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We are concerned with the numerical resolution of backward stochastic
differential equations. We propose a new numerical scheme based on
iterative regressions on function bases, which coefficients are evaluated using
Monte Carlo simulations. A full convergence analysis is derived. Numerical

experiments about finance are included, in particular, concerning option
pricing with differential interest rates.

1. Introduction. In this paper we are interested in numerically approximating
the solution of a decoupled forward—backward stochastic differential equation
(FBSDE)
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In this representatiors = (S;:0 <t < T) is thed-dimensional forward compo-
nent andY = (¥;:0 <t < T) the one-dimensional backward one (the extension
of our results to multidimensional backward equations is straightforward). Here,
W is a g-dimensional Brownian motion defined on a filtered probability space
(2, F,P, (F1)o<t<1), Where(F;); is the augmented natural filtration &f. The
driver f(.,-, -, -) and the terminal conditio(-) are, respectively, a determin-
istic function and a deterministic functional of the proc&sThe assumptions
(H1)—(H3) below ensure the existence and the uniqueness of a so{8tignZ)

to such equation (1)—(2).

Applications of BSDEs. Such equations, first studied by Pardoux and Peng [26]
in a general form, are important tools in mathematical finance. We mention some
applications and refer the reader to [10, 12] for numerous references. In a complete
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market, for the usual valuation of a contingent claim with payb{5), Y is the

value of the replicating portfolio and is related to the hedging strategy. In that
case, the driver is linear w.r.t.Y andZ. Some market imperfections can also be
incorporated, such as higher interest rate for borrowing [4]: then, the driver is only
Lipschitz continuous w.r. andZ. Related numerical experiments are developed

in Section 6. In incomplete markets, the Félimer—Schweizer strategy [14] is given
by the solution of a BSDE. When trading constraints on some assets are imposed,
the super-replication price [13] is obtained as the limit of nonlinear BSDEs. Con-
nections with recursive utilities of Duffie and Epstein [11] are also available. Peng
has introduced the notion gfexpectation (here is the driver) as a nonlinear pric-

ing rule [28]. Recently he has shown [27] the deep connection between BSDEs and
dynamic risk measures, proving that any dynamic risk mea&jyg<,<r (satis-

fying some axiomatic conditions) is necessarily associated to a BSDbE;<r

(the converse being known for years). The least we can say is that BSDEs are now
inevitable tools in mathematical finance. Another indirect application may concern
variance reduction techniques for the Monte Carlo computations of expectations,
say E(®) taking f = 0. Indeed,fOT Z,dW; is the so-called martingale control
variate (see [24], for instance). Finally, for applications to semi-linear PDEs, we
refer to [25], among others.

The mathematical analysis of BSDE is now well understood (see [23] for recent
references) and its numerical resolution has made recent progresses. However,
even if several numerical methods have been proposed, they suffer of a high
complexity in terms of computational time or are very costly in terms of computer
memory. Thus, their uses in practice on real problems are difficult. Hence, it is
still topical to devise more efficient algorithms. This article contributes in this
direction by developing a simple approach, based on Monte Carlo regression on
function bases. It is in the vein of the general regression approach of Bouchard
and Touzi [6], but here it is actually much simpler because only one set of
paths is used to evaluate all the regression operators. Consequently, the numerical
implementation is easier and more efficient. In addition, we provide a full
mathematical analysis of the influence of the parameters of the method.

Numerical methods for BSDEsIn the past decade, there have been several
attempts to provide approximation schemes for BSDEs. First, Ma, Protter and
Yong [22] propose théour step schemio solve general FBSDES, which requires
the numerical resolution of a quasilinear parabolic PDE. In [2], Bally presents a
time discretization scheme based on a Poisson net: this trick avoids him using
the unknown regularity ofZ and enables him to derive a rate of convergence
w.r.t. the intensity of the Poisson process. However, extra computations of very
high-dimensional integrals are needed and this is not handled in [2]. In a recent
work [29], Zhang proves somkz-regularity onZ, which allows the use of a
regular deterministic time mesh. Under an assumptiaoaostructible functionals
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for @ (which essentially means that the system can be made Markovian, by adding
d’ extra state variables), its approximation scheme is less consuming in terms of
high-dimensional integrals. If for each of thle+ d’ state variables, one usa$
points to compute the integrals, the complexity is abadtt? per time step, for
a global error of ordeM —1 say (actually, an analysis of the global accuracy is not
provided in [29]). This approach is somewhat related to the quantization method
of Bally and Pageés [3], which is an optimal space discretization of the underlying
dynamic programming equation (see also the former work by Chevance [8], where
the driver does not depend of). We should also mention the works by Ma,
Protter, San Martin and Soledad [21] and Briand, Delyon and Mémin [7], where
the Brownian motion is replaced by a scaled random walk. Weak convergence
results are given, without rates of approximation. The complexity becomes very
large in multidimensional problems, like for finite differences schemes for PDEs.
Recently, in the case of path-independent terminal conditifS) = ¢ (S7),
Bouchard and Touzi [6] propose a Monte Carlo approach which may be more
suitable for high-dimensional problems. They follow the approach by Zhang [29]
by approximating (1)—(2) by a discrete time FBSDE wiitiime steps [see (5)—(6)
below], with anL -error of orderN ~Y/2. Instead of computing the conditional
expectations which appear at each discretization time by discretizing the space
of each state variable, the authors use a general regression operator, which can
be derived, for instance, from kernel estimators or from the Malliavin calculus
integration by parts formulas. The regression operator at a discretization time is
assumed to be built independently of the underlying process, and independently of
the regression operators at the other times. For the Malliavin calculus approach,
for example, this means that one needs to simulate at each discret@ficopies
of the approximation of (1), which is very costly. The algorithm that we propose
in this paper requires only one set of paths to approximate all the regression
operators at each discretization time at once. Since the regression operators are
now correlated, the mathematical analysis is much more involved.

The regression operator we use in the sequel results fromtpeojection on
a finite basis of functions, which leads in practice to solve a standard least squares
problem. This approach is not new in numerical methods for financial engineering,
since it has been developed by Longstaff and Schwartz [20] for the pricing of
Bermuda options. See also [5] for the option pricing using simulations under the
objective probability.

Organization of the paper.In Section 2 we set the framework of our study,
define some notation used throughout the paper and describe our algorithm based
on the approximation of conditional expectations by a projection on a finite basis
of functions. We also provide some remarks related to models in finance.

The next three sections are devoted to analyzing the influence of the parameters
of this scheme on the evaluation®fandZ. Note that approximation results @h
were not previously considered in [6]. In Section 3 we provide an estimation of the
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time discretization error: this essentially follows from the results by Zhang [29].
Then, the impact of the function bases and the number of simulated paths is
separately discussed in Section 4 and in Section 5, which is the major contribution
of our work. Since this least squares approach is also popular to price Bermuda
options [20], it is crucial to accurately estimate the propagation of errors in this
type of numerical method, that is, to ensure that it is not explosive when the
exercise frequency shrinks to Dp-estimates and a central limit theorem (see
also [9] for Bermuda options) are proved.

In Section 6 explicit choices of function bases are given, together with numerical
examples relative to the pricing of vanilla options and Asian options with
differential interest rates.

2. Assumptions, notation and the numerical scheme.

2.1. Standing assumptions.Throughout the paper we assume that the follow-
ing hypotheses are fulfilled:

(H1) The functiong, x) — b(z, x) and(z, x) — o (¢, x) are uniformly Lipschitz
continuous w.r.t(z, x) € [0, T] x R?.
(H2) The driverf satisfies the following continuity estimate:

| f(t2, x2, y2,22) — f(t1, x1, y1, 21)|
< Cr(lt2 — 1|2+ |x2 — x1] + |y2 — y1l + z2 — z1))

for any (11, x1, y1, 21), (f2, x2, y2, 22) € [0, T] x RY x R x RY.
(H3) The terminal conditio® satisfies théunctional Lipschitz conditiorthat is,
for any continuous functionst ands?, one has

|D(sh) — B < C sup Ist — 52
t€[0,T]
These assumptions (H1)—(H3) are sufficient to ensure the existence and uniqueness
of a triplet (S,Y,Z) solution to (1)—(2) (see [23] and references therein). In
addition, the assumption (H3) allows a large class of terminal conditions (see
examples in Section 2.4).

