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DYNAMIC EXPONENTIAL UTILITY INDIFFERENCE VALUATION

BY MICHAEL MANIA 1 AND MARTIN SCHWEIZER

A. Razmadze Mathematical Institute and ETH Zürich

We study the dynamics of the exponential utility indifference value
processC(B;α) for a contingent claimB in a semimartingale model with
a general continuous filtration. We prove thatC(B;α) is (the first component
of ) the unique solution of a backward stochastic differential equation with a
quadratic generator and obtainBMO estimates for the components of this
solution. This allows us to prove several new results aboutCt (B;α). We
obtain continuity inB and local Lipschitz-continuity in the risk aversionα,
uniformly in t , and we extend earlier results on the asymptotic behavior as
α ↘ 0 orα ↗ ∞ to our general setting. Moreover, we also prove convergence
of the corresponding hedging strategies.

0. Introduction. One of the important problems in mathematical finance is
the valuation of contingent claims in incomplete financial markets. In mathe-
matical terms, this can be formulated as follows. We have a semimartingaleS

modeling the discounted prices of the available assets and a random variableB

describing the payoff of a financial instrument at a given timeT . The gains from
a trading strategyϑ with initial capital x are described by the stochastic inte-
gral x + ∫

ϑ dS = x + G(ϑ). If B admits a representation asB = x + GT (ϑ) for
some pair(x,ϑ), the claimB is called attainable, and its value at any timet ≤ T

must equalx + G0,t (ϑ) due to absence-of-arbitrage considerations. Incomplete-
ness means that there are some nonattainableB, and the question is how to value
those.

In this paper we use the utility indifference approach to this problem. For a given
utility function U and an initial capitalxt at timet , we define the valueCt(xt ,B)

implicitly by the requirement that

ess sup
ϑ

E
[
U

(
xt +Gt,T (ϑ)

)|Ft

] = ess sup
ϑ

E
[
U

(
xt +Ct(xt ,B)+Gt,T (ϑ)−B

)|Ft

]
.

In terms of expected utility, we are thus indifferent between selling or not selling
the claimB for Ct(xt ,B), provided that we combine each of those alternatives
with optimal trading. Our goal is to study the dynamic behavior of the process
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C = C(B;α) resulting from the exponential utility functionU(x) = −e−αx with
risk aversionα ∈ (0,∞).

The existing literature on exponential utility indifference valuation can be
roughly divided in two groups. A larger set of papers studies static questions;
they examineC0(B;α), the time 0 value, in models of varying generality. A good
recent overview with many references is given by Becherer [3]; [17] contains a
slightly different approach and additional references. The second set of papers
studiesC(B;α) as a process; this is done by Rouge and El Karoui [33] in a
Brownian filtration, by Musiela and Zariphopoulou [29] or Young [35], among
several others, in a Markovian diffusion setting or by Musiela and Zariphopoulou
[30] in a binomial model. In the present paper, we work in a general continuous
filtration and obtain several new results on the dynamic properties of the process
C(B;α) and its asymptotic behavior as the risk aversionα goes to 0 or to∞. In
particular, we provide convergence results for hedging strategies.

The paper is structured as follows. Section 1 lays out the model and provides
some auxiliary results mostly known from the literature. We use these to represent
C(B;α) as the dynamic value process of a standard utility maximization problem
with a random endowment and formulated under a suitable measureQE . This
allows us, in Section 2, to extend the static properties known forC0(B;α) very
easily to anyCt(B;α). Moreover, we easily obtain the existence of an optimal
strategy for this stochastic control problem. Section 4 shows thatC(B;α) is the
unique solution of a backward stochastic differential equation (BSDE) with a
quadratic generator. In contrast to a similar result by Rouge and El Karoui [33],
our derivation directly uses the martingale optimality principle and the existence of
an optimal strategy. Section 3 prepares for these results by providing a comparison
theorem for a more general class of BSDEs driven by a martingale in a continuous
filtration and having quadratic generators. The key step here is Proposition 7,
which shows that the martingale part of any bounded solution of a BSDE with a
generator satisfying a quadratic growth condition belongs toBMO. This underlines
the importance ofBMO-martingales when dealing with BSDEs with quadratic
generators. For the particular generator corresponding to the BSDE forC(B;α),
we also obtain estimates on theBMO norms of the components of the solution.

Section 5 exhibits additional properties of the valuationC(B;α). We obtain
time-consistency, continuity inB and local Lipschitz-continuity inα, both of the
latter uniformly in t . Finally, Section 6 studies the asymptotics ofC(B;α) as
α goes to 0 or to∞. For α ↘ 0, we prove generally thatCt(B;α) decreases
to EQE [B|Ft ] at a rate ofα, uniformly in t , whereQE is the minimal entropy
martingale measure forS; this is a simple extension of a result due to Stricker [34].
With the help of our BSDE description, we are, moreover, able to prove the novel
result that the corresponding hedging strategiesψ(α) converge to the strategyψE

which is risk-minimizing underQE in the sense of Föllmer and Sondermann [15].
For α ↗ ∞, Ct(B;α) increases generally to the superreplication priceC∗

t (B) =
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ess supQ EQ[B|Ft ], uniformly in t ; this generalizes a result due to Rouge and El
Karoui [33] for the case of a Brownian filtration. In addition, again using the
BSDE, we also prove the convergence of the corresponding hedging strategies
ψ(α) to the superreplication strategyψ∗ from the optional decomposition
of C∗(B).

1. Basic concepts and preliminary results. In this section we introduce the
notion of the utility indifference value process for a contingent claim and recall
some basic facts for the case of an exponential utility function.

We start with a probability space(�,F ,P ), a time horizonT ∈ (0,∞] and
a filtration F = (Ft )0≤t≤T satisfying the usual conditions of right-continuity and
completeness. Hence, we can and do choose RCLL versions for all semimartin-
gales. Fix anRd -valued semimartingaleS = (St )0≤t≤T and think of this as the
discounted price processfor d risky assets in a financial market containing also a
riskless asset with discounted price constant at 1. Aself-financing trading strat-
egy is determined by its initial capitalx ∈ R and the numbersϑi

t of shares of
asseti, i = 1, . . . , d, held at timet ∈ [0, T ]. Formally,ϑ is in the spaceL(S) of
F-predictableS-integrableRd -valued processes so that the (real-valued) stochastic
integralsGt,u(ϑ) := ∫ u

t ϑs dSs are well defined. They describe the gains or losses
from trading according toϑ betweent andu > t . The wealth at timet of a strat-
egy (x,ϑ) is x + G0,t (ϑ) and we denote byG(ϑ) the running stochastic integral
processG0,·(ϑ). Arbitrage opportunities will be excluded below via the choice of
a suitable space� of “permitted” trading strategiesϑ .

Now let U :R → R be a utility function andB ∈ L0(FT ) a contingent claim,
that is, a random payoff at timeT described by theFT -measurable random
variableB. In order to assign toB at some datet ∈ [0, T ] a (subjective) value
based on the utility functionU , we first fix anFt -measurable random variablext .
Then we define

V B
t (xt ) := ess sup

ϑ∈�

E
[
U

(
xt + Gt,T (ϑ) − B

)|Ft

]
,

the maximal conditional expected utility we can achieve by starting at timet with
initial capitalxt , using some strategyϑ ∈ � on (t, T ] and paying outB at timeT .
Theutility indifference valueCt(xt ,B) at timet for B with respect toU andxt is
implicitly defined by

V 0
t (xt ) = V B

t

(
xt + Ct(xt ,B)

)
.(1.1)

This says that starting withxt , one has the same maximal utility from solely trading
on (t, T ] as from sellingB at timet for Ct(xt ,B), again trading and then paying
outB at the final dateT .

REMARK. Variants of the above notion of utility indifference value have
been known and used for a long time. Its first appearance in a form that also
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accounts for the presence of a financial market is usually attributed to Hodges
and Neuberger [20]. The resulting valuation has been studied extensively in recent
years and we shall provide some more references when giving more specific
results. One good starting point with a long literature list is [3]. However, most
papers only define this value fort = 0 and withF0 trivial and thus obtain one
mapping from (random payoffsB in) L0(FT ) to R. Exceptions are papers set in
Markovian frameworks where the stochastic processesV B(x) andC(x,B) can be
represented via functions of the state variables; see, for instance, [29] or [35] for
recent papers with more references to earlier work. There is also some literature
on dynamic versions of this valuation and their properties; see, notably, [33] or
[3, 4]. But in contrast to our approach, these authors use the definition (1.1) only
for t = 0 and another one fort ∈ (0, T ], and they do not argue (the fact) that their
definitions are equivalent to (1.1) for allt .

To pass from the above formal definitions to rigorous results, we now choose
one particularU and a corresponding�. Throughout the rest of this paper, we
work with theexponential utilityfunction

U(x) = −exp(−αx)

with risk aversionα ∈ (0,∞). We assume that

S is locally bounded,

denote byPe := {Q ≈ P |S is a localQ-martingale} the set of all equivalent local
martingale measures forS and assume that

Pe,f := {Q ∈ Pe|H(Q|P) < ∞} 	= ∅.

