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EXISTENCE OF RANDOM GRADIENT STATES1

BY CODINA COTAR AND CHRISTOF KÜLSKE

The Fields Institute and Ruhr-University of Bochum

We consider two versions of random gradient models. In model A the in-
terface feels a bulk term of random fields while in model B the disorder enters
through the potential acting on the gradients. It is well known that for gradi-
ent models without disorder there are no Gibbs measures in infinite-volume
in dimension d = 2, while there are “gradient Gibbs measures” describing an
infinite-volume distribution for the gradients of the field, as was shown by
Funaki and Spohn. Van Enter and Külske proved that adding a disorder term
as in model A prohibits the existence of such gradient Gibbs measures for
general interaction potentials in d = 2.

In the present paper we prove the existence of shift-covariant gradient
Gibbs measures with a given tilt u ∈ R

d for model A when d ≥ 3 and the
disorder has mean zero, and for model B when d ≥ 1. When the disorder
has nonzero mean in model A, there are no shift-covariant gradient Gibbs
measures for d ≥ 3. We also prove similar results of existence/nonexistence
of the surface tension for the two models and give the characteristic properties
of the respective surface tensions.

1. Introduction.

1.1. The setup. Phase separation in R
d+1 can be described by effective inter-

face models for the study of phase boundaries at a mesoscopic level in statistical
mechanics. Interfaces are sharp boundaries which separate the different regions of
space occupied by different phases. In this class of models, the interface is mod-
eled as the graph of a random function from Z

d to Z or to R (discrete or continuous
effective interface models). For background and earlier results on continuous and
discrete interface models without disorder, see, for example, [7–9, 12, 14, 16, 18]
and references therein. In our setting, we will consider the case of continuous in-
terfaces with disorder as introduced and studied previously in [29] and [21]. Note
also that discrete interface models in the presence of disorder have been studied,
for example, in [4] and [5]. We will introduce next our two models of interest.
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In our setting, the fields ϕ(x) ∈ R represent height variables of a random inter-
face at the site x ∈ Z

d . Let � be a finite set in Z
d with boundary

∂� := {x /∈ �,‖x − y‖ = 1 for some y ∈ �}
(1.1)

where ‖x − y‖ =
d∑

i=1

|xi − yi |.

On the boundary we set a boundary condition ψ such that ϕ(x) = ψ(x) for x ∈ ∂�.
Let (�, F ,P) be a probability space; this is the probability space of the disor-
der, which will be introduced below. We denote by the symbol E the expectation
w.r.t. P.

Our two models are given in terms of the finite-volume Hamiltonian on �.

(A) For model A the Hamiltonian is

H
ψ
� [ξ ](ϕ) := 1

2

∑
x,y∈�

|x−y|=1

V
(
ϕ(x) − ϕ(y)

)+ ∑
x∈�,y∈∂�

|x−y|=1

V
(
ϕ(x) − ψ(y)

)

(1.2)

+ 1

2

∑
x∈�

ξ(x)ϕ(x),

where the random fields (ξ(x))x∈Zd are assumed to be i.i.d. real-valued ran-
dom variables, with finite nonzero second moments. The disorder configuration
(ξ(x))x∈Zd denotes an arbitrary fixed configuration of external fields, modeling a
“quenched” (or frozen) random environment. We assume that V ∈ C2(R) is an
even function with quadratic growth at infinity:

V (s) ≥ As2 − B, s ∈ R,(1.3)

for some A > 0,B ∈ R. We assume also that there exists C2 > 0 such that

V ′′(s) ≤ C2 for all s ∈ R.(1.4)

(B) For each bond (x, y) ∈ Z
d ×Z

d, |x −y| = 1, we define the measurable map
V ω

(x,y)(s) : (ω, s) ∈ � × R → R. Then V ω
(x,y) is a random real-valued function and

V ω
(x,y) are assumed to be i.i.d. random variables as (x, y) ranges over the bonds.

Let Bω
(x,y) be a family of i.i.d. real-valued random variables with E|B(x,y)| < ∞.

We assume that for some given A,C2 > 0, V ω
(x,y) obey for P-almost every ω ∈ �

the following bounds, uniformly in the bonds (x, y):

As2 − Bω
(x,y) ≤ V ω

(x,y)(s) ≤ C2s
2 for all s ∈ R.(1.5)

We assume also that for each fixed ω ∈ � and for each bond (x, y), V ω
(x,y) ∈ C2(R)

is an even function. Then for model B we define the Hamiltonian for each fixed
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ω ∈ � by

H
ψ
� [ω](ϕ) := 1

2

∑
x,y∈�,|x−y|=1

V ω
(x,y)

(
ϕ(x) − ϕ(y)

)
(1.6)

+ ∑
x∈�,y∈∂�,|x−y|=1

V ω
(x,y)

(
ϕ(x) − ψ(y)

)
.

The two models above are prototypical ways to add randomness which pre-
serve the gradient structure, that is, the Hamiltonian depends only on the gradient
field (ϕ(x) − ϕ(y))x,y∈Zd ,|x−y|=1. Note that for d = 1 our interfaces can be used
to model a polymer chain; see, for example, [11]. Disorder in the Hamiltonians
models impurities in the physical system. Models A and B can be regarded as
modeling two different types of impurities, one affecting the interface height, the
other affecting the interface gradient.

The rest of the Introduction is structured as follows: in Section 1.2 we define
in detail the notions of finite- and infinite-volume (gradient) Gibbs measures for
model A, in Section 1.3 we sketch the corresponding notions for model B, in Sec-
tion 1.4 we introduce the notion of surface tension for the two models, and in
Section 1.5 we present our main results and their connection to the existing litera-
ture.

1.2. Gibbs measures and gradient Gibbs measures for model A.

1.2.1. ϕ-Gibbs measures. Let Cb(R
Z

d
) denote the set of continuous and

bounded functions on R
Z

d
. The functions considered are functions of the interface

configuration ϕ, and continuity is with respect to each coordinate ϕ(x), x ∈ Z
d, of

the interface. For a finite region � ⊂ Z
d , let dϕ� := ∏

x∈� dϕ(x) be the Lebesgue
measure over R

�.
Let us first consider model A only, and let us define the ϕ-Gibbs measures for

fixed disorder ξ .

DEFINITION 1.1 (Finite-volume ϕ-Gibbs measure). For a finite region � ⊂
Z

d , the finite-volume Gibbs measure ν�,ψ [ξ ] on R
Z

d
with given Hamiltonian

H [ξ ] := (H
ψ
� [ξ ])

�⊂Zd ,ψ∈RZd , with boundary condition ψ for the field of height
variables (ϕ(x))x∈Zd over �, and with a fixed disorder configuration ξ , is defined
by

ν
ψ
� [ξ ](dϕ) := 1

Z
ψ
�[ξ ] exp{−H

ψ
� [ξ ](ϕ)}dϕ�δψ(dϕZd\�),(1.7)

where

Z
ψ
�[ξ ] :=

∫
RZd

exp{−H
ψ
� [ξ ](ϕ)}dϕ�δψ(dϕZd\�)
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and

δψ(dϕZd\�) := ∏
x∈Zd\�

δψ(x)(dϕ(x)).

It is easy to see that the growth condition on V guarantees the finiteness of the
integrals appearing in (1.7) for all arbitrarily fixed choices of ξ .

DEFINITION 1.2 (ϕ-Gibbs measure on Z
d ). The probability measure ν[ξ ] on

R
Z

d
is called an (infinite-volume) Gibbs measure for the ϕ-field with given Hamil-

tonian H [ξ ] := (H
ψ
� [ξ ])

�⊂Zd ,ψ∈RZd (ϕ-Gibbs measure for short), if it satisfies the
DLR equation ∫

ν[ξ ](dψ)

∫
ν

ψ
� [ξ ](dϕ)F (ϕ) =

∫
ν[ξ ](dϕ)F (ϕ),(1.8)

for every finite � ⊂ Z
d and for all F ∈ Cb(R

Z
d
).

We discuss next the case of interface models without disorder, that is, with
ξ(x) = 0 for all x ∈ Z

d in model A. Let ν
ψ
� [ξ = 0],� ∈ Z

d , denote the finite-
volume Gibbs measure for � and with boundary condition ψ . Then an infinite-
volume Gibbs measure ν[ξ = 0] exists under condition (1.3) only when d ≥ 3, but
not for d = 1,2, where the field “delocalizes” as � ↗ Z

d (see [13]).
In the case of interfaces with disorder as in model A, it has been proved in [21]

that the ϕ-Gibbs measures do not exist when d = 2. A similar argument as in [21]
can be used to show that ϕ-Gibbs measures do not exist for model A when d = 1.

1.2.2. ∇ϕ-Gibbs measures. We note that the Hamiltonian H
ψ
� [ξ ] in model A,

respectively, H
ψ
� [ω] in model B, changes only by a configuration-independent

constant under the joint shift ϕ(x) → ϕ(x)+c of all height variables ϕ(x), x ∈ Z
d,

with the same c ∈ R. This holds true for any fixed configuration ξ , respectively, ω.
Hence, finite-volume Gibbs measures transform under a shift of the boundary con-
dition by a shift of the integration variables. Using this invariance under height
shifts, we can lift the finite-volume measures to measures on gradient configura-
tions, that is, configurations of height differences across bonds, defining the gra-
dient finite-volume Gibbs measures. Gradient Gibbs measures have the advantage
that they may exist, even in situations where the Gibbs measure does not. Note
that the concept of ∇ϕ-measures is general and does not refer only to the disor-
dered models. For example, in the case of interfaces without disorder ∇ϕ-Gibbs
measures exist for all d ≥ 1.

We next introduce the bond variables on Z
d . Let

(Zd)∗ := {b = (xb, yb)|xb, yb ∈ Z
d,‖xb − yb‖ = 1, b directed from xb to yb};
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note that each undirected bond appears twice in (Zd)∗. For ϕ = (ϕ(x))x∈Zd and
b = (xb, yb) ∈ (Zd)∗, we define the height differences ∇ϕ(b) := ϕ(yb) − ϕ(xb).
The height variables ϕ = {ϕ(x) :x ∈ Z

d} on Z
d automatically determine a field

of height differences ∇ϕ = {∇ϕ(b) :b ∈ (Zd)∗}. One can therefore consider the
distribution μ of ∇ϕ-field under the ϕ-Gibbs measure ν. We shall call μ the ∇ϕ-
Gibbs measure. In fact, it is possible to define the ∇ϕ-Gibbs measures directly by
means of the DLR equations and, in this sense, ∇ϕ-Gibbs measures exist for all
dimensions d ≥ 1.

A sequence of bonds C = {b(1), b(2), . . . , b(n)} is called a chain connecting x

and y, x, y ∈ Z
d , if xb1 = x, yb(i) = xb(i+1) for 1 ≤ i ≤ n − 1 and yb(n) = y. The

chain is called a closed loop if yb(n) = xb(1) . A plaquette is a closed loop A =
{b(1), b(2), b(3), b(4)} such that {xb(i) , i = 1, . . . ,4} consists of four different points.

The field η = {η(b)} ∈ R
(Zd )∗ is said to satisfy the plaquette condition if

η(b) = −η(−b) for all b ∈ (Zd)∗ and
(1.9) ∑

b∈A
η(b) = 0 for all plaquettes A in Z

d,

where −b denotes the reversed bond of b. Let

χ = {
η ∈ R

(Zd )∗which satisfy the plaquette condition
}

(1.10)

and let L2
r , r > 0, be the set of all η ∈ R

(Zd )∗ such that

|η|2r := ∑
b∈(Zd )∗

|η(b)|2e−2r‖xb‖ < ∞.

We denote χr = χ ∩ L2
r equipped with the norm | · |r . For ϕ = (ϕ(x))x∈Zd and

b ∈ (Zd)∗, we define η(b) := ∇ϕ(b). Then ∇ϕ = {∇ϕ(b) :b ∈ (Zd)∗} satisfies the
plaquette condition. Conversely, the heights ϕη,ϕ(0) ∈ R

Z
d

can be constructed from
height differences η and the height variable ϕ(0) at x = 0 as

ϕη,ϕ(0)(x) := ∑
b∈C0,x

η(b) + ϕ(0),(1.11)

where C0,x is an arbitrary chain connecting 0 and x. Note that ϕη,ϕ(0) is well de-
fined if η = {η(b)} ∈ χ .

Let Cb(χ) be the set of continuous and bounded functions on χ , where the
continuity is with respect to each bond variable η(b), b ∈ (Zd)∗.

DEFINITION 1.3 (Finite-volume ∇ϕ-Gibbs measure). The finite-volume ∇ϕ-
Gibbs measure in � (or more precisely, in �∗) with given Hamiltonian H [ξ ] :=
(H

ρ
�[ξ ])�⊂Zd ,ρ∈χ , with boundary condition ρ ∈ χ and with fixed disorder config-

uration ξ , is a probability measure μ
ρ
�[ξ ] on χ such that for all F ∈ Cb(χ), we

have ∫
χ

μ
ρ
�[ξ ](dη)F (η) =

∫
RZd

ν
ψ
� [ξ ](dϕ)F (∇ϕ),(1.12)
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where ψ is any field configuration whose gradient field is ρ.

