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We study the dynamics of the exponential utility indifference value
processC(B; «) for a contingent claimB in a semimartingale model with
a general continuous filtration. We prove tliaiB; «) is (the first component
of) the unique solution of a backward stochastic differential equation with a
guadratic generator and obtaBMO estimates for the components of this
solution. This allows us to prove several new results aliQyB; o). We
obtain continuity inB and local Lipschitz-continuity in the risk aversion
uniformly in ¢, and we extend earlier results on the asymptotic behavior as
a \y0ora / oo to our general setting. Moreover, we also prove convergence
of the corresponding hedging strategies.

0. Introduction. One of the important problems in mathematical finance is
the valuation of contingent claims in incomplete financial markets. In mathe-
matical terms, this can be formulated as follows. We have a semimartisgale
modeling the discounted prices of the available assets and a random vdtiable
describing the payoff of a financial instrument at a given timeérhe gains from
a trading strategy? with initial capital x are described by the stochastic inte-
gralx + [ dS =x+ G(¥). If B admits a representation &= x + G () for
some paif(x, ¢), the claimB is called attainable, and its value at any time T
must equalr + Go,(¢) due to absence-of-arbitrage considerations. Incomplete-
ness means that there are some nonattaingpénd the question is how to value
those.

In this paper we use the utility indifference approach to this problem. For a given
utility function U and an initial capitak, at timez, we define the valu€; (x;, B)
implicitly by the requirement that

esisu;E[U(x, +Gi ()1 F] = esisurE[U(xt +Ci(x1, B)+ G 7(9) — B)| F1].

In terms of expected utility, we are thus indifferent between selling or not selling
the claim B for C;(x,;, B), provided that we combine each of those alternatives
with optimal trading. Our goal is to study the dynamic behavior of the process
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C = C(B; a) resulting from the exponential utility functiofi (x) = —e~** with
risk aversionx € (0, co).

The existing literature on exponential utility indifference valuation can be
roughly divided in two groups. A larger set of papers studies static questions;
they examineCo(B; ), the time 0 value, in models of varying generality. A good
recent overview with many references is given by Becherer [3]; [17] contains a
slightly different approach and additional references. The second set of papers
studiesC(B; o) as a process; this is done by Rouge and El Karoui [33] in a
Brownian filtration, by Musiela and Zariphopoulou [29] or Young [35], among
several others, in a Markovian diffusion setting or by Musiela and Zariphopoulou
[30] in a binomial model. In the present paper, we work in a general continuous
filtration and obtain several new results on the dynamic properties of the process
C(B; «) and its asymptotic behavior as the risk aversiogoes to 0 or tao. In
particular, we provide convergence results for hedging strategies.

The paper is structured as follows. Section 1 lays out the model and provides
some auxiliary results mostly known from the literature. We use these to represent
C(B; «) as the dynamic value process of a standard utility maximization problem
with a random endowment and formulated under a suitable meagfireThis
allows us, in Section 2, to extend the static properties knowrCigiB; o) very
easily to anyC,(B; «). Moreover, we easily obtain the existence of an optimal
strategy for this stochastic control problem. Section 4 showsdli&t «) is the
unique solution of a backward stochastic differential equation (BSDE) with a
guadratic generator. In contrast to a similar result by Rouge and El Karoui [33],
our derivation directly uses the martingale optimality principle and the existence of
an optimal strategy. Section 3 prepares for these results by providing a comparison
theorem for a more general class of BSDESs driven by a martingale in a continuous
filtration and having quadratic generators. The key step here is Proposition 7,
which shows that the martingale part of any bounded solution of a BSDE with a
generator satisfying a quadratic growth condition belondgM®@. This underlines
the importance oBMO-martingales when dealing with BSDEs with quadratic
generators. For the particular generator corresponding to the BSDE #irw),
we also obtain estimates on tB&O norms of the components of the solution.

