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EFFECT OF SCALE ON LONG-RANGE RANDOM GRAPHS AND
CHROMOSOMAL INVERSIONS

BY NATHANAEL BERESTYCKI AND RICHARD PYMAR
University of Cambridge

We consider bond percolation on n vertices on a circle where edges are
permitted between vertices whose spacing is at most some number L = L(n).
We show that the resulting random graph gets a giant component when
L > (log n)2 (when the mean degree exceeds 1) but not when L « logn.
The proof uses comparisons to branching random walks. We also consider
a related process of random transpositions of n particles on a circle, where
transpositions only occur again if the spacing is at most L. Then the process
exhibits the mean-field behavior described by Berestycki and Durrett if and
only if L(n) tends to infinity, no matter how slowly. Thus there are regimes
where the random graph has no giant component but the random walk never-
theless has a phase transition. We discuss possible relevance of these results
for a dataset coming from D. repleta and D. melanogaster and for the typical
length of chromosomal inversions.

1. Introduction and results.

1.1. Random graphs results. Letn > 1 and let L = L(n) > 1. Define vertex
set V.={1,...,n} and edge set R = {(i, j) € V2 |li — jll < L}, where |li — j||
denotes the cyclical distance between i and j, that is, ||#| = min(|u|,n — |u]|) for
u € V. In this paper we consider bond percolation on V where each edge in R
is open with probability p. Equivalently, let (G(¢),¢ > 0) be the random graph
process where a uniformly chosen edge of R, is opened in continuous time, at
rate 1. Let A'(r) > A%(t) > --- denote the ordered component sizes of G(¢). At
a fixed time ¢ this corresponds to the above model with p =1 — exp{—¢/(nL)}.
When L = 1, this is the usual bond percolation model on the cycle of length n,
while for L(n) =n/2, we find that G(¢) is a realization of the much studied ran-
dom graph model of Erdés and Renyi [see Bollobas (1985) and Durrett (2010)
for background]. Hence, our random graph model interpolates between these two
cases.

In this paper we are interested in the properties of the connected components
of G(t), particularly those related to the possible emergence of a giant component
when the average degree exceeds 1. The main result of this paper shows that this
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depends on the scale L(n). To state our results, we let ¢ > 0 and consider t = cn/2,
so that the expected degree of a given vertex in G (¢) converges to ¢ when n — oco.
Let Al(r) > A%(r) > - - - denote the ordered component sizes of G ().

THEOREM 1. Lett =cn/2, where ¢ > 0 is fixed as n — 00.

() If ¢ < 1, then there exists C < oo depending only on ¢ such that A (1) <
Clogn with high probability as n — oo.

(1) If ¢ > 1 and there exists & > 0 such that L(n) > (log n)*tE | then there is a
unique giant component; more precisely,

AL()

ey — 0(c)

in probability as n — oo, where 0(c) is the survival probability of a Poisson(c)
Galton—Watson tree. Moreover, A*(t) /n — 0 in probability.
(iii)) However, if c > 1 and L = o(logn), then for all a > 0,
A@)

na

-0

2

in probability as n — oo. In particular there are no giant components.

Statement (i) is fairly easy to prove using the standard technique of approxi-
mating the size of a component in the graph by the total progeny of a branching
process. The result follows since in the case ¢ < 1 we know that the total progeny
of the branching process is almost surely finite and has exponential tails.

Part (ii) is the most challenging. We start by noting that the exploration of the
component containing a given vertex v may be well-approximated by the trace of
a branching random walk where the step distribution is uniform on {—L, ..., L}.
This approximation is valid so long as the local density of the part of the com-
ponent already explored stays small. Thus, showing the existence of a giant com-
ponent requires a balancing act; we need to ensure that the local density of what
we explore stays small enough to ignore self-intersections, but large enough for
global connections to occur. Careful estimates on survival probabilities of killed
branching random walks are used to achieve this.

Part (iii) is the easiest to prove, and requires showing the existence of many
“blocking” intervals of size L which consist just of vertices with degree 0. When
there are many such intervals, no giant component can exist.

1.2. Long-range random transpositions. Theorem 1 was originally motivated
by the study of a question concerning long-range transpositions, which may itself
be rephrased as a question in computational biology. We now discuss the question
on long-range random transpositions and delay the applications to comparative
genomics until Section 2.
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Recall the definitions of V and Ry in Section 1.1. Consider a random pro-
cess (o7, t > 0) with values in the symmetric group S,;, which evolves as follows.
Initially, og = e is the identity permutation. Let (i1, ji), (i2, j2), ... be an i.i.d. in-
finite sequence of pairs of elements of V', where each pair is uniformly distributed
on R . Then we put

3) 0y =TN,0---0TJ,

where for each k£ > 1 we let t; denote the transposition (ig, jx), (N¢, t > 0) is an in-
dependent Poisson process with rate 1 and o the composition of two permutations.
That is, informally, if we view the permutation o; as describing the positions on
the circle of n particles labeled by V [with o7 (i) denoting the position of particle
i € V], then in continuous time at rate 1, a pair of positions (7, j) is sampled uni-
formly at random from R, and the two particles at positions i and j are swapped.
Thus the case where L(n) > n/2 corresponds to the well-known random transposi-
tion process (i.e., the composition of uniform random transpositions), whereas the
case where L(n) = 1 corresponds to the case of random adjacent transpositions on
the circle.

Our interest consists of describing the time-evolution of §(o;), where for all
o €S, wesetéd(o)=n—|o| and |o]| to be the number of cycles of o. By a
well-known result of Cayley, this is the length of a minimal decomposition of o
into a product of any transpositions (i.e., whose range is not necessarily restricted
to R1). The reason for this choice will become apparent in subsequent sections
and is motivated by the applications to comparative genomics.

For ¢ > 0, define a function

21 kk-2

4) uc)=1- 1; ; T(ce—C)k.

It is known that u(c) = ¢/2 for ¢ < 1 but u(c) < ¢/2 for ¢ > 1 [see, e.g., Bollobas
(1985), Theorem 5.12]. The function u is continuously differentiable but has no
second derivative at c = 1. We shall prove the following results.

THEOREM 2. Assume L(n) — oo as n — o0o. Then we have the following
convergence in probability as n — oo: for all ¢ > 0,

1
(&) —8(0ensa) = u(c).

In this result the distance between the two points being transposed at every
transposition is uniform within {1, ..., L(n)}. We will prove in Theorem 6 given
in Section 5 a more general version of this result, where this length is allowed to
be some arbitrary distribution subject to the condition that there are no “atoms in
the limit,” which is the equivalent of requiring here L(n) — oc.

By contrast, the microscopic regime (where L is assumed to be constant or to
have a limit) shows a remarkably different behavior.
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THEOREM 3. Assume lim,_, o, L(n) exists. Then we have convergence in
probability; for all ¢ > 0,

1
;5 (Ocny2) = v(c0)
as n — 00, for some C? function v(c) which satisfies 0 < v(c) < c/2 for all ¢ > 0.

As we will describe in greater detail later on, there is a connection between the
long-range random transposition process and the random graph process of Theo-
rem 1. Roughly speaking, when L(n) is bounded, we expect v(c) < ¢/2 because
each new edge has a positive probability of having its two endpoints in the same
connected component. Alternatively, the branching random walk which is used to
explore the connected component of a vertex has a positive probability of making
a self-intersection at every new step.

The mean-field case where L(n) = n/2 recovers Theorem 4 of Berestycki and
Durrett (2006). Theorem 2 above relies on a coupling with the random graph G (¢)
of Theorem 1; this coupling is similar to the coupling with the Erdés—Renyi ran-
dom graph introduced in Berestycki and Durrett (2006). In that paper, the emer-
gence of the giant component in the Erdés—Renyi random graph was a crucial
aspect of the proofs. As a result, one might suspect that the phase transition of
8(oy) is a direct consequence of the emergence of a giant component in the ran-
dom graph. However, one particularly surprising feature of Theorem 2 above is the
fact that the limiting behavior described by (5) holds for all L(n) — oo, no matter
how slowly. This includes in particular the cases where L(n) = o(logn) and the
random graph G(¢) does not have a giant component. Hence, for choices of L(n)
such that L(n) — oo but L(n) = o(n), the quantity 4(o;) has a phase transition at
time n/2, even though the random graph G(f) does not get a giant component at
this time.

1.3. Relation to other work, and open problems. Long-range percolation.
A similar model has been studied by Penrose (1993). There the model consid-
ered is on the infinite square grid Z¢, rather than the finite (one-dimensional) torus
which we consider here. In the infinite case, d = 1 is trivial since percolation (oc-
currence of an infinite cluster) only occurs if p = 1 for obvious reasons. Penrose
studied the case d > 2 and showed that if ¢ is the expected degree of the origin,
and L the maximum distance between the two ends of a bond, where the parame-
ter L — oo and c is fixed, then the percolation probability approaches 9 (c) [where
6(c) is the same as in (1), i.e., the survival probability for a Galton—Watson pro-
cess with Poisson(c) offspring distribution]. As is the case here, his arguments use
a natural comparison with branching random walks.

It is interesting that, while the infinite case is essentially trivial when d = 1, the
finite-n case is considerably more intricate than the infinite case, as witnessed by
the different behaviors in (1) and (2) depending on how fast L(n) — oco. Regarding
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the finite-n situation, it is an interesting open question to see whether there are
giant components if f = ¢n/2 and ¢ > 1 with logn < L(n) < (logn)?. Another
interesting problem concerns the size of the largest components when there is no
giant component, in particular, if L = o(logn). Indeed, our proof makes it clear
that when L(n) — oo, even if the largest component is not macroscopic, there is
a positive proportion of vertices in components of mesoscopic size. We anticipate
that as ¢ > 1 is fixed and L increases, the size of the largest component, normalized
by n, jumps from O to 6(c) as L(n) passes through a critical threshold between
logn and (logn)?. As pointed out by a referee, this is suggested by a work of
Aizenman and Newman (1986) on long-range bond percolation on Z where the
connection probability between vertices at distance x > 0 decays like 1/x%. Their
main result (Proposition 1.1) shows that such discontinuities occur in this case.