DEFINITION 1.4 [∇ϕ-Gibbs measure on (Zd)∗]. The probability measure
μ[ξ ] on χ is called an (infinite-volume) gradient Gibbs measure with given Hamil-
tonian H [ξ ] := (H

ρ
�[ξ ])�⊂Zd ,ρ∈χ (∇ϕ-Gibbs measure for short), if it satisfies the

DLR equation ∫
μ[ξ ](dρ)

∫
μ

ρ
�[ξ ](dη)F (η) =

∫
μ[ξ ](dη)F (η),(1.13)

for every finite � ⊂ Z
d and for all F ∈ Cb(χ).

REMARK 1.5. Throughout the rest of the paper, we will use the notation ϕ,ψ

to denote height variables and η,ρ to denote gradient variables.

For v ∈ Z
d , we define the shift operators: τv for the heights by (τvϕ)(y) :=

ϕ(y − v) for y ∈ Z
d and ϕ ∈ R

Z
d
, τv for the bonds by (τvη)(b) := η(b − v) for

b ∈ (Zd)∗ and η ∈ χ , and τv for the disorder configuration by (τvξ)(y) := ξ(y −v)

for y ∈ Z
d and ξ ∈ R

Z
d
.

We are now ready to define the main object of interest of this paper: the random
(gradient) Gibbs measures.

DEFINITION 1.6 [Translation-covariant random (gradient) Gibbs measures for
model A]. A measurable map ξ → ν[ξ ] is called a translation-covariant random
Gibbs measure if ν[ξ ] is a ϕ-Gibbs measure for P-almost every ξ , and if∫

ν[τvξ ](dϕ)F (ϕ) =
∫

ν[ξ ](dϕ)F (τvϕ),

for all v ∈ Z
d and for all F ∈ Cb(R

Z
d
).

A measurable map ξ → μ[ξ ] is called a translation-covariant random gradient
Gibbs measure if μ[ξ ] is a ∇ϕ-Gibbs measure for P-almost every ξ , and if∫

μ[τvξ ](dη)F (η) =
∫

μ[ξ ](dη)F (τvη),

for all v ∈ Z
d and for all F ∈ Cb(χ).

The above notion generalizes the notion of a translation-invariant (gradient)
Gibbs measure to the setup of disordered systems.

1.3. Gibbs measures and gradient Gibbs measures for model B. The no-
tions of finite-volume (gradient) Gibbs measure and infinite-volume (gradient)
Gibbs measure for model B can be defined similarly as for model A, with
(V ω

(x,y))(x,y)∈Zd×Zd ,ω ∈ �, playing a similar role to ξ ∈ R
Z

d
, and with ω replac-

ing ξ in Definitions 1.1–1.4. Once we specify the action of the shift map τv in
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this case, we can also define the notion of translation-covariant random (gradient)
Gibbs measure, with ω ∈ � replacing ξ ∈ R

Z
d

in Definition 1.6.
Let τv, v ∈ Z

d, be a shift-operator and let ω ∈ � be fixed. We will denote by
ν[τvω] the infinite-volume Gibbs measure with given Hamiltonian H̄ [ω](ϕ) :=
(H

ψ
� [ω](τvϕ))

�⊂Zd ,ψ∈RZd . This means that we shift the field of disorded poten-
tials on bonds from V ω

(x,y) to V ω
(x+v,y+v). Similarly, we will denote by μ[τvω]

the infinite-volume gradient Gibbs measure with given Hamiltonian H̄ [ω](η) :=
(H

ρ
�[ω](τvη))

�⊂Zd ,ρ∈R(Zd )∗ .

1.4. Surface tension. The surface tension physically measures the macro-
scopic energy of a surface with tilt u ∈ R

d , that is, a d-dimensional hyperplane
located in R

d+1 with normal vector (−u,1) ∈ R
d+1. In other words, it measures

the free-energy cost in creating an interface with a given tilt.
Formally, let �N = [−N,N]d ∩ Z

d,N ∈ N, be a hypercube of side length
2N + 1 with boundary ∂�N. We enforce a fixed tilt u ∈ R

d by imposing the
boundary condition ψu(x) = x · u for x ∈ ∂�N . The finite-volume surface tension
σ�N

[ξ ] for model A is then defined for fixed disorder ξ as

σ�N
[ξ ](u) := − 1

|�N | log
∫

R�
exp(−H

ψu

� [ξ ])dϕ�N

(1.14)

= − 1

|�N | logZ
ψu

� [ξ ],
where we recall that dϕ�N

:= ∏
x∈�N

ϕ(x). We are interested in the existence and
ξ -independence of the limit:

σ [ξ ](u) := lim
N→∞σ�N

[ξ ](u).

When it exists, the limit σ [ξ ](u) is called (infinite-volume) surface tension.
For model B the surface tension σ�N

[ω](u), respectively, σ [ω](u), is defined

similarly, with ω ∈ � in place of ξ ∈ R
Z

d
, in the above definitions for model A.

1.5. Main results. A main question in interface models is whether the fluc-
tuations of an interface, that is, restricted to a finite-volume will remain bounded
when the volume tends to infinity, so that there is an infinite-volume Gibbs mea-
sure (or gradient Gibbs measure) describing a localized interface. This question
is well understood in shift-invariant continuous interface models without disorder,
and it is the purpose of this paper to study the same question for interface models
with disorder.

When there is no disorder, it is known that the Gibbs measure ν[ξ = 0] does
not exist in infinite-volume for d = 1,2, but the gradient Gibbs measure μ[ξ = 0]
does exist in infinite-volume for d ≥ 1. The latter fact is equivalent to saying that
the infinite-volume measure exists constrained on ϕ(0) = 0. On the question of
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uniqueness of gradient Gibbs measures, Funaki and Spohn [16] showed that a
gradient Gibbs measure is uniquely determined by the tilt. This result has been
extended to a certain class of nonconvex potentials by Cotar and Deuschel in [8].

For (very) nonconvex V , new phenomena appear: There is a first-order phase
transition from uniqueness to nonuniqueness of the Gibbs measures (at tilt zero),
as shown in [3] and [8]. The transition is due to the temperature which changes the
structure of the interface. This phenomenon is related to the phase transition seen
in rotator models with very nonlinear potentials exhibited in [30] and [31], where
the basic mechanism is an energy-entropy transition.

What happens in the random models A and B? In [21] the authors showed that
for model A there is no disordered infinite-volume random Gibbs measure for d =
1,2. This statement is not surprising since there exists no ϕ-Gibbs measure without
disorder. More surprising is the fact that, as proved in [29], for model A there
is also no disordered shift-covariant gradient Gibbs measure when d = 1,2. The
question is now what will happen for model A when d ≥ 3 to the (gradient) Gibbs
measure, that is, known to exist without disorder, once we allow for a random
environment?

For model B, one can reason similarly as for d = 1,2 in model A (see Theo-
rem 1.1 in [21]) to show that there exists no infinite-volume random Gibbs measure
if d = 1,2. We are interested here in the question whether there exists a random
infinite-volume gradient Gibbs measure for d ≥ 1,2.

To give an intuitive idea of what we can expect, we look next in some detail
at model A in the special case of a Gaussian (gradient) Gibbs measure where
V (s) = s2/2. In this case one can do explicit computations, and for any fixed con-
figuration ξ , the finite-volume Gibbs measure with zero boundary condition ν0

�[ξ ]
has expected value∫

ν0
�[ξ ](dϕ)(ϕ(x)) = ∑

z∈�

G�(x, z)ξ(z) for every fixed x ∈ �,

where G�(x, y) denotes the Green’s function (see Section 2.1 below for a rigorous
definition). Due to the properties of the Green’s function, the right-hand side of
the equation above diverges as |�| → ∞ for d = 3,4 by the Kolmogorov three
series theorem. This hints to the nonexistence in d = 3,4 of the infinite-volume
ϕ-Gibbs measure, which is proved in the Appendix for the Gaussian case. For the
corresponding gradient Gibbs measure μ0

�[ξ ], the expected value∫
μ0

�[ξ ](dη)
(
ϕ(x) − ϕ(y)

) = ∑
z∈�

(
G�(x, z) − G�(y, z)

)
ξ(z)

for every fixed (x, y) ∈ (Zd)∗ ∩ (� × �),

converges as |�| → ∞ for d ≥ 3 and diverges for d = 1,2. Coupled with standard
tightness arguments, this convergence for d ≥ 3 gives the existence of the infinite-
volume gradient Gibbs measure in the Gaussian case.
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The main result of our paper, on the existence of shift-covariant gradient Gibbs
measures with given tilt u ∈ R

d , is the following:

THEOREM 1.7. (a) (Model A) Let d ≥ 3, E(ξ(0)) = 0 and u ∈ R
d . Assume

that V satisfies (1.3) and (1.4). Then there exists at least one shift-covariant ran-
dom gradient Gibbs measure ξ → μ[ξ ] with tilt u, that is, with

E

(∫
μ[ξ ](dη)η(b)

)
= 〈u,yb − xb〉

(1.15)
for all bonds b = (xb, yb) ∈ (Zd)∗.

Moreover μ[ξ ] satisfies the integrability condition

E

∫
μ[ξ ](dη)(η(b))2 < ∞ for all bonds b ∈ (Zd)∗.(1.16)

(b) (Model B) Let d ≥ 1 and u ∈ R
d . Assume that V satisfies (1.5). Then there

exists at least one shift-covariant random gradient Gibbs measure ω → μ[ω]
with tilt u, that is, with

E

(∫
μ[ω](dη)η(b)

)
= 〈u,yb − xb〉

(1.17)
for all bonds b = (xb, yb) ∈ (Zd)∗.

Moreover μ[ω] satisfies the integrability condition

E

∫
μ[ω](dη)(η(b))2 < ∞ for all bonds b ∈ (Zd)∗.(1.18)

For model A we also show by similar arguments as in [29] the following:

THEOREM 1.8 (Model A). Let d ≥ 3 and assume that E(ξ(0)) �= 0. Then there
exists no shift-covariant gradient Gibbs measure μ[ξ ] with

E

∣∣∣∣
∫

μ[ξ ](dη)V ′(η(b))

∣∣∣∣ < ∞ for all bonds b = (x, y) ∈ (Zd)∗.

The techniques used to prove existence in the nonrandom continuous interface
model are based on the Brascamp–Lieb inequality and on shift-invariance, which
techniques do not work in our random settings; the lack of shift-invariance in our
models means that the Brascamp–Lieb inequality is not enough to ensure tightness
of the finite-volume gradient Gibbs measures (μ

ρ
�[ξ ]), respectively, of (μ

ρ
�[ω]),

as is the case in the model without disorder (see the Appendix for a more detailed
explanation of the Brascamp–Lieb inequality and why it fails in the case of our
models in a disordered setting). We will prove the existence result for model A



EXISTENCE OF RANDOM GRADIENT STATES 1659

and sketch it for model B. To prove our result for model A, we are using surface
tension bounds to establish tightness of a sequence of spatially averaged finite-
volume gradient Gibbs measures for each realization of the disorder, whose limit
along a deterministic subsequence we extract (using a result in [20]) and we prove
that it is a shift-covariant random gradient Gibbs measure.

To complement our analysis of the two models, we will also investigate un-
der what assumptions on the disorder ξ , respectively, on V ω

(x,y), the surface ten-
sion σ [ξ ](u), respectively, σ [ω](u), exists and under what assumptions it does
not exist. Moreover we will prove that when it exists, the surface tension is P-
a.s. independent of the disorder. The surface tension bounds established in Theo-
rem 3.1(b) are used later to prove tightness of the finite-volume spatially averaged
Gibbs measures, averaged over the disorder. To state our surface tension result, let
a, l ∈ Z

d, a = (a1, . . . , ad), l = (l1, . . . , ld), with ai < li, i = 1,2, . . . , d , and let

�̄a,l := {z ∈ Z
d :ai ≤ zi ≤ li for all i = 1,2, . . . , d}.(1.19)

For any n ∈ Z, we denote by a + n := (a1 + n, . . . , ad + n) and by an :=
(a1n, . . . , adn). In view of Theorem 3.1(a) and of Remark 3.2 below, we have

THEOREM 1.9 (Model A). The infinite-volume surface tension does not exist
if d = 1,2 or if d ≥ 3 and E(ξ(0)) �= 0.

For d ≥ 3 and E(ξ(0)) = 0, we prove

THEOREM 1.10. (1) (Model A) Let d ≥ 3 and assume that E(ξ(0)) = 0 and
u ∈ R

d . Then if V satisfies (1.3) and (1.4), we have:

(a) σ [ξ ](u) := limN→∞ σ�N
[ξ ](u) exists for P-almost all ξ and in L1 and

σ [ξ ](u) = lim
n→∞

1

nd
lim

m→∞
1

md

∑
ai∈N,1≤ai≤m,i=1,...,d

σ�̄(a−1)n,an(u),

where the limits in m → ∞ and in n → ∞ are in L1.
(b) σ [ξ ](u) is independent of ξ , with

σ [ξ ](u) = lim
N→∞ E(σ�N

[ξ ](u)) =: σ(u) for P-almost all ξ.