Section 5 exhibits additional properties of the valuat®(B; o). We obtain
time-consistency, continuity i® and local Lipschitz-continuity im¢, both of the
latter uniformly in¢. Finally, Section 6 studies the asymptotics ©fB; «) as
a goes to 0 or toco. For o \ 0, we prove generally thaf;(B; «) decreases
to Eyc[B|F] at a rate ofw, uniformly in ¢, where QF is the minimal entropy
martingale measure fd; this is a simple extension of a result due to Stricker [34].
With the help of our BSDE description, we are, moreover, able to prove the novel
result that the corresponding hedging strategiés) converge to the strategy”
which is risk-minimizing undeQ? in the sense of Féllmer and Sondermann [15].
Fora / oo, C/(B; ) increases generally to the superreplication p¢¢B) =
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esssup EglB|#], uniformly inz; this generalizes a result due to Rouge and El
Karoui [33] for the case of a Brownian filtration. In addition, again using the
BSDE, we also prove the convergence of the corresponding hedging strategies
¥(a) to the superreplication strategy™ from the optional decomposition

of C*(B).

1. Basic concepts and preliminary results. In this section we introduce the
notion of the utility indifference value process for a contingent claim and recall
some basic facts for the case of an exponential utility function.

We start with a probability spacg2, ¥, P), a time horizonT € (0, co] and
a filtration F = (¥;)o</<r satisfying the usual conditions of right-continuity and
completeness. Hence, we can and do choose RCLL versions for all semimartin-
gales. Fix anR?-valued semimartingal§ = (S,)o<;<7 and think of this as the
discounted price proceder d risky assets in a financial market containing also a
riskless asset with discounted price constant at elfinancing trading strat-
egyis determined by its initial capitat € R and the numbers; of shares of
asseti,i =1,...,d, held at timer € [0, T]. Formally, ¢ is in the spacd.(S) of
F-predictableS-integrableR¢-valued processes so that the (real-valued) stochastic
integralsG, ,(9) := [} ¥, d S, are well defined. They describe the gains or losses
from trading according t@ betweery andu > . The wealth at time of a strat-
egy (x, v) is x + Go(¥) and we denote by (¢) the running stochastic integral
procesGo..(¥). Arbitrage opportunities will be excluded below via the choice of
a suitable spac® of “permitted” trading strategies.

Now let U :R — R be a utility function andB € L°(F7) a contingent claim
that is, a random payoff at tim& described by theFr-measurable random
variable B. In order to assign t® at some date € [0, T] a (subjective) value
based on the utility functio®’, we first fix an¥;-measurable random variabie
Then we define

VP (x;) :=essSUE[U (x; + G, 7 () — B)|F7],
9eO
the maximal conditional expected utility we can achieve by starting atstiwith
initial capitalx,, using some strategy € ® on (¢, T] and paying oui3 at timeT .
The utility indifference value, (x;, B) at timer for B with respect taJ andx; is
implicitly defined by

(1.1) Vo(x,) = VB (x; + Ci(x, B)).

This says that starting witty, one has the same maximal utility from solely trading
on (¢, T1 as from sellingB at timet for C,(x;, B), again trading and then paying
out B at the final datd".

REMARK. Variants of the above notion of utility indifference value have
been known and used for a long time. lIts first appearance in a form that also
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accounts for the presence of a financial market is usually attributed to Hodges
and Neuberger [20]. The resulting valuation has been studied extensively in recent
years and we shall provide some more references when giving more specific
results. One good starting point with a long literature list is [3]. However, most
papers only define this value for= 0 and with %y trivial and thus obtain one
mapping from (random payoff8 in) L°(¥7) to R. Exceptions are papers set in
Markovian frameworks where the stochastic proce§s&sc) andC (x, B) can be
represented via functions of the state variables; see, for instance, [29] or [35] for
recent papers with more references to earlier work. There is also some literature
on dynamic versions of this valuation and their properties; see, notably, [33] or
[3, 4]. But in contrast to our approach, these authors use the definition (1.1) only
for t = 0 and another one fare (0, 7], and they do not argue (the fact) that their
definitions are equivalent to (1.1) for all

To pass from the above formal definitions to rigorous results, we now choose
one particulartU and a correspondin@. Throughout the rest of this paper, we
work with theexponential utilityfunction

U(x) =—exp(—ax)
with risk aversionx € (0, c0). We assume that
S is locally bounded,

denote byP, := {Q ~ P|S is a localQ-martingalé the set of all equivalent local
martingale measures férand assume that

Pe, s :={Q € P.|H(Q|P) < 00} # 2.
Finally, we define the space of our trading strategies as
0 := {9 € L(S)|G(¥) is aQ-martingale for allQ € P, }.

For future use, we introduce the terminologyritnal” for any problem where
we optimize overd € ® and “dual’ for any problem where we optimize over

Q S Pe,f-
For the contingent clain®, we assume that

BeL®:=L>®P).