To approximate the forward component (1), we use a standard Euler scheme
with time step: (say smaller than 1), associated to equidistant discretization times
(tx =kh =kT/N)o<k<n. This approximation is defined b%" = Sp and
(3) S

N =SSN b0, SR+ o (k. SY) Wiy — W)
The terminal condition®(S) is approximated by®"(PY), where ®" is a
deterministic function andP,iV)OSkEN is a Markov chain, whose first components

are given by those o(fS{]:’ Jo<k<n- In other words, we eventually add extra state
variables to make Markovian the implicit dynamics of the terminal condition. We
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also assume thak" is ¥, -measurable and th@{®" (P)]? < co. Of course,
this approximation strongly depends on the terminal condition type and its impact
is measured by the err@{ & (S) — CI>N(P/IX)|2 (see Theorem 1 later). Examples of

function ®" are given in Section 2.4,

Another hypothesis is required to prove that a certain discrete time BSDE
(Y,f:’)k can be represented as a Lipschitz continuous functi®dry, -) of PN
(see Proposition 3 later). This property is mainly used in Section 6 on numerical
experiments to derive relevant regression approximations.

(H4) The function ®V(.) is Lipschitz continuous (uniformly inN) and
supy |2V (0)| < oo. In addition, B[P0 — pNFor 2y g pNlex

Tko+1
N,ko,x" 2 2 . .
Ptk 1P Clx = x'|% uniformly in kg andN.

Here, (PN’kox)k stands for the Markov chainpP)), starting atPN = X.

Moreover, since we deal with the flow properUes((FtN )k, We use the standard
representation of this Markov chain as a random iterative sequence of the form
Pl = FN(Uy, PY ), where(FY); are measurable functions ady), are i.i.d.

: Tk—1
random variables.

2.2. Notation.

PROJECTION ON FUNCTION BASES

e The L2(2,P) projection of the random variabl& on a finite family ¢ =
[¢1,...,¢.]" (considered as a random column vector) is denoted’pyl/ ).
We setRy(U) = U — Py(U) for the projection error.

e At each timer, to approximate, respectively;, and Z;; (Z;, is thelth
component ofZ,, 1 <1 < q), we will use, respectively, finite-dimensional
function basegvo,k(PtQ’) andpl,k(P,iV) (1 <1 < gq), which may be also written
pox and pix (1 <1 < g) to simplify. In the following, for convenience,
both (p; x(-)) and (pl,k(P,iV)) are indifferently calledunction basis Explicit
examples are given in Section 6. The projection coefficients will be denoted
ook, X1 ks -+ -5 gk (Viewed as column vectors). We assume tﬁapl,ﬂz <
o0 (0 <1 <gq) and w.l.o.g. thati(p, «p[;) is invertible, which ensures the
uniqueness of the coefficients of the projectiep) , (0 <7< q)

e To simplify, we write fi (cok, - - ., &g k) OF fi (k) for f(z, Sy N ok poks -
oy k * Pg.k) [S{X is the Euler approximation of;, , see (3)].
e For convenience, we writé; () = E(-|#;,). We putAW; =W, ., — W, (and

AW, component-wise) and defing the (column) vector given by ]* =
* x AWig x AWgik
(PQk, plva’ < Pyk N )
e For a vectorx, |x| stands, as usual, for its Euclidean norm. The relative

dimension is still implicit. For an integeM and x € RY, we put |x|§4 =
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% Zf,‘f:l |x.|2. For a set of projection coefficients = (ay, .. ., 0g), we set
loe| = maxp</<4 o] (the dimensions of the; may be different). For the set
of basis functions at a fixed time, | px| is defined analogously.
e For a real symmetric matrin, ||A| and||A| r are, respectively, the maximum
of the absolute value of its eigenvalues and its Frobenius norm (defined by

2 _ 2
IAllE =220 ;a7 ;)

We refer to Section 6 for explicit choices of function bases, but to fix ideas,
a possible choice could be to define, for each timegrids (x},:1 <i <
n)o<i<¢ and definep; «(-) as the basis of indicator functions of the open Voronoi
partition [17] associated ta)x;"k:l <i <n), that is, pjx(-) = (1ka('))15i5”’

1 i i J . .
whereCy , = {x:|x —x; | <|x —xj,; [, Vj#i}.

SIMULATIONS. In the following, M independent simulations ()Ptf’)osks,v,
(AWoosk=n—1 Will be used. We denote them((P,) "™ )o<k<n)1<m=m,
(AW o<k<N-1D1<m<M:

e The values of basis functions along these simulations are derip{gd=

N,m
PI(sz ))Oflfq,Ofka—l,lfme-
e Analogously tofi(cox, ..., k) OF fi(ak), we denotef;” (aok, ..., g k) OF

N
fi (o) for f (e, Sy, gk POss -+ Og k * p;"’k).
We define the following:

AWTy
o the (column) vector;" by [vi']* = (pgt, PT'k T ,...,p[’I’f’,‘;

o the matrixV¥ = L S0 v v,
o the matrixP¥ = 5 Y0y p/[pi]* (0<1 <q).

AWM,

);

St

TRUNCATIONS. To ensure the stability of the algorithm, we use threshold
techniques, which are based on the following notation:

e In Proposition 2 below, based on BSDES’ a priori estimates, we explicitly build
someR-valued functions(pf}’k)oslsq,ofkszv_l bounded from below by 1. We
setpl (Py) = 1053 (PY), . pg k (PAOT.

e Associated to these estimates, we define (random) truncation funﬁﬂ’p@s} =
P (PIE/ )y (PY)) and 3" () = (P ™E /oY (P ™), where
£:R > R is a C2-function, such that(x) = x for |x| < 3/2, |&]o < 2 and
&0 < 1.

In the next computations, denotes a generic constant that may change from line
to line. It is still uniform in the parameters of our scheme.
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2.3. The numerical schemeWe are now in a position to define the simulation-
based approximations of the BSDE (1)—(2). The statements of approximation
results and their proofs are postponed to Sections 3, 4 and 5.

Our procedure combines a backward in time evaluation (from time 7 to
time 1o = 0), a fixed point argument (using= 1, ..., I Picard iterations), least
squares problems o simulated paths (using some function bases).

Initialization. The algorithm is initialized witty,\ """ = oV (pJ) (indepen-
dently ofi and 7). Then, the solutionY;,, Z1 4., ..., Z, ;) at a given timer is
represented via some projection coeﬁicie(ml}s,g’M)oflsq by

N,i,I.M A i,I,.M N,i,I.M AN i,I,.M
Ytk - IOO,k(Olo’k . pO,k)v \/Ezl,tk = pl’k(«/zal’k . Pl,k)

(0Y, and p, are the truncations introduced before). We now detail how the

coefficients are computed using independent realizaﬁohg’m)ofka)lmeM,
((AWIZH)Ofka—l)lfme-

Backward in time iteration at time; < T. Assume that an approxima-

tion ¥, "M = pd @i - poxsn) is built, and denotey,l M =
AN, m

I,I.M m . . . . .
Poi11( 1 - Poxy1) its realization along therth simulation.

— For the initializationi = 0 of Picard iterations, set;"*"* = 0 and

zp M =0, thatisa) M =0 (0<1 <q).

— For i =1,....1, the coefficientsay”" = (¢ )o<1<, are iteratively
obtained as the arg min o, . .., o) of the quantity
1 u N,I,I.M —1,I,.M I ?
@y Z(Ymr M — g pt hf e >—Zaz-pf7kAWz’?i) |
m=1 =1

If the above least squares problem has multiple solutions (i.e., the empirical
regression matrix is not invertible, which occurs with small probability wien
becomes large), we may choose, for instance, the (unique) solution of minimal
norm. Actually, this choice is arbitrary and has no incidence on the further analysis.