(2) (Model B) Let d ≥ 1. Then σ [ω](u) satisfies (a)–(b) above, with ω replacing ξ

in the results.

The presence of the disorder and of the Green’s functions make the question
of existence of the surface tension more delicate to handle than in the nonrandom
case, where the answer is fairly straightforward. In order to prove existence of the
surface tension for our disordered system, we prove (almost)-subadditivity of the
finite-volume surface tension, in order to apply ergodic theorems for subadditive
processes.
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A natural question to ask is whether in our disordered models a random gradient
Gibbs measure is uniquely determined by the tilt as in the nonrandom settings
of [8] or [16]. This is work in progress by the same authors and will be addressed
in a future paper.

The rest of the paper is organized as follows: In Section 2 we recall the def-
inition and some basic properties of the Green’s function and we prove a strong
law of large numbers (SLLN) involving the Green’s function, which are necessary
for the proof of our main Theorem 1.7 and for the surface tension results; we also
recall in Section 2 two subadditivity propositions used for the proof of the sur-
face tension existence. In Section 3, we study model A. In Section 3.1, we prove
Theorem 3.1, and, respectively, Theorem 1.10, for nonexistence and, respectively,
for existence of the surface tension. In Section 3.2, we formulate and prove Theo-
rem 1.7, our main result on the existence of shift-covariant random gradient Gibbs
measures. Section 4 deals with the corresponding results for model B. Finally, the
Appendix explains why the infinite-volume Gibbs measure for model A does not
exist for d = 3,4, and provides a more detailed explanation of the Brascamp–Lieb
inequality.

2. Preliminary notions.

2.1. Green functions on Z
d . We first review a few facts about Green’s func-

tions.
Let A be an arbitrary subset in Z

d and let x ∈ A be fixed. Let Px and Ex be
the probability law and expectation, respectively, of a simple random walk X :=
(Xk)k≥0 starting from x ∈ Z

d ; Green’s function GA(x, y) is the expected number
of visits to y ∈ A of the walk X killed as it exits A, that is,

GA(x, y) = Ex

[
τA−1∑
k=0

1(Xk=y)

]
=

∞∑
k=0

Px(Xk = y, k < τA), y ∈ Z
d,

where τA = inf{k ≥ 0 :Xk ∈ Ac}. We will state first some well-known properties
of the Green’s functions. To avoid exceptional cases when x = 0, let us denote by
]|x|[= max{|x|,1}, where |x| is the Euclidian norm.

PROPOSITION 2.1.

(i) If d ≥ 3, then limN→∞ G�N
(x, y) := G(x,y) exists for all x, y ∈ Z

d and as
|x − y| → ∞,

G(x,y) = ad

|x − y|d−2 + O(|x − y|1−d),

with ad = 2
(d−2)wd

, where wd is the volume of the unit ball in R
d .



EXISTENCE OF RANDOM GRADIENT STATES 1661

(ii) Let Br = {x ∈ Z
d : |x| < r}; then for x ∈ BN

GBN
(0, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

π
log

N

]|x|[ + o

(
1

]|x|[
)

+ O

(
1

N

)
, if d = 2,

2

(d − 2)wd

[]|x|[2−d−N2−d + O(]|x|[1−d)
]
, if d ≥ 3.

Let ε > 0. If x ∈ B(1−ε)N , the following inequalities hold:

GBεN
(0,0) ≤ GBN

(x, x) ≤ GB2N
(0,0).

(iii) GA(x, y) = GA(y, x).
(iv) GA(x, y) ≤ GB(x, y), if A ⊂ B .
(v) If x ∈ BN , then

N2 − |x|2 ≤ Ex(τBN
) ≤ (N + 1)2 − |x|2.

For proofs of (i), (iii) and (iv) from Proposition 2.1 above we refer to Chapter 1
from [22], for proof of (ii) we refer to Lemma 1 from [23] and for proof of (v) we
refer to Lemma 2 from [23].

The result we state next will be used to prove Theorem 3.1.

PROPOSITION 2.2. There exists N0 sufficiently large such that for all N ≥ N0,
we have

d + 1

d + 2
wdN2(N − 1)d ≤ ∑

x,y∈�N

G�N
(x, y) ≤ (

N
√

d
)d

dwd

[
(N + 1)2 − N2

d + 2

]
.

PROOF. Note first that since GBN
is symmetric, we have

Ex(τBN
) = ∑

y∈BN

GBN
(x, y) = ∑

y∈BN

GBN
(y, x).(2.1)

The upper bound: Using Proposition 2.1(iv) for the first inequality, (2.1) for the
second inequality and Proposition 2.1(v) for the third inequality, we have for N

large enough∑
x,y∈�N

G�N
(x, y) ≤ ∑

x,y∈B
N

√
d

GB
N

√
d
(x, y) = ∑

x∈B
N

√
d

Ex(τB
N

√
d
)

≤ ∑
x∈B

N
√

d

[(N + 1)2 − |x|2]

≤ (N + 1)2d
(
N

√
d
)d

wd − wd

∫ N
√

d

0
rd+1 dr

= (
N

√
d
)d

dwd

[
(N + 1)2 − N2

d + 2

]
.
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The lower bound: We have BN ⊂ �N . Then by using Proposition 2.1(iv), (v)
and (2.1), we have for N large enough∑

x,y∈�N

G�N
(x, y) ≥ ∑

x,y∈BN

GBN
(x, y) ≥ ∑

x∈BN

[N2 − |x|2]

≥ N2(N − 1)dwd − wd

∫ N−1

0
rd+1 dr

≥ d + 1

d + 2
wd(N − 1)dN2. �

We will use the next result in the proof of Proposition 3.11.

PROPOSITION 2.3. Let d ≥ 1 and let �1 ⊂ �2 ⊂ Z
d . Then we have for all

ξ ∈ R
�2

〈ξ,G�1ξ〉�1 ≤ 〈ξ,G�2ξ〉�2,(2.2)

where 〈ξ,G�ξ〉� := ∑
x,y∈� ξ(x)G�(x, y)ξ(y) and where G� := (G�(x,

y))x,y∈�.

PROOF. A proof of this statement can be found, for example, in [28]. �

2.2. Strong law of large numbers. We will need the following strong law of
large numbers (SLLN) in the proof of Theorems 3.1 and 1.10.

PROPOSITION 2.4. Let (ξ(x))x∈Zd be i.i.d. with E(ξ2(0)) < ∞. For all d ≥ 3,
we have

lim
N→∞

〈ξ,G�N
ξ〉�N

−∑
x,y∈�N

E(ξ(x)ξ(y))G�N
(x, y)

Nd
= 0 a.s.(2.3)

PROOF. Let the variance w.r.t. P be denoted by Var and let

SN :=
∑

x,y∈�N
x �=y

[ξ(x) − E(ξ(x))][ξ(y) − E(ξ(y))]G�N
(x, y)

Nd
,

S′
N :=

∑
x,y∈�N

x �=y

[ξ(x) − E(ξ(x))]E(ξ(y))G�N
(x, y)

Nd
and

RN :=
∑

x∈�N
[ξ2(x) − E(ξ2(x))]G�N

(x, x)

Nd
.

Note that proving (2.3) is the same as proving that

lim
N→∞SN = 0, lim

N→∞S′
N = 0 and lim

N→∞RN = 0 a.s.
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Using the independence of the (ξ(x))x∈Zd for the equality below, Proposi-
tion 2.1(iv) for the first inequality below and (ii) for the second one, we have

E(S2
N) = Var2(ξ)

N2d

∑
x,y∈�N,x �=y

G2
�N

(x, y)

≤ Var2(ξ)

N2d

∑
x,y∈B

N
√

d
,y �=x

G2
B

N
√

d
(x, y)

≤ Var2(ξ)

N2d

(
2

(d − 2)wd

)2 ∑
x,y∈B

N
√

d
,y �=x

(
1

|x − y|2d−4 + O(1)

)
(2.4)

≤ C(wd)
Var2(ξ)

N2d

∑
x∈B

N
√

d

(∫ N
√

d

1

1

rd−3 dr + O(1)

)

≤ C̃(wd, d)
Var2(ξ)

Nd−1 .

Fix ε > 0. By means of (2.4), we get
∞∑

N=1

P(|SN | ≥ ε) ≤ C̃(wd, d)
Var2(ξ2)

ε2

∞∑
N=1

1

Nd−1 < ∞

and therefore by Borel–Cantelli

lim
N→∞ sup |SN | ≤ ε a.s., from which lim

N→∞SN = 0 a.s.

The proof that limN→∞ S′
N = 0 a.s. follows the same pattern as the proof for SN ,

and will be omitted. We will proceed next with the proof of limN→∞ RN = 0 a.s.
Let ε > 0 be arbitrarily fixed and denote for simplicity of notation τ(x) :=
(ξ2(x) − E(ξ2(x))). Take M = M(ε) > 0 such that E(|τ(x)|1|τ(x)|>M) ≤ ε and
define

R′
N =

∑
x∈�N

G�N
(x, x)[τ(x)1|τ(x)|>M − E(τ (x)1|τ(x)|>M)]

Nd

and

R′′
N =

∑
x∈�N

G�N
(x, x)[τ(x)1|τ(x)|≤M − E(τ (x)1|τ(x)|≤M)]

Nd
.

Using Proposition 2.1(ii) and (iv) to find C > 0 such that |G�N
(x, x)| ≤ C, uni-

formly in N and x ∈ �N , and using the SLLN for i.i.d. random variables with
finite first moment, we get

|R′
N | ≤ C

∑
x∈�N

[|τ(x)|1|τ(x)|>M + E(|τ(x)|1|τ(x)|>M)]
Nd

≤ 2CE
(|τ |1|τ |>M

)(
1 + o(1)

)
≤ 2Cε

(
1 + o(1)

)
.
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Therefore

lim sup
N→∞

|R′
N | ≤ 2Cε a.s.,(2.5)

from which we get R′
N → 0 a.s. Since the summands in R′′

N are uniformly bounded
and independent, by a standard fourth moment bound, Markov inequality and
Borel–Cantelli, we have R′′

N → 0 a.s. This concludes the proof of the proposition.
�

2.3. Ergodic theorems for multiparameter subadditive processes. For N ∈ N,
let �[0,N] := [0,N]d ∩ Z

d , let Z
d+ := {z ∈ Z

d : 0 ≤ zi for all i = 1,2, . . . , d} and
let

A := {� ⊂ Z
d+ :� = �̄a,l for some a, l ∈ Z

d+, a = (ai)1≤i≤d, l = (li)1≤i≤d,

with ai < li,1 ≤ i ≤ d},
where we recall that �̄a,l was defined in (1.19). For any finite set � ∈ Z

d and for
any z ∈ Z

d , we denote � + z := {x + z :x ∈ �}.
We will use the two propositions below to prove a.s. and L1 convergence of

the surface tension. The first proposition is an ergodic theorem for superadditive
processes from [1]:

PROPOSITION 2.5. Let (τz)z∈Z
d+ be a measurable semigroup of measure-

preserving transformations on (�, F ,P). Let (WI )I∈A be a family of real-valued
random variables on (�, F ,P) such that a.s.:

(a) WI ◦ τz = WI+z.
(b) (The subadditivity condition) If

⋃n
i=1 Ii = I ∈ A with (Ii)i=1,2,...,n pairwise

disjoint in A, then WI ≤ ∑n
i=1 WIi

.
(c)

inf |I |−1
∫

WI dP > −∞
the infimum being taken over all I ∈ A with |I | > 0,

where |I | denotes the cardinality of the finite set I .

Then limN→∞ N−dW�[0,N ] exists a.s.

The second proposition is Theorem 2.1 from [27]. In what follows, x+ denotes
the positive part of x ∈ R.

PROPOSITION 2.6. Let (WI )I∈A be a family of real-valued random variables
on (�, F ,P) such that:

(a) If
⋃n

i=1 Ii = I ∈ A with (Ii)i=1,2,...,n pairwise disjoint in A, then E(WI −∑n
i=1 WIi

) ≤ 0.

(b) E(WI+z) = E(WI ) for all I ∈ A and z ∈ Z
d+.
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(c) E(W+
I+z) = E(W+

I ) for all I ∈ A and z ∈ Z
d+.

(d)

inf |I |−1
∫

WI dP > −∞
the infimum being taken over all I ∈ A with |I | > 0.

(e) Assume that for every a, l ∈ Z
d+, a = (ai)1≤i≤d, l = (li)1≤i≤d , the collec-

tion of random variables (Wa,l)a,l∈Z
d+ , with Wa,l := W�̄(a−1)n,an, is stationary with

respect to all translations in Z
d of form (a, l) → (a + v, l + v).

Then

lim
N→∞N−dW�[0,N ] = W∞ exists in L1,

where

W∞ = lim
n→∞

1

nd
lim

m→∞
1

md

∑
1≤ai≤m,i=1,...,d

W�̄(a−1)n,an

and where the limits in m → ∞ and in n → ∞ are in L1.

