpy(y,x).
yEBN y€BN

The upper bound: Using Proposition 2.1(iv) for the first inequality, (2.1) for the
second inequality and Proposition 2.1(v) for the third inequality, we have for N
large enough

Z GAN(x’y)S Z GBNﬁ(x’y): Z ]EX(TBN\/g)

X, yEAN X, yeBy /i X€By i
< Y W+ —1xP]
XGBN\/E
Nd

< (N + 1)2d(NVd) wg — wd/ rd*ldr
0

_ d N
= (NVd) dwd[(NJrl) d+2]
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The lower bound: We have By C Ay. Then by using Proposition 2.1(iv), (v)
and (2.1), we have for N large enough

Yo Gay= Y Geyy) = >IN =[x

X, yeAN X,YEBN xeBy

> N2(N — D4wy — wd/ rdtl gy
0

d+1
d+2

=

wa(N — 1)IN2. .
We will use the next result in the proof of Proposition 3.11.

PROPOSITION 2.3. Letd > 1 and let Ay C Ay C Z4. Then we have for all
£ e RM

(22) <§v GA1§>A1 =< <§v GAzé)Az:
where (§,GAE)A = 2y yea §(X)GA(x, ¥)E(y) and where Gp = (Ga(x,
Y))x,yeA-

PROOF. A proof of this statement can be found, for example, in [28]. [

2.2. Strong law of large numbers. We will need the following strong law of
large numbers (SLLN) in the proof of Theorems 3.1 and 1.10.

PROPOSITION 2.4.  Let (§(x)),cza bei.id. with E(f;‘z(O)) < o00. Foralld > 3,
we have

<$7 GANé)AN - vayEAN E(s(x)é(Y))GAN (x7 )’) _

N 0 a.s.

2.3) i
@3)

PROOF. Let the variance w.r.t. P be denoted by Var and let
sz}’iAN [§(x) —EEONIE() —EEGNIGay (x, )

SN = )

Nd
Y sveny [E(X) —EE@)IEEG))Gay (x, y)
Sy = kel and
Nd
Ry . Lxehy [£2(x) — E(E2(x)]G Ay (x, X)
N = .
Nd

Note that proving (2.3) is the same as proving that

lim Sy =0, lim Sy =0 and lim Ry=0 a.s.
N—o0 N—o00 N—o0
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Using the independence of the (£(x)),.z« for the equality below, Proposi-
tion 2.1(iv) for the first inequality below and (ii) for the second one, we have

Var?(8)
ESN=—pr 2 Ghy@y
X, yEAN,XFY
Var?(§) 2
= TN Z GBNﬁ(x’ y)

x,yeBNﬁ,y;éx

Var?(£) 2 2 1
@4 =N ((d - 2>wd) 2 (|x it 0(1)>

X,yeBNﬂ7y¢x

Var® NVd
§C(wd)?\r]72§) » (/1 rd_3dr—|—0(1)>

XEBNﬁ
Var’ (§)
Nd-1 °
Fix ¢ > 0. By means of (2.4), we get

< C(wy,d)

ad - Var?(€2) & 1
Zl P(ISy| = &) = C(wa, d)— Zl N <
N: N:

and therefore by Borel-Cantelli

lim sup|Sy| <e a.s., from which lim Sy =0 a.s.
N—o00 N—o0

The proof that limy_, o, S}y = 0 a.s. follows the same pattern as the proof for Sy,
and will be omitted. We will proceed next with the proof of limy_,.c Ry =0 a.s.
Let € > 0 be arbitrarily fixed and denote for simplicity of notation t(x) :=
(£2(x) — E(§%(x))). Take M = M(g) > 0 such that E(|7(x)|1|¢(x)~m) < & and
define

~ Yxeay Oay DT L= m — BT () L )>m)]

/
Ry = Vi
and
R — Yxeay Gay x, )T )y <m — E(@ () Loy <m)]
N — .

Nd

Using Proposition 2.1(ii) and (iv) to find C > 0 such that |G 5, (x, x)| < C, uni-
formly in N and x € Ay, and using the SLLN for i.i.d. random variables with
finite first moment, we get

Y xean TNz @y =m +E(T )1z @)>m)]
Nd

< 2CR ([t 1 o) (1 + (1)

<2Ce(1+o0(1)).

IRy <C
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Therefore
(2.5) limsup |RYy| <2Ce¢ a.s.,

N—oo
from which we get Rj, — 0 a.s. Since the summands in R}, are uniformly bounded
and independent, by a standard fourth moment bound, Markov inequality and

Borel-Cantelli, we have R}, — 0 a.s. This concludes the proof of the proposition.
O

2.3. Ergodic theorems for multiparameter subadditive processes. For N € N,
let Ajo,ny:=1[0,N1“NZ, let Z4 :={z € Z?:0 < z; foralli = 1,2,...,d} and
let

A={AC ZfiF :A = A% for some a,l € Zi, a=(aj)i<i<d,l = i)1<i<d,
witha; <1;,1 <i <dj},

where we recall that A%! was defined in (1.19). For any finite set A € Z% and for
any z € 7%, we denote A +z:={x +z:x € A}.

We will use the two propositions below to prove a.s. and L' convergence of
the surface tension. The first proposition is an ergodic theorem for superadditive
processes from [1]:

PROPOSITION 2.5. Let (rZ)ZeZCJzr be a measurable semigroup of measure-

preserving transformations on (2, F,P). Let (Wy)jca be a family of real-valued
random variables on (2, F,P) such that a.s.:

(a) W[ 0T, = W]+Z.

(b) (The subadditivity condition) If \;_, I; = 1 € Awith (I;)i=1
disjoint in A, then Wy <", Wy,.

(©)

n pairwise

.....

inf| 7]~ / W, dP > —o0
the infimum being taken over all I € A with |I| > 0,
where |I| denotes the cardinality of the finite set 1.
Then limy_ oo N ¢ Wa oy, exists a.s.

The second proposition is Theorem 2.1 from [27]. In what follows, x* denotes
the positive part of x € R.

PROPOSITION 2.6. Let (W) e be a family of real-valued random variables
on (2, F,P) such that:

(@) If Ui i =1 € Awith (I;)i=1.2
;'1:1 Wli) <0.
(b) E(Wyyz)=EW) forall I € Aand z € Z4.

n pairwise disjoint in A, then E(W; —

.....
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() EWW;S,))=EW;") foralll € Aand z € 7.
(d)

inf|I|’1/W1dIP> —00
the infimum being taken over all I € A with |I| > 0.

(e) Assume that for every a,l € 74 . a = (@i<i<d,! = (li)1<i<a, the collec-
tion of random variables (W), 1e7d > with Wy 1 := Wg@-1nan, IS stationary with

respect to all translations in 74 of form (a,l) - (a +v,l 4+ v).

Then
lim N™9Way = Wo  existsin L',
N—o0 ?
where
. 1 . 1
W = lim — lim — Z W3 @-tnan

n—o00 pnd m—o0 md
n M <ai<m.i=1...d

and where the limits in m — oo and in n — oo are in L.