Finally, we define the space of our trading strategies as

� := {ϑ ∈ L(S)|G(ϑ) is aQ-martingale for allQ ∈ Pe,f }.
For future use, we introduce the terminology “primal” for any problem where
we optimize overϑ ∈ � and “dual” for any problem where we optimize over
Q ∈ Pe,f .

For the contingent claimB, we assume that

B ∈ L∞ := L∞(P ).

We make this strong assumption because we want results for arbitrary risk aversion
parametersα. It also has the benefit that our setup fits comfortably into the
framework of Delbaen et al. [8]. The measurePB introduced there viadPB :=
const.eαB dP has the sameLp spaces asP , and our space� here is the space�2
from [8].
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With the above choices, the processesV B(x) andC(x,B) are well defined for
any bounded adapted processx and we get theexponential utility indifference
value processas

Ct(B) = 1

α
log

V B
t (0)

V 0
t (0)

= 1

α
log

(
ess sup

ϑ∈�

E
[−e−α(Gt,T (ϑ)−B)|Ft

]/
ess sup

ϑ∈�

E
[−e−αGt,T (ϑ)|Ft

])
,

(1.2)

independently of the initial capitalxt at time t . This yieldsC(B) in terms of the
solutions of two primal problems, but it will be more useful to rewrite this in terms
of just one optimization problem. To that end, we introduce the process

Ṽ B
t := ess inf

Q∈Pe,f

EQ

[
1

α
log

Z
Q
T

Z
Q
t

− B
∣∣∣Ft

]
, 0≤ t ≤ T ,(1.3)

whereZQ denotes the density process ofQ with respect toP . ForB = 0, Ṽ 0 is the
dynamic value process associated to the problem of finding theminimal entropy
martingale measure

QE := argmin
Q∈Pe,f

H(Q|P).

In the same way,̃V B is the dynamic value process corresponding to the problem
of finding

QE,B := argmin
Q∈Pe,f

H(Q|PB),

wherePB is the measure with density const.eαB with respect toP .

PROPOSITION 1. If ZE := ZQE
denotes the density process ofQE with

respect toP , then

ZE
T = cE exp

(
GT (ϑE)

)
(1.4)

for some constantcE ∈ (0,∞) and someϑE ∈ �, and

αṼ 0
t = EQE

[
log

ZE
T

ZE
t

∣∣∣Ft

]
= logcE + Gt(ϑ

E) − logZE
t , 0≤ t ≤ T .(1.5)

A completely analogous result holds forZQE,B
and Ṽ B .

PROOF. The representation (1.4) is well known from [16] and [19]; see
Theorem 2.1 of [23] who also prove that the integrandϑE is in �. (1.5) follows
from Proposition 4.1 of [23] and (1.4), and the last assertion is obtained by
rewriting everything underPB instead ofP . �

The next result provides the link between the primal and dual processes
V B andṼ B . This is a dynamic version of the results in [8].
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PROPOSITION2. For fixedα, the processesV B(0) ( for x ≡ 0) and Ṽ B are
related by

V B
t (0) = −exp(−αṼ B

t ).(1.6)

As a consequence, the utility indifference value can be rewritten as

Ct(B) = −Ṽ B
t + Ṽ 0

t

= esssup
Q∈Pe,f

EQ

[
B − 1

α
log

Z
Q
T

Z
Q
t

∣∣∣Ft

]
− ess sup

Q∈Pe,f

EQ

[
− 1

α
log

Z
Q
T

Z
Q
t

∣∣∣Ft

]
.

(1.7)

PROOF. For t = 0, (1.7) is just Theorem 2.2 in [8] whose assumption (2.13)
has been shown to be superfluous by Kabanov and Stricker [23]. For general
t ∈ [0, T ], the argument is completely analogous; it uses Proposition 1 withQE,B

instead ofQE . �

The representation in (1.7) givesC(B) in terms of the solutions of two dual
problems. The desired representation via one single primal problem follows via
Proposition 1.

PROPOSITION 3. The exponential utility indifference value process can be
written as

Ct(B) = 1

α
logess inf

ϑ∈�
EQE

[
eα(B−Gt,T (ϑ))|Ft

]
, 0≤ t ≤ T .(1.8)

PROOF. If we define the process̄Z := cE exp(G(ϑE)), then (1.6) and (1.5)
tell us that−V 0(0) = exp(−αṼ 0) = −ZE/Z̄, and Z̄T = ZE

T by (1.4). Hence,
(1.2) yields

eαCt (B) = −V B
t (0)

Z̄t

ZE
t

= −esssup
ϑ∈�

E

[
−e−α(Gt,T (ϑ)−B) Z

E
T

ZE
t

Z̄t

Z̄T

∣∣∣Ft

]
= ess inf

ϑ∈�
EQE

[
eα(B−Gt,T (ϑ))−Gt,T (ϑE)|Ft

]
.

Becauseϑ �→ ϑ ′ := ϑ + ϑE/α is a bijection from� onto itself, the assertion
follows. �

REMARK. Proposition 2 shows that our definition via (1.1) of the utility
indifference valueprocessagrees with that used in Rouge and El Karoui [33]; see
the proof of their Theorem 5.1. Proposition 3 is important because it expresses the
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utility indifference value processC(B) as the dynamic value process of a standard
problem of utility maximization with a random endowmentB, formulated under
the minimal entropy martingale measureQE . This provides in Section 4 below
the link between our dynamic description ofC(B) and the recent results of Hu,
Imkeller and Müller [21].

2. Elementary properties of the indifference value. In this section we list
some properties of the exponential utility indifference valuation. These are static
properties in the sense that we considerCt(B) for some fixedt ∈ [0, T ]. Our main
point is that Propositions 1–3 allow us to extend results known fort = 0 very easily
to arbitraryt ∈ [0, T ]. To indicate the dependence on the risk aversion parameterα

as well, we writeCt(B;α). SinceP is fixed, we writeL∞(Ft ) for L∞(Ft , P ).

PROPOSITION 4. For fixed t ∈ [0, T ] and α ∈ (0,∞), the mappingB �→
Ct(B;α) has the following properties:

(P0) It mapsL∞(FT ) into L∞(Ft ), and we have−‖B‖∞ ≤ Ct(B;α) ≤ +‖B‖∞.
(P1) It is increasing inB: If B ≤ B ′, thenCt(B;α) ≤ Ct(B

′;α).
(P2) It is Ft -measurably convex inB: we haveCt(λB + (1 − λ)B ′;α) ≤

λCt(B;α) + (1 − λ)Ct (B
′;α) for anyλ ∈ L0(Ft ) with values in[0,1] and

anyB,B ′ ∈ L∞(FT ).
(P3) It is translation-invariant with respect toL∞(Ft ) in the sense that we have

Ct(B + xt ;α) = Ct(B;α) + xt for anyxt ∈ L∞(Ft ).

PROOF. SinceU(z − B) = U(z)eαB , (P0) is obtained by using the definition
of Ct(B;α) via (1.1). (P1)–(P3) follow from the representation (1.7) in Proposi-
tion 2 because each functional in the definition (1.3) ofṼ B

t has the claimed prop-
erties. �

REMARK. In view of Proposition 4, we might callB �→ Ct(B;α) a convex
monetary utility functionalfrom L∞(FT ) to L∞(Ft ), because the mapping
B �→ Ct(−B;α) satisfies the obvious generalizations of the axioms for a convex
measure of risk as introduced in [13]; see also [5] for such a suggestion.

While we expect to obtain (P0)–(P2) forC(B) with any reasonable utility
functionU , the next properties are linked to the exponential case.

PROPOSITION 5. For fixed t ∈ [0, T ], the mappingB �→ Ct(B;α) has the
following properties:

(P4) It does not depend on the initial capitalxt in the definition(1.1).
(P5) It is volume-scaling in the sense thatCt(βB;α) = βCt(B;βα) for any

β ∈ (0,∞).
(P6) It is increasing in the risk-aversionα: If α ≤ α′, thenCt(B;α) ≤ Ct(B;α′).
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(P7) It satisfies Ct(γB;α) ≤ γCt(B;α) for γ ∈ [0,1] and Ct(γB;α) ≥
γCt(B;α) for γ ∈ [1,∞).

PROOF. (P4) is obvious, (P7) follows directly from (P5) and (P6), and these
are proved via the representation (1.8) in Proposition 3; (P5) uses that� is a cone,
(P6) uses Jensen’s inequality.�

The preceding results are in no way original; they go back to Rouge and
El Karoui [33] and Becherer [3] who formulated and proved them fort = 0. These
authors also gave asymptotic results for large and small risk aversions (α ↗ ∞ and
α ↘ 0) and we shall prove below versions of those results for arbitraryt ∈ [0, T ]
with the help of a description of the process(Ct (B;α))0≤t≤T via a backward
stochastic differential equation. Before we embark on that aspect, however, we
give two more properties ofCt(B). The first says that anything which is attainable
at zero cost by self-financing trading betweent andT has zero value and does not
affect the valuation ofB; the second says thatCt(B) always lies in the interval
of arbitrage-free prices forB. Such results fort = 0 have already been given by
Rouge and El Karoui [33] and Becherer [3], among others; see also [17].