Epidemic models. The question of giant components in random graph models
can, as usual, be rephrased in terms of epidemic processes. More precisely, fix a
vertex v and a number p € (0, 1). Consider an SIR epidemic model that begins
with all vertices susceptible but vertex v infected. Once a vertex is infected, it
transmits the infection to each of its neighbors in the base graph (V, E) at rate
A > 0 and dies or is removed at rate 1. Then the total size of the epidemic is
equal to the size of the component containing v in the random graph with edge-
probability p = A/(1 + A). As pointed out by an anonymous referee, Bramson,
Durrett and Swindle (1989) consider the related SIS model (or contact process)
on Z? where, as here, long-range connections are possible. Similar techniques
are employed as in this article to calculate the critical rate of infection and the
probability of percolation. Letting infections occur at rate A/ Vol B(L) where B(L)
is a ball or radius L in Z¢, they show that the critical infection rate A, converges
to 1 in all dimensions as L — oo. They also identify the rate of convergence, which
turns out to depend on the dimension in an interesting way.

Higher-dimensional analogs of Theorem 1. Our proofs do not cover the higher-
dimensional cases but it would not be very difficult to adapt them. In particular,
the analogue of (1) would hold if d > 2 no matter how slowly L(n) — oo. In other
words, only for the one-dimensional case is it important to have some quantitative
estimates on L(n). Intuitively this is because, in one dimension, one is forced to
go through potentially bad regions whereas this problem does not arise in higher
dimensions.

Regarding site percolation, we point out that recently Bollobds, Janson and Ri-
ordan (2009) have described an interesting behavior for a site percolation model
on the torus in dimensions d > 2 where two vertices are joined if they agree in
one coordinate and differ by at most L in the other. For d = 2 they show that the
critical percolation probability, p.(L), satisfies limy_, o Lp.(L) =log(3/2). This
is surprising as the expected degree of a given vertex at the phase transition is then
strictly greater than 1. There again, approximation by branching random walks
plays an important role in the proof.
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Slowdown transitions for random walks. In the mean-field case L(n) =n/2 of
uniformly chosen random transpositions, the quantity §(o;) may be interpreted
as the graph-theoretic distance between the starting position of the random walk
(00 = the identity element) and the current position of the walk. Theorem 2 in
this case [which, as already mentioned, is Theorem 4 of Berestycki and Durrett
(2006)], may thus be interpreted as a slowdown transition of the evolution of the
random walk; at time n /2, the acceleration [second derivative of §(o;)] drops from
0 to —oo. By contrast, Berestycki and Durrett (2008) studied the evolution of the
graph-theoretic distance in the case of random adjacent transpositions. This essen-
tially corresponds to the case L = 1, with the difference that the transposition (1 n)
is not allowed. They found that no sudden transition occurs in the deceleration of
the random walk. It would be extremely interesting to study the evolution of the
graph-theoretic distance of the random walk when L = L(n) is a given function
that may or may not tend to infinity as n — oo. Unfortunately, this problem seems
untractable at the moment as it is far from obvious how to compute (or estimate)
the graph distance between two given permutations. [We note that even in the case
L =1 where the transposition (1 n) is allowed, this question is partly open; see
Conjecture 3 in Berestycki and Durrett (2008).] Nevertheless it is tempting to take
Theorems 2 and 3 as an indication that a slowdown transition for the random walk
occurs if and only if L(n) — oo, with the phase transition always occurring at time
n/2.

Organization of the paper. In Section 2 we show how Theorems 2 and 3 relate
to a biological problem and in particular discuss the possible relevance of these
results for a dataset coming from two Drosophila species. In Section 3 we state and
prove results on the evolution of the clusters in a random graph which evolves in
a more general way to G(¢). In Section 4 we give a proof of Theorem 1. Section 5
contains a proof of a result stronger than Theorem 2 using the more general random
graph process defined in Section 3. Finally, in Section 6 we present the proof of
Theorem 3.

2. Applications in comparative genomics.

2.1. Statement of problem and history. Part of the motivation for this paper
comes from a biological background, more specifically, in answering a question
about the evolution of the gene order of chromosomes. We begin with an example.
In 2001 Ranz, Casals, and Ruiz located 79 genes on chromosome 2 of Drosophila
repleta and on chromosome arm 3R of Drosophila melanogaster. While the genetic
material is overall essentially identical, the order of the genes is quite different. If
we number the genes according to their order in D. repleta then their order in
D. melanogaster is given in Table 1.

Since the divergence of the two species, this chromosome region has been sub-
jected to many reversals or chromosomal inversions, which are moves that reverse
the order of whole gene segments. Because they involve many base pairs at a time
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TABLE 1
Order of the genes in D. repleta compared to their order in D. melanogaster

36 37 17 40 16 15 14 63 10 9
55 28 13 51 22 79 39 70 66 5
6 7 35 64 33 32 60 61 18 65
62 12 1 11 23 20 4 52 68 29
48 3 21 53 8 43 72 58 57 56
19 49 34 59 30 77 31 67 44 2

27 38 50 26 25 76 69 41 24 75
71 78 73 47 54 45 74 42 46

rather than the more common substitutions, insertions and deletions, these mu-
tations are called large-scale. They are usually called inversions in the biology
literature, but we stick with the word reversal as “inversions” is often used among
combinatorists with a different meaning [see, e.g., Diaconis and Graham (1977)].
One question of interest in the field of computational biology is the following:
How many such reversals have occurred?

Hannenhalli and Pevzner (1999) have devised a widely used algorithm which
computes the parsimony distance, the minimal number of reversals that are needed
to transform one chromosome into the other (this will be denoted here by d,). By
definition, the number of reversals that did occur is at least ds,. Berestycki and
Durrett (2006) complemented this by rigorously analyzing the limiting behavior of
the discrepancy between the true distance and the parsimony distance [described
by the function u(c) in Theorem 2], under the mean-field assumption that all re-
versals are equally likely.

However, that assumption does not seem to be entirely justified and it might be
more accurate to restrict the length of the segment being reversed. According to
Durrett (2003), “To seek a biological explanation of the nonuniformity we note that
the gene-to-gene pairing of homologous chromosomes implies that if one chromo-
some of the pair contains an inversion that the other does not, a loop will form
in the region in which the gene order is inverted. ... If a recombination occurs in
the inverted region then the recombined chromosomes will contain two copies of
some regions and zero of others, which can have unpleasant consequences. A sim-
ple way to take this into account is... [to] restrict our attention to the L-reversal
model.” The reasoning here is that as the length of the segment reversed increases,
the probability of recombination increases. Here, the L-reversal model is to allow
only reversals that switch segments of, at most, length L and all such reversals
have equal probability. A further argument can be seen in Durrett (2002) who ar-
gues that not all inversions occur at the same rate; when a large amount of DNA is
absent from a chromosome, the offspring is typically not viable, so longer inver-
sions will occur at a lower rate.



EFFECT OF SCALE 1335

2.2. Estimating the number of chromosomal inversions. To estimate the num-
ber of chromosomal inversions (or reversals) in the long-range spatial model, one
natural idea is to use the parsimony approach; that is, compute the dr-distance
(minimal number dy of L-reversals needed to transform one genome into the
other) and then prove a limit theorem for the evolution of dr () under random
L-reversals. However, this appears completely out of reach at this stage; the cru-
cial problem is that we do not know of any algorithm to compute the L-reversal
distance. [Even in the case L = 1, if particles are lying on a circle, this is a deli-
cate problem; see Conjecture 3 in Berestycki and Durrett (2008).] Thus, even if a
limit theorem could be proved, we would not know how to apply it to two given
genomes.

In order to tackle this difficulty, we propose here the following alternative ap-
proach. We keep looking at the d.-distance (minimal number of reversals needed
to transform one chromosome into the other, no matter their length) but now we
think of d, only as an easily computed statistic on which we can make some infer-
ence, even though not all reversals were equally likely. More precisely, we are able
to describe the evolution of the quantity dwo(#) under the application of random
L-reversals, and use that result to estimate ¢ from the data d (¢).

We first state the result in this context, and illustrate our idea with a numerical
example in Section 2.3. The distance d, is defined in terms of an object known as
the breakpoint graph. For definitions of these notions we refer the interested reader
to Chapter 9 of Durrett (2002). For signed permutations o, ¢’ we let H (0,0 =
n+1—c, where c is the number of components of the breakpoint graph. In general
[see Durrett (2002), Theorem 9.1], doo (0, ') > 8(o,0”). The quantity S(o,0")
ignores obstacles known as “hurdles” and “fortresses of hurdles.” All these are
thought to be negligible in biologically relevant cases, so we will use 8(c,0”) as
a proxy for doo (0, 0’). Let o; be the signed permutation obtained by composing
lfoisson(t) independent L-reversals. We slightly abuse notation and write S (oy) for
8(00, 01).

THEOREM 4. Assume that L(n) — oo. Then
1.
;5(%1/2) — u(c).
However, when L(n) stays bounded, we get a behavior similar to Theorem 3.

THEOREM 5. Assume lim,_ o, L(n) exists. Then we have convergence in
probability; for all ¢ > 0,

1.
;8(%/2) — w(c)

as n — oo, for some C? function w(c) which satisfies 0 < w(c) < c¢/2 for all
c>0.
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The proofs for these two results are verbatim identical to those of Theorems 2
and 3. The choice of stating our results for transpositions is merely one of conve-
nience, as transpositions are easier to describe and more familiar to many mathe-
maticians.

2.3. Numerical application to Drosiphila set. 'We now illustrate on the dataset
from Table 1 the possible relevance of Theorems 4 and 5. We first compute the
parsimony distance in this case. Here there are n = 79 genes, and even though
the orientation of each gene is not written, it is not difficult to find an assignment
of orientations which minimizes the parsimony distance dso(0). We find that the
parsimony distance is deo(07) = 54.