Both Proposition 2.5 and Proposition 2.6 can be stated and proved for sets Ā
in Z

d of form

Ā := {� ⊂ Z
d :� = �̄a,l for some a, l ∈ Z

d, a = (ai)1≤i≤d, l = (li)1≤i≤d,

with ai < li,1 ≤ i ≤ d},
instead of just for sets A in Z

d+.

3. Model A. This section is structured as follows: in Section 3.1.1 we prove
Theorem 3.1, on the nonexistence of the surface tension when E(ξ(0)) �= 0; in Sec-
tion 3.1.2 we prove Theorem 1.10, on the existence of the surface tension when
d ≥ 3 and E(ξ(0)) = 0, by means of subadditivity arguments. In Section 3.2 we
prove Proposition 3.6, on the tightness of the finite-volume gradient Gibbs mea-
sures (μ

ρ
�[ξ ])�∈Zd averaged over the disorder, from which we derive the existence

of the random infinite-volume gradient Gibbs measure averaged over the disorder.
This tightness result is instrumental in Section 3.2.2, in our proof of existence of
the infinite-volume random gradient Gibbs measure.

3.1. The surface tension.

3.1.1. Nonexistence of the surface tension when E(ξ(0)) �= 0. We prove in
this subsection that the surface tension does not exist when E(ξ(0)) �= 0, and when
E(ξ(0)) = 0 we give upper and lower bounds on σ�N

[ξ ](u), uniformly in �N .
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THEOREM 3.1.
Let d ≥ 3. Assume that V satisfies (1.3) and (1.4). Recall that (ξ(x))x∈Zd are

i.i.d. with finite second moments.

(a) If E(ξ(0)) �= 0, then for all u ∈ R
d

S1 ≤ lim inf
N→∞

σ�N
[ξ ](u)

N2 ≤ lim sup
N→∞

σ�N
[ξ ](u)

N2 ≤ S2 for P-almost all ξ,

where

S1 := − wd

2A(d + 2)
E

2(ξ(0)) and S2 := − wd(d + 1)

4C2(d + 2)

(√
d
)d

E
2(ξ(0)).

(b) If E(ξ(0)) = 0, then

S̄1(u) ≤ lim inf
N→∞ σ�N

[ξ ](u) ≤ lim sup
N→∞

σ�N
[ξ ](u) ≤ S̄2(u)

(3.1)
for P-almost all ξ,

where

S̄1(u) := σA[ξ = 0](u = 0) − wd

A(d − 2)
E(ξ2(0)) + A(1 + |u|2) − 2dB,

S̄2(u) := σC2/2[ξ = 0](u = 0) − wd

2C2(d − 2)
E(ξ2(0)) + C2

2
(1 + |u|2)

+ 2dV (0).

For a C > 0, we defined by σC
� [ξ = 0](u = 0) and σC[ξ = 0](u = 0) the finite-

volume and infinite-volume surface tensions corresponding to model A without
disorder, with potential V (x) = Cx2 and tilt u = 0.

In particular, the above theorem shows that if E(ξ(0)) �= 0, then the surface
tension does not exist as the finite-volume surface tension logZ

ψu

�N
[ξ ] is of order

Nd+2, and not of order Nd, as would normally be expected (and as indeed is
the case in the nondisordered case). The reason that the Nd+2 exponent comes
up is mainly due to the appearance of the Green’s function in the formulas for
the upper/lower bounds for the finite-volume surface tension. When E(ξ(0)) �= 0,
the terms in the upper/lower bounds involve double sums over the Green’s function
of the form

∑
x,y∈�N

G�N
(x, y), which are of order Nd+2.

PROOF OF THEOREM 3.1. We will use the bounds for V from (1.3) and (1.4)
to obtain upper and lower bounds for σ�N

[ξ ] in terms of surface tensions for the
nondisordered model with quadratic potentials. The claims in (a) and (b) will fol-
low then easily by an application of Proposition 2.4. The explicit computations
follow below.
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We will start by proving a lower bound for σ�N
[ξ ](u). As V (s) ≥ As2 − B , we

get from (1.14)

σ�N
[ξ ](u)

≥ − 1

2|�N |
∑

x,y∈�N∪∂�N

|x−y|=1

B

− 1

|�N | log
∫

exp
(
−A

2

∑
x,y∈�N

|x−y|=1

(
ϕ(x) − ϕ(y)

)2

− A
∑

x∈�N,y∈∂�N

|x−y|=1

(
ϕ(x) − ψu(y)

)2

+ ∑
x∈�N

ξ(x)ϕ(x)

)
dϕ�N

(3.2)

= −2dB −
∑

x∈�N
ξ(x)(x · u)

|�N |
− 1

|�N | log
∫

exp
(
−A

2

∑
x,y∈�N

|x−y|=1

(
ϕ̃(x) − ϕ̃(y) + (x − y) · u)2

− A
∑

x∈�N,y∈∂�N

|x−y|=1

(
ϕ̃(x) + (x − y) · u)2

+ ∑
x∈�N

ξ(x)ϕ̃(x)

)
dϕ̃�N

,

where for the equality we used the change of variables ϕ(x) = ϕ̃(x) + x · u for all
x ∈ �N . To simplify (3.2) we will show next that

1

2

∑
x,y∈�N

|x−y|=1

(
ϕ̃(x) − ϕ̃(y) + (x − y) · u)2 + ∑

x∈�N,y∈∂�N

|x−y|=1

(
ϕ̃(x) + (x − y) · u)2

= 1

2

∑
x,y∈�N

|x−y|=1

[(
ϕ̃(x) − ϕ̃(y)

)2 + (
(x − y) · u)2](3.3)

+ ∑
x∈�N,y∈∂�N

|x−y|=1

[
(ϕ̃(x))2 + (

(x − y) · u)2]
.
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By expanding the square, (3.3) follows from∑
x,y∈�N

|x−y|=1

[ϕ̃(x) − ϕ̃(y)][(x − y) · u] + 2
∑

x∈�N,y∈∂�N

|x−y|=1

ϕ̃(x)[(x − y) · u] = 0,

which can be easily seen to be true by summing over bonds along lines in each
coordinate direction. Plugging the identity from (3.3) into (3.2), we get

σ�N
[ξ ](u)

≥ −2dB + A

2|�N |
∑

x,y∈�N

|x−y|=1

(
(x − y) · u)2

+ A

|�N |
∑

x∈�,y∈∂�N|x−y|=1

(
(x − y) · u)2 −

∑
x∈�N

ξ(x)(x · u)

|�N |(3.4)

− 1

|�N | log
∫

exp
(
−A

2

∑
x,y∈�N

|x−y|=1

(
ϕ̃(x) − ϕ̃(y)

)2

− A
∑

x∈�N,y∈∂�N

|x−y|=1

(ϕ̃(x))2 + ∑
x∈�N

ξ(x)ϕ̃(x)

)
dϕ̃�N

.

To compute the integral in (3.4) we use standard Gaussian calculus (see, e.g.,
Proposition 3.1 part (2) from [16]) to show that

log
∫

exp
(
−A

2

∑
x,y∈�N

|x−y|=1

(
ϕ̃(x) − ϕ̃(y)

)2

− A
∑

x∈�N,y∈∂�N

|x−y|=1

(ϕ̃(x))2 + ∑
x∈�N

ξ(x)ϕ̃(x)

)
dϕ̃�N

= log
∫

exp
(
−A

2

∑
x,y∈�N

|x−y|=1

(
ϕ̃(x) − ϕ̃(y)

)2 − A
∑

x∈�N,y∈∂�N

|x−y|=1

(ϕ̃(x))2
)

dϕ̃�N
(3.5)

+ 〈ξ,G�N
ξ〉�N

2A

= −|�N |σA
�N

[ξ = 0](u = 0) + 〈ξ,G�N
ξ〉�N

2A
.

Plugging (3.5) in (3.4) gives the lower bound for σ�N
[ξ ](u).
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Due to the assumption V ′′ ≤ C2, we have by Taylor expansion that V (s) ≤
V (0) + C2

2 s2; then by the same reasoning as in the derivation of the lower bound,
we get

σ�N
[ξ ](u) ≤ 2dV (0) + σ

C2/2
�N

[ξ = 0](u = 0) + C2

4|�N |
∑

x,y∈�N

|x−y|=1

(
(x − y) · u)2

+ C2

2|�N |
∑

x∈�,y∈∂�N

|x−y|=1

(
(x − y) · u)2 −

∑
x∈�N

ξ(x)(x · u)

|�N |(3.6)

− 〈ξ,G�N
ξ〉�N

4C2|�N | .

The upper bound follows now from (3.6), by noting that for all C > 0, σC
� [ξ =

0](u) → σC[ξ = 0](u) ∈ (−∞,∞) as |�| → ∞ (for a proof of this, see Proposi-
tion 1.1 in [16]).

(a) The statement follows now from (3.2), (3.6), Proposition 2.4 and Proposi-
tion 2.2 by noting that for very large N

wd

d + 1

d + 2
E

2(ξ(0)) ≤ 1

Nd+2 E(〈ξ, (G�N
ξ)〉) ≤ wd

2

d + 2

(√
d
)d

E
2(ξ(0))

and

1

|�N |
∑

x,y∈�N

|x−y|=1

(
(x − y) · u)2 = 2|u|2 and

(3.7)
1

|�N |
∑

x∈�,y∈∂�N

|x−y|=1

(
(x − y) · u)2 ≤ |u|2

N
→ 0 as N → ∞

and that by standard SLLN arguments for i.i.d. random variables with finite second
moments ∑

x∈�N
ξ(x)(x · u)

Nd+2 ≤ |u|
∑

x∈�N
|ξ(x)|

Nd+1 → 0
(3.8)

a.s. and in L1 as N → ∞.

(b) The statement follows from (3.2), (3.6), (3.7) and Proposition 2.4 by noting
that for very large N

1

Nd
E(〈ξ, (G�N

ξ)〉) = 2wd

d − 2
E(ξ2(0)). �
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REMARK 3.2. Note that due to the properties of the Green’s function, for
d = 1,2 we have that 〈ξ,G�N

ξ〉�N
/|�N | diverges as N → ∞, and therefore, by

the same reasoning as in Theorem 3.1 above, the surface tension does not exist for
d = 1,2.

3.1.2. Existence of the surface tension when E(ξ(0)) = 0. In this section we
prove Theorem 1.10. We start with a lemma which allows us to integrate out one
height variable ϕ(x) conditional upon the heights of its nearest neighbors.

LEMMA 3.3. Let the function V satisfy (1.3) and (1.4). Then there exists some
constant C > 0 such that for all γ ∈ R, and all ϕ(x), ξ(x) ∈ R, x ∈ Z

d , we have∫
R

exp
[
−1

2

∑
y∈Zd ,|y−x|=1

V
(
ϕ(y) − ϕ(x)

)+ ξ(x)ϕ(x)

]
dϕ(x)

(3.9)

≥ C exp
[
−1

2

∑
y∈Zd ,|y−x|=1

V
(
ϕ(y) − γ

)+ ξ(x)γ

]
.

The proof of Lemma 3.3 closely follows the proof of Lemma II.1 in [16] and
will be omitted.

Recall from (1.14) that for any � ∈ Z
d and for any fixed u ∈ R

d

Z
ψu

� [ξ ] =
∫

R�
exp(−H

ψu

� [ξ ])dϕ�N
.

Let a, l ∈ Zd, a = (ai)1≤i≤d, l = (li)1≤i≤d and let l′1 ∈ Z, with a1 < l′1 < l1. We

are going to prove an approximate subadditive relation for − logZ
ψu

� , where �

is taken to be the rectangle �̄a,l , as defined in (1.19), which is divided into three
rectangles by restricting the first coordinate to [a1, l

′
1 − 1], {l′1}, and [l′1 + 1, l],

respectively (see Figure 1). To simplify the notation, we denote for any a, l ∈ Z
d

and u, v ∈ Z

�̄
a,l
[u,v] := �[u,v]×[a2,l2]×···×[ad ,ld ] and �̄a,l

u := �{u}×[a2,l2]×···×[ad ,ld ].

FIG. 1.
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Using the above decomposition, we will derive in Lemma 3.4 the following for-
mula:

LEMMA 3.4. Let the function V satisfy (1.3) and (1.4). Then with the notation
above, we have for some C > 0 and for a1 ≥ l1 + 2

− log(Z
ψu

�̄a,l [ξ ]) ≤ − log
(
Z

ψu

�̄
a,l

[a1,l′1−1]
[ξ ])− log

(
Z

ψu

�̄
a,l

[l′1+1,l1]
[ξ ])

−
d∏

i=2

(li − ai + 1)

(
logC −

d∑
i=2

V (ui)

)
(3.10)

− ∑
x∈�̄

a,l

l′1

u · (l′1, x2, . . . , xd)ξ(x).