LEMMA 6. For any t ∈ [0, T ] andα ∈ (0,∞), we have the following:

(1) For anyϑ ∈ �, Ct(Gt,T (ϑ);α) = 0 andCt(B + Gt,T (ϑ);α) = Ct(B;α).
(2) ess infQ∈Pe,f

EQ[B|Ft ] ≤ Ct(B;α) ≤ esssupQ∈Pe,f
EQ[B|Ft ].

PROOF. (1) SinceG(ϑ) is aQ-martingale for anyQ ∈ Pe,f , this is immediate
from (1.7).

(2) We know from (1.7) and (1.3) that

Ct(B;α) = ess sup
Q∈Pe,f

(
EQ[B|Ft ] − 1

α

(
EQ

[
log

Z
Q
T

Z
Q
t

∣∣∣Ft

]
− αṼ 0

t

))
.

By the definition of Ṽ 0 in (1.3), the term in the inner brackets is always
nonnegative, and it equals zero forQ = QE by Proposition 1. The first fact gives
the upper bound in (2), the second one the lower bound.�

3. A comparison theorem and some results for a BSDE. This section
studies a family of backward stochastic differential equations (BSDEs) that play
an important role in a dynamic description of the exponential utility indifference
value. We work on a filtered probability space(�,F ,F,R) and we assume
throughout this section that

the filtrationF is continuous, that is, all local martingales are continuous.

We fix a (continuous)Rd -valued localR-martingaleM null at 0 and denote by
BMO[M] the space of allRd -valued predictableM-integrable processesh such
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that h · M := ∫
hdM is in BMO(R), the usual martingale spaceBMO for the

measureR. Note that〈M〉 is a (d × d) matrix-valued process.
Let us consider the semimartingale backward equation

Yt = Y0 +
∫ t

0
1tr d〈M〉s f (s,Zs) +

∫ t

0
gs d〈L〉s +

∫ t

0
Zs dMs + Lt(3.1)

with the boundary condition

YT = B,(3.2)

where 1:= (1 . . . 1)tr ∈ R
d , f :�×[0, T ]×R

d → R
d is P ×B(Rd)-measurable,

g is a real-valued predictable process andB ∈ L∞(FT ,R). We call(f, g,B) the
generator of (3.1) and (3.2). Asolution of (3.1) and (3.2) is a triple(Y,Z,L),
whereY is a real-valued specialR-semimartingale,Z is anR

d -valued predictable
M-integrable process andL is a real-valued localR-martingale strongly
R-orthogonal toM . Sometimes we callY alone the solution of (3.1) and (3.2),
keeping in mind thatZ · M + L is the martingale part ofY .

Our first result and its subsequent applications show the importance of
BMO-martingales when dealing with BSDEs with quadratic generators; see also
[21, 28] or [26].

PROPOSITION 7. Suppose there are constantsCf ,Cg and a predictable
processK ∈ BMO[M] such that

Cf

∫
Ztr

s d〈M〉s Zs +
∫

K tr
s d〈M〉s Ks −

∫
|1tr d〈M〉s f (s,Zs)|

is an increasing process for anyRd -valued predictableM-integrableZ,
(3.3)

|gt | ≤ Cg, R-a.s., for eacht ∈ [0, T ].(3.4)

Then the martingale part of any bounded solution of(3.1)and(3.2) is in BMO(R).

PROOF. Let Y be a solution of (3.1) and (3.2) andc > 0 a constant such that

|Yt | ≤ c, R-a.s., for eacht ∈ [0, T ].(3.5)

Applying Itô’s formula between a stopping timeτ andT and using (3.5) yields

e|β|c ≥ eβYT − eβYτ

= β2

2

∫ T

τ
eβYsZtr

s d〈M〉s Zs + β2

2

∫ T

τ
eβYs d〈L〉s

+ β

∫ T

τ
eβYs 1tr d〈M〉s f (s,Zs) + β

∫ T

τ
eβYs gs d〈L〉s

+ β

∫ T

τ
eβYsZs dMs + β

∫ T

τ
eβYs dLs,

(3.6)
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whereβ ∈ R is a constant yet to be determined.
If Z · M andL are trueR-martingales, taking conditional expectations in (3.6)

gives

β2

2
ER

[∫ T

τ
eβYsZtr

s d〈M〉s Zs

∣∣∣Fτ

]
+ β2

2
ER

[∫ T

τ
eβYs d〈L〉s

∣∣∣Fτ

]

≤ e|β|c + |β|ER

[∫ T

τ
eβYs |1tr d〈M〉sf (s,Zs)|

∣∣∣Fτ

]

+ |β|ER

[∫ T

τ
eβYs |gs |d〈L〉s

∣∣∣Fτ

]
.

Using the conditions (3.3) and (3.4), we can rewrite this estimate as(
β2

2
− |β|Cf

)
ER

[∫ T

τ
eβYsZtr

s d〈M〉s Zs

∣∣∣Fτ

]

+
(

β2

2
− |β|Cg

)
ER

[∫ T

τ
eβYs d〈L〉s

∣∣∣Fτ

]
≤ e|β|c + |β|ER

[∫ T

τ
eβYsK tr

s d〈M〉s Ks

∣∣∣Fτ

]
≤ e|β|c(1+ |β| ‖K · M‖2

BMO(R)

)
.

(3.7)

Forβ := 4C := 4max(Cf ,Cg) > 0, we obtain from (3.7) that

4C
2
(
ER

[∫ T

τ
eβYsZtr

s d〈M〉s Zs

∣∣∣Fτ

]
+ ER

[∫ T

τ
eβYs d〈L〉s

∣∣∣Fτ

])
≤ e4Cc(1+ 4C‖K · M‖2

BMO(R)

)
,

and if we use (3.5) to writeeβYs ≥ e−|β|c = e−4Cc, we finally get

E

[∫ T

τ
Ztr

s d〈M〉s Zs

∣∣∣Fτ

]
+ E[〈L〉T − 〈L〉τ |Fτ ]

≤ e8Cc(1+ 4C‖K · M‖2
BMO(R))

4C
2 ,

(3.8)

R-a.s. for any stopping timeτ . Hence,Z · M andL are inBMO(R).
For generalZ · M andL, we stop atτn and apply the above argument withT

replaced byτn to get (3.8) also withT replaced byτn. Letting n → ∞ then
completes the proof.�

We are now in a position to give a comparison theorem for the BSDE (3.1).
Although we need this result only forf ≡ 0, we formulate and prove it in general.
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THEOREM 8. Suppose the generators(f i, gi,Bi), i = 1,2, satisfy
the assumptions of Proposition7, and Y i , i = 1,2, are corresponding bounded
solutions of(3.1) and (3.2). (In particular, we assume here the existence of these
solutions.) Suppose also that B1 ≥ B2, R-a.s.; that the process∫

1tr d〈M〉s (f 1(s,Zs) − f 2(s,Zs)) is decreasing for anyZ ∈ BMO[M]; that
g1 ≤ g2 R ⊗ 〈L〉-a.e.; and that eitherf 1 or f 2 satisfies the following condition:

For anyZ1,Z2 ∈ BMO[M], there exists someκ ∈ BMO[M] such that∫
1tr d〈M〉s (

f (s,Z1
s ) − f (s,Z2

s )
) =

∫
κ tr
s d〈M〉s (Z1

s − Z2
s ).

(3.9)

ThenY 1
t ≥ Y 2

t R-a.s. for all t ∈ [0, T ].

PROOF. By taking differences, we obtain

Y 1
t − Y 2

t − (Y 1
0 − Y 2

0 )

=
∫ t

0
1tr d〈M〉s (

f 1(s,Z2
s ) − f 2(s,Z2

s )
) +

∫ t

0
(g1

s − g2
s ) d〈L1〉s

+
∫ t

0
1tr d〈M〉s (

f 1(s,Z1
s ) − f 1(s,Z2

s )
) +

∫ t

0
g2

s d(〈L1〉s − 〈L2〉s)

+
∫ t

0
(Z1

s − Z2
s ) dMs + L1

t − L2
t .