Both Proposition 2.5 and Proposition 2.6 can be stated and proved for sets A
in Z4 of form

A:={AcCZ A=A forsomea,lcZ a= @i<i<d,! = Ui)1<i<d>
witha; <[;, 1 <i <d},

instead of just for sets A in Z4 .

3. Model A. This section is structured as follows: in Section 3.1.1 we prove
Theorem 3.1, on the nonexistence of the surface tension when E(£(0)) # 0; in Sec-
tion 3.1.2 we prove Theorem 1.10, on the existence of the surface tension when
d > 3 and E(£(0)) = 0, by means of subadditivity arguments. In Section 3.2 we
prove Proposition 3.6, on the tightness of the finite-volume gradient Gibbs mea-
sures (,u'j)\ [£]) pcze averaged over the disorder, from which we derive the existence
of the random infinite-volume gradient Gibbs measure averaged over the disorder.
This tightness result is instrumental in Section 3.2.2, in our proof of existence of
the infinite-volume random gradient Gibbs measure.

3.1. The surface tension.
3.1.1. Nonexistence of the surface tension when E(£(0)) # 0. We prove in

this subsection that the surface tension does not exist when E(£(0)) # 0, and when
E(&(0)) =0 we give upper and lower bounds on o, [§](«), uniformly in A y.
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THEOREM 3.1.
Let d > 3. Assume that V satisfies (1.3) and (1.4). Recall that (§(x)),cya are
i.i.d. with finite second moments.

(a) IfE(£(0)) #0, then for all u € R¢

51 < I]ivriiélofw < li}{,n_)sllop w <S5 for P-almost all &,
where
o Wd —_wad+ D dpo
SU= S ad gy B EO) and Sy=—gl (Vd) E*(£(0)).

(b) IfE(£(0)) =0, then

Sl(u) < hmmfaAN [£](u) <limsupop,[§](u) < Sz(u)

(3‘1) N—oo
for P-almost all &,
where
Q o Are _ _
Si(u) :=0”[E=0](u=0) — A(d 2)]E(§ O+ A1+ |u| ) —2dB,
R 0221 — _ Wd el
S$r(u) :=027[§ =0](u=0) — 3Crd = 2)E(§ (0))+ (1+|u| )

+2dV(0).

Fora C > 0, we defined by af [£ =0](u=0)and 0€[£ =0](u = 0) the finite-
volume and infinite-volume surface tensions corresponding to model A without
disorder, with potential V (x) = Cx? and tilt u = 0.

In particular, the above theorem shows that if £(£(0)) # 0, then the surface
tension does not exist as the finite-volume surface tension log ZK;‘V [£] is of order

N9+2_ and not of order N¢, as would normally be expected (and as indeed is
the case in the nondisordered case). The reason that the N?2 exponent comes
up is mainly due to the appearance of the Green’s function in the formulas for
the upper/lower bounds for the finite-volume surface tension. When E(£(0)) # 0,
the terms in the upper/lower bounds involve double sums over the Green’s function
of the form }_, ;e Gay (%, y), which are of order N+2,

PROOF OF THEOREM 3.1. 'We will use the bounds for V from (1.3) and (1.4)
to obtain upper and lower bounds for o ,[£] in terms of surface tensions for the
nondisordered model with quadratic potentials. The claims in (a) and (b) will fol-
low then easily by an application of Proposition 2.4. The explicit computations
follow below.
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We will start by proving a lower bound for o, [£](u). As V(s) > As? — B, we
get from (1.14)

oaylE](uw)
1
> — B
— 2lAwl x,yEANUIA ¥
lx—yl=1
1 A 2
~TAv log/exp(—z x,y%;\N((p(X) — ()
lx—yl=1
A Y (e = Yum)
XEAN,YEIAN
lx—yl|=1
(32) + 3 &) don,
xeAN
— _2dB— D oveay ) (x - u)
AN
1 A - - 2
Sy 10g/exp(—5 x,y%;w (@(x) —@(y) + (x —y) - u)
lx—yl=1
A Y @)+ =) u)
xeAy,yedAN
lx—y|=1

+ 3 5<x>¢<x>> dGn, .

XEAN

where for the equality we used the change of variables ¢(x) = ¢(x) + x - u for all
x € Ay. To simplify (3.2) we will show next that

=Y @ -+ =—y-u)+ Y () + -y u)
x,yeAN xeAN,yeaAN
[x—yl=1 [x—y|=1

3 [0 =) + ((x = ) -u)’]
x,yeAN
k—yl=1

+ Y @2+ (=) ).
XeAN,YEIAN
[x—y|=1
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By expanding the square, (3.3) follows from
Yo G g —y) -ul+2 Y Gl —y) - ul =0,

X, yeEAN xeAn,yE0AN
lx—yl=1 [x—=y|=1

which can be easily seen to be true by summing over bonds along lines in each
coordinate direction. Plugging the identity from (3.3) into (3.2), we get

OAy [g](u)

> (=) -u)

X,yEAN
lx—yl=1

> —-2dB +
2|AN]

Yveny EX)(x - u)
[AN|

A
G4 o > (k- w)’-

| AN xeA,yedAy
x—yl=1

1 A ~ L 12
~ AN log/exp<—5 x,yXQ:\N (@) = o)
lx—yl=1
“4 Y GWl Y EWEw) dia.
xeAy,yedAN xeAN
[x—y|=1

To compute the integral in (3.4) we use standard Gaussian calculus (see, e.g.,
Proposition 3.1 part (2) from [16]) to show that

A
log/exp<—5 Z (@(x) —§5()’))2

x,yeEAN
lx—yl=1
A Y G+ Y s(x)«B(x))d@AN
XEAN,YEOAN XEAN
lx—yl=1
A ~ ~ 2 ~ 2 ~
(3.5) =10g/eXp<—5 Yo (e —-e(m) —A > (<p(x)))d<pAN
X, YEAN xeAN,ye0AN
lx—yl=1 lx—yl=1
(., GapnE)ny
+ 2A

<S7 GANS)AN
2A ’

Plugging (3.5) in (3.4) gives the lower bound for o4, [§](u).

= —|Anlog, [E =01(u=0)+
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Due to the assumption V” < C,, we have by Taylor expansion that V(s) <
V() + 5 €252 then by the same reasoning as in the derivation of the lower bound,
we get

oaylE1) <24V (0) + 0,2 [6 = 0)(u = Y (@ -y -u)
4|A Ix,yeAN
[x—y|=1
C 2 DxeaySO)(x-u)
3.6 + —y)u) —
(3.6) 2|AN|x€A§aAN((x ) ) [AN|
[x=yl=1
_<§’GANE>AN
4Co|AN|

The upper bound follows now from (3.6), by noting that for all C > 0, o, Clg =
0](u) — o€[£ = 0](u) € (—o0, 00) as |A| — oo (for a proof of this, see Proposi-
tion 1.1 in [16]).