We make this strong assumption because we want results for arbitrary risk aversion
parametersy. It also has the benefit that our setup fits comfortably into the
framework of Delbaen et al. [8]. The measufg introduced there via Pp :=
conste*® d P has the samé? spaces a®, and our spac® here is the spac®;

from [8].
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With the above choices, the process&%(x) andC (x, B) are well defined for
any bounded adapted processaand we get theexponential utility indifference
value processis

1. vEo
Ci(B) = _log 7 (0)

== Iog(ess surE[—e‘“(vaT(ﬂ)‘BNﬂ]/ ess SUE[—e CrT) |%]>,
o ved® Ved

independently of the initial capital; at timez. This yieldsC(B) in terms of the
solutions of two primal problems, but it will be more useful to rewrite this in terms
of just one optimization problem. To that end, we introduce the process

- _ 1. 79
(1.3) VE .= essmeQ[—Iog—T—B‘?,], 0<r<T,
QcP, ¢ o ZtQ

whereZ €2 denotes the density process@fwith respect taP. For B =0, V0 is the
dynamic value process associated to the problem of findingnihenal entropy
martingale measure

0F :=argminH(Q|P).
QEPe,f

In the same wayV ? is the dynamic value process corresponding to the problem
of finding

08 :=argminH (Q|Pp),
QG[P’e’f

where P3 is the measure with density const® with respect taP.

PrROPOSITION 1. If ZE := Z2" denotes the density process OF with
respect toP, then

(1.4) ZE = cpexp(Gr (9 F))
for some constantg € (0, co) and some}£ € ©, and

~ ZE
(1.5) aV,O:EQE[IogZ—Z‘?,]:Ioch+Gt(1‘}E)—IogZ,E, 0<t<T.
t

A completely analogous result holds BP"" and V5.

PROOFE The representation (1.4) is well known from [16] and [19]; see
Theorem 2.1 of [23] who also prove that the integrafdis in ©. (1.5) follows
from Proposition 4.1 of [23] and (1.4), and the last assertion is obtained by
rewriting everything undePp instead ofP. [

The next result provides the link between the primal and dual processes
VB8 andV 5. This is a dynamic version of the results in [8].
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PROPOSITION2. For fixeda, the processe¥ 5 (0) (for x = 0) and V5 are
related by

(1.6) VE(0) = —exp(—a V5.
As a consequengcthe utility indifference value can be rewritten as
C/(B)=-VB 4 VP

1.7) 1 1
= essSUfE [B - — Iog Q ‘ft] —esssuiEy [—— log—~ Q ‘h]
QeP, ¢ QeP, ¢

ProOOF Fort =0, (1.7) is just Theorem 2.2 in [8] whose assumption (2.13)
has been shown to be superfluous by Kabanov and Stricker [23]. For general
t € [0, T], the argument is completely analogous; it uses Proposition 1@/t
instead ofQf. O

The representation in (1.7) give€3(B) in terms of the solutions of two dual
problems. The desired representation via one single primal problem follows via
Proposition 1.

ProPOSITION3. The exponential utility indifference value process can be
written as

1 . B
(1.8) C/(B) = alog eﬁses(_;nfEQE[e (B=GrrO)| 7], 0<t<T.

PROOF. If we define the procesg := cx exp(G (¥ F)), then (1.6) and (1.5)
tell us that—V°(0) = exp(—aV® = —2%/Z, and Zr = Z£ by (1.4). Hence,
(1.2) yields

E 5
= —€ss SU[E|:—e_°‘(Gr,T(l7)—B) Zy _Zt ‘jc,t]
PESC)] ZtE Zr

= essinfE e p[e?B=GrTON=Gir0") g

Becausey — v’ := 9 + £ /a is a bijection from® onto itself, the assertion
follows. O

REMARK. Proposition 2 shows that our definition via (1.1) of the utility
indifference valugrocessagrees with that used in Rouge and El Karoui [33]; see
the proof of their Theorem 5.1. Proposition 3 is important because it expresses the
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utility indifference value procesS(B) as the dynamic value process of a standard
problem of utility maximization with a random endowmem formulated under
the minimal entropy martingale measug# . This provides in Section 4 below
the link between our dynamic description 6f B) and the recent results of Hu,
Imkeller and Muller [21].