Supposef 1 satisfies (3.9). According to Proposition 7,Z1 ·M , Z2 ·M , L1, L2 are
all in BMO(R). Hence, (3.9) and (3.4) imply that

N := −
∫

κs dMs −
∫

g2
s d(L1

s + L2
s )

is in BMO(R), and soQ defined bydQ = E(N)T dR is a probability measure
equivalent toR; see Theorem 2.3 of [24]. If

N̄ := (Z1 − Z2) · M + L1 − L2

denotes theR-martingale part ofY 1 − Y 2, (3.9) yields that

Y 1 − Y 2 − (Y 1
0 − Y 2

0 ) −
∫

1tr d〈M〉s (
f 1(s,Z2

s ) − f 2(s,Z2
s )

)
−

∫
(g1

s − g2
s ) d〈L1〉s

=
∫

1tr d〈M〉s(f 1(s,Z1
s ) − f 1(s,Z2

s )
) +

∫
g2

s d(〈L1〉s − 〈L2〉s) + N̄

= N̄ +
∫

κ tr
s d〈M〉s(Z1

s − Z2
s ) +

∫
g2

s d(〈L1〉s − 〈L2〉s)
= N̄ − 〈N, N̄〉

(3.10)
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is a local Q-martingale by Girsanov’s theorem and even inBMO(Q) by
Theorem 3.6 of [24], sincēN is in BMO(R) by Proposition 7. Thus, we can use the
Q-martingale property and the boundary conditionsY i

T = Bi to obtain from (3.10)
that

Y 1
t − Y 2

t

= EQ

[
B1 − B2 −

∫ T

t
1tr d〈M〉s(f 1(s,Z2

s ) − f 2(s,Z2
s )

)
−

∫ T

t
(g1

s − g2
s ) d〈L1〉s

∣∣∣∣Ft

]
,

(3.11)

which implies the assertion.�

REMARKS. (1) The assumption (3.3) is a quadratic condition (inZ). This
becomes more apparent if we use the strong order on increasing processes (where
A � A′ means thatA′ − A is increasing) to rewrite (3.3) more compactly as∫

|1tr d〈M〉s f (s,Zs)| � Cf 〈Z · M〉 + 〈K · M〉.

(2) For d = 1, the BSDE (3.1) and the above conditions onf take a
simpler and more familiar form since〈M〉 is then a scalar process. The term∫

1tr d〈M〉s f (s,Zs) in (3.1) reduces to
∫

f (s,Zs) d〈M〉s ; the condition on
f 1 − f 2 in Theorem 8 follows iff 1(t, z) ≤ f 2(t, z); (3.3) boils down to the
quadratic growth condition|f (t, z)| ≤ K2

t + Cf z2; and (3.9) essentially means
that (with 0/0 := 0)

f (·,Z1· ) − f (·,Z2· )
Z1· − Z2·

∈ BMO[M] for anyZ1,Z2 ∈ BMO[M].(3.12)

Note that this is fulfilled for functionals of the formf (ω, t, z) = D0
t (ω) +

D1
t (ω)z+D2

t (ω)z2 with processesD0,D1 in BMO[M] and a bounded predictable
processD2 ≥ 0. Alternatively, (3.12) holds iff (t, z) satisfies a global Lipschitz
condition inz andM is in BMO(R).

For later use, we consider the special case of the generator(0,−α
2 ,B) with

α ∈ (0,∞) and B ∈ L∞(R). The BSDE (3.1) then takes the form (withψ
replacingZ)

Yt = Y0 − α

2
〈L〉t +

∫ t

0
ψs dMs + Lt,(3.13)

and its solution with final conditionYT = B is denoted by(Y α,ψα,Lα). We now
derive estimates on these quantities asα varies.
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LEMMA 9. For the solutions(Y α,ψα,Lα) of (3.13)and(3.2)with generator
(0,−α

2 ,B), we have

sup
α∈(0,∞)

‖ψα · M‖BMO(R) < ∞,(3.14)

sup
α∈(0,∞)

α‖Lα‖2
BMO(R) < ∞.(3.15)

In particular, this yields

sup
α∈(0,∞)

‖Lα‖BMO(R) < ∞,(3.16)

lim
α→∞‖Lα‖BMO(R) = 0.(3.17)

PROOF. We go back to the proof of Proposition 7 and note thatCf = 0,K ≡ 0
in (3.3) andCg = α

2 in (3.4). Hence, we obtain from (3.6) as for (3.7) withβ = −1
andc = ‖B‖∞ that

e‖B‖∞ ≥ 1

2
e−‖B‖∞ER

[∫ T

τ
(ψα

u )tr d〈M〉u ψα
u

∣∣∣Fτ

]
+ 1+ α

2
e−‖B‖∞ER[〈Lα〉T − 〈Lα〉τ |Fτ ],

where we have used in (3.6)βgs ≡ α
2 instead of the cruder estimateβgs ≥

−|β|Cg = −α
2 . The above estimate yields

‖ψα · M‖2
BMO(R) + (1+ α)‖Lα‖2

BMO(R) ≤ 2e2‖B‖∞
(3.18)

uniformly for all α ∈ (0,∞).

Thus, we obtain (3.14) and (3.15), and (3.16) and (3.17) then follow immediately.
�

REMARK. One can also deduce (3.15)–(3.17) by taking conditional expecta-
tions directly in (3.13). We have chosen the above argument since it gives (3.14)
at the same time.

PROPOSITION10. The solutionYα of (3.13) and (3.2) is locally Lipschitz-
continuous with respect toα, uniformly int : For anyγ > 0, there is a constantKγ

depending only onγ such that

sup
0≤t≤T

∣∣Yα
t − Yα′

t

∣∣ ≤ Kγ |α − α′| for all α,α′ ∈ (0, γ ].(3.19)

PROOF. We go back to the proof of Theorem 8 with the two generators
(0,−α

2 ,B) and(0,−α′
2 ,B). Then (3.11) yields

Yα
t − Yα′

t = α − α′

2
EQ[〈Lα〉T − 〈Lα〉t |Ft ],(3.20)
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whereQ is now given by

dQ = E

(
α′

2

(
Lα + Lα′))

T

dR =: E
(

α′

2
L(α,α′)

)
T

dR =: ZT (α,α′) dR.

Due to (3.16), we have

sup
α,α′∈(0,γ ]

∥∥∥∥α′

2
L(α,α′)

∥∥∥∥
BMO(R)

≤ γ

2
sup

α,α′∈(0,∞)

(‖Lα‖BMO(R) + ∥∥Lα′∥∥
BMO(R)

)
< ∞.

(3.21)

By Theorem 3.1 of [24],Z(α,α′) therefore satisfies the reverse Hölder inequality
Rp(R) for somep ∈ (1,∞), that is,

sup
0≤t≤T

ER

[(
ZT (α,α′)
Zt (α,α′)

)p∣∣∣Ft

]
≤ (cp)p

for a constantcp; this holds uniformly for allα,α′ ∈ (0, γ ] since (3.21) is also
uniform in thoseα,α′. Moreover, the energy inequalities (see [24], page 28) yield

sup
0≤t≤T

ER[(〈Lα〉T − 〈Lα〉t )n|Ft ] ≤ n!‖Lα‖2n
BMO(R) for all n ∈ N.(3.22)

So if we choosen with n
n−1 ≤ p, Bayes’ rule and Hölder’s inequality give

sup
0≤t≤T

EQ[〈Lα〉T − 〈Lα〉t |Ft ] = sup
0≤t≤T

ER

[
ZT (α,α′)
Zt (α,α′)

(〈Lα〉T − 〈Lα〉t )
∣∣∣Ft

]
≤ cn/(n−1) sup

0≤t≤T

(
ER[(〈Lα〉T − 〈Lα〉t )n|Ft ])1/n

.

Combining this with (3.20), (3.22) and (3.21) yields (3.19).�

A closer look at the proof of Theorem 8 shows that we can also write down a
quasi-explicit expression forYα .

PROPOSITION 11. The solution (Y α,ψα,Lα) of (3.13) and (3.2) with
generator(0,−α

2 ,B) can be represented as follows: If we define the measureQα

bydQα := Zα
T dR := E(α

2Lα)T dR, then

Yα
t = EQα [B|Ft ]

= ER

[
E((α/2)Lα)T

E((α/2)Lα)t
B

∣∣∣Ft

]
, R-a.s. for eacht ∈ [0, T ],(3.23)

and ψα is a predictable density of〈Yα,M〉 with respect to〈M〉, that is,
d〈Yα,M〉 = d〈M〉ψα .
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PROOF. For the two generators(0,−α
2 ,B) and(0,−α

2 ,0) with corresponding
solutions(Y α,ψα,Lα) and(0,0,0), the martingaleN in the proof of Theorem 8
reduces toα2Lα . Hence, (3.23) follows from (3.11), and the second assertion then
from the BSDE (3.13). �

Note that the representation (3.23) ofYα is not as simple as it may appear,
because the measureQα still involves the componentLα from the solution triple
(Y α,ψα,Lα). Since this depends onB via the final condition (3.2), (3.23) is, in
particular, not linear inB in general.

4. Dynamic description of the utility indifference value. In this section we
study the dynamic behavior of the exponential utility indifference value over time.
We characterize the processC(B;α) as the unique solution of a BSDE in a general
continuous filtration which need not be generated by a Brownian motion, thus
extending earlier results by Rouge and El Karoui [33]. Given the characterization
of C(B;α) in Proposition 3, we can also view our BSDE as a generalization of the
one obtained independently by Hu, Imkeller and Müller [21]. Finally, our BSDE is
also a continuous-time analogue of the recursive description in Theorem 5 of [30],
obtained in a particular discrete-time setting.