(a) The statement follows now from (3.2), (3.6), Proposition 2.4 and Proposi-
tion 2.2 by noting that for very large N

d+1 1 d
Wa n 2E2(§(0)) < WE((S, (Gay®))) = W n 2(«/3) E2(£(0))

and

1 2 5

An] x’ygw (x=y)-u)"=2[u|* and
wyl=1
(3.7) " |2
MXEAJZEBAN((x—y)-u) <T_)O as N — oo
lx—yl=1

and that by standard SLLN arguments for i.i.d. random variables with finite second
moments

erAN E(xX)(x - u) < erAN 1€ (x)]

Nd+2 = [ul Nd+1 —0

(3.8)
a.s.andin L! as N — oo.

(b) The statement follows from (3.2), (3.6), (3.7) and Proposition 2.4 by noting
that for very large N

E((%‘ (Gayd))) = O
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REMARK 3.2. Note that due to the properties of the Green’s function, for
d =1,2 we have that (§, Gaoy&)Aa,/IAn| diverges as N — oo, and therefore, by
the same reasoning as in Theorem 3.1 above, the surface tension does not exist for
d=1,2.

3.1.2. Existence of the surface tension when E(£(0)) = 0. In this section we
prove Theorem 1.10. We start with a lemma which allows us to integrate out one
height variable ¢(x) conditional upon the heights of its nearest neighbors.

LEMMA 3.3. Let the function V satisfy (1.3) and (1.4). Then there exists some
constant C > O such that for all y e R, and all p(x),E(x) €R, x € 74, we have

1
fow|-3 T vew -em)+e@em |dow
€74, |y—x|=
(3.9) e 1|y -
ZCexp[—E > V(¢(y)—y)+$(xw]

yeZd, |y—x|=1

The proof of Lemma 3.3 closely follows the proof of Lemma II.1 in [16] and
will be omitted.
Recall from (1.14) that for any A € Z¢ and for any fixed u € RY

Z)161= [ exp(—HY"[ED g,

Leta,l € Z¢, a = (a;)1<i<a-1 = (i) 1<i<a and let l{ € Z, with a; <1} <I;. We
are going to prove an approximate subadditive relation for —log Z W“, where A
is taken to be the rectangle A%', as defined in (1.19), which is divided into three
rectangles by restricting the first coordinate to [ay, ] — 11, {1}, and [/} + 1,1],
respectively (see Figure 1). To simplify the notation, we denote for any a, [ € Z¢
andu,veZ

Ao Aal ._
A?u,v] = Avlxlazlh]x-xlagl;]  and AZ L= Afuyxlaz o] x[aq.lal-

L-1-1

1 A

Ty

1-1

Fi1G. 1.
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Using the above decomposition, we will derive in Lemma 3.4 the following for-
mula:

LEMMA 3.4. Let the function V satisfy (1.3) and (1.4). Then with the notation
above, we have for some C > 0 and for a; > 1) + 2

—log(Z: [§) < —log(24,  [£]) —log(Ze,  [€])

fag,l{—11 7 +1.1

d d
(3.10) -1t —ai+ 1)<logC — ZV(u,))
i=2 i=2
— > u-df,x2, . xE).

xe[\;’,’l
i

PROOF.  We label the points x € A ;41 as odd or even, depending on whether
Ul
Zf-l: 1 Xi 1s an odd or an even number. We will bound ZKZ,, [£] from below by a
product of Zﬁz,l [€], of Z;fiz,, [£] and of terms coming from integrating out
lag,lj—11 [1/1+1,/,J_
the contribution of the elements of A in H Vu «1[E1(@). To do this, we will first

integrate out the height variables at the odd points in Aa ! from Zy Y «.[&1 and then

the even ones. We will do this by means of Lemma 3.3 and by splitting Hy Yu a1 [E1(@)
into sums of potentlals V(go (x) — ¢(»)), depending on whether x and y belong to

A?ai i1y A?l’l e A ! or 9A%!. Then by Lemma 3.3, for each height variable

ox),x € Al, with x odd, (3.9) holds with y = u - (ll,xz, ..., Xq4) (we recall that
1
the boundary conditions for the two subdomains have the same tilt u as for the

original domain). Explicitly, for each height variable ¢(x), x € A 741 with x odd,
l/

1
we have

/ exp[—— D V(e +ej) — o) +s(x)<o<x)} de(x)
jel

(3.11)
> Cexp[—i Z V(px+ej)—x-u)+&x)(x- u)},
Jjel
where [ :={%1,+£2, ..., £d}. The point here is that Lemma 3.3 allows us to re-
place a height variable ¢(x) by a deterministic value y. Next we repeat the same
procedure for each height variable ¢ (x), x € A Aol and x even; since all ¢ (x +e¢;),
l/

1
with x + ¢ € A 741 odd nearest neighbors of x, have already been integrated out
l/
1
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by (3.11), we have

/exp[—i D Vi te) u—g) = V(ek+e) —o)

jel
jA£]

V(oG4 e1) — o) + s<x><p<x)] do(x)
(3.12)

1 1
> Cexp[—iv(w(x +e1) —x-u)— EV(<P(X —e)) —x-u)

d
—ZV(ui>+s<x><x-u>].

i=2
From (3.11) and (3.12) we get

2 NG EFATENN VAT

lag,l{—11 7 +1.41

xexp<|z_\2’lllogc |ZV(M)+ Z E(x)(x - u))
xeA
l

Plugging |/_\;l,’l| = ]_[f.lzz(li — a; + 1) in the above, we get (3.10). U
1

PROOF OF THEOREM 1.10. We will use Lemma 3.4 together with Proposi-
tion 2.5 to prove in part (al) below that limy_, o oA, [§](u) exists for P-almost
all £ and Lemma 3.4 and Proposition 2.6 to derive in part (a2) the L' convergence.
We will then use the a.s. and L! convergence in order to show in part (b) that the
surface tension is independent of the disorder (§(x)),z4.

(al) We first need to rewrite (3.10) in Lemma 3.4 in a form such that we can
apply Proposition 2.5. Let a,l € 74, a = (ai)1<i<a,! = i)1<i<aq, With a; < [; for
1 <i <d, be arbitrary and let, with the notation from Lemma 3.4,

d
8hal ‘= H(l,- —a; + 1)(10gC Z Vui )>

i=1 i=1

Let/ + 1 = (I; + 1)1<i<q and define A%/*! as in (1.19). Let
frern[E1) := —log(Z¥" [E) + Y (u-2)EQ) + gja.-
xeAs!