2. Elementary properties of the indifference value. In this section we list
some properties of the exponential utility indifference valuation. These are static
properties in the sense that we consi@gfB) for some fixed < [0, T]. Our main
point is that Propositions 1-3 allow us to extend results known$o0 very easily
to arbitraryr € [0, T']. To indicate the dependence on the risk aversion paramaeter
as well, we writeC, (B; «). SinceP is fixed, we writeL>° (F;) for L°°(¥;, P).

ProPoOSITION4. For fixedt € [0, T] and @ € (0, o0), the mappingB +—
C,(B; a) has the following properties

(PO) It mapsL®°(F7) into L*°(F;), and we have-||B|lc < C¢(B; @) < +|| Bl 0o-

(P1) ltisincreasing inB: If B < B’,thenC;(B; @) < C;(B’; a).

(P2) It is F;-measurably convex iB: we haveC;(AB + (1 — A)B’;a) <
ACy(B; @) + (1 — A)C/(B'; ) for any A € LO(F;) with values in[0, 1] and
any B, B’ € L>®°(¥r).

(P3) It is translation-invariant with respect t&.°°(#;) in the sense that we have
Ci(B + x5 ) = Cy(B; a) + x; for anyx, € L= (F).

PROOF  SincelU(z — B) = U(z)e*B, (P0) is obtained by using the definition
of C;(B; o) via (1.1). (P1)—(P3) follow from the representation (1.7) in Proposi-
tion 2 because each functional in the definition (1.3)/4f has the claimed prop-
erties. OJ

REMARK. In view of Proposition 4, we might calB — C,(B; @) a convex
monetary utility functionalfrom L*°(¥7) to L°°(¥;), because the mapping
B — C,(—B; «a) satisfies the obvious generalizations of the axioms for a convex
measure of risk as introduced in [13]; see also [5] for such a suggestion.

While we expect to obtain (P0)—(P2) fa@r(B) with any reasonable utility
functionU, the next properties are linked to the exponential case.

PrRoOPOSITIONS. For fixedt € [0, T], the mappingB — C,(B; «) has the
following properties

(P4) It does not depend on the initial capital in the definition(1.1).

(P5) It is volume-scaling in the sense th&}(B8B;«) = BC,(B; Ba) for any
B € (0, 00).

(P6) ltis increasing in the risk-aversion: If « < ', thenC;(B; a) < C;(B; ).
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(P7) It satisfies C;(yB;a) < yC:(B;a) for y € [0,1] and Ci(yB;a) >
yCy(B; a) for y € [1, 00).

ProOF (P4) is obvious, (P7) follows directly from (P5) and (P6), and these
are proved via the representation (1.8) in Proposition 3; (P5) use®tisa cone,
(P6) uses Jensen’s inequality.]

The preceding results are in no way original; they go back to Rouge and
El Karoui [33] and Becherer [3] who formulated and proved them fer0. These
authors also gave asymptotic results for large and small risk aversignst and
a N\ 0) and we shall prove below versions of those results for arbitrarf0, T']
with the help of a description of the proce§S;(B; o))o<;<7 Via a backward
stochastic differential equation. Before we embark on that aspect, however, we
give two more properties af, (B). The first says that anything which is attainable
at zero cost by self-financing trading betweeand T has zero value and does not
affect the valuation ofB; the second says that (B) always lies in the interval
of arbitrage-free prices foB. Such results for = 0 have already been given by
Rouge and El Karoui [33] and Becherer [3], among others; see also [17].

LEMMA 6. Foranyr € [0, T] anda € (0, o0), we have the followirg

(1) Forany® € ©, C;(G,.r(®);a) =0andC,(B + G.7(¥); a) = C;(B; a).
2) essinbep&f Eg[B|#:1 < C/(B;a) <ess SUBep, , Eo[B|#:].

PROOF (1) SinceG(¥) is aQ-martingale for any0 € P, ¢, this is immediate
from (1.7).
(2) We know from (1.7) and (1.3) that

1 z7 50

C;(B; ) =ess sup<EQ[B|5~‘,] — —(EQ[Iog—Q’?‘,] —aV, >)
QE]P’e,f (o4 Zt

By the definition of V0 in (1.3), the term in the inner brackets is always

nonnegative, and it equals zero for= Q% by Proposition 1. The first fact gives

the upper bound in (2), the second one the lower bound.