First assume that all reversals are equally likely, or that L is large enough that
the behavior described in Theorem 4 holds, and let us estimate the actual number
of reversals that were performed. We are thus looking for ¢ such that do(0;) =
54 when n = 79. Changing variables t = cn/2, we are looking for ¢ > 0 such
that u(c) = 54/79 ~ 0.68. Thus, inverting u we find ¢ ~ 1.6 and hence, we may
estimate the number of reversals to be around ¢ = 63. Note that the discrepancy
with parsimony (ds = 54) is already significant.

This estimate keeps increasing as L decreases and the behavior of Theorem 3
starts kicking in. For instance, with L =4 (so that L/n &~ 5%), simulations give
c =& 2.4 ort =95 reversals, or 175% of the initial parsimony estimate!

Ideally, we would want to use estimates in the biology literature on the typi-
cal range of reversals, in combination with the results of this paper, to produce a
refined estimate. Kent et al. (2003) estimated the median length of a reversal in
human/mouse genomes to be about 1 kb, corresponding very roughly speaking to
L being a few units, say 1 < L < 4. (However, they find a distribution for the re-
versal lengths which is bimodal and hence, quite different from the one we have
chosen for simplicity in this paper.) Other estimates we found in several biology
papers differed by several orders of magnitude, so that there does not appear to
be a consensus on this question. Instead, we performed some reverse engineering,
and compared our method with other existing methods. York, Durrett and Nielsen
(2002) used a Bayesian approach in a model comparable to ours. The mode of
the posterior distribution was at t &~ 87, with the parsimony estimate lying outside
the 95% confidence interval [see Durrett (2002), Section 9.2.2, for further details].
This suggests that L is slightly more than 4, broadly speaking consistent with the
estimate of Kent et al. (2003).

2.4. Simulations for transpositions. We complement the above example with
plots (see Figure 1) to show how S(t) = 3(0,) evolves with ¢ for finite n by straight-
forward MCMC, averaging over 1000 simulations in each case. The dotted line
shows u(c) and the solid line shows the average over the simulations. We observe
that as L increases, u(c) provides a better estimate to the parsimony.
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FI1G. 1. Here (a) n =100,L =1; (b) n =100, L =5; (¢c) n =100, L =50; (d) n = 1000, L =1;
(e) n = 1000, L = 50; (f) n = 1000, L = 500.

3. Evolution of the components of the random graph. We begin by proving
a few results relating to the components of a random graph which evolves in a more
general way than previously defined. For each n > 2, fix a probability distribution
(Py)1<t<|n/2)- We will omit the superscript n in all calculations below in order
to not overload the notation. For the rest of this section we redefine (G(t),t > 0)
to be the random graph process where at rate 1 we choose a random variable D
according to the distribution (p,), and open a uniformly chosen edge from those
of graph distance D. We define

(6) &n pe-

= max
1=t<|n/2]
We begin by analyzing how the components in the random graph G(¢) evolve over

time.

LEMMA 1. Let C(t) be the connected component of G(t) containing some
fixed vertex v € V, and let t = cn /2 for some ¢ > 0. Assume that ¢, — 0. We have
that C(t) < Z (where < stands for stochastic domination) and

|IC(t)| —> Z asn— oo

in distribution. Here Z is the total progeny of a Galton—Watson branching process
in which each individual has a Poisson(c) number of offspring.
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REMARK 1. The argument below is simpler to follow in the case where (py)
is the uniform distribution in {1, ..., L(n)}. We will need a more precise version
of this lemma later on, in Lemma 5. It may thus be helpful for the reader to look
at Lemma 5 first in order to understand the main idea of the proof of Lemma 1.

PROOF OF LEMMA 1. We use the breadth-first search exploration of the com-
ponent C(¢). That is, we expose the vertices that form C(¢) by looking iteratively
at neighborhoods of increasing radius about v. In doing so, the vertices of C(¢) are
naturally ordered according to levels £ = 1, 2, ... which represent the distance of
any vertex from that level to the vertex v. To be more precise, if A C V let N'(A)
denote the neighborhood of A, that is,

N(A)={yeV:y~xinG(t) for some x € A}.
Let A? = {v} and then define inductively for i > 0,

l
AiFl :N(A")\ LA’
j=0
The statement of the lemma will follow from the observation that when ¢t = cn/2,
the sequence (|A°|, |A'|,...) converges in the sense of finite-dimensional distribu-
tions toward (Z°, Z1, ...), the successive generation sizes of a Poisson(c) Galton—
Watson process. Thus, fix an integer-valued sequence (ng, ny, ...) withng =1. We
wish to show that

P(A°| =no,...,|A  =n) > P(Z° =no, ..., Z  =n;)

as n — 0o, which we do by induction on i > 0. The statement is trivial for i = 0.
Now let i > 0. Given A; = {A0 =ng,..., Al = n;}, we look at the neighbors in
level i + 1 of each vertex vy, ..., v, inlevel i, one at a time.

Let G(7) be the multigraph on V with identical connections as G (), but where
each edge is counted with the multiplicity of the number of times the transposition
(i, j) has occurred prior to time ¢. Equivalently, for each unordered pair of vertices
(i, j) € V? at distance ||i — j|| = £ > 1, consider an independent Poisson process
N©D (1) of parameter 2p,/n. Then the multigraph G (t) contains N @7 (1) copies
of the edge (i, j), while the graph G(¢) contains the edge (i, j) if and only if
NED (@) > 1.

Note that if w € V, then the degree d,, of w in G(r) is

dy = Z Poisson(2tpy /n) =4 Poisson(c).

=1
Let Fi = o (A, ..., AD). Conditionally on F;, order the vertices from A’ in some
arbitrary order, say vy, ..., v,;. Observe that
‘ n; i ‘ j—1
wor= (v (O Uvn)]
j=1 j=0 k=1
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It follows directly that, conditionally on F;,

nj
(7 A <> Py,

j=1
where P; are independent Poisson(c) random variables which are further inde-
pendent from JF;. (The stochastic domination |Cy| < Z already follows from this
observation.) For 1 < j <n;, let F; j = F; Vo (N (v1) U--- UN(v))). Observe
that, conditionally given F; j_1, then

i -l
(8) Nj='N(vj)\<U AJUUN’(vk)>‘

is stochastically dominated by P; but also dominates a thinning of P; which is
a Poisson random variable with parameter c(1 — Me,), where M =ng + --- +
n; + IN@D| + -+ |/\_/(vj_1)|, where N (w) denotes the neighborhood of w in
G (t) (hence, neighbors are counted with multiplicity). Furthermore, note that the
random variables (N;, 1 < j < n;) are conditionally independent given F;. Since
E(Me,|F;) — 0 by the stochastic domination (7), it follows that

n;
PA™ = ni 1| F) 1 gi oy, — P(Z pPj= ni+l>-
j=1
This completes the induction step and finishes the proof of convergence in dis-
tribution. [l

A useful consequence of this result is the following lemma.

LEMMA 2. Lett =cn/2, where ¢ > 0. Then as n — oo, the number, K;, of
connected components of G(t) satisfies

k=2

—c\k
ck! )

(ce

©) E(K)~nY
k=1

PROOF. Forv e V,let C, be the component containing vertex v. Then observe
that the total number of components is given by >,y ﬁ and thus by exchange-
ability, the expected number of components is nlE(1/|C,|). Dividing by n and ap-
plying the bounded convergence theorem (since 1/|C,| < 1) as well as Lemma 1,
we obtain

00 X k-2

1 1 k
~E(K) — > (P(Z=k= >

*C)k
' 9
k=1 iz CK!

(ce

where the exact value P(Z = k) of the probability mass function of Z is the well-
known Borel-Tanner distribution [see, e.g., Berestycki and Durrett (2006), Corol-
lary 1]. O
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We now prove that the number of components K, is concentrated around its
mean.

LEMMA 3. Let ¢ > 0 and let t = cn/2. Assume that &, — 0. We have
K, /E(K,) — 1 in probability as n — o0.

PROOF. We write K; = Y; + W; where Y; counts the components smaller than
a threshold T = (1/&,)'/4 and W; those that are greater than this threshold. Note
that W; <n/T = o(n) and thus it suffices to show that Y; is concentrated around
its mean, that is, Var(¥;) = o(n2).

Note that we can always write

1
Yi=> o tcu=)
veV v
and thus
1
Var(¥,) = n Var((1/ICuD1 ¢, <1) + Zc(w(C T o Loz )
2 ="\ic, [Cul

Since 1/|Cy| < 1, the first term in the right-hand side is smaller than n. Define
Sy = |C_lv|1{|cv|5T}’ Sw = ﬁl{ICwIST}' To know the value of S, and S,,, it suf-
fices to explore by breadth-first search a relatively small number of vertices in the
components of v and w. While we do so, it is unlikely that the exploration of these
components will ever intersect, hence, the random variables S, and S, are nearly
independent.

To formalize this idea, let C, r (resp., C T) denote the subset of C,, (resp., Cy)
obtained by exploring at most T individuals using breadth-first search as above.
Let S, be a copy of S,, independent from C,,. Then conditionally on CT, exploring
C, until at most T vertices have been exposed using breadth-first search we may
take S, = S’U exceptif C UT intersects with C g , an event which we denote by A. (To
see this, imagine generating an independent copy C UT , using the same number of
offsprings and positions for each individual in the breadth-first search exploration
of CI" as in, but stop if at any point C! has an intersection with CL )

Thus, letting m, = E(S,) = E(S,), since S, is independent from Cg, and since
S, = S, on AC

E(Sy — my|CL) = E((Sy — 8)ICyp) + E((Sy —my)|Cyp)
=E((Sy — S)14ICy) + E((Sy — S)1 1¢ICyp)
=E((S, — S))14|CL) s,
and thus since 0 < S, <land0< S, <1,

IE(S, —my|CI)| <2P(AICT)  as.,
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so that
Cov(S,, Sy) <4P(A).