Then from (3.10) we have the following subadditivity formula for /; > a; + 2:
(3.13) Srar+1[§]1(u) < an 1 [61() + frarer  [E]w).

la.1]] (] +L1y+1]
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To get the subadditivity formula (3.13) for all /{ > a;, we use an argument similar
to the one we used to obtain (3.6), to bound for /1 € {a;,a; + 1}:

d
—log Zﬁ‘[;,, , J[E] <[]t —a + D(2dV(0) + 0 /*[& = 0](u = 0))
1+ i=2

- (- )8 (@) = (£, Gzar

~a,l
xeA[alyll]

E)zal
I >A([Ja1./|]’

where 0 €2/2[¢ = 0](u = 0) is defined as in Theorem 3.1(b). Taking into account
that for all A € Z4, (&, G &) A > 0, and making the convention that for all a; € Z

2
o 181G =T]0 —a + 1)@V ©) + o2 =0l = 0)))
[ay,a1+1] =2
B . G-a N4 ’
_; (u - x)E(x) + (&, Al a1 >A[éll.al+11
xeA[l;l,al+l]

it follows that for all [; > a;,i =1,2,...,d, fra+1[§](u) satisfies the subaddi-
tivity property (3.13) as defined in Proposition 2.5(b). We will check next that
Sfrai+1[§](u) satisfies conditions (a) and (c) of Proposition 2.5. Recall that for
z€ 74, 1.0(x) = o(x — z)forx € Z4andp € RZ'. As (£(x)),cpa are iid., it is
easy to see that condition (a) of Proposition 2.5 is satisfied. We will show next that
(c) from Proposition 2.5 also holds. Using the lower bound in (3.4) and the fact that
E(&(0)) =0, we have that fza+1[E](u) € L'. Moreover, by the same reasoning as
that used to get (3.4), we have

E(fzar+1[E]1(w)) E(E%(0) X ot G jat (X, )
|[\a,l| [\a,l

Since by Proposition 2.1 we have that limy c74 |5 100 G (x, ) = G(0,0) < 00, it
follows that

>0 E=0)(u=0)— —2dB.

E Ada
(3.14) inf M >
a,leZd a; <l; |Aa’l|
i=1,...d

and thus condition (c) of Proposition 2.5 is also satisfied. It follows that

(3.15) lim M exists a.s.
N—oo Nd

Together with (3.8) this proves that limy _, oo 04, [£]1(u) exists for P-almost all &.

(a2) To prove that limy_oo0a,[E](u) exists in L', we will show that
Sfrar+1[E](u) satisfies the assumptions of Proposition 2.6. Note first that as-
sumption (a) is automatically satisfied, due to the subadditivity property derived
in (3.13). Similarly, assumption (d) is satisfied because of (3.14). We will next
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prove that (b), (¢) and (e) from Propositior_l 2.6 also hold. Let z € Z¢ and denote
by (V)i (x) := Y4, (xju; + z;) for x € 3(A®! + 7). Then

(G16)  frar (6100 = —log(ZF, [E)+ Y (- EW) + 85004

xeAdl 47

(3.17) =—log(ZVs, [ED+ Y (u-0)E(x +2) + gRar-

xeAa!

where in the first equality we made in the integral formula for ZE-\@IZJFZ [€] the

change of variables ¢(x) := ¢(x) + Z?Zl ziu; for all x € A%! + z, and we used
8Raly, = &jat- Since (§(x)) czq are ii.d., (3.16) proves that (b), (¢) and (e) from
Proposition 2.6 hold. It follows that all assumptions of Proposition 2.6 are satisfied.
Therefore

Sayl81G0) converges in L.

N4
Together with (3.8) this proves that limy _, oo 0o, [§](1) exists in L.

(b) Since we were unable to find in the literature a result for multiparameter
subadditive processes which we can apply directly as in (al) and (a2) to show
that o (#)[£] is independent of the disorder &, we will briefly sketch next a proof
of the statement for our case. For simplicity of notation, we restrict ourselves to
proving (b) for Ao ], where we recall that Ao y) = [0, N “nzd.

Letk,n,r € Z4 such that r < n and such that N =kn 4 r. Fora = (a;)1<i<d €
Zd, let Iy = A[(a1—l)n,aln]x~~~x[(ad—1)n,adn] and let J]i/,k,n ={z e 74 kn <zs <
N,0<z;<Nfori={I1,2,...,d}\ {s}}, wheres =1,2,...,d. Then

Apo,N1 = U ILaU U Tk
{1<aj<k,i=l,...d} {l<s<d)}

In words, we are partitioning A[o y] into the union of cubes of side lengths n,
which are the I’s, and the J’s represent the leftover boundary terms because N
may not be divisible by n. Thus written, Ajo,x] is a union of disjoint sets. From
repeated application of (3.13), we have

d
G18)  fagmlEl < Y A lE0+ Y fry, [E1).
s=1

{1<a; <k,i=1,...,d}

The key of the proof is that we can use the ergodic theorem for the first sum in the
right-hand side in (3.18) and that the boundary terms coming from the J’s are neg-
ligible. Combining this with the a.s. and the L' convergence of N ¢ SapnE1wm)
proved in (al) and (a2), the proof follows now similar steps to the proof of Theo-
rem 1.10 from [24] and will be omitted. [J
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3.2. Existence of shift-covariant random gradient Gibbs measures with given
tilt. This subsection is structured as follows: in Section 3.2 we construct
in (3.24) a sequence of spatially averaged finite-volume gradient Gibbs mea-
sures ({14 [E])pczd, such that (f P(d&)i' [E]) A cza is tight, as shown in Propo-
sition 3.6, and shift-invariant. In Section 3.2.2 we will use the tightness of
(/P(d&) 'y [E]) acze to prove in Theorem 1.7 the existence of a shift-covariant
random gradient Gibbs measure with a given tilt u € R?.

3.2.1. Tightness of the averaged measure. In order to prove tightness of the
finite-volume gradient Gibbs measures averaged over the disorder, we look at the
finite-volume Gibbs measures with tilt u € R¢ and boundary condition i, (x) =
u-x:

v/ E](dg) = ! exp(—l Vi(p(x) —o(y)
A ZY' &) 2 x,yZeA ( )
l[x—yl=1

(3.19) - Y Vie® —vu ()
XeA,yedA
lx—yl=1

+ X 6@ ) dondy, oz ).
xeA

Let us look now at the quantity

Fpualén] == log / v [£](dg)
(3.20) P
X eXp<+5 > (p(x) —p(y) —u- (x — y))2>,

x,yeZ‘Hx—y\:l

for B > 0 sufficiently small. In (3.20), the sum over x,y € Z¢, |x — y| = 1, can
be taken to include all the bonds on Z¢ due to the fact that ¢ = ¥, on A€.
Note that Fg, A is the difference between the original free energy in the vol-
ume A and the free energy in the volume A where we have added the term
g Do yezd [x—yl=1(@x) —@(y) —u - (x — y))? to the Hamiltonian.

We first note the following disorder-dependent upper bound for Fg , A .

LEMMA 3.5. Letd > 3. Assume that V satisfies (1.3) and (1.4). Then

Fpualén]l < —IAl02 P1E =01(u = 0) — o[£ = 0](u = 0))
+ Y (B+V(0)
x,yeAUIA
[x—yl=1
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A—B—Cr/2
(3.21) - # S (@—y-u)’
x,yeAUIA
[x—yl=1
1 1 2
+ E(A——f} - C—2>($, Gaé)a

_ o
=:Fgun+ 5(5, GAé)a,

with the obvious definitions for F, B.u,A and .