The convergence parameters of this scheme are the timé: fep> 0), the
function bases, the number of simulatiaifs(M — +o0). This is fully analyzed
in the following sections, with three main steps: time discretization of the BSDE,
projections on bases functionslin($2, IP), empirical projections using simulated
paths. An estimate of the global error directly follows from the combination of
Theorems 1, 2 and 3. We will also see that it is enough to Haxe3 Picard
iterations (see Theorem 3).

The intuition behind the above sequence of least squares problems (4) is actually
simple. It aims at mimicking what can be ideally done with an infinite number of
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simulations, Picard iterations and bases functions, that is,

N N ; N N 2
(Y, .Zz,)= arginf EY,’ —Y+hf( S, .Y, Z) = ZAW)",
(Y.2)eL2(F)
where, as usual.>(¥;) stands for the square integrable afg-measurable,
possibly multidimensional, random variables. This ideal case is an appoximation
of the BSDE (2) which writes

I+ Te+1

Ytk+1+ f(s»SSaYs»Zs)ds:Ytk+ ZsdWs
173 Ik

over the time intervallty, fx+1]- (Y,f:’)k will be interpreted as a discrete time BSDE
(see Theorem 1).

2.4. Remarks for models in financeHere, we give examples of drivers
and terminal condition® (S) in the case of option pricing with different interest
rates [4]: R for borrowing andr for lending with R > r. Assume for simplicity
that there is only one underlying risky assét£ 1) whose dynamics is given by
the Black—Scholes model with drift and volatilityo (¢ = 1): dS; = S;(ndt +
odW;).

e Driver: lfwesetf(r,x,y,z) = —{yr+z0 — (y — )" (R—r)}, wheref) = ==,

Y; is the value at time of the self-financing portfolio replicating the payoff

®(S) [12]. In the case of equal interest ratRs= r, the driver is linear and we

obtain the usual risk-neutral valuation rule.
e Terminal conditions A large class of exotic payoffs satisfies the functional

Lipschitz condition (H3).

— Vanilla payoff: ®(S) = ¢(Sr). Set P =S¥ and ®¥(PY) = ¢(P).
Under (H3), it givesE| @Y (PY) — @(S)|? < Ch.

— Asian payoff: ®(S) = ¢(Sr. fg Sidt). Set PN = (SN, hyi—5sY) and
oV (PN) = ¢(PY). For usual functionsp, the Lo-error is of order 12
w.rt. 2. More accurate approximations of the average Sotould be
incorporated [18].

— Lookback payoff: ®(S) = ¢(Sr,minepo, 1S, Maxepo,r)S:). Set
oV (PN = ¢(PN) with PY = (S, mini< SY, max . SY). In general,
this induces arlLs-error of magnitude/ZTog(1/A) [29]. The rateh
can be achieved by considering the exact extrema of the continuous Euler
scheme [1].

Note also that (H4) is satisfied on these payoffs.

We also mention that the price process); is usually positive coordinatewise,

but its Euler scheme [defined in (3)] does not enjoy this feature. This may be an
undesirable property, which can be avoided by considering the Euler scheme on
the log-price. With this modification, the analysis below is unchanged and we refer
to [15] for details.
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3. Approximation results: step 1. We first consider a time approximation of
equations (1) and (2). The forward component is approximated using the Euler
scheme (3) and the backward component (2) is evaluated in a backward manner.

First, we setr} = " (P)). Then,(¥}, Z[")o<k<n—1 are defined by

1
N N
(5) Zl,l‘k = ZEk(Yf]H.lAWl#k)’
N N N N N
(6) Y,k = Ek(Ytk+1) + hf(tk, Stk , Ytk , Ztk )
Using, in particular, the inequalit},sz’tk| < % Ek(Y,ﬁl)Z, it is easy to see by

a recursive argument thmﬁ(" and Zf;’ belong toL »(¥;,). It is also equivalent to
assert that they minimize the quantity

(7) E(YYN —Y+hf(, SY

Te+1 e’

Y. Z) — ZAW;)?

overL 2(¥;,) random variablesY, Z). Note thatY,i\’ is well defined in (6), because
the mappingY — Ex (YY) + hf (1. S}, Y. Z}Y) is a contraction il »(F;,), for

Ik °
h small enough. The foITowing result provides an estimate of the error induced by

this first step.

THEOREM1. AssumégH1)—(H3).For & small enoughwe have

ElY, —yV24 S [“Ez, - 2VPa
max El1 ~ v X [z - 2 P

< C((L+ 150D +E|D(S) — o (PY) ).

PROOF  From [29], we know that the key point is tHe?-regularity of Z.
Here, under (H1)—(H3Y is cadlag (see Remark 2.6.ii in [29]). Thus, Theorem 3.1
in [29] states that

N-1 T4l 2 >
ZE/ |Z; — Z4|“dt < C(1+ |So|%)h.
k=0 "%

With this estimate, the proof of Theorem 1 is standard (see, e.g., the proof of
Theorem 5.3 in [29]) and we omit details]

Owing to the Markov chain(Pka)oSkSN, the independent increments
(AWir)o<k<n—1 and (5)—(6), we easily get the following result.

ProPOSITIONL. Assum&H1)—(H3).For 2 small enoughwe have
@) v =y (PY), zl =z (PY) forO<k<Nand1l<[<g,

Where(y,ﬁv(-))k and (z{f’k(-))k,l are measurable functions
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It will be established in Section 6 that they are Lipschitz continuous under the
extra assumption (H4).

4. Approximation results: step 2. Here, the conditional expectations which
appear in the definitions (5)—(6) d‘f}k\’ and Z;Yrk (1 <1 <gq) are replaced by a
L2(£2, P) projection on the function bases r andp; x (1 <! < g). A numerical
difficulty still remains in the approximation dfti" in (6), which is usually obtained
as a fixed point. To circumvent this problem, we propose a solution combining
the projection on the function basis afdPicard iterations. The integdris a
fixed parameter of our scheme (the analysis below shows that the aluis
relevant).

DEFINITION 1. We denote by,"" the approximation of ¥, wherei Picard
iterations with projections have been performed at tignand / Picard iterations
with projections at any time afteg. Analogous notation stands f(ﬂ,{v,;{”’ . We
associate t, "' andz,";"' their respective projection coefficient§}, anda;;,

on the function basego x andp; x (1 <1 < q).

We now turn to a precise definition of the above quantities. Werget’ =
@V (PN), independently of and . Assume that’,":/" is obtained and let us
definey,\""’, Z,]Yt;f’l fori =0,..., 1. We begin withy,"">/ =0 andz}"*' =0,
corresponding taxy) =0 (0 <! < ¢). By analogy with (7), we set;’ =

(@) Do=i=q as the argmin ifiao, ..., &) of the quantity

2
) q
9) E(Kﬁ’l”[ — - pox +hfiley P =Y a- Pz,kAWz,k> :
=1

lterating withi =1, ..., I, atthe end we getr,}) Jo<i<q, thus Y, "" = aff - po

and sz?]r}f’] = al’k’ -pix (L <1 <gq). The least squares problem (9) can be
formulated in different ways but this one is more convenient to get an intuition

on (4). The error induced by this second step is analyzed by the following result.

THEOREMZ2. AssumgH1)-(H3).For 2 small enoughwe have

N-1
N, 1,1 2 N, 1,1 2
o I S T RIA
< Ch2'2[141So? + E[@™ (PY) ]

N-1 N-1 ¢q

2 2
+C Y B[Ry, (V)" +Ch Y Y EIRp, (2],
k=0 k=0 1=1
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The above result shows how projection errors cumulate along the backward
iteration. The key point is to note that they only sum up, with a factaxhich
does not explode a& — oo. These estimates improve those of Theorem 4.1
in [6] for two reasons. First, error estimates @ are provided here. Second,

in the cited theorem, the error is analyzed in termsEoR,,, (Y, '"")|? and

Emp,,k(zlf’t’k”ﬂz say: hence, the influence of function bases is still questionable,
since it is hidden in the projection residuats,, and also in the random variables

v " andz)",""". Our estimates are relevant to directly analyze the influence of
functlon bases (see Section 6 for explicit computations). This feature is crucial in

our opinion. Regarding the influence bfit is enough here to have= 2 to get an
error of the same order as in Theorem 1. At the third step,3 is needed.