3. A comparison theorem and some results for a BSDE. This section
studies a family of backward stochastic differential equations (BSDES) that play
an important role in a dynamic description of the exponential utility indifference
value. We work on a filtered probability spa¢e, #,F, R) and we assume
throughout this section that

the filtrationTF is continuousthat is, all local martingales are continuous.

We fix a (continuous)R?-valued localR-martingaleM null at 0 and denote by
BMO[M] the space of alR¢-valued predictablé/-integrable processéssuch
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thath - M := [hdM is in BMO(R), the usual martingale spa&MO for the
measureR. Note that{(M) is a (@ x d) matrix-valued process.
Let us consider the semimartingale backward equation

t t t
@Y Yi=Yor [ 14 fs.20+ [ sdtb)+ [ Zoaut, +L,
with the boundary condition
(3.2) Yr = B,

where 1= 1... D" eRY, f:Qx [0, T] xR? — R? is 2 x B(R?)-measurable,
g is a real-valued predictable process ahd L (¥, R). We call(f, g, B) the
generator of (3.1) and (3.2). Bolutionof (3.1) and (3.2) is a triple€Y, Z, L),
whereY is a real-valued speci&-semimartingaleZ is anR“-valued predictable
M-integrable process and. is a real-valued localR-martingale strongly
R-orthogonal toM. Sometimes we call’ alone the solution of (3.1) and (3.2),
keeping in mind thaZ - M + L is the martingale part of .

Our first result and its subsequent applications show the importance of
BMO-martingales when dealing with BSDEs with quadratic generators; see also
[21, 28] or [26].

PROPOSITION 7. Suppose there are constantss, C, and a predictable
processk € BMQ[M] such that

a3 f Z{d(M)s Zs + f K d{M); K — / L7 d(M)s f (s, Zs)
is an increasing process for af§f-valued predictablé\/-integrableZ,

(3.4) |g:| < Cg, R-as, foreachr € [0, T'].
Then the martingale part of any bounded solutiorf®fl)and(3.2)is in BMO(R).

PROOF LetY be a solution of (3.1) and (3.2) ard> 0 a constant such that
(3.5) Y] <ec, R-a.s., foreach € [0, T].
Applying Ité’s formula between a stopping timeandT and using (3.5) yields

e\ﬂ\c > eﬁYT _ e,BYz
B% [T
[ v graun, 7, e
T

(3.6)
+p / "B My, £5, Z) + B f Vg d(L),

T T
+,3/ eﬂYszdeerﬁ/ PV dLy,
T T
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whereg € R is a constant yet to be determined.
If Z- M andL are trueR-martingales, taking conditional expectations in (3.6)

gives

B? d

Er [/ P 7V d(M) Z, J@f}
T

5 37[} +ﬁ—2ER[/rT PV d(L),

2
7|

T
<y 1BlER| [ P10 d ), £ 5. 20)

7

Using the conditions (3.3) and (3.4), we can rewrite this estimate as

(5_2 _ |,3|cf>ER UIT P2V d (M), Z, ?,]

7]
7]

B2 T
4 (— _ |ﬂ|cg>ER [/ 5 d(L),
2 .
T
§€|ﬂ|c+|,3|ER[ [ e xEamm,
T
For B :=4C :=4maxCy, C,) > 0, we obtain from (3.7) that
T
f‘”,}—i—ER[_/ PV d (L),
T

< e4Cc(1 + 4E||K . M“%MO(R))’

+ |ﬁ|ER[/rTeﬁYf|gs|d<L>s

(3.7)

< P14+ |BI1IK - MIIZvo)-

T
4€Z(ERU PV 2 d(M), Z,
T

)

and if we use (3.5) to writef¥s > e~1Blc = ¢=4C¢ we finally get

T
E[/ ZVd(M)s Z,
T

F|+ EUL)r (L1
(3.8) o _
- L+ AC|K - Mlgvory)

- 4c? ’
R-a.s. for any stopping time. Hence,Z - M andL are inBMO(R).

For generalz - M and L, we stop atr, and apply the above argument with
replaced byr, to get (3.8) also withT’ replaced byr,. Letting n — oo then
completes the proof.[J

We are now in a position to give a comparison theorem for the BSDE (3.1).
Although we need this result only fgf = 0, we formulate and prove it in general.