Now observe that by Markov’s inequality, P(A) < E(e(C UT ,C 5)), where ¢(A, B)
denotes the number of edges between A and B. Since ICUT | <T and |C£| <T
by definition, we have E(e(CT, CT)) < ce,T%/2 = O(e;'*) — 0. The lemma fol-
lows. [

4. Proof of Theorem 1.

4.1. Connection with branching random walk. In this section we return to
considering the random graph model (G(¢),¢ > 0) as given in the Introduction.
The proof of (i) in Theorem 1 is easy and follows directly from the observation
that for a given vertex v, |C,| is stochastically dominated by Z, the total progeny
of a Poisson(c) Galton—Watson tree (see Lemma 1). When ¢ < 1 it is easy to see
that there exists A > 0 and C < oo such that P(Z > k) < Ce™**. Taking k = blogn
with b sufficiently large, (i) now follows from a simple union bound.

We turn to the proof of (ii) in Theorem 1, which is the most challenging tech-
nically in this paper, and assume that ¢ > 1. The key to the investigation of the
properties of G(¢) with t = cn /2 is the following observation, which connects the
geometry of a given component to the range of a certain branching random walk.
We start by introducing notation and definitions. Let 7" be a Galton—Watson tree
with a given offspring distribution and denote by 7; the ith level of the tree T.
Let (S(v),v € T) denote a T-indexed random walk. That is, let (X (¢)).c7 be a
collection of i.i.d. random variables with a prescribed step distribution, and for all
vertices v € T, define S(v) = S(0) + >_ ., Xv, Where the sum e < v runs along all
edges that are on the shortest path between the root o and v.

Lett =cn/2.Letw € V,say w =0, and let C = C,, be the component contain-
ing w in G(¢). Consider the breadth-first exploration of C introduced in Lemma 1.
Recall that A/t! = A/(A)) \ Uj=o AJ. Observe that it could be that two vertices

w, w’ € A’ each select a same neighbor z. We refer to this type of connection as a
self-intersection. We view each A’ as a subset of Z by identifying V with

(—ln/2]+1,...,—1,0,1,..., [n/2]}.

The following is a warm-up for the more complicated kind of couplings which will
be needed later on.

LEMMA 4. Letc>0andlett =cn/2. Foreachk > 1,

(Z 8u/L,1§i§k)—> (Zésv,1§i§k>
veA! veT;
weakly in distribution as n — oo, where (Sy,)yer denotes a branching random
walk started from 0 with offspring distribution Poisson(c) and step distribution
uniform on (—1, 1), and §, denotes the Dirac pointmass at x.
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PROOF. The proof of the lemma is an easy extension of Lemma 1, since in
the case where there are no self-intersections, all the displacements of the children
of vertices in any given generation form i.i.d. uniform random variables on Ny, =
{—L,...,—1,1,..., L}. Details are left to the reader. [

In practice, the finite-dimensional distribution convergence result of Lemma 4
will not be strong enough as we will typically need to explore more than a fi-
nite number of generations. The following lemma strengthens this to show that
the breadth-first exploration of a cluster may be coupled exactly with a slightly
modified branching random walk up until the first time the latter has a self-
intersection. More precisely, let 7 be a Galton—Watson tree with offspring distri-
bution Poisson(c), and let S,, v € T, be defined as above except that if v € T with
offspring vy, ..., vg [let ¢; denote the edge (v, v;)], we define the displacement
variables X (e1), ..., X (er) to be sampled with replacement uniformly from N7 .
The sampling is still done independently for different vertices v € 7. We call this
process branching random walk with replacement for future reference. We also in-
troduce a version with erasure, where if v and w are such that S, = S,, (what we
call a self-intersection) with v discovered before w in the breadth-first search, then
the entire descendance of w is ignored or killed. We call this process an erased
branching random walk and denote it by (Sv, veT).

LEMMA 5. Let (S,,v € T) denote a branching random walk as above and
(Sp, v €T) its corresponding erasure. Then there exists a coupling of(S'v)UET and
(Ai, i > 0) such that the sets Al and {Sv, v € T;} coincide exactly for each i > 0.
In particular, let t be the first self-intersection level; T = inf{n > 1:3v # w €
V(T,), Sy = Sw}. Then we can couple Al and (S,,v € T;) foreachi < t.

PROOF. For the most part this is a variation on Lemma 1, but there are some
subtleties. Assume we are exploring the connections of a vertex v € A’ for some
i > 0. Let A be the 2L — 1 potential neighbors of v, and let B C A be the set of
those within A which have already been exposed so far. For each of the |A \ B|
potential new neighbors of v to be added to A’*!, the edge joining it to v has ap-
peared a Poisson(z/(nL)) number of times. Of course, if an edge appears several
times, this amounts to connecting to the same vertex, and this is why we choose
sampling with replacement. The action of sampling uniformly with replacement
from A or from A \ B can be chosen to be identical, until the first time that sam-
pling from A uses an element from B. The rest of the details are left to the reader.

g

REMARK 2. Note that by the classical birthday problem, t is unlikely to occur
before at least of order /L vertices have been added. Thus we can couple exactly
the breadth-first search exploration of C, and a branching random walk until of
order /L vertices have been discovered.
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In fact, this will still not be strong enough and we will need to push this
exploration until of order o(L) vertices have been discovered. Of course, self-
intersections can then not be ignored, but there are not enough of them that they
cause a serious problem, so the breadth-first search exploration coincides with
“most” of the branching random walk.

4.2. Survival of killed branching random walk. The basic idea for the proof of
(i1) in Theorem 1 is a renormalization (sometimes also called “block”) argument.

We show that if the component of a given vertex is larger than some fixed num-
ber, then this component is likely to reach distance K L, where K > 0 is a large
number (which may even depend on L) to be suitably chosen. This may be iterated
to show that two points selected at random from V will be connected with prob-
ability approximately 6(c)%, where 6(c) is the survival probability of T'. For now,
we will need a few basic estimates about killed branching random walks. In many
ways, some of the results are more natural to state when we let L — oo rather than
n — oc. Since L(n) — o0, the two statements are identical.

Consider a branching random walk as above, started at v € V, with step distri-
bution uniform in {—L,...,—1,1,..., L} and some arbitrary offspring distribu-
tion with probability generating function ¢ (s). By killed branching random walk
(KBRW) we refer to a branching random walk where, in addition, particles die if
they escape a given interval containing the starting point.

LEMMA 6. Let 6 denote the survival probability of the branching random
walk, that is, p = 1 — 0 is the smallest root of 7 = ¢(2). For each ¢ > 0 we
can choose K = K(e, @) such that if all particles are killed upon escaping
[v— KL,v+ KL], then for all L sufficiently large (depending solely on ¢ and ¢)
the survival probability 6% of KBRW satisfies 0% > 6(1 — ¢).

PROOF. Let T denote the Galton—Watson tree describing the descendants of v.
Conditionally on survival of T, the subset U of T for which all vertices in U have
infinite progeny (i.e., the set of infinite rays) forms a Galton—Watson process with
modified progeny; the generating function satisfies

- 1
(10) ¢(s):5[¢(9s+1—0)—1+9].
Define N, :=[v — L, v + L]. Consider a subset W of U obtained as follows. Let
& = (uo,u1,...,ur) be a fixed ray in U where R is the first time the ray leaves
[v—KL,v+ KL]. Thus (Suy, Su;» - -, Sug) is arandom walk with the underlying

step distribution, killed upon exiting [v — KL, v + K L]. Then W restricted to &§
will consist of the subsequence of (u,,) such that S,, € N,. More precisely, we
take W to be the union of all such subsequences over all rays & in U. The vertices
of W have a natural tree structure, and we claim that W dominates a branching
process where the offspring progeny is

(11) ok (s) =p(ex + (1 — ex)s),
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where ex = 1/(K + 2). The reason for this is as follows. Suppose u € W, so that
Su € Ny. Then u has (in U) a random number, say N, of offsprings, where the
generating function is given by ¢ in (10). Since the trajectory of a random walk
with jumps uniform in {—L, ..., —1,1,..., L} forms a martingale and the jumps
are bounded by L, a classical application of the optional stopping theorem shows
that any particular fixed ray emanating from each offspring of u returns to N,
before hitting v + K L with probability at least 1 —eg. Formula (11) follows easily.
Now, survival probability is therefore at least as large as the survival probability
of the Galton—Watson process with offspring distribution given by ¢g. Let px
be the extinction probability. Then px = ¢x (px) and pg is the unique root of
this equation in (0, 1), and moreover, px is decreasing as a function of K. Since
px > 0, call p =limg_, o0 px. It is trivial to conclude by continuity of q~5 that
p = ¢ (p) and that p < 1, from which it follows that p is the extinction probability
of ¢ and is thus equal to 0. Thus we may choose K sufficiently large that px < ¢.

O

We now consider a certain subprocess of the killed branching random walk and
show that this also survives, growing exponentially and leaving many offsprings
very near the starting point v. Rather than stating a general result we will state
only what we need. Fix a function w (L) such that w (L) — oo sufficiently slowly,
say w(L) =log L, and let fo(L) be any function such that fo(L) < L/w(L). Fix
an integer d > 1, and explore no more than d offsprings for any individual, that
is, declare dead any additional offspring. Fix A = Ak 4 and also declare a vertex
v dead if the most recent common ancestor u of v such that S, € N, is more
than A generations away. Refer to this process as KBRW. Note that KBRW| is
a subprocess of KBRW and thus of BRW. Note also that the erased KBRW is a
subprocess of the erased KBRW.

LEMMA 7. Assume that ¢" (1) < 00 so that the offspring distribution has finite
second moments. For all € > 0, there exists K = K (¢, ¢), d > 1 and A such that
if all particles are also killed upon escaping [v — KL, v + K L], then for all suffi-
ciently large L (depending solely on ¢ and &), with probability at least (1 — ¢)0,
the following hold:

(1) KBRW gets at least fo(L) descendants in at most clog fo(L) generations
for some ¢ > 0,

(il) fo(L)/K of them are in Ny.