PROOF OFTHEOREM 2. For convenience, we deno#e" (So) = 1+ |So| +
E|<I>N(P,’IX)|2. In the following computations, we repeatedly use three standard
inequalities:

1. The contraction property of the-projection operator: for any random variable

X €Ly, we haveE|P,,, (X)|? <E|X|2.

2. Tlhe ;(oung inequalityVy > 0,V (a,b) € R?, (a +b)%2 < (1+ yh)a? + (1 +

L
3. 'yrhe discrete Gronwall lemma: for any nonnegative sequenges<i<n,

(bk)o<k<n and(ck)o<k<n satisfyingax_1 + cxk—1 < (1 + yh)ay + br—1 (with

y > 0), we havey + >V e; < e? T ay + >N 1 b;]. Most of the time, it

will be used withc; = 0.

BecauseA W is centered and independent(@f «)o</<4, it is straightforward to
see that the solution of the least squares problem (9) is givendr, by

1
N,i,I N,LI
(10) Z, zkl Z:P (Y,k+1 AWl,k),
N,i,I N,II N,i-1,1 N,i-11
(11) Y, = P (Yo + RS (s tk’Ytk =Ll ZNi=Lhy)

The proof of Theorem 2 may be divided in several steps.

Step 1: a (tight) preliminary upper bound foﬂE|ZN’ 112 First note that
Zth’ ! |s constant fori > 1. Moreover, the Cauchy—Schwarz inequality yields

B (Y s  AWLOI2 = B (DY = BVl DIAWL 012 < h(BilY, ) '12 —

k41 k+1 k+1 Te+1

[Ek(thLl’ 12). Since(p1.x); is F,-measurable and owing to the contraction of

the projection operator, it follows that

vir2 1 1 y NI 2
E|Z);" "= 5Bl P (Ex[Y D AW < 2 BEY T AWL])

(12) [ty
(B[ TP~ BIE(rD]).

th+1 T2

S e

=<
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As it may be seen in the computations below, the t@f8 (Y, ,"")1? in (12)

plays a crucial role to make further estimates not explosive Ww.r.t.

Step2: L, bounds fory,” " and vAZz);"". Actually, it is an easy exercise

to check that the random variableg' "’ and Vhz"! are square integrable.
We alm at proving that unifornL > bounds w.r.t.i, I k are available. Denote
Y e Lz(ftk) > Poor Y-l hfay, SN Y, ZN’ L1y) e Lo(#;,). Clearly,

k+1 73
E|Xk "(va) — x" (vv)|? < (Csh)?E|Y2 — Y1|%, where C; is the Lipschitz

constant of f. Consequently, forh small enough, the appllcatlomNI is

contracting and has a unique fixed pok ">’ e La(#;,) (remind thatz;""’
does not depend are> 1). One has

N.0o,1 yN LI N,oo,l N,I,I
(13) Ytkoo :g)mk( wor S (t, tk,y >N zZymh),

N,0,1

sinceY;, = 0. Thus, Young's inequality yields, faor> 1,

By % < (1+ )E!Yiv’oo’l YN E 4 @ mE|YN o P
(15)
< (L4 ChE|Y) 12,

The above inequality is also true foe=0 becaus&l’,iV 07 — 0. We now estimate

E|Y,°'|? from the identity (13). Combining Young's inequality (with to
be chosen later), the identitg,, , (Y1) = 2y, (Ex[Y,) 1" 1), the contraction

of #,,, and the Lipschitz property of, we get

E|vy P < @+ yhEE([Y ]
(16) 1
+Ch(h+ ;)[Ef,f(O,...,O) Ryl PR ZN .
Bringing together term&|Y, N o I|2, then using (12) and the easy upper bound

Ef2(0,...,00 <C(1+ |So|2) it readily follows that
(1+yh)

NOOI 2 N,1,17\2
Ch(h—{—l/)/) 5
(17) I ety 1y L 150
Ch+1/y)

N.I1,I|2 N 1,17)2
E[Yey " = BBV 7 1F),

1—Ch(h+1/y)
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provided that: is small enough. Take = C to get
E|v) ! < ChI1+ 1S/l + (L+ CE|YY:H P + ChE[R [y -1

Tk+1 Tk+1

2

(18)
< ChIL+ S0l + (1 + 2Ch)E|YN.11 2

with a new constanC. Plugging this estimate into (15) with= I, we get
ElY)""12 < ChI1 + |S0l?] + (1 + CWE|Y,.:1" 2 and, thus, by Gronwall’'s
lemma, sup,-y EIY,""12 < CAN(So). This upper bound combined with (18),
(15) and (12) finally provides the required uniform estimatesIE‘tlf,f:”""|2 and

N,i, I 2.
ElZl’,k |<:
(19) supsup sup (E|Y;) "' |+ hE|Z)" P) < CAY (So).

I1>1i>00<k<N

Step3: upper bounds for, "' = E|v,)""" —¥N|2. Note thaty)’ = 0. Our
purpose is to prove the following relation forOk < N:

m < L+ Chynyy + Ch2T 1 AN (So)
(20)

q

2 2

+ CE"Rpo,k(Ytiv)} ""ChZE“RP/,k(ZI,Nzk)’ .
=1

Note that the estimate on mge <y E|Y,""' — ¥¥ |2 given in Theorem 2 directly

follows from the relation above. With the arguments used to derive (15) and using
the estimate (19), we easily get

" < Ch AN (So) + L+ WE[Y, ! — v Y|P
(21) = Ch2I =T AN (So) + (L + WE| R, (Y V)]
+ @A+ WE[YY " = P (YY)
where we used at the last equality the orthogonality property relatigg,fo:
2 2
(22) E|Ytiv’m’1 - Yziv| = E}‘RPO.k (Ytiv)| + E|Yt2]’oo ! OPOk(YN)| .
Furthermore, with the same techniques as for (12) and (16), we can prove

2
|"(RPlk(thk| +ZE|ZNII c7)1171,1<(Zl,Ntk)]|
1 =1

|
MQ

-~
1

(23)
E{Rpl,k (letltk) |2

A
M=

1

~

(PRSI AN RES IO ARRIES AN

tk+1 tk+1 Tl Te+1

+

d
h



MONTE CARLO METHOD FOR BSDE 2185

and
2
IE’|thkv’oo’[ - c‘7)1!70,k (Ytiv)|
N,I,1 2
(24) <A+ ymE[E[Y, . =YY

2 2
ViZ+E|Z] -z ).

1
+ Ch(h + ;)[IE|Y,1V’°°” —yY

Replacing the estimate (23) in (24), choosjng: Cd and using (22) directly leads
to

(1 - Ch)E|Ytiv’oo’I - ’(PI’O,k (Ytlkv)|2

(25) < (1+Chyny

q

2 2

+ ChZE{ﬂpl,k(Zl,Ntk” +ChE|=ﬂpo,k(Yziv)| .
=1

Plugging this estimate into (21) completes the proof of (20).