PROOF. We label the points x ∈ �
�̄

a,l

l′1
as odd or even, depending on whether

∑d
i=1 xi is an odd or an even number. We will bound Z

ψu

�̄a,l [ξ ] from below by a

product of Z
ψu

�̄
a,l

[a1,l′1−1]
[ξ ], of Z

ψu

�̄
a,l

[l′1+1,l1]
[ξ ] and of terms coming from integrating out

the contribution of the elements of �̄
a,l

l′1
in H

ψu

�̄a,l [ξ ](ϕ). To do this, we will first

integrate out the height variables at the odd points in �̄
a,l

l′1
from Z

ψu

�̄a,l [ξ ] and then

the even ones. We will do this by means of Lemma 3.3 and by splitting H
ψu

�̄a,l [ξ ](ϕ)

into sums of potentials V (ϕ(x) − ϕ(y)), depending on whether x and y belong to
�̄

a,l

[a1,l
′
1−1], �̄

a,l

[l′1+1,l1], �̄
a,l

l′1
or ∂�̄a,l . Then by Lemma 3.3, for each height variable

ϕ(x), x ∈ �̄
a,l

l′1
with x odd, (3.9) holds with γ = u · (l′1, x2, . . . , xd) (we recall that

the boundary conditions for the two subdomains have the same tilt u as for the
original domain). Explicitly, for each height variable ϕ(x), x ∈ �

�̄
a,l

l′1
with x odd,

we have ∫
R

exp
[
−1

2

∑
j∈I

V
(
ϕ(x + ej ) − ϕ(x)

)+ ξ(x)ϕ(x)

]
dϕ(x)

(3.11)

≥ C exp
[
−1

2

∑
j∈I

V
(
ϕ(x + ej ) − x · u)+ ξ(x)(x · u)

]
,

where I := {±1,±2, . . . ,±d}. The point here is that Lemma 3.3 allows us to re-
place a height variable ϕ(x) by a deterministic value γ . Next we repeat the same
procedure for each height variable ϕ(x), x ∈ �

�̄
a,l

l′1
and x even; since all ϕ(x + ej ),

with x + ej ∈ �
�̄

a,l

l′1
odd nearest neighbors of x, have already been integrated out
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by (3.11), we have∫
R

exp
[
−1

2

∑
j∈I

j �=±1

V
(
(x + ej ) · u − ϕ(x)

)− V
(
ϕ(x + e1) − ϕ(x)

)

− V
(
ϕ(x + e−1) − ϕ(x)

)+ ξ(x)ϕ(x)

]
dϕ(x)

(3.12)

≥ C exp

[
−1

2
V
(
ϕ(x + e1) − x · u)− 1

2
V
(
ϕ(x − e1) − x · u)

−
d∑

i=2

V (ui) + ξ(x)(x · u)

]
.

From (3.11) and (3.12) we get

Z
ψu

�̄a,l [ξ ] ≥ Z
ψu

�̄
a,l

[a1,l′1−1]
[ξ ]Zψu

�̄
a,l

[l′1+1,l1]
[ξ ]

× exp

(
|�̄a,l

l′1
| logC − |�̄a,l

l′1
|

d∑
i=2

V (ui) + ∑
x∈�̄

a,l

l′1

ξ(x)(x · u)

)
.

Plugging |�̄a,l

l′1
| = ∏d

i=2(li − ai + 1) in the above, we get (3.10). �

PROOF OF THEOREM 1.10. We will use Lemma 3.4 together with Proposi-
tion 2.5 to prove in part (a1) below that limN→∞ σ�N

[ξ ](u) exists for P-almost
all ξ and Lemma 3.4 and Proposition 2.6 to derive in part (a2) the L1 convergence.
We will then use the a.s. and L1 convergence in order to show in part (b) that the
surface tension is independent of the disorder (ξ(x))x∈Zd .

(a1) We first need to rewrite (3.10) in Lemma 3.4 in a form such that we can
apply Proposition 2.5. Let a, l ∈ Z

d, a = (ai)1≤i≤d, l = (li)1≤i≤d , with ai < li for
1 ≤ i ≤ d , be arbitrary and let, with the notation from Lemma 3.4,

g�̄a,l :=
d∏

i=1

(li − ai + 1)

(
logC −

d∑
i=1

V (ui)

2

)
.

Let l + 1 = (li + 1)1≤i≤d and define �̄a,l+1 as in (1.19). Let

f�̄a,l+1[ξ ](u) := − log(Z
ψu

�̄a,l [ξ ]) + ∑
x∈�̄a,l

(u · x)ξ(x) + g�̄a,l .

Then from (3.10) we have the following subadditivity formula for l1 ≥ a1 + 2:

f�̄a,l+1[ξ ](u) ≤ f
�̄

a,l+1
[a1,l′1]

[ξ ](u) + f
�̄

a,l+1
[l′1+1,l1+1]

[ξ ](u).(3.13)
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To get the subadditivity formula (3.13) for all l1 > a1, we use an argument similar
to the one we used to obtain (3.6), to bound for l1 ∈ {a1, a1 + 1}:

− logZ
ψu

�̄
a,l
[a1,l1]

[ξ ] ≤
d∏

i=2

(li − ai + 1)
(
2dV (0) + σC2/2[ξ = 0](u = 0)

)

− ∑
x∈�̄

a,l
[a1,l1]

(u · x)ξ(x) − 〈
ξ,G

�̄
a,l
[a1,l1]

ξ
〉
�̄

a,l
[a1,l1]

,

where σC2/2[ξ = 0](u = 0) is defined as in Theorem 3.1(b). Taking into account
that for all � ∈ Z

d , 〈ξ,G�ξ〉� ≥ 0, and making the convention that for all a1 ∈ Z

f�
�̄

a,l
[a1,a1+1]

[ξ ](u) : =
2∏

i=2

(li − ai + 1)
(
2dV (0) + |σC2/2[ξ = 0](u = 0)|)

− ∑
x∈�̄

a,l
[a1,a1+1]

(u · x)ξ(x) + 〈
ξ,G

�̄
a,l
[a1,a1+1]

ξ
〉
�̄

a,l
[a1,a1+1]

,

it follows that for all li > ai, i = 1,2, . . . , d , f�̄a,l+1[ξ ](u) satisfies the subaddi-
tivity property (3.13) as defined in Proposition 2.5(b). We will check next that
f�̄a,l+1[ξ ](u) satisfies conditions (a) and (c) of Proposition 2.5. Recall that for

z ∈ Z
d , τzϕ(x) = ϕ(x − z)forx ∈ Z

dandϕ ∈ R
Z

d
. As (ξ(x))x∈Zd are i.i.d., it is

easy to see that condition (a) of Proposition 2.5 is satisfied. We will show next that
(c) from Proposition 2.5 also holds. Using the lower bound in (3.4) and the fact that
E(ξ(0)) = 0, we have that f�̄a,l+1[ξ ](u) ∈ L1. Moreover, by the same reasoning as
that used to get (3.4), we have

E(f�̄a,l+1[ξ ](u))

|�̄a,l| > σA[ξ = 0](u = 0) − E(ξ2(0))
∑

x∈�̄a,l G�̄a,l (x, x)

�̄a,l
− 2dB.

Since by Proposition 2.1 we have that lim�∈Zd ,|�|↑∞ G�(x, x) = G(0,0) < ∞, it
follows that

inf
a,l∈Zd ,ai<li

i=1,...,d

E(f�̄a,l [ξ ](u))

|�̄a,l| > −∞(3.14)

and thus condition (c) of Proposition 2.5 is also satisfied. It follows that

lim
N→∞

f�N [ξ ](u)

Nd
exists a.s.(3.15)

Together with (3.8) this proves that limN→∞ σ�N
[ξ ](u) exists for P-almost all ξ .

(a2) To prove that limN→∞ σ�N
[ξ ](u) exists in L1, we will show that

f�̄a,l+1[ξ ](u) satisfies the assumptions of Proposition 2.6. Note first that as-
sumption (a) is automatically satisfied, due to the subadditivity property derived
in (3.13). Similarly, assumption (d) is satisfied because of (3.14). We will next
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prove that (b), (c) and (e) from Proposition 2.6 also hold. Let z ∈ Z
d and denote

by (ψ̃)zu(x) := ∑d
i=1(xiui + zi) for x ∈ ∂(�̄a,l + z). Then

f�̄a,l+1+z[ξ ](u) = − log
(
Z

(ψ̃)zu
�̄a,l+z

[ξ ])+ ∑
x∈�̄a,l+z

(u · x)ξ(x) + g�̄a,l+z(3.16)

= − log(Z
ψu

�̄a,l+z
[ξ ]) + ∑

x∈�̄a,l

(u · x)ξ(x + z) + g�̄a,l ,(3.17)

where in the first equality we made in the integral formula for Z
(ψ̃)zu
�̄a,l+z

[ξ ] the

change of variables ϕ̂(x) := ϕ(x) + ∑d
i=1 ziui for all x ∈ �̄a,l + z, and we used

g�̄a,l+z = g�̄a,l . Since (ξ(x))x∈Zd are i.i.d., (3.16) proves that (b), (c) and (e) from
Proposition 2.6 hold. It follows that all assumptions of Proposition 2.6 are satisfied.
Therefore

f�N
[ξ ](u)

Nd
converges in L1.

Together with (3.8) this proves that limN→∞ σ�N
[ξ ](u) exists in L1.

(b) Since we were unable to find in the literature a result for multiparameter
subadditive processes which we can apply directly as in (a1) and (a2) to show
that σ(u)[ξ ] is independent of the disorder ξ , we will briefly sketch next a proof
of the statement for our case. For simplicity of notation, we restrict ourselves to
proving (b) for �[0,N], where we recall that �[0,N] = [0,N]d ∩ Z

d .
Let k,n, r ∈ Z+ such that r < n and such that N = kn + r . For a = (ai)1≤i≤d ∈

Z
d , let Ia,n := �[(a1−1)n,a1n]×···×[(ad−1)n,adn] and let J s

N,k,n := {z ∈ Z
d :kn ≤ zs ≤

N,0 ≤ zi ≤ N for i = {1,2, . . . , d} \ {s}}, where s = 1,2, . . . , d . Then

�[0,N] = ⋃
{1≤ai≤k,i=1,...d}

Ia,n ∪ ⋃
{1≤s≤d}

J s
N,k,n.

In words, we are partitioning �[0,N] into the union of cubes of side lengths n,
which are the I ’s, and the J ’s represent the leftover boundary terms because N

may not be divisible by n. Thus written, �[0,N] is a union of disjoint sets. From
repeated application of (3.13), we have

f�[0,N ] [ξ ](u) ≤ ∑
{1≤ai≤k,i=1,...,d}

fIa,n[ξ ](u) +
d∑

s=1

fJ s
N,k,n

[ξ ](u).(3.18)

The key of the proof is that we can use the ergodic theorem for the first sum in the
right-hand side in (3.18) and that the boundary terms coming from the J ’s are neg-
ligible. Combining this with the a.s. and the L1 convergence of N−df�[0,N ] [ξ ](u)

proved in (a1) and (a2), the proof follows now similar steps to the proof of Theo-
rem 1.10 from [24] and will be omitted. �



EXISTENCE OF RANDOM GRADIENT STATES 1675

3.2. Existence of shift-covariant random gradient Gibbs measures with given
tilt. This subsection is structured as follows: in Section 3.2 we construct
in (3.24) a sequence of spatially averaged finite-volume gradient Gibbs mea-
sures (μ̄u

�[ξ ])�⊂Zd , such that (
∫

P(dξ)μ̄u
�[ξ ])�⊂Zd is tight, as shown in Propo-

sition 3.6, and shift-invariant. In Section 3.2.2 we will use the tightness of
(
∫

P(dξ)μ̄u
�[ξ ])�⊂Zd to prove in Theorem 1.7 the existence of a shift-covariant

random gradient Gibbs measure with a given tilt u ∈ R
d .

3.2.1. Tightness of the averaged measure. In order to prove tightness of the
finite-volume gradient Gibbs measures averaged over the disorder, we look at the
finite-volume Gibbs measures with tilt u ∈ R

d and boundary condition ψu(x) =
u · x:

ν
ψu

� [ξ ](dϕ) = 1

Z
ψu

� [ξ ] exp
(
−1

2

∑
x,y∈�

|x−y|=1

V
(
ϕ(x) − ϕ(y)

)

− ∑
x∈�,y∈∂�

|x−y|=1

V
(
ϕ(x) − ψu(y)

)
(3.19)

+ ∑
x∈�

ξ(x)ϕ(x)

)
dϕ�δψu(dϕZd\�).

Let us look now at the quantity

Fβ,u,�[ξ�] := log
∫

ν
ψu

� [ξ ](dϕ)

(3.20)

× exp
(
+β

2

∑
x,y∈Zd ,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
)
,

for β > 0 sufficiently small. In (3.20), the sum over x, y ∈ Z
d, |x − y| = 1, can

be taken to include all the bonds on Z
d due to the fact that ϕ = ψu on �c.