PROOF. Using bounds As2 — B <V(s) < V() + %sz for the potential V,
we have

exp(Fp,u,alEA])

S/CXP(—% Y (Ap@) — ()’ — B)

x,yeA
lk—yl=1
— Y (A@ - =B+ Y s<x><o<x))
XEA,yEIA xXeA
lk—yl=1
(3.22) X exp +§ Yoo (e =) —u-(x— y))2> doa

x,yeZd,lx—ylzl

1 (&
[ [exo(—3 X (Se -9 +v0)
x,yeEA
lx—yl|=1

le—yl=1
xexp( X 0000 ) dn.
XEA
This, by the same reasoning as in the proof of Theorem 3.1, is equal to
1 - ~ )2
[ee(—3 X (@-peem -50)

x,yeA
l[x—yl=1

+(A-B)((x—y)-u)’ —B)
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— Y (A=P@)*+(A—P)((x —y) -u)* —B)
XEA,yedA
x—yl=1

+ L EW0G() )
xXEN

(3.23)

s (Sl ooy
/[ exp( 2x§A<2(¢<x> )
= yl=1

C
+ 72((x —y)u) 4 V(O))

C C
- Y (20w Ze-n 0 +vo)
XeA,yedA
—yl=1

+ L 606w .
XEA
where we note the cancellation of a sum over &’s and where, as in the proof of
Theorem 3.1, for all x € A we used the change of variables ¢(x) = ¢(x) + x - u.
The statement of the Lemma follows now by computing the Gaussian integrals
above as in the proof of Theorem 3.1. [J

Take p,(b) := Vi, (b) for all b € (Zd)* and consider the corresponding gra-
dient Gibbs measure ,up “[£] as given by (1.12). Let us now define the spatially
averaged measure (i} [£] on gradient conﬁgurations obtained by

(3.24) AAE] = —— " uh, (€]
|A| XEA

where we recall that A + x := {z +x:z € A}. This is an extension to our disorder-
dependent case of the construction on Gibbs measures with symmetries given
in [17], in formula (5.20) from Chapter 5.2; the construction in [17] was used
to get shift-invariant Gibbs measures. We note that in (3.24), the random field vari-
ables & are held fixed while the volumes A + x are shifted around. We will first
use the fact that the measure (/ P(d&)/1'; [£]1)(de) is shift-invariant in the proof of
Proposition 3.6 below. Then we will use iy [£] to construct shift-covariant gra-
dient Gibbs measures in Section 3.2.2 by performing a further average over the
volumes.

In preparation for the proof of existence of random shift-covariant gradient
Gibbs measures, we will prove the following result on the tightness of the fam-
ily of averaged finite-volume random V¢-Gibbs measures, and therefore on the
existence, of the infinite-volume V¢-Gibbs measures averaged over the disorder.



1678 C. COTAR AND C. KULSKE

PROPOSITION 3.6.  Suppose thatd > 3 and E(£(0)) = 0. Assume that V satis-
fies (1.3) and (1.4). Then there exists a constant K > 0 such that for all xo, yo € 74
with |xg — yo| = 1, the measure

PY(dg) = ( / P(dé)ﬁb‘\[ﬂ)(d(p) - <| P f P [8]) @)
satisfies the estimate
(3.25) limsup P¥ [(9(x0) — (o) — u - (x0 — y0))’] < K

Hence the sequence of measures Py is tight and thus possesses a disorder-
independent limit measure (along subsequences of volumes) on gradient config-
urations.

PROOF. Let f: RZ! [0, 00) be given by f(¢) := (¢(x0) —@(yo) —u - (x0 —
yo))z; using translation invariance of the distribution of the disorder (§(x)), 74,
we have

Pr(f) = [ > Eul, E]](f) Y Eul ED(f o)
|1A| XeA |A| xeA
= —FEu’" oTy ).
L)X for)

x€eA
By the nonnegativity of f we have for P-almost all &

(X ron) = mpie X - e -G -n))
XEA x,yeZd |x—y|=1

=:gl§].
By writing g[£] = (2/8) log e'#/28lé] and applying Jensen’s inequality, we have

PX(f)

1
WEM”” [é]( ) () —p() —u-(x - y))z)
x,yeZd lx—y|=1

< ﬁﬂilogu [S](eXp(lj Yoo (e —e() —u-(x— y))2>>.

By Lemma 3.5 we get when A = Ay the upper bound

2 2 o
3.26 P —— F —E(=(,G ,
B26) P = g Faunn + 5B 316 Ganlny)

x,yeZd |x—y|=1

Ftﬁ,u,AN

AN is uniformly bounded by Theo-

rem 1.10 and by (3.7), and 0 < |A |IE(($ Gayé)ay) < G(0,0) + 1, by Proposi-
tion 2.1(ii) and E(£(0)) = 0. This proves the claim. [

which is bounded uniformly in A N, as
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3.2.2. Existence of shift-covariant random gradient Gibbs measures with given
tilt. In this subsection we will prove our main result, Theorem 1.7, of existence of
a shift-covariant random gradient Gibbs measure /1“[£] with a given tilt u € R?. In
the proof, we will first construct a candidate (1 [£] by taking suitable subsequential
weak limits, and then in two subsequent Lemmas 3.9 and 3.10, we will prove,
respectively, that P-a.s., our candidate 1“[£] is a gradient Gibbs measure, and is
translation-covariant.

To construct a candidate 1"[£], we will need to perform a further average of
H"[€] over the volumes A, and to find a deterministic sequence (m,),cN, along
which there is a weak limit for P-a.e. £. This will be facilitated by Theorem 1la
from [20], which we state below.

PROPOSITION 3.7. If (&n)neN is a sequence of real-valued random variables
with liminf,_, o E(|Z,|) < 00, then there exists a subsequence {0, },eN of the se-
quence {{n}neN and an integrable random variable 6 such that for any arbitrary
subsequence {én}neN of the sequence {0,}, we have

OO+ 46,
lim —

n—oo n

0 P-almost surely.

We are now ready to prove the existence of shift-covariant gradient Gibbs mea-
sures in Theorem 1.7, which follows immediately from the next Proposition.

PROPOSITION 3.8. Suppose that d > 3 and E(£(0)) = 0. Assume that V sat-
isfies (1.3) and (1.4). Then there is a deterministic sequence (m,),eN in N such
that for P-almost every &,

1 k
(3.27) AilE) = > A, 18]
i=1
converges as k — 0o weakly to 1*[&], which is a shift-covariant random gradient
Gibbs measure defined as in Definition 1.6.

PROOF. We will prove first that there exists a deterministic sequence (1, )eN
in N such that (i} [£])ren converges a.s. to a random measure ji“[£]. We will then
show that 1"[£] is a.s. a gradient Gibbs measure, is translation-covariant and that
& — [1"[&] is a measurable map.

Let (fi)ieny be a countable collection of functions in Cp(x), such that a se-
quence of probability measures w, € P(x) converges weakly to u € P(x) if and
only if u,(f;) — w(f;) for all i € N. Such a countable family (f;);en in Cp(x)
is explicitly given, for example, in the general setting of separable and complete
metric spaces in Proposition 3.17 from [26] or in Lemma 1.1 from [19]. To show
that for a given sequence (m,),<n and a random measure t[&], x[£] converges



1680 C. COTAR AND C. KULSKE

a.s. to [1[£], it suffices to show that ax[E]1(f;) — @A[E]1(f;) almost surely for each
i eN.
Foreach NeNand x,y € 74 with |x — y| =1, define

(3.28) Xy l61:= % [E1((9(0) — 9(») —u - (x — ))).