Step4: upper bounds fot ¥ = n Y ) ' E|Z) "' — |2, We aim at showing

N-1 g
¢V < Ch2AN (So) + Ch . S IRy, (2]
k=0 =1
(20) N 2 NI
+C Z E’RPo,k(Ytiv)’ + C0<km<a]'vx_l77k i
k=0 -

In view of (23), we have

N-1 ¢q

2
M <h Y ) EIRy(Z1,)

k=0 =1

[ Tk4+1

N-1
+d Z (E[Ytlk\l’l’l o Ytiv]z B E[Ek(YN’LI — Yy )]2)
k=0

Owing to (21) and (24), we obtain

E|Y[iv’1’1 _ Yti\] 2 _E[Ek(YN,I,I _ YN )]2

Te+1 tet1
+ CE|R po, (YY) P + [+ h)A + yh) — TE[E Y00 — v

2
e+ tk+1]|

Tk

1
i+ 3 )X v P ElZ) - 2P
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Takingy = 4Cd andh small enough such thaiC (i + ) < 3, we have proved

N-1 ¢q N-1
N < CRPT2AN (S0) + Ch YD DT EIRp (2 )P+ C Y Bl R, (Y]
k=0 I=1 k=0

N-1
N,I 1 N,00,1 N|2 1.N
max ’ 5 E|\Y, 7" =Y, 5C7.
+CO§k§N—lnk + 3h ;—o Y, T+ 5¢

But taking into account (22) and (25) to estimatgy,"*' — YN|?, we clearly
obtain (26). This easily completes the proof of Theorem[2.

5. Approximation results: step 3. This step is very analogous to step 2,
except that in the sequence of iterative least squares problems (9), the expectation
E is replaced by an empirical mean built oW independent simulations of

(Ptf:’)okaN, (AWi)o<k<n—1. This leads to the algorithm that is presented at

Section 2.3. In this procedure, some truncation functigijsand ,6,]?’,;”1 are used

and we have to specify them now. ‘ .
These truncations come from a priori estimates/dri"’, ZlN;k”’ and it is useful

to force their simulation-based evaluatior§ """, Z;Vt’ki’l’M*m to satisfy the
same estimates. These a priori estimates are given by the following result (which
is proved later).

PropPosITION2. Under(H1)—(H3),for some constanty large enoughthe
sequence of functior(&{f’k(-) =max, Colprx())):0<l<q,0<k<N-1)is
such that

|th/’i’1| = Pé\,/k(PxQ’), ‘/E|ZN’“| = plltlk(Ptiv) as.,

Lty

foranyi >0,/ >0and0<k <N — 1.

With the notation of Section 2, the definition of the (random) truncation
functionsp;’; (resp.ﬁlf’,;’") follows. Note that they are such that:

o they leave invariant(, - pox =Y, "' if 1 =0o0rvha)| - pri=~hz),"" if
1> 1 (respagy - piy if 1=0o0rha) | - p’ if 1 > 1);

o they are bounded by} () [resp. 2% (P "™)];

o their first derivative is bounded by 1;

o their second derivative is uniformly boundedAih I, k, m.

Now, we aim at quantifying the error betweeﬁt’kv””’M,\/Ezﬁ’k”””’)l,k and
/AR «/EZZI,V,;{I’I)z,k, in terms of the number of simulation®, the function
bases and the time stép The analysis here is more involved than in [6] since
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all the regression operators are correlated by the same set of simulated paths. To
obtain more tractable theoretical estimates, we shall assume that each function
basisp; x is orthonormal. Of course, this hypothesis does not affect the numerical
scheme, since the projection on a function basis is unchanged by any linear
transformation of the basis. Moreover, we define the event

Al ={Vjelk....N=1: |V} —1d| <h, P}, —1d]| <h
(27)
and|[PM —1d| <1for1<i<gq)
(see the notation of Section 2 for the definition of the matric¥sand £*). Under
the orthonormality assumption for each bagjs, the matrices(VkM)ofksN,l,
(Pl{‘f{)oflfq,ofka_l converge to the identity with probability 1 a6 — oo. Thus,
we have IinM_)OOIP)(A,i”) = 1. We now state our main result about the influence
of the number of simulations.

THEOREM 3. Assume(H1)—(H3), I > 3, that each function basig;  is
orthonormal and thaﬁE|p1’k|4 < oo for any k, . For h small enoughwe have
foranyO<k <N —1,

E|Yti\/,1,l _ Yti\/ I,I.M 2+h Z E|ZN 1,1 Zfl;/,l,l,M|2
j=k

N—-1 N-1
<9 Y E(|o) (PY)PLampe) + CH' ™ D [1+ IS0l + o) (P[]
j=k j=k
C N-1
= (E”vj vl —Id|IFE|pY (P,N)y
j=k

+E(1v; 1% po.j+11)Elpd ; (PY)[?

hZE['% 2(1+15Y 2+ 1po, 2E] o (PY) 2

25 o Bl ) >])

l 1

The term with [A{(”]C readily converges to 0 a& — oo, but we have not
made estimations more explicit because the derivation of an optimal upper bound
essentially depends on extra moment assumptions that may be available. For
instance, |f,oN(PN) has moments of order higher than 2, we are reduced via

Holder mequallty to estimate the probabllify[AM] ) < ZN kl[IP’(||VM Id| >
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h) + IP(||P(§‘7] —Id|| > h) + 27:11P(||P/‘§ Id|| > 1)]. We haveP(|| VM —1d|| >

h) < h2E|VM —1d||2 < h2E|VM — 1d||% = (Mh?)~1E|vevf — Id||%. This
simple calculus illustrates the possible computations, other terms can be handled
analogously.

The previous theorem is really informative since it provides a nonasymptotic
error estimation. With Theorems 1 and 2, it enables to see how to optimally choose
the time steph, the function bases and the number of simulations to achieve a
given accuracy. We do not report this analysis which seems to be hard to derive for
general function bases. This will be addressed in further researches [19]. However,
our next numerical experiments give an idea of this optimal choice.

We conclude our theoretical analysis by stating a central limit theorem on the
coefﬂment&x’ LM 3sm goes tooco. This is less informative than Theorem 3 since
thisis an asymptotic result. Thus, we remain vague about the asymptotic variance.
Explicit expressions can be derived from the proof.

THEOREM4. AssuméH1)—(H3),that the driver is continuously differentiable
wr.t. (y,z) with a bounded and uniformly Holder continuous derivatives and
that Elpix|> < oo for any k,I (¢ > 0). Then the vector [v/M(a;"" —
ak )],< 1.k<N—1 Weakly converges to a centered Gaussian vectaw/agoes taoo.

PROOF OF PROPOSITION 2. In view of Proposition 1, it is tempting
to apply a Markov property argument and to assert that Proposition 2 re-
sults from (19) written with conditional expectatiofitz. But this argumenta-
tion fails because the law used for the projection is not the conditional law
Er but Eo. The right argument may be the following one. Wrig' "' =
ag} - pox(PY). On the one hand, by (19), we hag" (So) > IE|YN””|2
NlI

a6 - Elpospdegy = lag i ?Amin(Elpokpg ). On the other handy,”"'| <
G llpok (P < 1pokl,/CAN (So)/Amin(Elpoxpg,D). Thus, we can take
pévk(X) = maX(l,Ipo,k(X)I\/CAN(So)/?»min(E[po,kpak]))- Analogously, for
VhIZ] |, we haveplY, (1) = max(d, | prx()],/CAN (So)/Amin(EL prep 1)-
Note that if p1.x is an orthonormal function basis, we haMein(E[p,,kp;fk]) =1
and previous upper bounds have simpler expressidns.

PrROOF OFTHEOREM 3. In the sequel, set

1 M 1 M

N,M N 2 N,M

AL :M2|pé\jk(P[km , B :MZM,;"(O,...,O)2
m= m=1

Obviously, we haveE(A; ") = E|pf,(PN)|? and E(B"") < C(1 + S0/?).
Now, we remind the standard contraction property in the case of least squares
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problems inRY, analogously to the cade>(2, P). Consider a sequence of real
numbers(x™)1<m<m and a sequence)’")lsmSM of vectors inR", associated
to the matrix V¥ = LM _ v"[v"]* which is supposed to be invertible
[Amin(VM) > 0]. Then, the (uniqueR”-valued vectow, = arginfy |x — 6 - v|§4

is given by

(28) [VM

e
The applicationx — 6, is linear and, moreover, we have the inequality
(29) hnin(V )02 < 10, I3, < 1x 13,
For the further computations, it is more convenient to deal with
O = (M VR
instead ofx;"""'. Then, the Picard iterations given in (4) can be rewritten

, N 2
(30) i THIM = arginf S (o iiategily - Py + Ry — 0 v,
m=1
Introducing the evenA,’{”, taking into account the Lipschitz property of the
functionsﬁl]ﬁ and using the orthonormality ¢f; x, we get

E’YN’I’I N 1,1, M|2+h Z E|ZN 1,1 Zg’I’I’M‘Z

173

j=k
(31) <9ZE i | 1[AM]c)
LM gl LLM LI
+E(1AM|°‘01< - %) +h > D E( Taprley o %).
j=k =1

To obtain Theorem 3, we estimate""" — 6,>/|? on the eventAM. This is
achieved in several steps.