Note that Fβ,u,� is the difference between the original free energy in the vol-
ume � and the free energy in the volume � where we have added the term
β
2
∑

x,y∈Zd ,|x−y|=1(ϕ(x) − ϕ(y) − u · (x − y))2 to the Hamiltonian.
We first note the following disorder-dependent upper bound for Fβ,u,�.

LEMMA 3.5. Let d ≥ 3. Assume that V satisfies (1.3) and (1.4). Then

Fβ,u,�[ξ�] ≤ −|�|(σA−β
� [ξ = 0](u = 0) − σ

C2/2
� [ξ = 0](u = 0)

)
+ ∑

x,y∈�∪∂�

|x−y|=1

(
B + V (0)

)
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− A − β − C2/2

2

∑
x,y∈�∪∂�

|x−y|=1

(
(x − y) · u)2(3.21)

+ 1

2

(
1

A − β
− 2

C2

)
〈ξ,G�ξ〉�

=: F̄β,u,� + α

2
〈ξ,G�ξ〉�,

with the obvious definitions for F̄β,u,� and α.

PROOF. Using bounds As2 − B ≤ V (s) ≤ V (0) + C2
2 s2 for the potential V ,

we have

exp(Fβ,u,�[ξ�])

≤
∫

exp
(
−1

2

∑
x,y∈�

|x−y|=1

(
A
(
ϕ(x) − ϕ(y)

)2 − B
)

− ∑
x∈�,y∈∂�

|x−y|=1

(
A
(
ϕ(x) − ψ(y)

)2 − B
)+ ∑

x∈�

ξ(x)ϕ(x)

)

× exp
(
+β

2

∑
x,y∈Zd ,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
)

dϕ�(3.22)

/∫
exp

(
−1

2

∑
x,y∈�

|x−y|=1

(
C2

2

(
ϕ(x) − ϕ(y)

)2 + V (0)

)

− ∑
x∈�,y∈∂�

|x−y|=1

(
C2

2

(
ϕ(x) − ψ(y)

)2 + V (0)

))

× exp
(∑

x∈�

ξ(x)ϕ(x)

)
dϕ�.

This, by the same reasoning as in the proof of Theorem 3.1, is equal to
∫

exp
(
−1

2

∑
x,y∈�

|x−y|=1

(
(A − β)

(
ϕ̃(x) − ϕ̃(y)

)2

+ (A − β)
(
(x − y) · u)2 − B

)
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− ∑
x∈�,y∈∂�

|x−y|=1

(
(A − β)(ϕ̃(x))2 + (A − β)

(
(x − y) · u)2 − B

)

+ ∑
x∈�

ξ(x)ϕ̃(x)

)
dϕ̃�

(3.23) /∫
exp

(
−1

2

∑
x,y∈�

|x−y|=1

(
C2

2

(
ϕ̃(x) − ϕ̃(y)

)2

+ C2

2

(
(x − y) · u)2 + V (0)

)

− ∑
x∈�,y∈∂�

|x−y|=1

(
C2

2
(ϕ̃(x))2 + C2

2

(
(x − y) · u)2 + V (0)

)

+ ∑
x∈�

ξ(x)ϕ̃(x)

)
dϕ̃�,

where we note the cancellation of a sum over ξ ’s and where, as in the proof of
Theorem 3.1, for all x ∈ � we used the change of variables ϕ(x) = ϕ̃(x) + x · u.
The statement of the Lemma follows now by computing the Gaussian integrals
above as in the proof of Theorem 3.1. �

Take ρu(b) := ∇ψu(b) for all b ∈ (Zd)∗ and consider the corresponding gra-
dient Gibbs measure μ

ρu

� [ξ ] as given by (1.12). Let us now define the spatially
averaged measure μ̄u

�[ξ ] on gradient configurations obtained by

μ̄u
�[ξ ] := 1

|�|
∑
x∈�

μ
ρu

�+x[ξ ],(3.24)

where we recall that �+ x := {z + x : z ∈ �}. This is an extension to our disorder-
dependent case of the construction on Gibbs measures with symmetries given
in [17], in formula (5.20) from Chapter 5.2; the construction in [17] was used
to get shift-invariant Gibbs measures. We note that in (3.24), the random field vari-
ables ξ are held fixed while the volumes � + x are shifted around. We will first
use the fact that the measure (

∫
P(dξ)μ̄u

�[ξ ])(dϕ) is shift-invariant in the proof of
Proposition 3.6 below. Then we will use μ̄u

�[ξ ] to construct shift-covariant gra-
dient Gibbs measures in Section 3.2.2 by performing a further average over the
volumes.

In preparation for the proof of existence of random shift-covariant gradient
Gibbs measures, we will prove the following result on the tightness of the fam-
ily of averaged finite-volume random ∇ϕ-Gibbs measures, and therefore on the
existence, of the infinite-volume ∇ϕ-Gibbs measures averaged over the disorder.
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PROPOSITION 3.6. Suppose that d ≥ 3 and E(ξ(0)) = 0. Assume that V satis-
fies (1.3) and (1.4). Then there exists a constant K > 0 such that for all x0, y0 ∈ Z

d

with |x0 − y0| = 1, the measure

P u
�(dϕ) :=

(∫
P(dξ)μ̄u

�[ξ ]
)
(dϕ) =

(
1

|�|
∑
x∈�

∫
P(dξ)μ

ρu

�+x[ξ ]
)
(dϕ)

satisfies the estimate

lim sup
N↑∞

P u
�N

[(
ϕ(x0) − ϕ(y0) − u · (x0 − y0)

)2] ≤ K.(3.25)

Hence the sequence of measures P u
�N

is tight and thus possesses a disorder-
independent limit measure (along subsequences of volumes) on gradient config-
urations.

PROOF. Let f : RZ
d → [0,∞) be given by f (ϕ) := (ϕ(x0)−ϕ(y0)−u · (x0 −

y0))
2; using translation invariance of the distribution of the disorder (ξ(x))x∈Zd ,

we have

P u
�(f ) =

[
1

|�|
∑
x∈�

Eμ
ρu

�+x[ξ ]
]
(f ) = 1

|�|
∑
x∈�

(Eμ
ρu

�+x[ξ ])(f ◦ τx)

= 1

|�|Eμ
ρu

� [ξ ]
(∑

x∈�

f ◦ τx

)
.

By the nonnegativity of f we have for P-almost all ξ

μ
ρu

� [ξ ]
(∑

x∈�

f ◦ τx

)
≤ μ

ρu

� [ξ ]
( ∑

x,y∈Zd ,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
)

=: g[ξ ].
By writing g[ξ ] = (2/β) log e(β/2)g[ξ ] and applying Jensen’s inequality, we have

P u
�(f )

≤ 1

|�|Eμ
ρu

� [ξ ]
( ∑

x,y∈Zd ,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
)

≤ 2

β|�|E logμ
ρu

� [ξ ]
(

exp
(

β

2

∑
x,y∈Zd ,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
))

.

By Lemma 3.5 we get when � = �N the upper bound

P u
�N

(f ) ≤ 2

β|�N | F̄β,u,�N
+ 2

β|�N |E
(

α

2
〈ξ,G�N

ξ〉�N

)
,(3.26)

which is bounded uniformly in �N , as
F̄β,u,�N|�N | is uniformly bounded by Theo-

rem 1.10 and by (3.7), and 0 ≤ 1
|�N |E(〈ξ,G�N

ξ〉�N
) ≤ G(0,0) + 1, by Proposi-

tion 2.1(ii) and E(ξ(0)) = 0. This proves the claim. �
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3.2.2. Existence of shift-covariant random gradient Gibbs measures with given
tilt. In this subsection we will prove our main result, Theorem 1.7, of existence of
a shift-covariant random gradient Gibbs measure μ̂u[ξ ] with a given tilt u ∈ R

d . In
the proof, we will first construct a candidate μ̂u[ξ ] by taking suitable subsequential
weak limits, and then in two subsequent Lemmas 3.9 and 3.10, we will prove,
respectively, that P-a.s., our candidate μ̂u[ξ ] is a gradient Gibbs measure, and is
translation-covariant.

To construct a candidate μ̂u[ξ ], we will need to perform a further average of
μ̄u[ξ ] over the volumes �, and to find a deterministic sequence (mr)r∈N, along
which there is a weak limit for P-a.e. ξ . This will be facilitated by Theorem 1a
from [20], which we state below.

PROPOSITION 3.7. If (ζn)n∈N is a sequence of real-valued random variables
with lim infn→∞ E(|ζn|) < ∞, then there exists a subsequence {θn}n∈N of the se-
quence {ζn}n∈N and an integrable random variable θ such that for any arbitrary
subsequence {θ̃n}n∈N of the sequence {θn}, we have

lim
n→∞

θ̃1 + θ̃2 + · · · + θ̃n

n
= θ P-almost surely.

We are now ready to prove the existence of shift-covariant gradient Gibbs mea-
sures in Theorem 1.7, which follows immediately from the next Proposition.

PROPOSITION 3.8. Suppose that d ≥ 3 and E(ξ(0)) = 0. Assume that V sat-
isfies (1.3) and (1.4). Then there is a deterministic sequence (mr)r∈N in N such
that for P-almost every ξ ,

μ̂u
k [ξ ] := 1

k

k∑
i=1

μ̄u
�mi

[ξ ](3.27)

converges as k → ∞ weakly to μ̂u[ξ ], which is a shift-covariant random gradient
Gibbs measure defined as in Definition 1.6.

PROOF. We will prove first that there exists a deterministic sequence (mr)r∈N

in N such that (μ̂u
k [ξ ])k∈N converges a.s. to a random measure μ̂u[ξ ]. We will then

show that μ̂u[ξ ] is a.s. a gradient Gibbs measure, is translation-covariant and that
ξ → μ̂u[ξ ] is a measurable map.

Let (fi)i∈N be a countable collection of functions in Cb(χ), such that a se-
quence of probability measures μn ∈ P(χ) converges weakly to μ ∈ P(χ) if and
only if μn(fi) → μ(fi) for all i ∈ N. Such a countable family (fi)i∈N in Cb(χ)

is explicitly given, for example, in the general setting of separable and complete
metric spaces in Proposition 3.17 from [26] or in Lemma 1.1 from [19]. To show
that for a given sequence (mr)r∈N and a random measure μ̂[ξ ], μ̂k[ξ ] converges
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a.s. to μ̂[ξ ], it suffices to show that μ̂k[ξ ](fi) → μ̂[ξ ](fi) almost surely for each
i ∈ N.

For each N ∈ N and x, y ∈ Z
d with |x − y| = 1, define

XN;x,y[ξ ] := μ̄u
�N

[ξ ]((ϕ(x) − ϕ(y) − u · (x − y)
)2)

.(3.28)

Take now the countable sequence containing both the family (μ̄u
�N

[ξ ](fi))i,N∈N

and (XN;x,y[ξ ])N∈N,x,y∈Zd

|x−y|=1
. We note that since (fi)i∈N are bounded functions,

lim infN↑∞ E(μ̄u
�N

[ξ ](|fi |)) < |fi |∞ < ∞. Note also that lim infN E(XN;x,y[ξ ]) <

∞ by Proposition 3.6. Therefore by Proposition 3.7, for each x0, y0 ∈ Z
d with

|x0 − y0| = 1, there exists a sequence (nr)r∈N and a random variable κx0,y0 , both
depending on x0 and y0, such that

lim
k↑∞

1

k

k∑
r=1

Xnr ;x0,y0[ξ ] = κx0,y0[ξ ] for P-almost every ξ.

Moreover

lim
k↑∞

1

k

k∑
j=1

Xnrj
;x0,y0[ξ ] = κx0,y0[ξ ] for P-almost every ξ

holds also for every further subsequence (nrj )rj∈N of (nr)r∈N. We take an arbitrary
such subsequence nrj . By Proposition 3.7, there exists a subsequence (n′

r )r∈N of
(nrj )rj∈N and a random variable ρ1, both depending on x0 and y0, such that

lim
k↑∞

1

k

k∑
j=1

μ̄u
�n′

rj

[ξ ](f1) = ρ1[ξ ] for P-almost every ξ.

Moreover

lim
k↑∞

1

k

k∑
j=1

μ̄�n′′
rj

[ξ ](f1) = ρ1[ξ ] for P-almost every ξ

holds also for every further subsequence n′′
rj

of n′
rj

.

We repeat this procedure for each x, y ∈ Z
d, |x − y| = 1 and for each i ∈ N. By

a Cantor diagonalization argument over the countably many x, y ∈ Z
d, |x −y| = 1

and over the i ∈ N, there exists a deterministic sequence (mr)r∈N in N and random
variables (κx,y[ξ ])x,y∈Zd ,|x−y|=1 and (ρi[ξ ])i∈N such that for P-almost every ξ ,

lim
k↑∞

1

k

k∑
r=1

Xmr ;x,y[ξ ] = κx,y[ξ ] and

(3.29)

lim
k↑∞

1

k

k∑
r=1

μ̄u
�mr

[ξ ](fi) = ρi[ξ ],
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for all x, y ∈ Z
d and all i ∈ N. In particular, we get from (3.29) that

supk∈N X̂k;x,y[ξ ] ≤ C(κx,y[ξ ]) for some C(κx,y[ξ ]) > 0. Therefore for all b ∈
(Zd)∗, with b = (x, y), we have for P-almost every ξ

lim
L↑∞ sup

k∈N

μ̂u
k [ξ ](η : |η(b)| ≥ L

) ≤ lim
L↑∞ sup

k∈N

X̂k;x,y[ξ ]
L2 = 0.