PROOF. Consider the KBRW of Lemma 6 and let W be as in the proof of
that lemma. Consider W N KBRW and note that this is a Galton—Watson pro-
cess with offspring distribution which dominates one with a generating function
given by (11), where now 1 — gg is the probability that a random walk with
step distribution uniform on {—L,...,—1,1,..., L} returns to ,, before exiting
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[v— KL, v+ K L], and that this takes less than A steps. By choosing K sufficiently
large, d sufficiently large and A sufficiently large (in that order), ex is arbitrar-
ily small and thus we find that KBRW survives forever with probability at least
(1 —¢)0, as in Lemma 6. Note also that W N KBRW 1, being a Galton—Watson tree
and having finite second moments, grows exponentially fast by the Kesten—Stigum
theorem. Thus fewer than clog fo(L) levels are needed to grow W N KBRW to
size fo(L) for some ¢ > 0, and so at this level we will certainly have at least fo(L)
explored in KBRW/.

Let 7 be the KBRW stopped when the population size exceeds fo(L). Define
the following marking procedure in KBRW{. Mark any node u € KBRW if the
position of the branching random walk S, at this node is in the interval N,. Let
M C T be the set of marked nodes. Since by construction, every node u € 7 has
an ancestor at (genealogical) distance at most A which is a marked node, and since
the degree of any node in 7 is at most d + 1, it follows that

1
l+d+d>+---+d+

[To see (12), just notice that for every new mark, one can add at most 1/5 nodes in
the tree without adding a new mark, and proceed by induction.] For (ii) to occur,
it suffices that | M| > fo(L)/K. Since by construction |7 | > fy(L), choosing A =
Ak.qa > |(logK)/(logd)]| — 1 shows that (ii) occurs as soon as (i) holds. The proof
of the lemma is complete. [

(12) (M| =nlT|  wheren=

We now strengthen this last result by showing that the erased random walk also
has a large number of offsprings in [v — K L, v + K L]. Further, we suppose also
that there is a set F' of locations which, if an individual lands on, results in that
individual being removed. We call these forbidden locations.

LEMMA 8. Consider an erased branching random walk, started at v € V , with
step distribution uniform in {—L, ..., —1,1,..., L} and some arbitrary offspring
distribution with probability generating function ¢ (s) with ¢" (1) < 0o. Suppose
also that there is a set F of forbidden locations, with |F| < L/w(L) and w (L) —
00. Let 6 denote the survival probability of the branching random walk. For all
&g > 0 we can choose K = K (g, ¢) such that if all particles are also killed upon
escaping [v— KL, v+ K L], then for all sufficiently large L (depending solely on
¢ and ¢), with probability at least (1 — €)0, the following hold:

(1) the erased KBRW gets at least fo(L) descendants in at most clog fo(L)
generations for some ¢ > 0,
(i) fo(L)/K of them are in N.

PROOF. Let 7 be the first time that the killed branching random walk has
more than 2 fy(L) descendants. Let us show that the associated erased branching
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random walk has at least fo(L) individuals at that point with high probability. To
see this, we first observe that by (i) in Lemma 7 the number of generations, t, is
at most clog fo(L) for some ¢ > 0. Before time 7, for each new vertex added to
the branching random walk, the probability that it is a self-intersection or hits an
element of F is no more than (2 fo(L) + | F|)/(2L — 1). Thus the probability that a
particular ray of no more than clog fo(L) generations contains a self-intersection
is, by Markov’s inequality, at most

clog fo(L) @ fo(L) +[FD)
2L —1
as L — oo. Therefore, the number of vertices that are present in the KBRW;
but not in the erased KBRW/ is, by Markov’s inequality again, at most (1/2) x
(2 fo(L)) = fo(L) with high probability. We shall denote by EKBRW the erased
KBRW which has a set F' of forbidden locations.

By Lemma 7, we also know that 2 fo(L)/K individuals of the KBRW/ popu-
lation are located in V,. Since we have just shown that the total number of indi-
viduals not in EKBRW is o( fo(L)) with high probability, we deduce that at least
fo(L)/K individuals of EKBRW are located in ;. The proof of the lemma is
complete. [

0

4.3. Breadth-first search explorations. The next three lemmas give us some
information on the breadth-first search exploration of a component C,, of a given
vertex v € V in the random graph G (t). For reasons that will soon become clear,
we wish to assume that by the point we start exploring the component C,, part of
the graph has already been explored (a vertex has been explored once all its neigh-
bors have been observed). The part that has already been explored (denoted F)
represents forbidden vertices, in the sense that since we have already searched F,
the breadth-first search of C, can no longer connect to it.

We now specialize to the case where ¢ is the generating function of a Poisson(c)
distribution, and in all that follows we let 6 = 6(c) be the survival probability of
a Poisson(c) Galton—Watson tree. It turns out that we need to separately treat the
case where L is very close to n, and this will be done later in Lemma 15.

LEMMA 9. Fixc>1,e>0,veV and fix K = K(¢,c) as in Lemma 8.
We assume that a set F containing at most L/w (L) vertices have already been
discovered in [v— KL, v+ KL] (and v is not one of them). Then for all n large
enough (depending only on ¢ and c), if L < n/(2K), then with probability at least
0(1 — ¢), a search procedure of C, can uncover at least fo(L)/K vertices of C,
in N, without exploring more than fo(L) vertices in total in [v— KL,v + KL],
and none outside.

PROOF. Consider the breadth-first search exploration of C,, with the follow-
ing modifications. We stop exploring the descendants of any vertex outside of
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[v—KL,v+ KL]. We also completely stop the exploration when more than fo(L)
vertices have been discovered. Also, we stop exploring the descendent of any ver-
tex in F and we fix d > 1 and truncate the offspring progeny at d, so that if an
individual has more than d offspring, only the first d encountered are explored.
This keeps the degree of any node in the genealogical tree bounded by d + 1. We
choose d = dg as in Lemma 7. We also stop exploring the descendants of an indi-
vidual if the time elapsed since the last time an ancestor of this individual visited
Ny exceeds A = Ak 4, where Ak 4 is as in Lemma 7. We refer to this process as
KBFS;. More formally, we use the following algorithm:

Step 1. Set Qg = @, Q4 = {v}. These correspond to the explored and active
vertices, respectively.

Step 2. If |QQp| = fo(L) we stop. Otherwise we proceed to Step 3.

Step 3. Set Qn = @. For each w € Q4, add its neighbors (excluding the parent
of w) to 2y until d have been added, or there are no more.

Step 4. Add the vertices in 24 to Q.

Step 5. Set Q4 = Qn \ {QE U F}. If Q4 = &, then we stop.

Step 6. Remove from 24 all vertices outside of [v — KL, v + K L] and those
that do not have an ancestor in N, fewer than A generations away.

Step 7. Go to Step 2.

This exploration can be exactly coupled with the EKBRW | considered up to the
first time t that the total population size exceeds fy(L), by taking in Lemma 8 the
set F' as it is defined here. Lemma 9 thus follows directly from Lemma 8. [

To establish the existence of a connection between two vertices v and w, it will
be useful to add another twist to the breadth-first search exploration of C, and Cy,,
by reserving some of the vertices we discover along the way. That is, we decide
not to reveal their neighbors until a later stage, if necessary. This allows us to keep
a reserve of “fresh” vertices to explore at different locations and that we know
are already part of C, or Cy,. To be more precise, let ¢ > 0. Let 1 < ¢’ < ¢ be
such that 6(c’) > 6(c)(1 — £/2). Let v be small enough that ¢(1 — v) > ¢’. When
exploring C, through a method derived from breadth-first search, we choose which
vertices to reserve as follows: for each new vertex that we explore, if it has any
offsprings, we choose one uniformly at random, and reserve it with probability
v independently of anything else. (See below for a rigorous formulation.) Note,
in particular, that the set of vertices that get reserved is dominated by a Poisson
thinning of the original exploration procedure, with thinning probability v. Let
K = K(g/2,c’) be as in Lemma 8. Note that with this choice of v and K, the
survival probability 6" of EKBRW| is at least

(13) 0'(c) = 0(c)(1 —&/2) = 0(c)(1 — &)
for all L sufficiently large (depending solely on ¢ and ¢).
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Thus, starting from a vertex v, a branching random walk killed when escaping
[v— K L, v+ K L] with this reservation procedure survives forever with probability
at least 6(c)(1 — €). From this we deduce without too much trouble the following
result.

LEMMA 10. Fixc>1,e>0,ve V. Letv=v(e) as above, and assume that
a set F containing no more than L/w (L) vertices have been discovered. Then for
all sufficiently large n (depending solely on ¢ and c¢), if L < n/(2K), the following
hold with probability at least (1 — 2¢)0:

(i) A search procedure can uncover at least fi(L) = fo(L)/K vertices in N,
without uncovering more than 2 fo(L) vertices in total in [v— KL,v+ K L], and
none outside.

(ii) At least §fo(L) vertices are reserved in Ny, for § = (1 — e “)v(e)/(4K).

PROOF. We apply the above reservation method to KBFS; (see the proof of
Lemma 9). Formally, we introduce a set Qg of reserved vertices (initially Qg =
). We use the same algorithm as for the modified breadth-first search but now
Step 7 becomes:

Step 7'. Partition €24 into classes of vertices with the same parent in the explo-
ration. Choose uniformly from each class a representative and with probability v
this representative is added to Q2 and removed from €24. Go to Step 2.