To prove existence and uniqueness of a solution to their BSDEs, Rouge and
El Karoui [33] and Hu, Imkeller and Müller [21] used results of Kobylanski [25]
on existence and comparison for quadratic BSDEs driven by a Brownian motion.
But for BSDEs with quadratic generators and driven by martingales, there are no
general results similar to those of Kobylanski [25]. Chitashvili [7] and El Karoui
and Huang [11] established the well-posedness of BSDEs driven by martingales
if the generators satisfy global Lipschitz conditions, but this is too restrictive for
our needs. We prove here existence of a solution by directly showing thatC(B;α)

satisfies a quadratic BSDE, and we use the comparison theorem from Section 3 to
obtain uniqueness.

We start by recalling from Proposition 3 that the exponential utility indifference
value processC(B;α) can be represented as

Ct(B;α) = 1

α
logess inf

ϑ∈�
EQE

[
eα(B−Gt,T (ϑ))|Ft

]
, 0≤ t ≤ T .(1.8)

This shows thateαC(B;α) is the dynamic value process of the stochastic control
problem

minimizeEQE

[
eα(B−GT (ϑ))

]
over allϑ ∈ �.(4.1)

Using similar arguments as in [8], one can show that an optimal strategyϑ∗ ∈ �

for (4.1) exists. Themartingale optimality principletakes here the following form.

PROPOSITION12. Suppose thatS is locally bounded, Pe,f 	= ∅ andB ∈ L∞.
Fix α > 0.
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(1) There exists an RCLL processJB = (JB
t )0≤t≤T such that, for eacht ∈ [0, T ],

JB
t = ess inf

ϑ∈�
EQE

[
eα(B−Gt,T (ϑ))|Ft

]
, P -a.s.(4.2)

JB is the largest RCLL processJ with JT = eαB , P -a.s. such thatJe−αG(ϑ)

is aQE-submartingale for eachϑ ∈ �.
(2) The following properties are equivalent:

(a) ϑ∗ ∈ � is optimal for(4.1),that is, JB
0 = EQE [eα(B−GT (ϑ∗))].

(b) ϑ∗ ∈ � is optimal for all conditional criteria, that is,

JB
t = EQE

[
eα(B−Gt,T (ϑ∗))|Ft

]
, P -a.s., for eacht ∈ [0, T ].

(c) The processJBe−αG(ϑ∗) with ϑ∗ ∈ � is aQE-martingale.

(3) Due to(4.2) and (1.8), we can and do choose1
α

logJB as an RCLL version
for C(B;α). For any stopping timesσ ≤ τ ≤ T , we then have the dynamic
programming equation

Cσ (B;α) = 1

α
log ess inf

ϑ∈�
EQE

[
eα(Cτ (B;α)−Gσ,τ (ϑ))|Fσ

]
, P -a.s.(4.3)

PROOF. This is a standard argument like in [12] or [27] and therefore omitted.
�

Because we have an optimal strategyϑ∗ ∈ �, Proposition 12 yields that

C(B;α) = 1

α
logJB = 1

α
log

(
JBe−αG(ϑ∗)) + G(ϑ∗)

is a QE-supermartingale; see Proposition 6 of [30] for an analogous result in a
particular discrete-time setting. To obtain more structure forC(B;α), we now
assume that

F is continuous;

this implies, in particular, thatS is continuous. The Doob–Meyer decomposition
of C(B;α) is

C(B;α) = C0(B;α) + MB(α) − AB(α) underQE ,

whereMB(α) ∈ M0,loc(Q
E) andAB(α) is adapted, continuous and increasing.

Using the Galtchouk–Kunita–Watanabe decomposition forMB(α) with respect
to S underQE , we get

C(B;α) = C0(B;α) − AB(α) +
∫

ϕB(α)dS + mB(α)(4.4)

with mB(α) ∈ M0,loc(Q
E) satisfying〈mB(α), S〉 = 0.
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THEOREM 13. Suppose thatPe,f 	= ∅, B ∈ L∞ and F is continuous. Then
the exponential utility indifference value processC(B;α) is the unique bounded
solution of the following semimartingale backward equation under the minimal
entropy martingale measureQE :

Yt = Y0 − α

2
〈L〉t +

∫ t

0
ψs dSs + Lt(4.5)

with the boundary condition

YT = B.(3.2)

[“ UnderQE” means that, in the solution triple(Y,ψ,L), the processL is a local
QE-martingale stronglyQE-orthogonal toS.] Moreover, ψ · S andL are both in
BMO(QE).

PROOF. (1) We first show thatC(B;α) satisfies (4.5) and (3.2). Applying Itô’s
formula forZ(ϑ) := eα(C(B;α)−G(ϑ)) and omitting the indexα, we have from (4.4)

Z
(ϑ)
t = Z

(ϑ)
0

+ α

∫ t

0
Z(ϑ)

s d

(
−AB

s + α

2

∫ s

0
(ϕB

u − ϑu)
tr d〈S〉u (ϕB

u − ϑu) + α

2
〈mB〉s

)
+ localQE-martingale.

(4.6)

By parts (1) and (2) of Proposition 12,Z(ϑ) is aQE-submartingale for anyϑ ∈ �

and aQE-martingale for the optimal strategyϑ∗. SinceZ(ϑ) > 0, this implies
by (4.6) that

−AB + α

2

∫
(ϕB − ϑ)tr d〈S〉 (ϕB − ϑ) + α

2
〈mB〉 is increasing

for anyϑ ∈ � and vanishes forϑ∗. Hence, it follows that

AB = ess inf
ϑ∈�

(
α

2

∫
(ϕB − ϑ)tr d〈S〉 (ϕB − ϑ) + α

2
〈mB〉

)
= α

2
〈mB〉 + α

2
ess inf
ϑ∈�

∫
(ϕB − ϑ)tr d〈S〉 (ϕB − ϑ),

(4.7)

where we can take the ess inf with respect to the strong order. To prove that

AB = α

2
〈mB〉,(4.8)

we define the stopping timesτn := inf{t ≥ 0||Gt(ϕ
B)| ≥ n}. Then τn ↗ T

stationarily,P -a.s., andϑn := ϕBI]]0,τn]] is in � for everyn. Hence, we get, for
any t ≤ T , that

ess inf
ϑ∈�

α

2

∫ t

0
(ϕB

s − ϑs)
tr d〈S〉s (ϕB

s − ϑs) ≤ α

2

∫ t

0
(ϕB

s − ϑn
s )tr d〈S〉s (ϕB

s − ϑn
s )

= α

2

∫ t∨τn

τn

(ϕB
s )tr d〈S〉s ϕB

s −→ 0
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asn → ∞, which implies (4.8). Combining this with (4.4) shows thatC(B;α)

indeed satisfies (4.5), and it is clear that we also have the boundary condition
CT (B;α) = B. The BMO property ofψ · S andL follows from Proposition 7,
applied with the pair(M,R) = (S,QE).

(2) We already know from Proposition 4 thatC(B;α) is bounded by‖B‖∞. The
uniqueness of a bounded solution of (4.5) and (3.2) follows from the comparison
in Theorem 8, applied with the pair(M,R) = (S,QE). �

REMARKS. (1) In comparison to the work of Rouge and El Karoui [33] and
Hu, Imkeller and Müller [21], our BSDE result in Theorem 13 is at the same time
more and less general. We are able to work in a general continuous filtration, but
we have so far not included any constraints in our strategies. For the case where
dSt = σt dW ∗

t under an equivalent martingale measureQ∗ andF is generated by
a Brownian motion, our BSDE (4.5) can be rewritten as

dYt = −α

2
|�tzt |2 dt + zt dWE

t underQE ,

where�t denotes the projection on ker(σt ) = (range(σ tr
t ))⊥. This agrees with the

BSDEs of Rouge and El Karoui [33] and Hu, Imkeller and Müller [21] in that
particular case.

(2) One advantage of our approach is that even in a Brownian filtration, we need
not invoke general results on quadratic BSDEs. This allows us to avoid restrictive
assumptions (like boundedness) on the coefficients of our model. In fact, our only
requirement is the natural condition that the minimal entropy martingale measure
QE exists.

(3) The proof of Theorem 13 shows, in particular, that the value of the infimum
in (4.7) is obtained by choosingϑ = ϕB . Because we already know that an optimal
strategyϑ∗ ∈ � exists, we conclude thatϑ∗ = ϕB , and, in particular, thatϕB is
in �. Moreover, we also see from (4.4) that theψ-component of the solution to
the BSDE (4.5) is given by the optimal strategyϑ∗ for the utility maximization
problem (4.1).

(4) If we only assume thatS is continuous while the filtration is general, we
can still show thatC(B;α) satisfies the semimartingale backward equation

Yt = Y0 − 1

α

( ∑
0<s≤t

(eα�Ys − α�Ys − 1)

)p

− α

2
〈L〉t +

∫ t

0
ψs dSs + Lt(4.9)

with boundary conditionYT = B, where Ap denotes the dual predictable
projection of a locally integrable increasing processA. We do not have a
comparison theorem for such equations, but one can prove uniqueness directly
by showing that any bounded solution of (4.9) coincides with the exponential
utility indifference value processC(B;α). The main difficulty with (4.9) is that
the presence of the compensated sum of jumps makes it very hard to derive any
properties of the solutionY .
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Note that bothψ and L in the BSDE (4.5) depend on the risk aversion
parameterα. We shall indicate this by writingψ(α),L(α).