This means that for P-a.s. all ξ , there exists a (possibly) random subsequence
(k′[ξ ]) such that (μ̂u

k′[ξ ][ξ ])k′[ξ ] is tight and converges weakly to a random measure
μ̂u[ξ ]. The random subsequence (k′[ξ ]) is used only for tightness; in fact the sub-
sequence becomes nonrandom again as we return below to the deterministic sub-
sequence (mr). Moreover, we have μ̂u

k′[ξ ][ξ ](fi) → μ̂u[ξ ](fi) for all i ∈ N. Due
to (3.29), and by the uniqueness of the limit point, we get that ρi[ξ ] = μ̂u[ξ ](fi)

for all i ∈ I . Since μ̂u
k [ξ ](fi) → μ̂u[ξ ](fi), it follows that μ̂u

k [ξ ] converges a.s. to
a random measure μ̂u[ξ ].

From Lemma 3.9 below, we get that for P-almost all ξ , μ̂u[ξ ] is a gradient
Gibbs measure and from Lemma 3.10 below, that μ̂u[ξ ] is translation-covariant
for P-almost all ξ .

It only remains to prove that ξ → μ̂u[ξ ] is a measurable map. We recall that the
disorder is defined on the probability space (�, F ,P). With a given tilted boundary
condition ψu, μψu

� [ξ ] is clearly a measurable function of the disorder field ξ . Since
μ̂u is constructed as a pointwise (w.r.t. ξ ) limit of averages of such measurable
P(χ)-valued functions of ξ , μ̂u is also a measurable P(χ)-valued function of ξ .

�

We will prove next Lemmas 3.9 and 3.10. The setup is as before; that is, μ̂u
k [ξ ] is

defined as in (3.24), and the assumption is that along a deterministic subsequence
(mi)i∈N in N, we have weak convergence of μ̂u

k [ξ ] to μ̂u[ξ ] for P-almost all ξ .

LEMMA 3.9. For P-almost all ξ , the limit μ̂u[ξ ] is a gradient Gibbs measure.

PROOF. In order to show that μ̂u[ξ ] is a gradient Gibbs measure, we have to
show that for each fixed ξ , for all F ∈ Cb(χ) and for all J ⊂ Z

d we have∫
μ̂u[ξ ](dρ̃)

∫
μ

ρ̃
J [ξ ](dη)F (η) =

∫
μ̂u[ξ ](dη)F (η).(3.30)

Using the compatibility of the kernels, namely
∫

μ
ρu

� [ξ ](dρ̃)μ
ρ̃
J [ξ ] = μ

ρu

� [ξ ] for J ⊂ � ⊂ Z
d,
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we have∫
μ̄u

�[ξ ](dρ̃)μ
ρ̃
J [ξ ]

= 1

|�|
∑
x∈�

∫
μ

ρu

�+x[ξ ](dρ̃)μ
ρ̃
J [ξ ]

= 1

|�|
( ∑

x∈� : J⊂�+x

+ ∑
x∈� : J �⊂�+x

)∫
μ

ρu

�+x[ξ ](dρ̃)μ
ρ̃
J [ξ ](3.31)

= 1

|�|
∑

x∈� : J⊂�+x

μ
ρu

�+x[ξ ] + 1

|�|
∑

x∈� : J �⊂�+x

∫
μ

ρu

�+x[ξ ](dρ̃)μ
ρ̃
J [ξ ]

= μ̄u
�[ξ ] + 1

|�|
∑

x∈� : J �⊂�+x

(∫
μ

ρu

�+x[ξ ](dρ̃)μ
ρ̃
J [ξ ] − μ

ρu

�+x[ξ ]
)
.

Fix J ⊂ Z
d and take k ∈ N large enough. Applying (3.31) to the subsequence

(�mi
)1≤mi≤k and to an arbitrary F ∈ Cb(χ), we have

μ̂u
k [ξ ](μρ̃

J [ξ ](F )) = 1

k

k∑
i=1

μ̄u
�mi

[ξ ](F ) + 1

k

k∑
i=1

R(�mi
, J,F )[ξ ],(3.32)

where |R(�mi
, J, f )[ξ ]| ≤ C(f )

|�mi
|
∑

x∈�mi
: J �⊂�mi

+x 1, for all 1 ≤ i ≤ k and for

some constant C(f ) > 0. In order to prove (3.30), we need to take k → ∞ on
both sides of (3.32). To do that, we have to prove first that for all F ∈ Cb(χ) and
for all fixed J ⊂ Z

d we have∫
μ̂[ξ ](dρ̃)(μ

ρ̃
J [ξ ](F )) = lim

k↑∞ μ̂u
k [ξ ](μρ̃

J [ξ ](F )).(3.33)

To show (3.33), it is sufficient to show that for all F ∈ Cb(χ) the function
μ

ρ̃
J [ξ ](F ) ∈ Cb(χ) as a function in ρ̃; then (3.33) will follow by the hypothe-

sis. The boundedness of μ
ρ̃
J [ξ ](F ) follows immediately due to the boundedness

of F . To prove continuity of μ
ρ̃
J [ξ ](F ), fix ρ̃ ∈ χ arbitrarily. As χ equipped with

the metric ‖r is a complete metric space, we can take now a sequence (ρ̃n)n∈N ∈
χ such that limn↑∞ ρ̃n = ρ̃ in χ ; we have to show that limn↑∞ μ

ρ̃n

J [ξ ](F ) =
μ

ρ̃
J [ξ ](F ). In view of the fact that V ∈ C2(R), we note now that both the integrand

in the numerator, and the integrand in the denominator, of limn↑∞ μ
ρ̃n

J [ξ ](F ) con-
verge as ρ̃n → ρ̃; moreover, due to the bounds As2 −B ≤ V (s) ≤ V (0)+ C2

2 s2 on
the potential V and by a similar reasoning as in the proof of Lemma 3.5, these inte-
grands are uniformly bounded by integrable functions. Applying now Lebesgue’s
dominated convergence theorem separately to the numerator and to the denomina-
tor gives limn↑∞ μ

ρ̃n

J [ξ ](F ) = μ
ρ̃
J [ξ ](F ), and therefore (3.33) holds. Taking k to
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infinity in (3.32) and using (3.33), we get

∫
μ̂[ξ ](dρ̃)(μ

ρ̃
J [ξ ](F )) = lim

k↑∞
1

k

k∑
i=1

μ̄u
�mi

[ξ ](F ) + lim
k↑∞

1

k

k∑
i=1

R(�mi
, J,F )[ξ ]

= μ̂u[ξ ](F ) + 0,

where the convergence holds due to the fact that F ∈ Cb(R
(Zd )∗) and

∑k
i=1 R(�mi

,

J,F )[ξ ]/k goes to zero uniformly in ξ , due to the upper bound on |R(�,J,F )[ξ ]|.
This proves that (3.30) holds. �

LEMMA 3.10. For P-almost all ξ , the limit μ̂u[ξ ] is translation-covariant,
that is, for all v ∈ Z

d and for all F ∈ Cb(χ), we have

μ̂u[ξ ](F ◦ τv) = μ̂u[τvξ ](F ),(3.34)

where we recall that (τvξ)(z) = ξ(z − v) for all z ∈ Z
d .

PROOF. Fix v ∈ Z
d . Then we have

μ̂u[ξ ](F ◦ τv) − μ̂u[τvξ ](F )

= lim
k↑∞

1

k

k∑
i=1

1

|�mi
|
( ∑

x∈�mi

μ
ρu

�mi
+x[ξ ](F ◦ τv)(3.35)

− ∑
x∈�mi

μ
ρu

�mi
+x[τvξ ](F )

)
.

The terms inside the last bracket equal∑
x∈�mi

μ
ρu

�mi
+x[ξ ](F ◦ τv) − ∑

x∈�mi

μ
ρu

�mi
+x[τvξ ](F )

= ∑
x∈�mi+v

μ
ρu

�mi
+x[ξ ](F ) − ∑

x∈�mi

μ
ρu

�mi
+x[ξ ](F ).

Most terms on the right-hand side cancel. Therefore, for a bounded function F

such that ‖F‖∞ ≤ C(F) for some C(F) > 0, we have

|μ̂u[ξ ](F ) − μ̂u[τvξ ](F )| ≤ lim
k↑∞

C(F)

k

k∑
i=1

|�mi
�(�mi

+ v)|
|�mi

| ,(3.36)

where we denoted by � the symmetric difference of the sets � and � + v. But
|�mi

�(�mi
+ v)| goes to zero when divided by |�mi

|, uniformly in mi , which
implies that (3.36) goes to zero also. This shows the translation-covariance. �
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PROOF OF THEOREM 1.7(a). Proposition 3.8 implies the existence of a ran-
dom gradient Gibbs μ̂u[ξ ]. We prove next that μ̂u[ξ ] satisfies (1.15). Given the
tilt u ∈ R

d , the limit μ̂u[ξ ] we construct is the weak limit of the μ̂u
k [ξ ]. We next

calculate what is the expected tilt over a given bond under the measure μ̂u
k [ξ ], av-

eraged over the disorder. For any mi in the deterministic sequence (mi)1≤i≤k and
for b1 := (0, e1), we have by means of (3.24) and of Definition (1.12)

μ̄ρu
mi

[ξ ](η(b1)) = 1

|�mi
|

∑
x∈�mi

μ
ρu

�mi
+x[ξ ](η(b1))

= 1

|�mi
|

∑
x∈�mi

ν
ψu

�mi
+x[ξ ](ϕ(e1) − ϕ(0)

)
(3.37)

= 1

|�mi
|

∑
x∈�mi

ν
τ−xψu

�mi
[τ−xξ ](ϕ(e1 − x) − ϕ(−x)

)

= 1

|�mi
|

∑
x∈�mi

ν
ψu

�mi
[τ−xξ ](ϕ(e1 − x) − ϕ(−x)

)
,

where for the third equality we made for all y ∈ �mi
the change of variables

ϕ(y) → ϕ(y) +∑d
i=1 uixi under each integral. Let

�̄−mi,mi
mi

:= �{mi}×[−mi,mi ]×···×[−mi,mi ] and

�̄
−mi,mi−mi

:= �{−mi}×[−mi,mi ]×···×[−mi,mi ].

Averaging over the disorder in (3.37), we get

E

(∫
μ̄ρu

mi
[ξ ](dη)η(b1)

)

= 1

|�mi
|

∑
x∈�mi

E

(∫
ν

ψu

�mi
[τ−xξ ](dϕ)

(
ϕ(e1 − x) − ϕ(−x)

))

= 1

|�mi
|

∑
x∈�mi

E

(∫
ν

ψu

�mi
[ξ ](dϕ)

(
ϕ(e1 − x) − ϕ(−x)

))

= 1

|�mi
|

∑
x∈{�mi

\�̄−mi ,mi−mi
}
E

(∫
ν

ψu

�mi
[ξ ](dϕ)

(
ϕ(e1 − x) − ϕ(−x)

))

+ 1

|�mi
|

∑
x∈�̄

−mi ,mi−mi

E

(∫
ν

ψu

�mi
[ξ ](dϕ)

(
ψ(e1 − x) − ϕ(−x)

))
.
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Most of the terms in the last equality in the above equation cancel and we are left
with

E

(∫
μ̄ρu

mi
[ξ ](dη)η(b1)

)

= 1

|�mi
|
[ ∑
x∈�̄

−mi ,mi−mi

ψ(e1 − x) − ∑
x∈�̄

−mi ,mi
mi

(
u1 + ψ(−e1 − x)

)

− ∑
x∈�̄

−mi ,mi
mi

E

(∫
ν

ψu

�mi
[ξ ](dϕ)

(
ϕ(−x) − ψ(−e1 − x) − u1

))]

= u1 + O(K,u1)

2mi + 1
,

uniformly in mi ∈ N, and where to bound the last term in the first equality, we used
Proposition 3.6. From this, it follows easily that we have, uniformly in k ∈ N,

E

(∫
μ̂u

k [ξ ](dη)η(b1)

)
= u1 + o(log k)

k
.

Fix any large M > 0. Then η(b) ∧ M ∨ (−M) is bounded and continuous, so for
P-a.s. all ξ , we have

lim
k→∞

∫
μ̂u

k [ξ ](dη)η(b) ∧ M ∨ (−M) =
∫

μ̂u[ξ ](dη)η(b) ∧ M ∨ (−M).