Take now the countable sequence containing both the family ([ﬂ[‘\N[S 1(fi))i.NeN

and (Xn;x,y[§]) vewx,yeze - We note that since (f;)ien are bounded functions,
x—y|=1

11m1an¢ooE(/LANl[é]l(|f, 1)) < |filoo < 00.Note also that liminfy E(Xy,x, y[£]) <

oo by Proposition 3.6. Therefore by Proposition 3.7, for each xq, yo € Z¢ with

|xo — yo| = 1, there exists a sequence (n,),ecn and a random variable ky,, y,, both

depending on xg and yg, such that

lllTTo k Z Xnyix0,v0[E] = Kxg,y0[€] for P-almost every &.

Moreover

kl#rglo k Z Xn, x0,v0LE] = Kxg,yo[§] for P-almost every &

holds also for every further subsequence (7, i )r jeN of (n,)ren. We take an arbitrary
such subsequence n,;. By Proposition 3.7, there exists a subsequence (n).)ren of
(n,j),jeN and a random variable pg, both depending on xg and yg, such that

I}le k Z MA . [E1(f1) = prl€] for P-almost every &.

Moreover

lim - P Z Aing 1) = pilg]  for P-almost every &

holds also for every further subsequence n/. of n

We repeat this procedure for each x, y € Zd |x - y| =1 and for each i € N. By
a Cantor diagonalization argument over the countably many x, y € Z¢, [x —y| =1
and over the i € N, there exists a deterministic sequence (m, ), in N and random
variables (Kx,y[é])x’ygzd,‘x_ﬂ:l and (p;[£])ien such that for P-almost every &,

khTm t: Zer xylE] =Ky y[E] and

(3.29)

Jim Zui’\mr [E1C/) = pilE],
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for all x,y € Z¢ and all i € N. In particular, we get from (3.29) that
supgen Xk:x,yl[§] < Ckx,y[E]) for some C(ky,y[£]) > 0. Therefore for all b €
(Z4)*, with b = (x, y), we have for P-almost every &

11m sup A [E1(n:In(b)| > L) < hm sup k;x’g[g] =0.

O keN L1ookeN

This means that for P-a.s. all &, there exists a (possibly) random subsequence
(k'[£]) such that (ﬂz,[g] [£ Dw(e 1s tight and converges weakly to a random measure
a"[&]. The random subsequence (k'[£]) is used only for tightness; in fact the sub-
sequence becomes nonrandom again as we return below to the deterministic sub-
sequence (m,). Moreover, we have /lz,[é][é](fi) — pM[EN(S;) for all i € N. Due
to (3.29), and by the uniqueness of the limit point, we get that p;[§] = 2“[E]1(fi)
forall i € I. Since ﬁ’,ﬁ [E1(f;) = A*[E1(f), it follows that 1 ¢ 1€] converges a.s. to
a random measure g"[£].

From Lemma 3.9 below, we get that for P-almost all &, 4"[£] is a gradient
Gibbs measure and from Lemma 3.10 below, that a%“[£] is translatlon covariant
for P-almost all £.

It only remains to prove that § — (1"[£] is a measurable map. We recall that the
disorder is defined on the probability space (€2, F, P). With a given tilted boundary
condition ¥, ,ulf(” [£] is clearly a measurable function of the disorder field &. Since
a" is constructed as a pointwise (w.r.t. &) limit of averages of such measurable
P(x)-valued functions of &, i* is also a measurable IP(x)-valued function of &.

O

We will prove next Lemmas 3.9 and 3.10. The setup is as before; that is, 1} [£] is
defined as in (3.24), and the assumption is that along a deterministic subsequence
(m;)ien in N, we have weak convergence of ;lz [£] to @ [&] for P-almost all &.

LEMMA 3.9. For P-almost all &, the limit i*[£] is a gradient Gibbs measure.

PROOF. In order to show that f1*[£] is a gradient Gibbs measure, we have to
show that for each fixed &, for all F € C;(x) and for all J C Z¢ we have

(3.30) / A"[£1(dP) / WALEN(dn) F () = f AMENAN F ().

Using the compatibility of the kernels, namely

f WOTENdR) L IE] = el for J C A C 74,
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we have

/ Mﬂ(dﬁ)u?[&]

> [ w8 )apuel

xeA

_L Pu ~\ P
(3.31) _|A|< >+ ) >/MA+X[§](dp)M1[E]

xeAN:JCA+x xeA:JZA+x

IAI

1
- ¥ uﬁqx[sw I MGG
AL cen T nts Al cen TEAt
1 - ~
GRS D S § W RGO B BTN

xeA: JZA+x

Fix J C Z¢ and take k € N large enough. Applying (3.31) to the subsequence
(Am;)1<m; <k and to an arbitrary F' € C, (), we have

; 1 & 1 &
(3:32)  AEIENMIIENF) = 7 >y, [E1CF) + . > R(Am;. J, F)E]
i=1 i=1

where |R(Am, J, HIEN < G55 Xren, ¢ an +x 1> for all 1 <i <k and for

some constant C(f) > 0. In order to prove (3.30), we need to take k — oo on
both sides of (3.32). To do that, we have to prove first that for all ' € Cp(x) and
for all fixed J C Z¢ we have

(3.33) ﬂ[é‘](dﬁ)(u’;[é](F)) = lim ﬂZ[S](M’J;[S](F))-
ktoo

To show (3.33), it is sufficient to show that for all F € Cp(x) the function
u’;[é](F ) € Cp(x) as a function in p; then (3.33) will follow by the hypothe-
sis. The boundedness of ,u’;[f J(F) follows immediately due to the boundedness
of F. To prove continuity of ,u‘;[é](F ), fix p € x arbitrarily. As x equipped with
the metric ||, is a complete metric space, we can take now a sequence (0,)neN €
x such that lim,y0 0, = p in x; we have to show that lim; 40 u/;” [EN(F) =
u’; [E1(F). In view of the fact that V € C2(R), we note now that both the integrand
in the numerator, and the integrand in the denominator, of lim; 1 [Lp "[E1(F) con-

verge as p, — 0; moreover, due to the bounds As2—B<V(s)<V(0)+ %Zsz on

the potential V and by a similar reasoning as in the proof of Lemma 3.5, these inte-
grands are uniformly bounded by integrable functions. Applying now Lebesgue’s
dominated convergence theorem separately to the numerator and to the denomina-

tor gives limy oo ,u'o "[£1(F) = n/}[£1(F), and therefore (3.33) holds. Taking k to
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infinity in (3.32) and using (3.33), we get

- 1 & 1 &
/ﬂ[%‘](dﬁ)(ug[é](l’)) = lim — E Wy, [E1CF) + lim — E R(Am;, J, F)[§]
kTookl.:1 i kTookl.:1

= A"[E1(F) +0,

where the convergence holds due to the fact that F € C,(RZ"") and Yk R(Am,;,
J, F)[&]/k goes to zero uniformly in &, due to the upper bound on |R(A, J, F)[&]].
This proves that (3.30) holds. [

LEMMA 3.10. For P-almost all &, the limit i"*[€] is translation-covariant,
that is, for all v € 74 and for all F € Cp(x), we have

(3.34) AU [EN(F o ) = A" [Té1(F),

where we recall that (t,€)(z) = £(z — v) forall z € Z¢.