5. Dynamic and further properties of the indifference valuation. In this
section we derive further properties of the exponential utility indifference value
processC(B;α). While some hold generally, others rely on the BSDE description
in Theorem 13 and thus need continuity ofF. This will be specified if necessary
so that the only standing assumptions in this section are that

S is locally bounded andPe,f 	= ∅.

We first prove continuity ofC(B;α) in B.

PROPOSITION 14. Assume thatF is continuous. If (Bn)n∈N is a bounded
sequence inL∞ such that(Bn) converges toB in probability for someB ∈ L∞,
then for anyγ > 0,

sup
α∈(0,γ ]

sup
0≤t≤T

|Ct(B
n;α) − Ct(B;α)| −→ 0 in probability asn → ∞.(5.1)

PROOF. We go back to the proof of Theorem 8 and work there with the pair
(S,QE) instead of(M,R) and the two generators(0,−α

2 ,Bn) and (0,−α
2 ,B).

The corresponding solutions are(C(Bn;α),ψn(α),Ln(α)) and(C(B;α),ψ(α),

L(α)) by Theorem 13. From (3.11), we get

Ct(B
n;α) − Ct(B;α) = EQn(α)[Bn − B|Ft ],

whereQn(α) is given by

dQn(α) = E

(
α

2

(
Ln(α) + L(α)

))
T

dQE =: Zn
T (α)dQE.

The estimate (3.18) implies that

sup
α∈(0,γ ]

sup
n∈N

∥∥∥∥α

2

(
Ln(α) + L(α)

)∥∥∥∥2

BMO(R)

≤ γ

2
sup
n∈N

(
e‖Bn‖∞ + e‖B‖∞)2

< ∞,(5.2)

and so there exists, by Theorem 3.1 of [24], an exponentp ∈ (1,∞) such that each
Zn(α) satisfies the reverse Hölder inequalityRp(QE), that is,

sup
0≤t≤T

EQE

[(
Zn

T (α)

Zn
t (α)

)p∣∣∣Ft

]
≤ (cp)p

for a constantcp. Note that because (5.2) is uniform inn ∈ N andα ∈ (0, γ ], the
samep, cp work for all thesen,α simultaneously. Using now Bayes’ rule and
Hölder’s inequality, we get

sup
α∈(0,γ ]

sup
0≤t≤T

|Ct(B
n;α) − Ct(B;α)| = sup

α∈(0,γ ]
sup

0≤t≤T

∣∣∣∣EQE

[
Zn

T (α)

Zn
t (α)

(Bn − B)|Ft

]∣∣∣∣
≤ cp sup

0≤t≤T

(EQE [|Bn − B|q |Ft ])1/q,
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with q ∈ (1,∞) conjugate top, and so (5.1) follows from Doob’s maximal
inequality. �

A natural assumption on a convex monetary utility functional�t :L∞(FT ) →
L∞(Ft ) is a continuity of the following form: If a bounded sequence(Bn)n∈N

in L∞ increases (or decreases),P -a.s. to someB ∈ L∞, then�t(B
n) increases

(or decreases),P -a.s. to�t(B). This is one possible extension to the dynamic
case of the semicontinuity requirements studied for static risk measures (or utility
functionals); see, for instance, [14] or [10] for a recent conditional version. For the
functional�0 := C0(·;α), the exponential utility indifference value at time 0, this
continuity could be deduced from the recent work of Barrieu and El Karoui [2];
see their Theorem 3.6 and Proposition 5.3. However, Proposition 14 is stronger in
that it provides such a result uniformly int ∈ [0, T ] (and locally uniformly inα as
well).

The next result holds generally, that is, without continuity ofF; see also
Corollary 3.10 of [3].

PROPOSITION 15. For eachα ∈ (0,∞), C(B;α) is time-consistent in the
sense that, for anyB ∈ L∞, we have

Cσ

(
Cτ (B;α);α) = Cσ (B;α),

(5.3)
P -a.s. for any stopping timesσ, τ with σ ≤ τ .

PROOF. BecauseCτ (B
′;α) = B ′ for anyFτ -measurableB ′, we obtain from

the dynamic programming equation (4.3) applied toB ′ = Cτ (B;α) that

Cσ (B ′;α) = 1

α
log ess inf

ϑ∈�
EQE

[
eα(Cτ (B;α)−Gσ,τ (ϑ))|Fσ

] = Cσ (B;α), P -a.s.
�

The financial interpretation of (5.3) is obvious: If we want to value the timeT

payoff B at timeσ , we can either do this directly or first valueB at timeτ ≥ σ

and then value the resultCτ (B;α) at timeσ . In both cases, the final valuation is
the same. As emphasized by Musiela and Zariphopoulou [30], such a consistency
property is highly desirable, and it is also known from the work of Rosazza Gianin
[32] that a nice BSDE representation is usually sufficient to derive it. For more
discussion and references on time-consistency aspects, we refer to [1].

As a direct consequence of Theorem 13 and Proposition 10, we also have the
following:

PROPOSITION 16. If F is continuous, the exponential utility indifference
valueCt(B;α) is locally Lipschitz-continuous inα, uniformly int : For anyγ > 0,
we have

sup
0≤t≤T

|Ct(B;α) − Ct(B;α′)| ≤ Kγ |α − α′|, P -a.s.

for all α,α′ ∈ (0, γ ], where the constantKγ depends only onγ andB.
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6. Risk aversion asymptotics. In this section we study the behavior of the
exponential utility indifference value process as the risk aversion parameterα goes
to 0 or ∞. Earlier results on some aspects of this have been obtained by Rouge
and El Karoui [33], Becherer [3], Fujiwara and Miyahara [18] and Stricker [34],
among others; see below for more detailed comments. As before, our standing
assumptions in this section are that

S is locally bounded andPe,f 	= ∅.

6.1. Asymptotics forα ↘ 0. A simple adaptation of arguments from [34] gives
the following:

THEOREM 17. For eachB ∈ L∞, we have

lim
α→0

Ct(B;α) = EQE [B|Ft ] uniformly in t ∈ [0, T ], P -a.s.(6.1)

Moreover, we have the estimate

sup
0≤t≤T

∣∣Ct(B;α) − EQE [B|Ft ]
∣∣ ≤ α const.(B), P -a.s.(6.2)

PROOF. With the notationZt,T := ZT /Zt , we know from Lemma 6 and the
representations (1.7) and (1.5) that, for anyt ∈ [0, T ], α ∈ (0,∞) andQ ∈ Pe,f ,

EQE [B|Ft ] ≤ Ct(B;α)

≤ EQ[B|Ft ] − 1

α
(EQ[logZ

Q
t,T |Ft ] − EQE [logZE

t,T |Ft ]).

Moreover, the representation (1.4) ofZE
T implies that

EQ[logZE
t,T |Ft ] = EQE [logZE

t,T |Ft ] for anyQ ∈ Pe,f ,

and we have

logZ
Q
t,T − logZE

t,T = log(Z
Q
t,T /ZE

t,T ) = logZ
Q : QE

t,T ,

whereZQ : QE
denotes the density process ofQ with respect toQE . Bayes’ rule

and the Fenchel inequalitybz ≤ 1
α
(eαb + z logz − 1) thus give

EQ[B|Ft ] = EQE

[
BZ

Q : QE

t,T |Ft

]
≤ 1

α

(
EQE [eαB |Ft ] + EQE

[
Z

Q : QE

t,T logZ
Q : QE

t,T |Ft

] − 1
)

= 1

α
(EQE [eαB |Ft ] + EQ[logZ

Q
t,T − logZE

t,T |Ft ] − 1),
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and so we get

sup
0≤t≤T

∣∣Ct(B;α) − EQE [B|Ft ]
∣∣ ≤ sup

0≤t≤T

EQE

[
eαB − 1

α
− B

∣∣∣Ft

]
.

BecauseB is bounded, we have 0≤ eαB−1
α

− B ≤ α
2‖B‖2∞ + const.α2, P -a.s., and

so (6.2) and (6.1) both follow.�

REMARK. The convergence limα→0 Ct(B;α) = EQE [B|Ft ] has also been
obtained by Rouge and El Karoui [33] for arbitrary (but fixed)t in a Brownian
filtration, and fort = 0 by Becherer [3] and Stricker [34] in a general setting and
by Fujiwara and Miyahara [18] for geometric Lévy processes. Theorem 17 extends
the argument by Stricker [34], who also gave the convergence rate of orderα, to
provide a uniform result for allt ∈ [0, T ].

If F is continuous, an alternative proof of Theorem 17 goes via the BSDE
description ofC(B;α) in Theorem 13. In fact, taking conditional expectations
betweent andT in (4.5) and using (3.2) and the fact that

∫
ψ(α)dS andL(α) are

QE-martingales yields

Ct(B;α) = EQE [B|Ft ] + α

2
EQE [〈L(α)〉T − 〈L(α)〉t |Ft ].

Hence, (6.2) follows from the estimate (3.15) in Lemma 9. We now prove that we
also have convergence of the strategiesψ(α).