DYNAMIC EXPONENTIAL UTILITY INDIFFERENCE VALUATION 2123

THEOREM 8. Suppose the generator§f’,g’, B'), i = 1,2, satisfy
the assumptions of Propositioh) and Y?, i = 1, 2, are corresponding bounded
solutions of(3.1) and (3.2). (n particular, we assume here the existence of these
solutions) Suppose also thatB! > B2 R-as; that the process
fl” Vs (FL(s, Zs) — f2(s, Zy)) is decreasing for anyZ € BMO[M]; that
gl<g? R ® (L)-a.e.; and that eitherf® or f2 satisfies the following condition

For any Z1, Z? e BMO[M], there exists some € BMO[M] such that
3.9
(3.9) /1” s(f(s,Zh = f(s,2%) = f;«ﬁ%l(M)s (zl-72).
Theny! > Y? R-as.forall € [0, T].
PROOF By taking differences, we obtain
yl-v2—}-vd
—/ 1 a(m), (15, 22) — f2Gs, 22) +/<gs—gs>d<L1>
+ / 17 d(M), (115, 28 — £is. 22) + f g2d((LY), - (L2),)
+/ (Z} — 23 dM, + L} — L2
0

Supposef! satisfies (3.9). According to PropositionZ - M, Z2- M, L1, L? are
all in BMO(R). Hence, (3.9) and (3.4) imply that

N;:—/stMs —/gfd(L;LJrLf)

is in BMO(R), and soQ defined bydQ = &(N)r dR is a probability measure
equivalent toR; see Theorem 2.3 of [24]. If

N:=2Z'-7%> M+L*—L?
denotes theR-martingale part ot ! — ¥?2, (3.9) yields that
yt—y2—(vg-¥§) — / 1" d (M) (fH(s, 22) — f2(s. ZD))
- [t = gauh,

G100 — [ 1 awn,(rhs. 28 - fH6. Z2) + [ ga(Lt — (L) + N

Nt [ aanzi -2+ [ @aqrt) - 12y

=N —(N,N)
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is a local 0-martingale by Girsanov's theorem and even BMO(Q) by
Theorem 3.6 of [24], sinc& is in BMO(R) by Proposition 7. Thus, we can use the
Q-martingale property and the boundary conditidps= B’ to obtain from (3.10)
that

yl—v?

(3.11) = EQ[Bl — B*— le”d<M>s(f1(s, 7% — f2(s, %))

t
%}

REMARKS. (1) The assumption (3.3) is a quadratic condition Zip This
becomes more apparent if we use the strong order on increasing processes (where
A < A’ means thatt’ — A is increasing) to rewrite (3.3) more compactly as

T 1 2 1
—[(&—&M@n

which implies the assertion.[d

/EMMMfmZM56ﬂzwn+va»

(2) For d =1, the BSDE (3.1) and the above conditions gntake a
simpler and more familiar form sincéVf) is then a scalar process. The term
(A" d(M)s f(s, Zg) in (3.1) reduces tof f(s, Zy)d(M)s;, the condition on
f*— £2 in Theorem 8 follows if f1(z,z) < £2(t,2); (3.3) boils down to the
quadratic growth conditionf (¢, z)| < K? + Cr z%; and (3.9) essentially means
that (with ¢/0:= 0)

fG,ZYH - f(, 2%

(3.12) 7

e BMO[M]  foranyZ!, Z? € BMO[M].

Note that this is fulfilled for functionals of the fornf(w,t,z) = D?(w) +
D}w)z + D?(w)z? with processe®?, D! in BMO[M] and a bounded predictable
processD? > 0. Alternatively, (3.12) holds iff (+, z) satisfies a global Lipschitz
condition inz andM is in BMO(R).

For later use, we consider the special case of the gene(@ter, B) with
a € (0,00) and B € L*(R). The BSDE (3.1) then takes the form (with
replacingZz)

t
(3.13) E=Y—%@h+AWM%+M,

and its solution with final conditioff; = B is denoted by Y%, v%, L%). We now
derive estimates on these quantitiesrasries.



DYNAMIC EXPONENTIAL UTILITY INDIFFERENCE VALUATION 2125

LEMMA 9. Forthe solutiongY?, ¢, L%) of (3.13)and (3.2) with generator
(0, -3, B), we have

(3.14) sup [ - Mllemocr) < 0,
a€(0,00)
(3.15) sup oL |Byor) < 00-
a€(0,00)

In particular, this yields

(3.16) sup |IL*|lBmocr) < 00,
ae(0,00)
. o B
(3.17) a“_)moo IL* lsmocr) = O.