Stepl: contraction properties relative to the sequen@g’');~o. They are
summed up in the following lemma:

LEMMA 1. For A small enoughon A,’CW the following properties hotd

a) |91i+1,1,M _ gli,l,M|2 < Ch|9/i’I’M _ gli—l,I,Mlz'
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(b) There is a unique vectat™™"" such that

M

1

AM - N, LIM M 2

0 :ar%me > (Boita(@giy - Poksr) + Af @) =6 - 0)".
m=1

(c) We haveg;™ " — 6/ "2 < [Cch)! 67> |2

PROOF.  We prove (). Since & h < Amin(V¥) andAmax(P{) <2 (0<1 <
g) onAM  in view of (29), we obtain thatl — £)|6. """ — ¢/-/-M|2 is hounded
by

M . .
Z F ™M) = f e )?

EIw

<Ch22| l]M l lIMl )\max(Plk)

i,I,.M i—1,1,.M 2
<Chloi"M — 6} 2.

Now, statements (a) and (b) are clear. For (c), apply (a), remindingﬁﬁaﬁ’ =0.
O

Step2: bounds foﬂ@’ LM\ on the evenA,’(”. Namely, we aim at showing that
(32) 0" M2 < c(AyY +rBM)  onAM.
We first considef = co. As in the proof of Lemma 1, we get

(1—hylog>"M 2

1 AN, 1LI.M I.M2
= Z [Poita (@01 * POx+) +RA" (@]
m=1

1
<@+ ymAYY + Ch(h 4 ;) <£,§V MY ol M|2Amax<P£z>>.
=0

Takey = 8C andh small enough to ensure&2h + %)(1+h) < 3(1—h). Itreadily
follows 6;°""12 < (A} + h8"™), proving that (32) holds for =
Lemma 1(c) leads to expected bounds for other valués of

Step 3: we remind bounds fo":!. Using Proposition 2 and in view of
(10)-(14), we have, far> 1,

|Ql LP < E|p;} k(PN)

, 0<l<g;
(33) i
100" = 6" 2 < (Cr)PE|pd (PN
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Remember also the following expression9§?”, derived from (10)—(13) and the
orthonormality of each basjs x:

(34) 02> = E(vk[aéj,fH - pogs1 + hfe @ ]).

Step4: decomposition of the quantﬂ@(lAMlekl M _gll12), DuetoLemmal,

onAM we get/g>> "M —g M2 < Ch1|9k°°” M2 < cn192°" 12+ Chl 107> "M —
9;"” 2. Thus, using (33), it readily follows thak(Ly 16" —6,°"12) is bounded
by
AM 1,2
L+ MELup 6" = 6771%)

1
@) 421 JEQulol Y R il -0

2

< (L+ CIE(Lyp |67 =627 12) + Ch'1E | (PY)]%
taking account that > 3. OnA¥M, Vk is invertible and we can set

By = (Id — (V)" He> !,

M

_ AN Iy

Ba= (VM) 1{ (ve o, k+1(“0 k41" POK+D)) — Z Ve Po i1 (@041 pg,k+1)j|’

ul i

Bz= (VM) h [E(kak(ak Z AN CTa) },
1M

B Mt ~N,m I,I,M

4= > v lhoita@oiyn - PErs) — oiia(@orin - POk+D)

M

m=1
AU @D = @ ).

Thus, by (28)—(34), we can wrie>' — 6°>"" = B; + B, + B3 + B, which
gives onAM

1
36) 67> — "M 2 < 3(1+ Z)<|Bl|2 + |Ba|? 4 |B3|%) + (1+ h)|Ba|%.

Stepb: individual estimation of31, B2, B3, B4 on A,’(”. Remember the classic
result [16]: if Id — F|| <1, F~1 —1d = ¥32,[1d — F]¥ and ||Ild — F7Y|| <
%. Consequently, for = V"', we getE(luy lld — VM2 <@ -
W2E(Id = VM2 < A= PEIVY —1d|% = (M1 = ) Ellvy - Id]I
Thus, we have

C
E(|B1*Lay) < - Ellvevf — 1dIFE|oY (PY)[7.
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Since onAY one hag|(VM)~Y|| < 2, it readily follows

2

’

c
E(1B2l?1ap) = - E(vi Pl poss1PEl g (P)

Ch?
E(1B3|"Layr) < 7@[|vk|2<1+ |SK ¥+ 1 poxPElog (P

1 q
+ A > |Pl,k|2E|pIJYk(Ptiv)|2>:|'
=1

As in the proof of Lemma 1 and using’é‘ﬂ(HII <14 honA¥, we easily obtain

(L= m)|Bal? < A+ WA+ yh)leg g —agiti?
1 ! oo, 1 0o, 1,M 2
+Ch h+; D lopyt —ey e
=0

Step 6: final estimations. Put ¢ = Elluywf — IdI2ElpY (PN +
E(lvil?] pos+1DEl 08, (P12 + B2E[|ue |21 + ISY12 + | pox IPElpd (PN)IZ +
S | p1.x|PElpf (PY)]?)]. Plug the above estimates &4, B,, B3, B4 into (36),
choosey = 3C andh close to 0 to ensur€h + % < %; after simplifications, we
get

€k
E(Tap 607" = 67 112) < €+ (L CHE(Lyr gy — g1 P).

But in view of Lemma 1(c) and estimates (32)—(33), we have
1,1 1,I,M 2
E(Iaplorgy1 — @gial?)
< L+ WE(Laplogiis — aogrn )

_ 2 2
+ Ch 7 L+ 10 + El gy (PN )7+ E| 00k s2(Pir,,)|°)-
Finally, we have proved

Bl 57" — 6771 )

€k _ 2 2
SCWJFCh’ YL+ 1S0? + Elng k1 (P ,)|° + Elogks (P ,)|°)

Ik+2
+ L+ CE(Lylogyi’ —egital?).

Using a contraction argument as in (35), the indexan be replaced b¥, without
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changing the inequality (with a possibly different const@ht This can be written
q
E(Lppm gy ™ — g |?) + 2 E(py o™ = i )
=1

€k _ 2 2
W+Ch1 1(1+|SO|2+E|P6Y1<+1(P¢2V+1)| +E|ogi2(P2,)|)

+ L+ CWE(Laplogil] — oty l?)-

<C

Using Gronwall’'s lemma, the proof is complete.]

REMARK 1. The attentive reader may have noted that powehsawé smaller
here than in Theorem 2, which leads to tdke 3 instead off > 2 before. Indeed,
we cannot take advantage of conditional expectations on the simulations as we did
in (12), for instance.

Note that in the proof above, we only use the Lipschitz property of the truncation

functions, andp™.