We call this new search procedure KBFS,. Let T be the time we have discov-
ered fp(L) nonreserved vertices. At this time the total number of explored ver-
tices is less than 2 fo(L) and thus, similar to the proof of Lemma 9, we can cou-
ple the exploration with an erased KBRW where the offspring distribution has a
slightly modified offspring distribution (a randomly chosen offspring is removed
with probability v). We call this an erased KBRW». Reasoning as in Lemma 9, and
using (13), we see that (i) holds with probability at least 8 (1 — ¢), provided that n
is large enough and L < n/(2K). For each new vertex exposed by KBFS, in N,, it
has a reserved offspring in \V,, with probability at least (1 — e~ “)v/2, as if u € N,
and X are uniformly distributed on {—L,...,—1,1,..., L}, thenu+ X € N, with
probability at least 1/2. Thus (ii) follows from (i) and from Chebyshev’s inequal-
ity. O

With this lemma we are now able to show that a vertex v connects to v + KL
with probability essentially 8, and that many vertices in the same component may
be found without revealing too much inside [v — KL, v+ K L].

LEMMA 11. Fixc>1,&e>0,andlet K be as in Lemma 9. Let 0 < ¢ <’ <
1/2 and let v € V. Assume that a set F of no more than L/w (L) vertices have
already been explored in [v — KL, v + KL] and v is not one of them. Let By ,
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denote the event that v is connected to at least LS unexplored vertices in the range
[v+ KL, v+ (K + 1)L] which may be discovered by searching no more than LY
vertices. Then for all sufficiently large n (depending solely on ¢, ¢, £ and '), if
L <n/Q2(Ko(e) + 1)), then

P(Bk,v) =z 0(c)(1 —¢).

PROOF. Consider the KBFS, exploration of C,, stopped when a total of
fo(L)=L¢ / /2 vertices of C, have been exposed (additional to those exposed ini-
tially). By Lemma 10, with probability at least 6(c)(1 — ¢) if n is large enough and
L < n/(2K), this search reveals at least k = §fo(L) reserved vertices within N,
and no more than L¢  vertices in the range [v — KL, v + K L] have been explored
(let A, denote this event). On A,, label vy, ..., vy the first k such vertices to have
been discovered in ;. After this stage, we then continue the KBFS; exploration
started from {vy, ..., v} only, until a total of L¢ ' /2 further vertices are exposed.
Note that the exploration can be coupled with a system of k erased KBRW,, started
from vy, ..., vr. The total number of vertices searched by the end of the second
stage will be no more than fo(L) + Lf//2 < LY2 Thus, as in Lemma 8, the
probability each particular vertex gives rise to a self-intersection is no more than
(|F|4++L)/2L —1) — 0 as n — 0.

Moreover, using domination by a branching process (Lemma 1), it is easy to
see that the number of generations for the LY /2 vertices to be discovered by the
branching random walk is at least blog L for some b > 0, with probability tend-
ing to 1 as n — oo. Now, for every 1 <i < k, the probability that the erased
branching random walk (erased KBRW,) started from v; has a descendant that hits
[v+ KL,v+ (K + 1)L] in fewer than blog L steps is at least 6(c)(1 — o(1)) >
6(c)/2 for n large enough (depending solely on ¢ and c). Thus we deduce that, on
the event .4, the number of particles that hit [v+ K L, v+ (K + 1) L] stochastically
dominates a binomial random variable Bin(§fp(L), 8(c)/2). By applying Cheby-
shev’s inequality, this is with high probability greater than §fy(L)0(c)/4 > L¢ for
all n sufficiently large (depending on c, ¢, ¢, ¢’). When this occurs, Bk , holds, so
the result follows. [

Letc > 1, e >0 and fix K = Kg(c, ) as in Lemma 11. We now prove that if
the connected component of a given vertex is not finite then it must spread more
or less uniformly over V. As desired, this is achieved by keeping a density of
explored sites small, lower than 1/w(L). Let v € V and split the vertex set V into
r+1=[n/(KL)] disjoint strips (lop, ..., I;) of size KL, except for the last one
which may be of size smaller than K L. Let J; denote the initial segment of /; of
length L. Since L(n) > (logn)**¢ for some positive & by assumption, we may find
¢ < 1/2 such that L(n) > (3 logn)!/¢. Let ¢’ = (¢ +1/2)/2, hence ¢ < ¢’ <1/2.

LEMMA 12. With the above notation, assume that no more than L* "vertices
have already been exposed in each strip Iy, ..., I,. Let Ck , denote the event that
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v is connected to at least k = L¢ vertices in strips I3, . .., I._1, which may be dis-
covered without exposing more than an additional L% vertices in each strip, and
that in each J;,3 <i <r — 1, at least k /2 vertices connected to v are unexplored
at the end of the search procedure. Then

P(Ck,v) = 0(c)(1 —¢)
for all n large enough (depending solely on € and c), and provided L <n/(2K).

PROOF. This is basically proved by iterating Lemma 11. We can assume that
v is in strip /7. In the first step we explore C, using KBF'S; killing at the boundary
of Ip U I; U I,. The arguments of Lemma 11 still carry through to obtain that
B(I){’ , holds with probability at least 6(c)(1 — &) where B%’v is the event that v is

connected to at least k unexplored vertices in J3, and fewer than L% vertices are
explored in finding them. ‘

Then define inductively for 1 <i <r —4, By , = B’K_ll} NCy ,» where Cj | is
defined as follows. On BE}), let vy, ..., vx be a list of k vertices in the range J; 12
that are the first to be discovered in this search procedure in this range. Then C§<,v
is the event that we can find at least k connections between vy, ..., v and Ji43
without exploring more than an additional L% " new vertices in Lo U liy3.

This is where it starts to pay off to allow for the exploration to unfold in a par-
tially revealed environment in Lemma 11. Indeed, let i > 1 and condition on Bl[<_11;
We reserve (i.e., do not explore further) vg/241, ..., vg. We explore successively
the components Cy,, ..., Cy, ,, each time performing KBFS, of Lemma 11. Since

we never reveal more than L vertices at each of those k /2 steps, and since we did
not reveal more than (k/2)L¢ = L+¢' /2 < L%’ /2 other vertices in Ijo previ-
ously (since Cf}_l holds), we see that the search may be coupled with high proba-
bility (depending solely on ¢ and ¢) to (k/2) erased KBRW started at vy, ..., vg/2.
Thus the total number of connections between vy, ..., vg/2, to Jiy3 is dominated
from below by k Bin(k/2, 6(c)/2). Indeed, for each of (k/2) trials there is a proba-
bility 8(c)(1 —¢) > 6(c)/2 of success (by Lemma 11), in which case k connections
are added. Thus, using standard Chernoff bounds on binomial random variables,

P((B ) 1B ) = P(Ck ) 1B )
< P(k - Binomial(k/2,60(c)/2) < k)
< exp(—6(c)k/4).
It follows by easy induction that for all n large enough, letting Cj , =i Bi(’v,
P(Ck.,) = (1 —e X4y PBY ).

Since L > ((4/60)logn)'/¢, r = [n/(2LK)] and k = L%, it follows that (1 —
e~ /Myr ~ exp(—re~%/*) > exp(—r/n) — 1. Vertices can only be discovered
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during two consecutive steps of the proof, and hence, the total number of ver-
tices discovered in each strip is no more than L2¢'. Thus C kv O Ck . The proof
of the lemma is complete. [

LEMMA 13. Let D, = {|Cy| > log L}. Then for any fixed ve V,
P(Dy) — 60(c)
and for v, w fixedin V,

P(D, N Dy) — 0(c)>.

PROOF. This is a direct consequence of Lemma 5 and the remark following it.
O

LEMMA 14. Fixc > 1,¢e > 0. Let v, w be chosen uniformly at random in V
and let £ = {C, = Cy} be the event that they are connected. If L <n/(5K), and n
is large enough (depending solely on ¢ and c) then

(14) P D, ND,) <e.

PROOF. We fix K(c, ¢) as in Lemma 12. We apply this lemma a first time by
exploring C, as specified in this lemma with a set of forbidden vertices (vertices
previously explored) being empty. We then let F' be the set of all vertices explored
during that procedure.

We apply one more time Lemma 12 by exploring C,, using a set of forbidden
vertices given by F' (which must necessarily satisfy the assumptions of Lemma 12,
since the search of C,, did not reveal more than L2 " vertices in each strip). Note
that conditionally given D, N D,,, both Ck , and Ck ,, must hold with high prob-
ability (depending solely on c¢). Let us show that £ must then hold with high prob-
ability.

Since Ck, and Ck ,, hold, we know that each interval J;, 3 <i <r —1, contains
at least L /2 unexplored vertices from both C, and C,,. We now apply Lemma 10
repeatedly, starting from each of these unexplored vertices. Since L < n/5K, we
have that » > 4. While fewer than §fp(L) vertices have been reserved in J;, we
know that fewer than fy(L) vertices have in total been explored and thus Lem-
ma 10 can still be applied. We deduce that (conditionally given D, N D,,) in each
Ji,3 <i <r — 1, with probability greater than 1 — o(1) depending solely on ¢
and c, there are §L/w (L) reserved vertices from C, and 6L /w (L) reserved ver-
tices from C,,, with § as in Lemma 10. Thus at least one J; (say Jj) contains
8L /w(L) unexplored vertices from both C, and C,,. The probability to not ob-
serve a connection between these (8L /w(L))? pairs of vertices inside J; is at most
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(by revealing only the status of the edges connecting each such pair)

¢\ BL/o@))? ¢ SL?
(-5 =onl- i)
2L 2L w(L)?

( cSL ) 0
=expl—— | —»
P\ 20@?

for all n sufficiently large. Thus C, = C,, with high probability (depending solely
on ¢ and c¢) given D, N D,,, and hence, £ holds with high probability (depending
solely on ¢ and c) given D, N D,,. [

We deal with the case L > n/(5K) separately.

LEMMA 15. Fixc > 1, e > 0. Let v, w be chosen uniformly at random in V ,
and let £ = {C, = Cy,} be the event that they are connected. If L > n/(5K), and n
is large enough (depending solely on € and c) then

(15) PEL; D, NDy) <e.

PROOF. We let £ denote the event that we can explore C, until at most L°7
vertices have been exposed finding at least L% reserved vertices and also can
explore C,, until at most L%*3 vertices have been exposed finding at least k = L%
reserved vertices. By a simple modification of Lemma 10, the probability of this
event given D, N D,, is at least 1 — o(1).