PROOF. Fix v € Z4. Then we have

AUEI(F o Ty) — A" [tyE1(F)

1 k
(3.35) :;}%?OE Z ( > A xlE1(F o)

1:1 m,- XEAm,

- X MmN,

xeAmi

The terms inside the last bracket equal

Do R Bl F o) = 37 ul L lnEl(F)

XGAmi xeAm

Do uR L IEE) = Y L (EE).

xeAmi+v xeAmi

Most terms on the right-hand side cancel. Therefore, for a bounded function F
such that || F||co < C(F) for some C(F) > 0, we have

C(F) i | Am; A(Am; 4 0)]
k | A, | ’

i=1

(3.36)  |A'[E1(F) — A [n&1(F)] < ]}#Iglo

where we denoted by A the symmetric difference of the sets A and A + v. But
[ Ap; A(Ap; + v)| goes to zero when divided by |Ay; |, uniformly in m;, which
implies that (3.36) goes to zero also. This shows the translation-covariance. [
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PROOF OF THEOREM 1.7(a). Proposition 3.8 implies the existence of a ran-
dom gradient Gibbs 1*[£]. We prove next that "[£] satisfies (1. 15) Given the
tilt u € R?, the limit /1“[£] we construct is the weak limit of the /i t1€]. We next
calculate what is the expected tilt over a given bond under the measure f[£], av-
eraged over the disorder. For any m; in the deterministic sequence (m;)1<;<t and
for by := (0, e1), we have by means of (3.24) and of Definition (1.12)

o E1 ) = | Z Wi LEB)

mi Xe€Ap
1

" Al Am +:[E1(e(e1) — 9(0))
mil o,

(3.37) 1 e

=T Z vf\:;fi‘/fu[t_xé]((p(el —x) — p(=x))
Ml xeAm,
! Yu

=TA] > VA, [r_&](p(e1 — x) — p(—x)),

xeAmi

where for the third equality we made for all y € A, the change of variables
() = ¢(») + X%, uix; under each integral. Let

[\;;ni’mi ‘= Nmiyx[—mj mi]x--x[-m;,m;] and
]\:Tzi’mi = Afmmy)x[=mimi] X x[—mi,m;]-

Averaging over the disorder in (3.37), we get

B[ s [5](‘177)7](1?1))

Z E(f Vu r_xé](dfp)(sﬂ(el—X)—QO(—X)))

|1\m, XEAy,
E [£1dg) (¢(er —x) — p(—x))

|Am, ; (/ )

1

=] X (fvf“ [£1(de) (p(e1 —x) — p(— x)))
i xefAm \A i ™)
1
to X E([ el @0 0 - o)
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Most of the terms in the last equality in the above equation cancel and we are left
with

B( [ agisiannen)

1
[ Yoo Ylea—x)— Y. (ur+¥(—er—x)

| ml| A XG/_\,;:/" mj

—m;

(f v 1)) (p(—x) - w—el—x)—ul)ﬂ

mm
xeA

O(K,Ml)
2m; + 1 ’

uniformly in m; € N, and where to bound the last term in the first equality, we used
Proposition 3.6. From this, it follows easily that we have, uniformly in k € N,

logk
E(/ ﬁk[é](dn)n(bl)) iy 4 2002k

Fix any large M > 0. Then n(b) A M v (—M) is bounded and continuous, so for
P-a.s. all £, we have

Jim [ g1 DN G) AM v (M) = [ ZENAmn®) A MV (=),

Moreover, from Proposition 3.6 and Chebyshev’s inequality, we have
O(K)

2( [ atsiann®) =2( [ atsianne) Avv <)+ S0

uniformly in k € N. Therefore by sending M to oo, the convergence of the trun-
cated n together with the fact that [ 2“[£](dn)n(b) is an integrable random vari-
able, proves (1.15). By symmetry, (1.15) holds for any b € (Z4y*.

To prove (1.16), take any b = (xg, yo) € (Z4)*. Since (p(x0) —(yo) —u- (xo—
¥0))? > 0, by the weak convergence of (i) ken to 1" and by Proposition 3.6, we
have

1

:ul

E( [ 1@ o) — et0 — - o - )’0))2)
(3.38)
<E(lim inf i (p(x0) = 9(v0) —u- (0~ 30))°) < K. -

PROOF OF THEOREM 1.8. Suppose that the infinite-volume gradient Gibbs
measure does exist and it satisfies E| [ u[£](dn)V'(n(b))| < oofor all bondsb =
(x,y) € (Z4)*. Then we have, in the present notation,

(3.39) YEx == Y Xauylél

xeA Ay
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with Xp[£]:= [ n[£]1(dn)V'(n(b)) which was proved in [29]. We take A to be a
box, divide both sides of the equation by |A| and take the limit A 1 Z¢. Then the
right-hand side tends to zero if d > 1, while the left-hand side tends to the nonzero
constant E(£(0)) in any dimension. [J]

3.2.3. Nonroughening in an averaged sense. We will give next the following
large deviation upper bound both for the measures ©'4 [£], as defined in (3.19), and
for the averaged measures i} [£], as defined in (3.24).

PROPOSITION 3.11. Suppose that d > 3, E(£(0)) = 0 and E(£%(0)) < oo.

1. Then there exist constants K, 8, ty > O such that for all but finitely many N € N,

the following large deviation upper bound holds for all t > to and for P-almost
all &:

1
uh [51(2 =Y ew—em e =) >r)
IANT s yennTe—yi=1
(3.40)
< exp(—BlANI).

2. The same result holds for the averaged measures ji'y [§].

PROOF. The assumption E(& 2(0)) < oo allows us to use the SLLN in Propo-
sition 2.4 along boxes A y of side-length N, which implies that there exists a non-
random constant K such that for N large enough, we have (€, GAapnE) Ay 5 K
Conditional on this bound, one has by means of Lemma 3 5 t&lat Fguanléay]
|[An|K (for a modified K) which, by the exponential Chebychev inequality, im-
plies the concentration bounds of the form (3.40).

To get the same type of bounds for the measure 'y [£], we need to make use
of the monotonicity in A € Z¢ of the quadratic form (£, G &) A stated in Proposi-
tion 2.3.