PROOF  We go back to the proof of Proposition 7 and note that=0, K =0
in (3.3) andC, = 5 in (3.4). Hence, we obtain from (3.6) as for (3.7) with= —1
andc = || B|| o that
;rf]
1+

T“ e 1Bl Ep[(LY) 7 — (LY) ;| F],

T
Ml = Ze 0 [ [T, v

where we have used in (3.§)g; = 5 instead of the cruder estimajgg, >
—|BIC; = —5. The above estimate yields

1 - MllEvor) + A+ IL 1Byor, < 267181
uniformly for all @ € (0, c0).

Thus, we obtain (3.14) and (3.15), and (3.16) and (3.17) then follow immediately.
O

(3.18)

REMARK. One can also deduce (3.15)—(3.17) by taking conditional expecta-
tions directly in (3.13). We have chosen the above argument since it gives (3.14)
at the same time.

PROPOSITION10. The solutionY* of (3.13)and (3.2)is locally Lipschitz-
continuous with respect o, uniformly inz: For anyy > 0, there is a constank’,
depending only o such that

(3.19) sup |[Y® —YY| <K,la—a'| foralla,a € (0,y].
0<t<T

PrROOF We go back to the proof of Theorem 8 with the two generators
(0,—%, B) and(0, —%, B). Then (3.11) yields
oa—ao

(3.20) YY -y = 5 Eol{L*)r = (L) F),
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whereQ is now given by

/ /
szg(a—( “+L°“)> dR=:8<a—L(o¢,o/)> dR =: Zr(a. o) dR.
2 T 2 T

Due to (3.16), we have

o ,
sup | =L(a,a")

a,a’€(0,y]

(3.21) BMOR)

5% sup (||La||BMO(R)+HLa/”BMO(R))<OO'
a,a’€(0,00)

By Theorem 3.1 of [24]Z («, «’) therefore satisfies the reverse Holder inequality
R, (R) for somep € (1, 00), that is,

Zr(a, o) \P| »
OiuSpT ER[( Zi(a, ) ) )h} = ()

for a constant,; this holds uniformly for alle, @’ € (0, y] since (3.21) is also
uniform in thosex, «’. Moreover, the energy inequalities (see [24], page 28) yield

(3.22) Osup ER[((L*Yr — (L))" F:]1 < n!||L"‘||§”MO(R) forall n e N.
<t<T

So if we choose: with -7 < p, Bayes' rule and Holder’s inequality give

o o Zr(a, ) o o
sup Egl(L%)7 — (L%)|F]= sup ER[—,«L ) — (L »)]%}
0<t<T 0<t<T Zi(o, ')
< cafn-y SUP (ERLUL)T = (L))" 172) "
<t<

Combining this with (3.20), (3.22) and (3.21) yields (3.19)J

A closer look at the proof of Theorem 8 shows that we can also write down a
guasi-explicit expression fdre.

ProPOSITION 11. The solution (Y%, v“, L%) of (3.13) and (3.2) with
generator(0, —%, B) can be represented as followswe define the measu@®
byd Q% :=Z7dR := &(5L%)r dR, then

Y = Ege[B|#]
(3.23) _ [8((01/2)L"‘)T
~ flewsaLy,

and % is a predictable density ofY%, M) with respect to(M), that is
d(Y®, M) =d(M)y“.

B’?}} R-a.s. for eachr € [0, T],



DYNAMIC EXPONENTIAL UTILITY INDIFFERENCE VALUATION 2127

PrROOFE For the two generator®, —%, B) and(0, —%, 0) with corresponding
solutions(Y?, %, L*) and (0, 0, 0), the martingaleV in the proof of Theorem 8
reduces td5 L*. Hence, (3.23) follows from (3.11), and the second assertion then
from the BSDE (3.13). (I

Note that the representation (3.23) Bf is not as simple as it may appear,
because the measu@" still involves the component® from the solution triple
(Y%, y“, L*). Since this depends oB via the final condition (3.2), (3.23) is, in
particular, not linear irB in general.