Let us show that, given the above event £, C, and C,, intersect with high prob-
ability. We partition {1, ...,n} into s = 5K + 1 disjoint intervals of size less than
or equal to L. On the above event, by the pigeonhole principle there must be at
least one region of size at most L, denoted /, with more than 106 /s reserved ver-
tices from C,. We denote by wy, ..., wg the k reserved vertices from C,,. For each
1 <i <k, we continue to explore Cy, by breadth-first search for 6(s + 1)? gener-
ations, or until a descendent is observed in interval /. Since s depends only on &
and ¢, with probability at least 1 —o(1) depending on ¢ and c, no self-intersections
occur throughout this evolution. We claim that the probability the evolution of Cy,
results in us finding a descendent in [/ is at least 6(c)/3 for n large enough depend-
ing solely on ¢ and c. Indeed this occurs if we can find a ray emanating from w;
where the corresponding random walk goes around the circle in less than 6(s + 1)?
levels. We let (X ;) j>1 denote the location of a random walk on Z which starts at 0
and where the jump distribution is uniformon {—L, ..., —1,1,..., —L}.Itis clear
that (X ;) ;>0 is a martingale, as is

(X3 = jL(L + D@L +1)/(6L)) ;-

Letting 7" denote the time the walk goes above sL, or below —sL, we see that
by optional stopping E(T) < 3(s + 1)%. Thus, by Markov’s inequality, P(T >
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6(s + 1)?) < 1/2. Hence, a random walk on V with jumps uniformly distributed
on{—L,...,—1,1,...,—L} goes around the circle in less than 6(s + 1)2 steps
with probability at least 1/2. It follows that the desired ray exists with probability
at least (1 —o0(1))68(c)/2, depending solely on ¢ and c. Thus, given £, we can find
L9 reserved vertices from Cy, and L% reserved vertices from C,, in the inter-
val I, with probability 1 — o(1) depending solely on ¢ and c. Looking one level
further, the number of connections between C,, and C,, in this region is Bin(L'%,
c¢/(2L)) which is larger than 1 with probability 1 — o(1) depending solely on ¢
and c. Equation (15) now follows. [J

We are now ready to finish the proof of (ii) in Theorem 1.

PROOF OF THEOREM 1(ii). Let v, w be chosen uniformly on V. Let £ =
{C, = Cy} be the event that they are connected.
Consider W = {v € V:D, holds}. We already know that E(|W|/n) — 6 and
E(|W|?/n%) — 62, so that
W]

— >0
n

in probability. Furthermore, observe that if v, w are uniformly chosen in W, then
C, = Cy, with high probability depending solely on ¢ by Lemmas 14 and 15. Also,
if v € W, then clearly C, C W. Hence, W consists of a union of clusters. Let X,
denote the size of a cluster from W chosen according to size-biased picking, that is,
Xn =4 |Cy|/|W|, where v is chosen uniformly at random in W. It is a well-known
consequence of exchangeability (and easy to see) that

P(Cy =Cylv,w e W) =E(X,).
By (14),if L <n/(4LK) [resp., by (15) if L > n/(4LK)], we have that
P(Cy =Cylv,we W) —1,

hence, E(X,) — 1. Since X,, < 1, it follows that X;,, — 1 in probability. This
implies that, for all ¢ > 0, with high probability depending solely on ¢ and c,
W contains a component of size at least uﬂ(l —¢&) > 0(c)(1 — 2¢). This proves
the existence of a giant component of mass relative to V equal to 6 in the limit
n— oo.

Let us show that all other components are small. Note that by the above,
we already know that the second largest component size, L2, is such that
L%,V /IW| — 0 in probability. Hence, L%V /n — 0 as well. Let L%}Vc be the largest

component size in wt. By definition, Livc is smaller in size than log L. Since

2 1 2
L; < max(LWC, L3,), we conclude that

2
21 -0
n
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in probability, as desired. The proof of (ii) in Theorem 1 is complete. [J
We now conclude with the proof of (iii) in Theorem 1.

PROOF OF THEOREM 1(iii). Since L = o(logn), we have L < 2—‘; logn, with
a > 0 as in the statement of (iii). We begin by dividing 1, ...,n into n'~?logn
disjoint intervals of size n“/logn, labeled Ay, ..., A, 1-a logn* In each interval we
show that we can find an interval of size L, none of whose vertices have been
involved in a transposition by time ¢ with high probability. We show in fact, that all
the n!~%logn intervals contain such a sub-interval with high probability. Thus the
largest component must be of size smaller than 2n¢/log n, and hence, in particular,
there will be no giant components.

For a given interval of size L, the number of potential edges connected to ver-
tices in this interval is 2L% — (12‘) = (3L% + L)/2. Each of these edges is present
with probability c/(2L). We call the interval empty if none of the edges are present.
The probability a given interval of size L is empty is

(1 —c/@L))CE+D2 L exp<—2(3L + 1)).

We divide each A; into [n%/(Llogn)] intervals of size L, denoted
1 42 [n/(Llogn)]
Al A7 AT .

Let Sl.Zk = {A?k is empty}. We consider the set of events
[, 1<k < $n"/(Llogn)]},

which are independent since each interval is at distance at least L from any other.
For each i, we let

[n?/(Llogn)]/2
B; = Z I{SiZk}‘

k=1
We have
1 n‘ —c(3L+1)/4
P(B; >0)~1—exp|—=| —— |e
2 Llogn
and so

P(B; > 0forall 1 <i <n'"“logn)

~ eXp|:—n1—a logn eXp<—l LLJ6—6(3L+I)/4)}
2L Llogn

-1 asn — oo

since L < ‘é—‘c‘ logn. The proof of Theorem 1 is complete. [
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5. Proof of Theorem 2. We will prove a stronger result than Theorem 2 by
allowing the distribution of edge-lengths to be more general. Recall the defini-
tions of (p¢) and &, given at the beginning of Section 3. Let (7;);>1 be a se-
quence of i.i.d. transpositions with t; = (i j) where i, j are chosen uniformly from
{u,v e V:|lu—v| =L}. Then we construct the permutation o; =71 0--- 0 Tp,,
where (N;, t > 0) is an independent Poisson process. In words, at rate 1, we trans-
pose two markers at random with distance D, where D is chosen according to
the distribution (pg). We recover the process (o; > 0) when (py) is the uniform
distribution on {1, ..., L(n)}.

THEOREM 6. Assume €, — 0 as n — 00. Then we have the following conver-
gence in probability as n — oo: for all ¢ > 0,

—8(ocny2) = u(c).
n

There is a natural coupling between the process (o;,t > 0) and the random
graph (G(¢),t > 0) defined in Section 3. The coupling is an adaptation of the
coupling with the Erd6s—Renyi random graph in Berestycki and Durrett (2006).
Consider the following procedure. Initially, G consists of isolated vertices. Sup-
pose that at time ¢, a transposition T = (i, j) is performed. If G(¢) already contains
the edge (i, j) we do nothing, else we add it to the graph.

The relationship between o; and G (¢) is not one-to-one; however, the follow-
ing deterministic observation holds as in Berestycki and Durrett (2006). For every
t > 0, every cycle of oy is a subset of a certain connected component of G (¢). That
is, the partition of V obtained from considering the cycle decomposition of o; is
a refinement of the partition obtained from considering the connected components
of G(t). This is easily proved by induction on the number N; of transpositions up to
time 7, after observing that the cycle decomposition of o; undergoes a coagulation-
fragmentation process. Indeed, every transposition (i, j) that involves two particles
from the same cycle yields a fragmentation of that cycle, while if the two particles
are in distinct cycles they merge.

This coupling is the basis of our proof. Armed with Lemmas 2 and 3, in order
to prove Theorem 6 we need to show that K; and |o;| differ by o(n) (Lemma 16),
where we recall that |o| is the number of cycles of the permutation o .

LEMMA 16. Assume €, — 0. Let t = cn/2, where ¢ > 0. As n — 00,
lor| — K;

n

—0
in probability.

PROOF. This argument is somewhat analogous to the proof of Lemma 6 in
Berestycki (2011). First we note that by the properties of the coupling between
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oy and G(t), it is with probability 1 the case that K; < |o;|. To prove a bound in
the converse direction, we need to distinguish between small and large cycles or
components. We say that a cycle of o; or a component of G(¢) is small if it has a
size less than 1/./¢, and large if it has size at least 1//¢,,.

Note that the number of large cycles and the number of large components is
at most n\/e, = o(n). It thus suffices to control the difference between the num-
ber of small cycles and the number of small components. However, note that at
any time, the probability of generating a small cycle by fragmentation is at most
4(1/4/€,)en. To see where this comes from, suppose the current permutation is
oy = o, and the first position for the transposition (i, j) to be performed has been
chosen. Thus j will be one of the n — 1 other vertices chosen according to the
distribution (p¢). Then to produce a cycle of size exactly k, j must be equal to
ok =1@@) or o TKHL()). (Depending on the exact size of the cycle containing i, there
may be two other points allowed.) Thus, conditioning on the point i, the probabil-
ity of creating a fragment of size smaller than 1/,/€, is at most 4(1//¢,)e,, as
claimed. It follows that since each excess small cycle must have been generated by
such a fragmentation at some time s < ¢, and since transpositions occur at rate 1,

Ello:| — Ki1 < n/z, +41:/z,.
Thus by Markov’s inequality, taking ¢ = cn/2, for all § > 0,
IED(|0t| - K; - 6) < E(lo;| — K;)
n dn
1 +2¢
)

—

<,

as n — o0o. The proof is complete. [J

PROOF OF THEOREM 6. The proof of Theorem 6 now follows directly from
Lemmas 2, 3 and 16. Indeed, §(o;) = n — |oy|. By Lemma 16, n~ Yoy — K;)
tends to O in probability. We have concentration of K; around its mean by Lem-
ma 3, and the mean is obtained in Lemma 2. Putting these pieces together we
obtain Theorem 6. []

6. Proof of Theorem 3. We consider the case where L is bounded (say by
some constant C) and show that if t = cn/2 with ¢ > 0, then §(¢)/n is bounded
away from c¢/2, where we write §(¢) = §(oy).