THEOREM18. Suppose thatF is continuous and write the Galtchouk–Kunita–
Watanabe decomposition ofB ∈ L∞ underQE as

V E := EQE [B|F] = V E
0 +

∫
ψE dS + LE.(6.3)

Then we have

lim
α→0

∫
ψ(α)dS =

∫
ψE dS in BMO(QE),(6.4)

lim
α→0

L(α) = LE in BMO(QE)(6.5)

and, more precisely, we even have∥∥∥∥∫
ψ(α)dS −

∫
ψE dS

∥∥∥∥2

BMO(QE)

+ ‖L(α) − LE‖2
BMO(QE)

≤ α const.(B).

(6.6)
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PROOF. SinceF is continuous, all processes below are continuous. Using (6.3)
and Theorem 13, we obtain from Itô’s formula, omitting the argumentsB andα

for the moment, that

(CT − V E
T )2 = (Ct − V E

t )2 − 2
∫ T

t
(Cs − V E

s )
α

2
d〈L〉s

+
∫ T

t
(ψu − ψE

u )tr d〈S〉u(ψu − ψE
u )

+
∫ T

t
d〈L − LE〉s

+ 2
∫ T

t
(Cu − V E

u )d

(∫
(ψ − ψE)dS + L − LE

)
u

.

(6.7)

Since V E is a boundedQE-martingale,
∫

ψE dS and LE are in BMO(QE)

and thusQE-martingales. Hence, the last term in (6.7) is like its integrator a
QE-martingale because the integrand is bounded. Taking conditional expectations
and usingCT (B) = B = V E

T yields

EQE

[∫ T

t

(
ψu(α) − ψE

u

)tr
d〈S〉u(

ψu(α) − ψE
u

)∣∣∣Ft

]

+ EQE

[∫ T

t
d〈L(α) − LE〉s

∣∣∣Ft

]
+ (

Ct(B;α) − V E
t

)2

= αEQE

[∫ T

t

(
Cs(B;α) − V E

s

)
d〈L(α)〉s

∣∣∣Ft

]
≤ 2‖B‖∞ αEQE [〈L(α)〉T − 〈L(α)〉t |Ft ]
≤ 2‖B‖∞ α sup

α∈(0,∞)

‖L(α)‖2
BMO(QE)

uniformly in t .

Hence, (6.4)–(6.6) all follow from (3.16), and we also again recover (6.1).�

Loosely speaking, the interpretation of Theorem 18 is that, in the small risk
aversion limit, exponential indifference hedging converges to risk-minimization
under the minimal entropy martingale measureQE . To see this, note that the in-
tegrandψE in the decomposition (6.3) ofB is (the risky asset component of ) the
strategy which is risk-minimizing in the sense of Föllmer and Sondermann [15]
with respect toQE . Hence, Theorem 18 says that, for vanishing risk aversionα,
the gains process

∫
ψ(α)dS from theα-optimal strategy for exponential utility in-

difference valuation converges to the gains process from theQE-risk-minimizing
strategy. As in Theorem 17, we even obtain a convergence rate.

REMARK. The convergence in (6.4) was conjectured by D. Becherer in private
discussions with one of the authors. Theorem 18 also explains the observation
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made after Corollary 4.3 of Young [35] that, in a particular model for valuing
catastrophe bonds by exponential utility indifference, formally settingα = 0
reproduces an earlier alternative approach.

6.2. Asymptotics forα ↗ ∞. Our last contribution is a study of the large risk
aversion asymptotics ofC(B;α). To that end, we recall thesuperreplication price
process

C∗
t (B) := esssup

Q∈Pe

EQ[B|Ft ], 0≤ t ≤ T ,

where we can and do choose an RCLL version. By the optional decomposition
theorem (see [12] or [27]),C∗(B) is the smallest RCLL process with final
value B at time T which is aQ-supermartingale for allQ ∈ Pe, and it admits
a decomposition

C∗(B) = C∗
0(B) +

∫
ψ∗ dS − K∗,(6.8)

whereψ∗ is anR
d -valued predictableS-integrable process andK∗ is an optional

increasing process null at 0. In general,K∗ is neither unique nor continuous; see
Example 1 of [12]. But if the filtration is continuous,K∗ is actually predictable,
hence, unique by the Doob–Meyer decomposition theorem, and becauseC∗(B) is
bounded, that result then also implies thatK∗ is QE-integrable andψ∗ is in �.

From part (2) of Lemma 6, we know that

Ct(B;α) ≤ C∗
t (B), P -a.s. for eacht ∈ [0, T ].(6.9)

Moreover, we also have

C∗
t (B) = esssup

Q∈Pe,f

EQ[B|Ft ], P -a.s. for eacht ∈ [0, T ].(6.10)

In fact, Bayes’ rule gives

EQ[B|Ft ] = EP [ZQ
T B|Ft ]/EP [ZQ

T |Ft ] for Q ∈ Pe,

and by Theorem 1.1 and Corollary 1.3 of [22], the set{ZQ
T |Q ∈ Pe} ∩ L∞(P ) ⊆

{ZQ
T |Q ∈ Pe,f } is dense in{ZQ

T |Q ∈ Pe} for theL1(P )-norm. SinceB ∈ L∞(P ),
(6.10) readily follows.

For the next result, we need some notation. LetD = (Dt)0≤t≤T be an increasing
predictable RCLL process null at 0 such that〈Si, Sk〉 � D for all i, k = 1, . . . , d.
We chooseD strictly increasing and bounded (uniformly int,ω); for instance,
Dt := t + tanh(

∑d
i=1〈Si〉t ) will do. If S is continuous, we can and do choose

D continuous as well. We define the (d × d) matrix-valued predictable process
� = (� t)0≤t≤T by d〈S〉t = � t dDt and the finite measureµ on � := � × [0, T ]
by µ := QE ⊗ D. Then we have〈∫

ϑ dS,

∫
ϑ ′ dS

〉
=

∫
ϑ tr� ϑ ′ dD for ϑ,ϑ ′ ∈ L(S)
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and ∥∥∥∥∫ T

0
ϑu dSu

∥∥∥∥2

L2(QE)

=
∥∥∥∥〈∫

ϑ dS

〉
T

∥∥∥∥
L1(QE)

= ‖ϑ tr�ϑ‖L1(µ)(6.11)

if
∫

ϑ dS is square-integrable underQE . Ford = 1, we do not need all this notation
since we can takeD = 〈S〉 and� ≡ 1; the measureµ is then the Doléans measure
of 〈S〉 underQE .

THEOREM 19. Assume thatF is continuous. Fix B ∈ L∞ and any stopping
timeτ . Then:

(1) P [limα→∞ Ct(B;α) = C∗
t (B) for all t ∈ [0, T ]] = 1. (This is true even

without continuity ofF or S.)
(2) limα→∞ Cτ (B;α) = C∗

τ (B) strongly inLr(QE) for everyr ∈ [1,∞).
(3) limα→∞

∫ τ
0 ψu(α)dSu = ∫ τ

0 ψ∗
u dSu weakly inLr(QE) for everyr ∈ [1,∞).

(4) limα→∞ α
2〈L(α)〉τ = K∗

τ weakly inLr(QE) for everyr ∈ [1,∞).
(5) limα→∞((ψ(α) − ψ∗)tr�(ψ(α) − ψ∗))1/2 = 0 strongly inLp(µ) for every

p ∈ [1,2).

PROOF. (a) The first part of the argument is almost as in [33]. From (6.9),
(1.7) and (1.5), we have, for anyQ ∈ Pe,f , that

C∗
t (B) ≥ Ct(B;α) ≥ EQ[B|Ft ] − 1

α

(
EQ

[
log

Z
Q
T

Z
Q
t

∣∣∣Ft

]
− EQE

[
log

ZE
T

ZE
t

∣∣∣Ft

])
.

Letting α → ∞ and using (6.10) yields limα→∞ Ct(B;α) = C∗
t (B), P -a.s. for

each t ∈ [0, T ]. Then (1) follows becauseC(B;α) and C∗(B) are both right-
continuous, and (2) then follows because all these processes are uniformly
bounded by‖B‖∞. Clearly, this argument does not use the continuity ofF or S.

(b) We already know thatC∗(B) and eachC(B;α) are RCLL QE-super-
martingales; see the remark following Proposition 12. Because we also have
the convergence in (2) and a uniform bound‖B‖∞ on all these processes,
Theorem VII.18 of [9] implies that at each stopping time, theQE-compensators
converge weakly inL1(QE) as α → ∞. This still does not need continuity
of F or S, but it also does not lead us very far because we cannot identify the
compensators in general.