PROOF OFTHEOREM4. The arguments are standard and there are essentially
notational difficulties. The first partial derivatives of w.r.t. y and z; are,
respectively, denotegh f andd; f. The parametes € 0, 1] stands for their Holder

continuity index. Suppose w.l.0.g. that< 8 and that each function basis ; is
orthonormal. Fok < N — 1, define the quantities

1 M
Alﬂ,lk(a) - M Z v/’(n alf(tk7 Sz],\!’m,OlO‘ pgfk’ ...,Olq . p;n,k)[p?fk]*y
m=1

1 M
BY = M > PG gl DY =vM(d - v},
m=1

cM¥ ()

B i WP oy P pr + 1 (@)] — Eelag iy - posr1 + hfe(@)])}
m=1 VM
Fork =N — 1, we setBY =0 and inC} (), the termsay;,; - pfl 4 and
af't41 Pok+1 have to be replaced, respectively, &y (P ") and®” (PY). The

definitions of AM («) and D} are still valid. For convenience, we write” %

if the (possibly vector or matrix valued) sequencé),, weakly converges
to a centered Gaussian variable, Esgoes to infinity. For the convergence in

probability to a constant, we denoiM £ . Since simulations are independent,
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observe that the following convergences hold:

M, i1 M M P
(Al )y B Vi) i< —11<g k<n—1—> -

Y w
gM = (Cllcw(“llc ), Dllcw)igl—l,lgq,ng—l -

Note that limy— o VkM 1dis invertible Linearizing the functiong and,éév,’('_'ﬁl
in the expressions @i’ = E(vilag 1 - o+t + hfieg ... ol )] and
oM given by (28) leads to

(37)

VMMM — 0Ty — DM — cM (i M)
M LM LI
— B VM (a1 — Q1)

(38) _hZAlk(al ll)f( i—-1,I.M ali,;l,l)

M
I,I.M

C 2
, m m 2
<lk<n— 1\/—|C¥0k+1 Olo,k+1| E [y ||Po,k+1|

m=1

M
+\/—‘| oL M a]lc—l,lll—kﬂ’Ellvlr(n”plr(nll-Fﬁ.
To get Theorem 4, we prove by induction bmhat([\/ﬂ(ej.”’M - 9;.’1)]2;{,,-51,
gM) . Remember that)"* = 6%’ = 0 for any j. Consider first = N — 1,
for which BM = 0, andz = 1. In view of (37)—(38), clearly([vM (04"} —
Oy_ 1)]l<1, gMy % Fori =2, we may invoke the same argument using (37) (38)
and obtain((vVM ©@4") — 605" Dli<2,§M) % provided that the upper bound

in (38) converge to O in probability. To prove this, pt™ = M~1-8/2 %

: 1 ot
M lip% MP and  write \/_|aNIi” — ayl P YM 1|vN 1 x
PR_y[¥F = WMyt — ayl P s, slncew May"y — oy Dln

is tight, our assertion holds u‘MM converges to 0 as4 — oo. Note that
loy_1llpn_1TF € L 2+¢)/2+p) (P). Thus, the strong law of large numbers, in
the case of i.i.d. random variables with infinite mean, lead& ffh ; v _,| x
Ipn ¥ = oM @Rty a5 for anyr > 0. Consequently, from the
choice ofr small enough, it followsM” — 0 a.s.

Iterating this argumentation readily Ieads(tc/_(e vopli<l, gM ) 5.
For the induction fork < N — 1, we apply the technlques above. There is an
additional contribution due tB,ﬁ"’, which can be handled as beforé.]

lIM_9
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6. Numerical experiments.

6.1. Lipschitz property of the solution undé@f4). To use the algorithm, we
need to specify the basis functions that we choose at eachtiamal for this, the
knowledge of the regularity of the functiong'(-) andz,", () from Proposition 1 is
useful (in view of Theorem 2). In all the cases described in Section 2.4 and below,
assumption (H4) is fulfilled. Under this extra assumption, we now establish that
y&' (-) andz}Y, () are Lipschitz continuous.

ProPOSITION3. Assumd&H1)—(H4).For & small enoughwe have
(39) |Vio () = e )| + V|2 (x) — 20 ()| < Clx — x|
uniformly inkg < N — 1.

PrROOFE As for (17), we can obtain

E| Yti\’,ko,x . Yti\’,ko,x/ ’2

(1+Vh) N ,ko,x N,ko,x"\ 12
< Y, -7,
- 1— C]’l(h+1/]/) | k( [ Te+1 )|
Chh+1/y) o Wio
1—Chh+1/y) "
C(h+1/V) N ,kg,x N,ko,x" |2
( e+l Ytk+1 |
1—Ch(h+1/y)

_SNkox|2

—E’Ek( Nkox YN ko, )/)}2)‘

It Ikl

Choosingy = C andi small enough, we get (for another constant

E’YN Jo,x Yti\/,ko,x/|2

§(1+Ch)E|YNkOX Nkox{ +ChE|SNkox_SNko)c|2

[ fk+1

The last term above is bounded 6yx — x’|2 under assumption (H1). Thus, using
Gronwall's lemma and assumption (H4), we get the resulpg)(r-). The result for

Vhz} (-) follows by considering (5). O

6.2. Choice of function basesNow, we specify several choices of function
bases. We denot€ (> d) the dimension of the state space(@[j{")k.

Hypercubes(HC in the following). Here, to simplify,p; x does not de-
pend on! or k. Choose a domairD c R? centered onpP, that is, D =
H;”zl]P&’i — R, P{’; + R], and partition it into small hypercubes of ed§jeThus,
D=U,. i, Di whereD;, i, =1P§; — R+i18, P§; — R+ (i1 + 18] x

..... Ly ll,...,id/

.....
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- x1Ply — R +ig8, Yy — R+ (i + 1)8]. Then we defingp, x as the indi-
cator functions associated to this set of hypercupes(-) = (1Dilwid/ C)Tr

With this particular choice of function bases, we can explicit the projection error
of Theorem 2:

E(Rpo, (YY)?)

2 2
BV PLoc(P) + Y E(tn, ., (B (B = i) )

LN 7
2
< C82+E(|Y,["Lpe(PY)),

where x;,,..;,, is an arbitrary point ofD;, . ;, and where we have used the
Lipschitz property ofy,fV on D. To evaluateE(|Y,iV|21Dc(Pti\’)), note that, by
adapting the proof of Proposition 3, we haue"|? < C(1+ |S)Y|? + E¢| PY|?).
Thus, if suQ’NE|P,iV|°‘ <oofora>2,we havéE(|Y,§V|21Dc(P,iv)) < %, with
an explicit constan€,. The choiceR ~ h~%(©~2 ands = h leads to

2
E|Rpo, (Yy)|" = Ch.

The same estimates hold f@|R,, ,(v2Z)", ). Thus, we obtain the same
accuracy as in Theorem 1.

Voronoi partition(VP). Here, we consider again a basis of indicator functions
and the same basis for all 81 < ¢. This time, the sets of the indicator
functions are an open Voronoi partition ([17]) whose centers are independent
simulations of PY. More precisely, if we want a basis of 20 indicator functions,
we simulate 20 extra paths @V, denoted(P"V-M+/);_; 50, independently of
(PN)1<m<pm. Then we take at time, (P, ""*)1; <20 to define our Voronoi
partition (Cy ;)1<i<20, WhereCy; = {x: |x — PY-MH| <inf;; |x — M4,
Then p; x(-) = (1¢,;(-));- We can notice that, unlike the hypercubes basis, the
function basis changes with. We can also estimate the projection error of
Theorem 2, using results on random quantization and refer to [17] for explicit
calculations.

In addition, we can consider on each Voronoi cells local polynomials of
low degree. For example, we can take a local polynomial basis consisting of
1, x1,...,xg for pox and 1 for p;x (I > 1) on eachCy ;. Thus, pox(x) =
(Lo, (), x1dc; (), o xade, (%)) and pri(x) = (Ag,; (%)), 1 <1 < q. We
denote this particular choice VP, 0), where 1 (resp. 0) stands for the maximal
degree of local polynomial basis fpp x (resp.p;x, 1 <1 <gq).

Global polynomials(GP). Here we definepgx as the polynomial (ofd’
variables) basis of degree less thgnand p; . as the polynomial basis of degree
less thand,.
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6.3. Numerical results. After the description of possible basis functions, we
test the algorithm on several examples. For each example and each choice of
function basis, we launch the algorithm for different valuesiof the number
of Monte Carlo simulations. More precisely, for each valuevbfwe launch 50
times the algorithm and collect each time the valije""". The set of collected

values is denotectY,’g’;””M)lgfso. Then, we compute the empirical mean

vN.LILM 1 50 yN.ILIM - o NLILM
Yy, =g ri=1?, and the empirical standard dewanon;@’ =

i=1"1,i
1 50 N,LIM
\/E > i-11Y, -Y

o fg"’[’M |2. These two statistics provide an insight into the

accuracy of the method.