LEMMA 17. Assume L is bounded. Fix ¢ > 0 and let t = cn/2. Then there
exists n = ne > 0 such that §(t) < (1 — n)cn/2 with high probability.

In the statement above and in what follows, the expression with high probability
means with probability tending to 1 as n — oo.
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PROOF OF LEMMA 17. Since each transposition decreases the number of cy-
cles by 1 if there is a coagulation and increases it by 1 if there is a fragmentation,
we have

(16) 8(1) = Ny —2F;,

where F; is the total number of fragmentations by time ¢. It suffices to show that
F; > nn when t = cn /2, for some n > 0. Let (i, j) € Rr. Consider the event A;;
that the transposition (i, j) occurred twice by time ¢, and that no other transposition
involved either i or j by time ¢. There are 4L — 2 possible transpositions involving
i or j but not both, with each occurring at rate 1/(rnL). Thus the number of such
transpositions that occur by this time is Poi(# (4L — 2)/n L) which has a positive
probability, g., of being 0. Further, the number of times transposition (i, j) occurs
by time ¢ is Poi(t /n L) and thus we have a positive probability, p., of it occurring
exactly twice. Thus P(A; ;) = gcpc > 0 for each (i, j) e Rp.

Moreover, the events (A;iz 2i14+1)o<i<|n/2L]—1 are independent and each oc-
curs with probability g. p.. Note that the number F; of fragmentations satisfies

[n/2L)—1
Fr > Z Lgiz iz
i=0

It thus follows from Chebyshev’s inequality that P(F; > ng.p./(4C)) — 1, where
C is an upper-bound on L. Hence, F; > n.n with n. = g.p./(4C). Plugging back
in (16) completes the proof. [J

We now turn toward the proof of Theorem 3. Assume without loss of generality
that L(n) = L is constant. As N; =, Poisson(#), we obtain directly from Cheby-
shev’s inequality that %NC,, /2 — ¢/2 in probability.

It thus suffices to show that %Fcn /2 also has alimit as n — o00. Let (F;);>0 be the
filtration associated with the entire history of the process; that is, F; = o (7;,i <
N;). For s > 0, let g, (s) denote the F;-measurable random variable giving the
instantaneous rate of fragmentation given oy. Let

t
A, :/ gn(s)ds
0

and observe that if M; = F; — A;, then (M;,t > 0) is a martingale with respect to
the filtration (F;);>0, for each n > 1.
We prove convergence of n~ ! F; (with r = cn/2) in two steps:

1) n1A, converges,
(ii)) n~'M, — 0 in probability, which will follow from Doob’s inequality.
Note first that by a change of variable,

1 1 fe
(17) _Acn/Z = _/ gn(sn/2)ds.
n 2 Jo
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LEMMA 18. There exists a nonrandom function g(s) such that E(%Acn/z) —
1 f5 g(s)ds.

PROOF. Since g,(s) <1 almost surely, it suffices to show (by Fubini’s the-
orem and Lebesgue’s dominated convergence theorem) that E(g, (sn/2)) — g(s)
for all fixed s > 0. Let Cy be the cycle of o, containing the origin. By exchange-
ability, note that

E(gn(sn/2)) =P(v € Csn)2),

where v is chosen uniformly among the 2L — 1 neighbors of 0. Fix such a neigh-
bor v. The idea for the proof of this lemma is that the cycle structure of v can be
coupled with the cycle structure of the origin in a random transposition process on
the infinite line Z, rather than on the torus. More precisely, let G be the graph
where the vertex setis Voo = Z and the edge setis Eqo ={(i, j) € Z X Z, |i — j| <
L}. Consider the process (o,°,t > 0), with values in the permutation of V., ob-
tained by transposing each edge (i, j) € E atrate 1/(2L). It is not obvious that
this process is well defined as there are an infinite number of edges. However,
the process may be constructed using a standard graphical construction [see, e.g.,
Liggett (1985)]. Briefly speaking, for every (nonoriented) edge e € E, consider
an independent Poisson process which rings at rate 1/(2L). Then the value o, (w)
is defined for every t > 0 and w € V4 by following the trajectory between times 0
and ¢ of a particle which is initially on w and moves to a neighbor j of its current
position i each time the edge e = (i, j) rings. It is easy to see (and will be shown
below) that almost surely there are empty patches (where no edge has rung) sur-
rounding the origin. Thus the trajectory cannot accumulate an infinite number of
jumpsina compact interval, and hence, is well defined. Moreover, the cycle C > of
the origin in 0>° contains only finitely many points almost surely for s > 0, since
it must be contained in between two empty patches.

Let ¢ > 0. We claim that there 1S an event G = G, such that P(G) — 1
as n — oo and such that on G, C sn/2 and C ® are identical. (Here we use
the obvious identification of V = Z/nZ as a subset of Z, as V ={—|n/2] +
1,...,—1,0,1,..., [n/2]}.) We choose g(s)_IP’(veCOO)

The event G we choose is

Gn ={C, C [—logn, logn] for all u < sn/2}.

The coupling between C sn/2 and é’;’o is obvious on G, since we can use the same
graphical construction for both o; and ¢°°. It remains to show that P(G) — 1. To
do this it suffices that there is a strip of size at least L in [— logn, 0] and in [0, logn]
where each vertex in the strip has never been involved in a transposition by time
sn/2 (we say that such a vertex has degree 0), what we called earlier an empty
patch. A given interval of size L contains exactly L(2L — 1) — ( )=@BL*-L)/2
distinct edges, hence, the probability that it is an empty patch is

( s3L2—L>_‘ ) >0
exp 7L > =:p(s) > 0.
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If some patches of size L share no edge in common, then the events that they are
empty are mutually independent. Since we can find at least « log n distinct patches
that do not share any edge in [0, logn], for some « > 0 depending only on L, the
probability that there is no empty patch in [0, logn] is at most (1 — p(s))*1°¢" — 0.
Hence, P(G,) — 1 and Lemma 18 is proved. [

LEMMA 19. Var(%Acn/z) — 0asn— oo.

PROOF. Using (17) and Cauchy—Schwarz’s inequality,

1 c
Var(—Acn/2> << / Var(g, (s1/2)) ds.
n 4 Jo

Since g, (s) < 1, it suffices to show that Var(g,(sn/2)) — 0 for all fixed s > 0.
Now, note that

1
gnlsn/2) ==Y fo,
n veV

where

1
fo= 2 —1 Z l{weév(sn/Z)}’

lw—vl<L

and where C v (s) denotes the cycle containing v in oy. Let
A, ={Cp(r) C [v— logn, v+ logn] for all r <sn/2},

where the addition and substraction is done modulo n. If ||v — v’|| > 2logn, then
on A, N A, the random variables f, and f,y may be taken to be independent.
Reasoning as in Lemma 3 shows that Var(% > fv) = 0, since by Lemma 18 we
know that P(A, N A,) — 1. O

Our final step is to show that M, > /n converges in probability to 0.

LEMMA 20. Forall e >0,

P( sup |M;| > 8n) — 0.

s<cn/2
PROOF. By Markov’s inequality,

P(supIMs/nI > e) - P(sup|Ms/n|2 > 82>

S<t S<t

_ EGup,,|Ms/n?)

- 4E(M?/n?)
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by Doob’s inequality. Now note that since M, is a martingale whose jumps are
only of size 1,

t
Mtz—/o gn(s)ds

is again an (F;);>o-martingale. [To see this, observe that F 4 is Poi(#) and hence,
- t

Mi;, — t is a martingale.] Thus E(Mtz) <t forall t > 0 and when ¢t = cn/2,

2
]P’( sup | M| >8n) < é—w
s<cn/2

as claimed. O

PROOF OF THEOREM 3. It follows from Lemmas 18 and 19 that %Acn/z —

% foc g(s)ds in probability, where g(s) = P(v € é‘;’o) has been defined in Lem-
ma 18. By Lemma 20, we deduce that

1 1 fec
; cn/2_>§/0 g(s)ds

in probability. Since §(¢) = N; — 2F; for all ¢ > 0, it follows that

%8(cn/2) — v(c) = % — /(;Cg(s)ds.

By Lemma 17, we must have v(c) < ¢/2 for all ¢ > 0. It thus suffices to show
that g is continuously differentiable on [0, 00). Assume that the process (o,°) is
in some state such that the (finite) cycle C containing 0 also contains v. Let fi(C)
denote the instantaneous rate at which v becomes part of a different cycle; note
that this rate depends indeed only on C and not on the rest of ¢,°°, and satisfies
f1(C) < |C|2 /(2L). Likewise, assume that the cycle containing v, C’, is distinct
from C. Let f»(C, C’) be the instantaneous rate at which these cycles merge. Then
f£(C,C) < ICI x |C']/(2L).

Note that |C2°| > k implies that there are |k/L | consecutive intervals of size L
around O all containing at least one edge in the associated percolation process. By
considering every other interval, this implies that we can find |k/(2L)] disjoint
intervals of size L, all of which contain at least one edge. Such events are indepen-
dent, and hence, if po(c) > 0 is the probability that at time ¢ an interval of size
L is an empty patch, we find (summing over at most k possible locations for the
leftmost point of this sequence of consecutive intervals),

P(C| > k) < k(1 = poo(c)) */*H,

so that |C2°| has exponential tails. It follows directly that E(|é§°|2) < 00, and
if C2°(v) denotes the cycle containing v at time c, E(léfolléfo(v)b < 00 by
Cauchy—Schwarz’s inequality. A routine argument thus shows that

g(c)= E[l{v¢égo}f2(éf°, C> )] - E[1,cp0 /i (C2)].
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By the same arguments, we see that g’(c) is continuous, which in turn shows that
v is continuously twice differentiable. The proof of Theorem 3 is complete. [
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