Moreover, from Proposition 3.6 and Chebyshev’s inequality, we have

E

(∫
μ̂u

k [ξ ](dη)η(b)

)
= E

(∫
μ̂u

k [ξ ](dη)η(b) ∧ M ∨ (−M)

)
+ O(K)

Md
,

uniformly in k ∈ N. Therefore by sending M to ∞, the convergence of the trun-
cated η together with the fact that

∫
μ̂u[ξ ](dη)η(b) is an integrable random vari-

able, proves (1.15). By symmetry, (1.15) holds for any b ∈ (Zd)∗.
To prove (1.16), take any b = (x0, y0) ∈ (Zd)∗. Since (ϕ(x0)−ϕ(y0)−u · (x0 −

y0))
2 ≥ 0, by the weak convergence of (μ̂u

k )k∈N to μ̂u and by Proposition 3.6, we
have

E

(∫
μ̂u[ξ ](dη)

(
ϕ(x0) − ϕ(y0) − u · (x0 − y0)

)2
)

(3.38)
≤ E

(
lim inf

k→∞ μ̂u
k

(
ϕ(x0) − ϕ(y0) − u · (x0 − y0)

)2
)

< K. �

PROOF OF THEOREM 1.8. Suppose that the infinite-volume gradient Gibbs
measure does exist and it satisfies E| ∫ μ[ξ ](dη)V ′(η(b))| < ∞for all bondsb =
(x, y) ∈ (Zd)∗. Then we have, in the present notation,∑

x∈�

ξ(x) = − ∑
x∼y

x∈�,y∈�c

X(x,y)[ξ ](3.39)



1686 C. COTAR AND C. KÜLSKE

with Xb[ξ ] := ∫
μ[ξ ](dη)V ′(η(b)) which was proved in [29]. We take � to be a

box, divide both sides of the equation by |�| and take the limit � ↑ Z
d . Then the

right-hand side tends to zero if d ≥ 1, while the left-hand side tends to the nonzero
constant E(ξ(0)) in any dimension. �

3.2.3. Nonroughening in an averaged sense. We will give next the following
large deviation upper bound both for the measures μu

�[ξ ], as defined in (3.19), and
for the averaged measures μ̄u

�[ξ ], as defined in (3.24).

PROPOSITION 3.11. Suppose that d ≥ 3, E(ξ(0)) = 0 and E(ξ2(0)) < ∞.

1. Then there exist constants K,β, t0 > 0 such that for all but finitely many N ∈ N,
the following large deviation upper bound holds for all t > t0 and for P-almost
all ξ :

μ
ρu

�N
[ξ ]

(
1

2|�N |
∑

x,y∈�N,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
> t

)
(3.40)

≤ exp(−β|�N |t).
2. The same result holds for the averaged measures μ̄u

�[ξ ].
PROOF. The assumption E(ξ2(0)) < ∞ allows us to use the SLLN in Propo-

sition 2.4 along boxes �N of side-length N , which implies that there exists a non-
random constant K such that for N large enough, we have 1

|�N | 〈ξ,G�N
ξ〉�N

≤ K.

Conditional on this bound, one has by means of Lemma 3.5 that Fβ,u,�N
[ξ�N

] ≤
|�N |K (for a modified K) which, by the exponential Chebychev inequality, im-
plies the concentration bounds of the form (3.40).

To get the same type of bounds for the measure μ̄u
�[ξ ], we need to make use

of the monotonicity in � ∈ Z
d of the quadratic form 〈ξ,G�ξ〉� stated in Proposi-

tion 2.3.
Let us look at the quantity

exp F̂β,u,�[ξ�]

:=
∫

ν̄u
�[ξ ](dϕ) exp

(
+β

2

∑
x,y∈�N,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
)

with the obvious definition for ν̄u
�. Note that we have the following upper bound:

eF̂β,u,�[ξ�] ≤ eF̄β,u,�
1

|�|
∑
x∈�

e(α/2)〈ξ,G�+xξ〉�+x ,

by a straightforward application of the previous steps. By Proposition 2.3 we have
for each term under the sum, the estimate 〈ξ,G�+xξ〉�+x ≤ 〈ξ,G�+�ξ〉�+�

where � + � := {x + y :x, y ∈ �}. This gives us the estimate

F̂β,u,�[ξ�] ≤ F̄β,u,� + α

2
〈ξ,G�+�ξ〉�+�.
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From here the proof of the validity of the bounds stays the same. �

4. Model B. The proof of Theorem 1.10 on surface tension for model B fol-
lows the same argument as for model A, so it will be omitted. We will focus in-
stead on proving the existence of shift-covariant random gradient Gibbs measures
with given tilt. We consider the finite-volume Gibbs measures with tilt u ∈ R

d and
boundary condition ψu(x) = u · x of the form

ν
ψu

� [ω](dϕ)

= 1

Z
ψ
�[ω] exp

(
−1

2

∑
x,y∈�

|x−y|=1

V ω
(x,y)

(
ϕ(x) − ϕ(y)

)

− ∑
x∈�,y∈∂�

|x−y|=1

V ω
(x,y)

(
ϕ(x) − ψ(y)

))
dϕ�δψu(dϕZd\�).

Similar to what we did for model A to prove tightness, we will consider

expFβ,u,�[ω�]
(4.1)

:=
∫

ν
ψu

� [ω](dϕ) exp
(
+β

2

∑
x,y∈Zd ,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
)
.

By the same reasoning as for the proof of Lemma 3.5, we get:

LEMMA 4.1.

Fβ,u,�[ω�] ≤ −|�|(σA−β
� [ω = 0](u = 0) − σ

C2
� [ω = 0](u = 0)

)
+ ∑

x,y∈�∪∂�

|x−y|=1

Bω
(x,y)

(4.2)

− A − β − C2

2

∑
x,y∈�∪∂�

|x−y|=1

(
(x − y) · u)2

=: F̃β,u,� + ∑
x,y∈�∪∂�

|x−y|=1

Bω
(x,y),

where the first term on the right-hand side is a nonrandom quantity which is
bounded by a constant times |�|.

Note that the critical dimension for existence changes from d = 3, as it was in
model A, to d = 1. The reason for this change is the absence of the term 〈ξ,G�ξ〉�



1688 C. COTAR AND C. KÜLSKE

in the formula for Fβ,u,�[ω�] above, and which term, present in the formula for
Fβ,u,�[ξ�] in model A, diverges for d = 2 when averaged over the disorder.

Define μ
ρu

� [ω] and μ̄
ρu

� [ω] as for model A. As in Proposition 3.6 from model A,
we have the following result on the tightness of the family of finite-volume random
∇ϕ-Gibbs measures μu

�N
[ω] averaged over the disorder.

PROPOSITION 4.2. Suppose that d ≥ 1. Then there exists a constant K > 0
such that for all bonds x0, y0 ∈ Z

d , with |x0 − y0| = 1, we have that the measure
P u

�(dϕ) := ∫
P(dω)μ

ρu

� [ω](dϕ) satisfies the estimate

lim sup
N↑∞

P u
�N

(
ϕ(x0) − ϕ(y0)

)2 ≤ K.(4.3)

Hence the sequence of measures P u
�N

is tight and thus possesses a disorder-
independent limit measure (along subsequences of volumes) on gradient config-
urations.

PROOF. We proceed exactly as for model A to get the bound

P u
�(f ) ≤ 2

β|�|E logμ
ρu

� [ω]
(4.4)

×
(

exp
(

β

2

∑
x,y∈Zd ,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
))

,

which gives us

P u
�(f ) ≤ 2

β|�| F̃β,u,� + 2

β|�|
( ∑

x,y∈�∪∂�

|x−y|=1

EBω
(x,y)

)
,(4.5)

which is bounded uniformly in �. �

Theorem 1.7(b) follows now immediately from Proposition 4.2 by similar rea-
soning as in the proof of Theorem 1.7(a).

Similar to the proof of Proposition 3.11, we have the following large deviation
upper bound for the finine volume Gibbs measures μ

ρu

� [ω] and μ̄u
�[ω].

PROPOSITION 4.3. Suppose that d ≥ 1. Then there exist constants
K,β, t0 > 0 such that for all realizations ω ∈ � and for all N ∈ N the follow-
ing large deviation upper bound holds for all t > t0:

μ
ρu

�N
[ω]

(
1

2|�N |
∑

x,y∈�N,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
> t

)
(4.6)

≤ exp(−β|�N |t)
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and

μ̄u
�[ω]

(
1

2|�N |
∑

x,y∈�N,|x−y|=1

(
ϕ(x) − ϕ(y) − u · (x − y)

)2
> t

)
(4.7)

≤ exp(−β|�N |t).
APPENDIX

A.1. Why the Gibbs measure does not exist for model A in d = 3,4 for
V (s) = s2/2. We will prove next that for model A in d = 3,4, there exists no
infinite-volume Gaussian Gibbs measure with s := supx∈Zd E| ∫ ν[ξ ](dϕ)ϕ(x)| <

∞. Take �N := [−N,N ]d ∩Z
d,N ∈ N, and let ψ ∈ R

Z
d

be an arbitrary boundary
condition. Then we have for the finite-volume Gibbs measure∫

ν
ψ
�N

[ξ ](dϕ)ϕ(0) = ∑
z∈�N

G�N
(0, z)ξ(z) + E0(ψ(Xτ�N

)).(A.1)

Here the expectation E0 is w.r.t. a nearest-neighbor random walk X := (Xk)k∈N

started at 0 with Green’s function (G�N
(0, y))y∈�N

, and the second term is what
we obtain for the nondisordered model. We defined τ�N

:= inf{k ≥ 0 :Xk ∈ �N
c},

so Xτ�N
is the position of the random walk when it exits �N . Suppose that there

is a random infinite-volume Gibbs measure ν[ξ ] in d = 3,4. Average (A.1) over
the boundary conditions ψ w.r.t. the measure ν[ξ ] and use the DLR equation to
conclude that∫

ν[ξ ](dϕ)ϕ(0) = ∑
z∈�N

G�N
(0, z)ξ(z) + E0

∫
ν[ξ ](dϕ)(ϕ(Xτ�N

)).(A.2)

The expectation under the disorder for the second term in (A.2) stays bounded
uniformly in �N under our hypothesis; in fact, we have

E

∣∣∣∣E0

∫
ν[ξ ](dϕ)(ϕ(Xτ�N

))

∣∣∣∣
= E

∣∣∣∣ ∑
u∈∂�N

P0(Xτ�N
= u)

∫
ν[ξ ](dϕ)ϕ(u)

∣∣∣∣(A.3)

≤ ∑
u∈∂�N

P0(Xτ�N
= u)E

∣∣∣∣
∫

ν[ξ ](dϕ)ϕ(u)

∣∣∣∣ ≤ s.

The left-hand side of (A.2) is a proper random variable and (E0
∫

ν[ξ ](dϕ) ×
(ϕ(Xτ�N

)))�N⊂Zd is a tight family of random variables by (A.3). However,
(
∑

z∈�N
G�N

(0, z)ξ(z))�N⊂Zd is not a tight family because a simple character-
istic function calculation shows that∑

z∈�N
G�N

(0, z)ξ(z)√∑
z∈�N

G2
�N

(0, z)
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converges to a standard normal as N ↑ ∞, since
∑

z∈�N
G2

�N
(0, z) diverges in

d = 3,4. This leads to a contradiction in (A.2) as �N ↑ Z
d .

The identity in (A.1) is based on exact computations for multivariate Gaussian
distributions, which we do not have for nonquadratic potentials. For the more gen-
eral class of potentials satisfying (1.3) and (1.4), we expect the conclusion to be
the same.

A.2. Why the Brascamp–Lieb inequality does not solve the problem.
A different route to proving the existence of random gradient Gibbs measures
uses the Brascamp–Lieb inequality. It states that for γ a centered Gaussian distri-
bution on R

d and a distribution μ on R
d such that there exists dμ/dγ = e−f for

a convex function f , one has for all v ∈ R
d and for all convex real functions F ,

bounded below, that

μ
(
F
(
v · (X − μ(X)

))) ≤ γ
(
F(v · X)

)
.(A.4)

The above is the formulation by Funaki in [15]. An application of (A.4) to our
disorderd case would give, for example, that

μ
ρu

� [ξ ]([ϕ(x0) − ϕ(y0) − μ
ρu

� [ξ ](ϕ(x0) − ϕ(y0)
)]2)

(A.5)
≤ γ�

([ϕ(x0) − ϕ(y0)]2),
where γ� is the corresponding Gaussian measure. The right-hand side is uniformly
bounded in �, so that would prove a.s. tightness for strictly convex potentials V if
we can prove that the expected values of the local tilts of the interface taken over
the Gibbs distribution have limits for almost surely every realization of disorder,
that is, if we can prove that

lim|�|↑∞μ
ρu

� [ξ ](ϕ(x0) − ϕ(y0)
)

(A.6)

exists a.s. for x0, y0 ∈ �, with |x − y| = 1. However, currently we do not have a
way either to prove (A.6) or to prove the existence of the lim|�|↑∞ μ̄

ρu

� [ξ ](ϕ(x0)−
ϕ(y0)), as introduced in (3.24), in the presence of disorder. Note that in the model
without disorder, we can show for strictly convex potentials V the existence of the
last limit by Brascamp–Lieb inequality coupled with shift-invariance arguments.
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