6.3.1. Call option with different interest rategl]. We follow the notation of
Section 2.4 considering a one-dimensional Black—Scholes model, with parameters

n o r R T S K
0.06 0.2 0.04 0.06 05 100 100

Here K is the strike of the call option®(S) = (S7 — K),. We know by the
comparison theorem for BSDEs [12] and properties of the price and replicating
strategies of a call option, that the seller of the option has always to borrow money
to replicate the option in continuous time. Thifg,is given by the Black—Scholes
formula evaluated with interest rat:Yq = 7.15. This is a good test for our
algorithm because the drivef is nonlinear, but we nevertheless know the true
value of Yg. We test the function basis HC for different valuesdf D andS$.

Results 75 """ ando,Y"™ in parenthesis) are reported in Table 1, for different
values ofM. CIearIy,YfZ’I’I’M converges toward 7.15, which is exactly the Black—

Scholes priceYy calculated with interest rat®. We observe a decrease of the
empirical standard deviation like/4/ M, which is coherent with Theorem 4.

6.3.2. Calls combination with different interest ratesWe take the same
driver f but change the terminal conditio®(S) = (S7 — K1)™ — 2(S7 — K2)™.

TABLE 1
Results for the call option using the basis HC

M N =5 D=[60,140],§ =5 N =10, D =[60,140],6=1

128 6.83(0.31) 7.02(0.51)
512 7.08(0.11) 7.12(0.21)
2048 7.13(0.05) 7.14(0.07)
8192 7.15(0.03) 7.15(0.03)

32768 7.15(0.01) 7.15(0.02)
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We take the following values for the parameters:

w o r R r S Ki K>
0.05 0.2 001 006 0.25 100 95 105

We denote byB S; () the Black—Scholes price evaluated with strikeand interest
rater. If we try to predictYp by a linear combination of Black—Scholes prices, we
get

BS1(R) —2BS2(R) 2.75
BS1(r) — 2BSa(r) 2.76
BS1(r) —2BS»2(R) 1.92
BS1(R) —2BS»(r) 3.60

Using comparison results, one can check that the first three rows provide a lower
bound forYp, while the fourth row gives an upper bound. According to the results

of HC and VPYN LM seems to converge towardB. This value is not predicted
by a linear comblnation of Black—Scholes prices: in this example, the nonlinearity
of f has a real impact offp. The financial interpretation is that the option seller
has alternatively to borrow and to lend money to replicate the option payoff.
Comparing the different choices of basis functions, we can notice that the
columnN =5 of VP (Table 3) shows similar results with an equal number of basis
functions than the columN = 5 of HC (Table 2). In Table 3, the last two columns
show that using a local polynomial basis may significantly increase the accuracy.
We also remark by considering the roms= 128 512 of Table 2 that the standard
deviation increases witlv and the number of basis functions, which is coherent
with Theorem 3. Finally, from Table 4 the basis GP also succeeds in reaching the
expected value, as we increase the number of polynomials in the basis.

6.3.3. Asian option. The dynamics is unchanged (with= ¢ = 1) but now
the interest rates are equal £ R). The terminal condition equal®(S) =
(% fOT S;dt — K) and we take the following parameters:

n o r T S K
006 0.2 0.1 1 100 100

To approximate this path dependent terminal condition, we t#ke 2 and
S|mulatePN (Sk k+1 Z" OSN)* (see [18]). The results presented in Table 5
are coherent because the price given by the algorithm is not far from the reference
price 7.04 given in [18].

As mentionned in [18], the use oft; >, 5/ to approximatef fg S; dt
is far from being optimal. We can check what happens if we chah{eto
better approximate}- fOT S, dt. As proposed in [18], we approximat% fOT S dt
by + 35 SN(1+u2 + $AW,,), which leads toP; SN, ¢ 1yko SN(1+
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TABLE 2
Results for the calls combination using the basis HC

N=5 N=20 N =50
M D =1[60,140] D =1[60,200] D =[40,200]
§=5 =1 §=0.5
128 3.05(0.27) 3.71(0.95) 3.69(4.15)
512 2.93(0.11) 3.14(0.16) 3.48(0.54)
2048 2.92(0.05) 3.00(0.03) 3.08(0.12)
8192 2.91(0.03) 2.96(0.02) 2.99(0.02)
32768 2.90(0.01) 2.95(0.01) 2.96(0.01)
TABLE 3

Results for the calls combination using the bases VP\4RL, 0)

BasisVP BasisVP BasisVP Basis VP(1,0)
M 16 Voronoi regions 64 Vor.reg. 10 Vor. reg. 10 Vor. reg.
N=5 N =20 N =20 N =20
128 3.23(0.30) 4.50(1.71) 3.08(0.25) 3.23(0.23)
512 3.05(0.13) 3.36(0.10) 2.91(0.11) 3.03(0.08)
2048 2.94(0.06) 3.05(0.04) 2.90(0.06) 2.97(0.04)
8192 2.92(0.03) 2.96(0.02) 2.86(0.03) 2.95(0.02)
32768 2.90(0.02) 2.94(0.01) 2.86(0.02) 2.95(0.01)
TABLE 4
Results for the calls combination using the basis GP
N=5 N=20 N =50 N =50
M dy=1,d;=0 dy=2,d;=1 dy=4,d;=2 dy=9d;=9
128 2.87(0.39) 3.01(0.24) 3.02(0.22) 3.49(1.57)
512 2.82(0.20) 2.94(0.12) 2.97(0.09) 3.02(0.1)
2048 2.78(0.07) 2.92(0.07) 2.92(0.04) 2.97(0.03)
8192 2.78(0.05) 2.92(0.04) 2.92(0.02) 2.96(0.01)
32768 2.79(0.03) 2.91(0.02) 2.91(0.01) 2.95(0.01)
TABLE 5

Results for the Asian option using the basis HC

N=5 N =20 N =50
M =5 =1 §=0.5

D =1[60,20012 D =[60,200]2 D =[60,200]>
128 6.33(0.41) 4.47(3.87) 3.48(13.08)
512 6.65(0.21) 6.28(0.76) 5.63(2.37)
2048 6.80(0.09) 6.76(0.24) 6.48(0.49)
8192 6.83(0.04) 6.95(0.06) 6.86(0.12)

32768  6.83(0.02) 6.98(0.03) 6.99(0.04)
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TABLE 6
Results for the Asian optipnsing a better approximation G} fOT Sy dt

and the basis HGN = 20,8 = 1, D = [60, 200]2)

M 2 8 32 128 512 2048 8192 32768

N, ILI.M
fo

Y 226 090 449 6.68 6.15 688 699 7.02

o PPM 408 780 1127 464 111 021 007 002

M% + SAW;,)* for k > 1. The results (see Table 6) are much better with this
choice of P . Once more, we observe the coherence of the algorithm which takes
in input simulations of" under the historical probability« ») and corrects the

drift to give the risk-neutral price.

7. Conclusion. In this paper we design a new algorithm for the numerical
resolution of BSDESs. At each discretization time, it combines a finite number of
Picard iterations (3 seems to be relevant) and regressions on function bases. These
regressions are evaluated at once with one set of simulated paths, unlike [6], where
one needs as many sets of paths as discretization times. We mainly focus on the
theoretical justification of this scheme. We prdvg estimates and a central limit
theorem as the number of simulations goes to infinity. To confirm the accuracy of
the method, we only present few convincing tests and we refer to [19] for a more
detailed numerical analysis. Even if no related results have been presented here,
an extension to reflected BSDEs is straightforward (as in [6]) and allows to deal
with American options. At last, we mention that our results prove the convergence
of theHedged Monte Carlanethod of Bouchaud, Potters and Sestovic [5], which
can be expressed in terms of BSDES with a linear driver.
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