(c) Now assume thatF is continuous. ThenC(B;α) can be written as

C(B;α) = C0(B;α) +
∫

ψ(α)dS + L(α) − α

2
〈L(α)〉(6.12)

by Theorem 13. From (6.12) and (6.8), we can therefore identify the
QE-compensators asα2〈L(α)〉 andK∗, respectively, so that (b) gives

lim
α→∞

α

2
〈L(α)〉τ = K∗

τ weakly inL1(QE).(6.13)
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Due to (3.17) in Lemma 9,L(α) converges to 0 inBMO(QE) asα → ∞, and this
implies

lim
α→∞Lτ (α) = 0 strongly inL2(QE).(6.14)

By combining (6.14) and (6.13) with (2) and (6.12) and (6.8), we obtain

lim
α→∞

∫ τ

0
ψu(α)dSu =

∫ τ

0
ψ∗

u dSu weakly inL1(QE).(6.15)

Hence, (3) follows from (6.15) if the family{∫ τ
0 ψu(α)dSu|α ∈ (0,∞)} is bounded

in Lr(QE) for every r ∈ [1,∞). In view of (2) and (6.12), each of the families
{α

2〈L(α)〉τ |α ∈ (0,∞)} and {Lτ (α)|α ∈ (0,∞)} is then bounded inLr(QE) if
and only if the other one is, and so (4) follows from (6.13) if{Lτ (α)|α ∈ (0,∞)}
is bounded inLr(QE) for everyr ∈ [1,∞).

(d) ForNα ∈ {∫ ψ(α)dS,L(α)}, the energy inequalities give, for eachn ∈ N,

sup
0≤t≤T

EQE [(〈Nα〉T − 〈Nα〉t )n|Ft ] ≤ n!‖Nα‖2n
BMO(QE)

;

see [24], page 28. Using the Burkholder–Davis–Gundy inequalities and the
estimates (3.14) and (3.16) in Lemma 9, applied with(M,R) = (S,QE), thus
yields

sup
α∈(0,∞)

EQE

[(
sup

0≤t≤T

|Nα
t |

)2n]
≤ sup

α∈(0,∞)

const.(n)EQE [(〈Nα〉T )n]

≤ const.(n)n!
(

sup
α∈(0,∞)

‖Nα‖BMO(QE)

)2n

< ∞.

Hence,{Nα
τ |α ∈ (0,∞)} is bounded inLr(QE) for everyr ∈ [1,∞), as desired

in (c).
(e) To prove (5), we setη(α) := ψ(α)−ψ∗ and note from (3) that{∫ τ

0 ηu(α)dSu|
α ∈ (0,∞)} is bounded inLr(QE) for every r ∈ [1,∞). In view of (6.11), this
means, forr = 2, that

sup
α∈(0,∞)

‖η(α)tr� η(α)‖L1(µ) = sup
α∈(0,∞)

∥∥∥∥∫ T

0
ηu(α)dSu

∥∥∥∥2

L2(QE)

< ∞

so that the family{(η(α)tr�η(α))1/2|α ∈ (0,∞)} is bounded inL2(µ). Hence,
(5) follows as soon as we prove that

lim
α→∞η(α)tr�η(α) = 0 in µ-measure.(6.16)

(f ) The proof of (6.16) is a slight variation of an argument due to Peng [31]. We
first apply Itô’s formula and use (6.12) and (6.8), suppressing for the moment all
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argumentsα andB, to obtain, for any stopping timesσ ≤ ρ,

(C∗
ρ − Cρ)2

= (C∗
σ − Cσ )2 + 2

∫ ρ

σ
(C∗

s− − Cs−)

(
α

2
d〈L〉s − dK∗

s

)
+

∫ ρ

σ
(ψ∗

u − ψu)
tr d〈S〉u (ψ∗

u − ψu) + 〈L〉ρ − 〈L〉σ + [K∗]ρ − [K∗]σ

+ 2
∫ ρ

σ
(C∗

u− − Cu−) d

(∫
(ψ∗ − ψ)dS − L

)
u

.

(6.17)

The last term is aQE-martingale because the integrand is bounded and the
integrator is aQE-martingale due toψ∗ ∈ � and Lemma 9. Moreover,C =
C(B;α) is continuous by Theorem 13, and (6.8) gives�K∗ = −�C∗ because
S is continuous. Hence,[K∗] = ∑

(�K∗
s )2 = − ∫

�C∗ dK∗ and, therefore,∫
(C∗− − C−)

(
α

2
d〈L〉 − dK∗

)
+ [K∗] =

∫
(C∗ − C)

(
α

2
d〈L〉 − dK∗

)
.

Adding and subtracting[K∗]ρ −[K∗]σ in (6.17) and taking expectations therefore
yields

EQE

[∫ ρ

σ
(ψ∗

u − ψu)
tr d〈S〉u (ψ∗

u − ψu)

]
+ EQE [〈L〉ρ − 〈L〉σ ] + EQE [(C∗

σ − Cσ )2]

= EQE [(C∗
ρ − Cρ)2] + 2EQE

[∫ ρ

σ
(C∗

s − Cs)

(
dK∗

s − α

2
d〈L〉s

)]
+ EQE

[[K∗]ρ − [K∗]σ ]
≤ EQE [(C∗

ρ − Cρ)2] + 2EQE

[∫ T

0
(C∗

s − Cs)dK∗
s

]
+ EQE

[[K∗]ρ − [K∗]σ ]
becauseC∗ − C ≥ 0 by (6.9). On the left-hand side, the middle term goes to 0 as
α → ∞ by (3.17), and the last term goes to 0 as well, due to (1). On the right-hand
side, the first term goes to 0 asα → ∞ due to (1) and the second by using (1)
and dominated convergence, becauseK∗

T ∈ L1(QE). Sinceη(α) = ψ(α) − ψ∗,
we thus obtain that

lim sup
α→∞

EQE

[∫ ρ

σ
η(α)tr�η(α)dD

]
= limsup

α→∞
EQE

[∫ ρ

σ
ηu(α)tr d〈S〉u ηu(α)

]
≤ EQE

[[K∗]ρ − [K∗]σ ]
(6.18)

for all stopping timesσ ≤ ρ.
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Now we use Lemma 20 below (withA = K∗ andβ = D) to obtain, for any
δ, ε > 0, finitely many pairwise disjoint intervals]]σk, τk]], k = 0,1, . . . ,N , such
that 0< σk ≤ τk ≤ T and

µ

(
N⋃

k=0

]]σk, τk]]
)

= EQE

[
N∑

k=0

(
Dτk

− Dσk

)]
(6.19)

≥ EQE [DT ] − ε

2
= µ(�) − ε

2
,

N∑
k=0

EQE

[ ∑
σk<t≤τk

(�K∗
t )2

]
≤ δε

2
.(6.20)

Note thatEQE [(K∗
T )2] < ∞ follows from (4). Applying the estimate (6.18) for

eachσ = σk , ρ = τk and taking the sum fromk = 0 toN , we have from (6.20) that

limsup
α→∞

N∑
k=0

EQE

[∫ τk

σk

η(α)tr� η(α)dD

]
≤

N∑
k=0

EQE

[ ∑
σk<t≤τk

(�K∗
t )2

]
≤ δε

2
.

Thus, there exists someα0(δ, ε) such that, for allα ≥ α0(δ, ε), we have

N∑
k=0

EQE

[∫ τk

σk

η(α)tr�η(α)dD

]
≤ δε

2
,

which implies by Markov’s inequality that

µ

((
N⋃

k=0

]]σk, τk]]
)

∩ {η(α)tr� η(α) ≥ δ}
)

≤ ε

2
.

Combining this with (6.19) implies that

µ
({η(α)tr�η(α) ≥ δ}) ≤ ε for all α ≥ α0(δ, ε)

so thatη(α)tr�η(α) converges to 0 inµ-measure. This completes the proof.�

REMARKS. (1) The pointwise convergence in (1) of Theorem 19 has also been
given by Rouge and El Karoui [33], although it is not quite clear from their proof
how (6.10) comes in. In addition to a uniform result int , we also provide here in
(3) and (5) the convergence of the strategies and in (4) of the residual terms in the
BSDE forC(B;α).

(2) To the best of our knowledge, Theorem 19 is the first result in continuous
time on the convergence of strategies in utility indifference valuation. For related
work in a one-period model, see [6].

In the proof of Theorem 19, we have used the following technical result
originally due to Peng [31] for the caseβt = t .
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LEMMA 20. Suppose that the filtrationF is continuous. LetA = (At )0≤t≤T be
an increasing RCLL process withA0 = 0 andE[A2

T ] < ∞, and letβ = (βt )0≤t≤T

be a continuous increasing process withβ0 = 0 and E[βT ] < ∞. Then for any
δ, ε > 0, there exist finitely many stopping timesσk, τk, k = 0,1, . . . ,N , with
0< σk ≤ τk ≤ T and such that

(i) ]]σi, τi]]∩ ]]σk, τk]] = ∅ for i 	= k,

(ii) E

[
N∑

k=0

(
βτk

− βσk

)] ≥ E[βT ] − ε,

(iii)
N∑

k=0

E

[ ∑
σk<t≤τk

(�At)
2

]
≤ δ.

PROOF. This is done almost exactly as in [31]. Continuity ofF ensures that
all stopping times are predictable, hence, foretellable, so that Lemma A.2 of [31]
still holds. Continuity ofβ guarantees that we can obtain (ii) as in [31].�

Acknowledgments. M. Schweizer thanks Dirk Becherer and Susanne
Klöppel for helpful discussions, and Christian Bender for suggesting to use the
result by Peng [31].
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