Let us look at the quantity

exp ﬁﬁ,u,A[EA]

= / Ej‘\[g](dw)exp(+§ > (p(x) —(y) —u-(x — )’))2>

X, yEAN,|x—y|=1

with the obvious definition for v}{ . Note that we have the following upper bound:

Fﬁ u,AlEA] < eF/S u,A Z e(a/z) &, GA+r§)A+x
|A| XeA

by a straightforward application of the previous steps. By Proposition 2.3 we have

for each term under the sum, the estimate (§, GA1x&)a+x < (§,GA4+AE)A+A

where A + A:={x+ y:x,y € A}. This gives us the estimate

Fgunlénl < Fpun+ = (5 GAa+naE)A+a-
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From here the proof of the validity of the bounds stays the same. [

4. Model B. The proof of Theorem 1.10 on surface tension for model B fol-
lows the same argument as for model A, so it will be omitted. We will focus in-
stead on proving the existence of shift-covariant random gradient Gibbs measures
with given tilt. We consider the finite-volume Gibbs measures with tilt u € R? and
boundary condition ¥, (x) = u - x of the form

VY [w](dg)

1 1
:—exp(—— V&) — o)
Zf[a)] 2 x,yXe:A ()
[x—yl=1

- Z V((;),y) (go(x) - W()’))) dpady, (dwzd\A)-
XEA,yeOA
lx—yl=1

Similar to what we did for model A to prove tightness, we will consider
exp Fgu,nlonl
@.1n 5
u 2
= / vy [w](dw)eXP<+§ > (P(x) —p(y) —u-(x —y)) )
x,yeZ4 |x—y|=1

By the same reasoning as for the proof of Lemma 3.5, we get:

LEMMA 4.1.

Fpunloal < —|Al(02 Plo =01 =0) — 6w = 0](u = 0))

+ Z Ba,y)
x,yeAUIA
lx—yl=1
ABC sy
2 x,yeAUIA
lx—yl=1

4.2)

where the first term on the right-hand side is a nonrandom quantity which is
bounded by a constant times |A|.

Note that the critical dimension for existence changes from d = 3, as it was in
model A, to d = 1. The reason for this change is the absence of the term (§, GA&) A
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in the formula for Fg , A[wa] above, and which term, present in the formula for
Fg.u,aléa] in model A, diverges for d = 2 when averaged over the disorder.

Define Mp “[w] and M’O “[w] as for model A. As in Proposition 3.6 from model A,
we have the following result on the tightness of the family of finite-volume random
V¢-Gibbs measures MI‘\N [w] averaged over the disorder.

PROPOSITION 4.2. Suppose that d > 1. Then there exists a constant K > 0
such that for all bonds xo, yo € 74, with |xo — yo| = 1, we have that the measure
Py (dp) = [ P(da)),u “[w](de) satisfies the estimate

(4.3) limsup P (¢(x0) — 9(30))* < K

Ntoo
Hence the sequence of measures PKN is tight and thus possesses a disorder-
independent limit measure (along subsequences of volumes) on gradient config-
urations.

PROOF. We proceed exactly as for model A to get the bound

PR(f) = mAlElog/x [w]
(4.4)

x (exp(§ Yoo () — () —u - (x — y>)2)),

x,yeZd |x—y|=1

which gives us

2 2
(4.5) PN =g Frant g X EBE,).
BIA BIAIN, 2, 0
[x—yl=1

which is bounded uniformly in A. [

Theorem 1.7(b) follows now immediately from Proposition 4.2 by similar rea-
soning as in the proof of Theorem 1.7(a).

Similar to the proof of Proposition 3.11, we have the following large deviation
upper bound for the finine volume Gibbs measures M “[w] and i} [w].

PROPOSITION 4.3. Suppose that d > 1. Then there exist constants
K, B, to > 0 such that for all realizations v € Q2 and for all N € N the follow-
ing large deviation upper bound holds for all t > ty:

1
i Lo ](2|A | > ((p(x)—<p(y)—u-(x—y))2>t>
x,yeAn,|lx—y|=1
(4.6)
<exp(—B|ANIt)
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and

1
amw]( S () — e —u- (x— )’ >r)

2|AN| X, yeAN,|x—y|=1

< exp(=BIAn|t).

“.7

APPENDIX

A.1. Why the Gibbs measure does not exist for model A in d = 3, 4 for
V(s) = s%/2. We will prove next that for model A in d = 3, 4, there exists no
infinite-volume Gaussian Gibbs measure with s := sup, .z« E| [ v[§](dg)p(x)| <

o0o. Take Ay :=[—N, N]d NZ, N €N, and let e de be an arbitrary boundary
condition. Then we have for the finite-volume Gibbs measure

(A1) f VX (6190 = Y Gay(0,2)5@) +Eo(¥(Xs, ).

ZEAN

Here the expectation Eg is w.r.t. a nearest-neighbor random walk X := (Xj)ren
started at O with Green’s function (G4 (0, y))yea . and the second term is what
we obtain for the nondisordered model. We defined 75, :=inf{k > 0: X} € An©},
s0 Xcy is the position of the random walk when it exits A y. Suppose that there
is a random infinite-volume Gibbs measure v[£] in d = 3, 4. Average (A.1) over
the boundary conditions ¥ w.r.t. the measure v[£] and use the DLR equation to
conclude that

A2) [VIEId© = T Gay(0. () +Eo [ vIE1do) (g (Xry, ).
Z€EAN

The expectation under the disorder for the second term in (A.2) stays bounded
uniformly in Ay under our hypothesis; in fact, we have

E

By [ viE1@0)0Xry, )|

(A3) —F

> PoXey, =w) [ vIENd)R)

uedAy

<s.

< 3 ooy, =wE| [ vl

UEIAN

The left-hand side of (A.2) is a proper random variable and (Eq [ v[£](dg) x
(@(Xzy D) ayczd is a tight family of random variables by (A.3). However,
(Xzeny Gay(0,2)6(2) 5 yczd 1s not a tight family because a simple character-
istic function calculation shows that

ZzeAN GAN (0? Z)S(Z)
VX eeny G2, 0,2)
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converges to a standard normal as N 1 0o, since }_ cx G%\ (0, 2) diverges in
d =3, 4. This leads to a contradiction in (A.2) as Ay % Vi

The identity in (A.1) is based on exact computations for multivariate Gaussian
distributions, which we do not have for nonquadratic potentials. For the more gen-
eral class of potentials satisfying (1.3) and (1.4), we expect the conclusion to be
the same.

A.2. Why the Brascamp-Lieb inequality does not solve the problem.
A different route to proving the existence of random gradient Gibbs measures
uses the Brascamp—-Lieb inequality. It states that for y a centered Gaussian distri-
bution on R? and a distribution x on R such that there exists du/dy = e~/ for
a convex function f, one has for all v € R4 and for all convex real functions F,
bounded below, that

(A.4) w(F(v- (X — (X)) <y(F-X)).

The above is the formulation by Funaki in [15]. An application of (A.4) to our
disorderd case would give, for example, that

18 161 ([0 (x0) — (o) — 12 [E)(9(x0) — 9 0)])

(A.5) )
< ya(lexo) — (o)1),

where y, is the corresponding Gaussian measure. The right-hand side is uniformly
bounded in A, so that would prove a.s. tightness for strictly convex potentials V if
we can prove that the expected values of the local tilts of the interface taken over
the Gibbs distribution have limits for almost surely every realization of disorder,
that is, if we can prove that

(A.6) lim pR[£](e(x0) — @ (¥0))

[Altoo
exists a.s. for xg, yo € A, with |[x — y| = 1. However, currently we do not have a
way either to prove (A.6) or to prove the existence of the limja|100 /lf\“ [E](p(x0) —
¢(30)), as introduced in (3.24), in the presence of disorder. Note that in the model
without disorder, we can show for strictly convex potentials V the existence of the
last limit by Brascamp—Lieb inequality coupled with shift-invariance arguments.
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