4. Dynamic description of the utility indifference value. In this section we
study the dynamic behavior of the exponential utility indifference value over time.
We characterize the proceS$B; «) as the unique solution of a BSDE in a general
continuous filtration which need not be generated by a Brownian motion, thus
extending earlier results by Rouge and El Karoui [33]. Given the characterization
of C(B; «) in Proposition 3, we can also view our BSDE as a generalization of the
one obtained independently by Hu, Imkeller and Miller [21]. Finally, our BSDE is
also a continuous-time analogue of the recursive description in Theorem 5 of [30],
obtained in a particular discrete-time setting.

To prove existence and uniqueness of a solution to their BSDESs, Rouge and
El Karoui [33] and Hu, Imkeller and Miiller [21] used results of Kobylanski [25]
on existence and comparison for quadratic BSDESs driven by a Brownian motion.
But for BSDEs with quadratic generators and driven by martingales, there are no
general results similar to those of Kobylanski [25]. Chitashvili [7] and El Karoui
and Huang [11] established the well-posedness of BSDEs driven by martingales
if the generators satisfy global Lipschitz conditions, but this is too restrictive for
our needs. We prove here existence of a solution by directly showing ttBate)
satisfies a quadratic BSDE, and we use the comparison theorem from Section 3 to
obtain uniqueness.

We start by recalling from Proposition 3 that the exponential utility indifference
value proces€’(B; «) can be represented as

1 .
(1.8) C/(B:a)==logessiniE e [e* P~ 7| 7], 0<r<T.
o Pe®
This shows thae*€(8:®) is the dynamic value process of the stochastic control
problem
: minimize E | e*'*~ over ally € ©.
4.1 E ye[e*B=CT() 9 e ®

Using similar arguments as in [8], one can show that an optimal stratégy®
for (4.1) exists. Thenartingale optimality principleakes here the following form.

PROPOSITION12. Suppose thaf is locally boundedP, r # @ andB € L.
Fix o > 0.
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ere exists an process = (J?)o<:<7 such thatfor eacht € [0, T,
(1) Th i RCLL $ = (JB)oz< h thagf hr € [0

(4.2) JE = essinft g [*B=Cr 7], P-as,

JB is the largest RCLL processwith J; = ¢*B, P-a.s. such that/e=*¢®)
is a QF -submartingale for eaclt € ©.
(2) The following properties are equivalent

(a) 9* € © is optimal for(4.1),that is J& = E i [e*B~070)],
(b) v* € © is optimal for all conditional criteriathat is,

JE = Ege[e* B0t 7], P-as, for each € [0, 1.
(c) The procesd Be—2GW") with 9* € © is a QF-martingale

(3) Due to(4.2) and (1.8), we can and do choos§|og JB as an RCLL version
for C(B; «). For any stopping times < t < T, we then have the dynamic
programming equation

1 i )
(43)  Co(Bia) =~ logessintE i [ B:)=Coc ) £ ], P-as.
o ve®

PrROOE This is a standard argument like in [12] or [27] and therefore omitted.
O

Because we have an optimal strategye ®, Proposition 12 yields that
1 1 ,
C(B;a)==logJ® = Zlog(JBe=#C") + G(9*)
o o

is a QF-supermartingale; see Proposition 6 of [30] for an analogous result in a
particular discrete-time setting. To obtain more structuredoB; «), we now
assume that

I is continuous;

this implies, in particular, thas$ is continuous. The Doob—Meyer decomposition
of C(B; ) is

C(B;a)=Co(B;a)+ MB (@) — AB(x) underQ¥,

where M8 (a) € Mo 0c(QF) and A®(a) is adapted, continuous and increasing.
Using the Galtchouk—Kunita—Watanabe decompositionMdt(«) with respect
to S underQf, we get

(4.4) C(B;a)=Co(B;a) — A% (a) +/<p3(a)ds+m3(a)

with m8 (@) € Mo 10c(QF) satisfying(m? (), S) = 0.
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THEOREM 13. Suppose thaP, ; # @, B € L* andF is continuous Then
the exponential utility indifference value proceSéB; «) is the unique bounded
solution of the following semimartingale backward equation under the minimal
entropy martingale measu@?’ :

(4.5) Y, =Yo— 9 +/ Yy dS + Ly
with the boundary condition
(3.2) Yr =B.

[“Under Q£ means thatin the solution triple(Y, v, L), the procesd. is a local
QF -martingale stronglyQ £ -orthogonal toS.] Moreover v - S and L are both in
BMO(QE).

PROOFE (1) We first show thaf (B; «) satisfies (4.5) and (3.2). Applying It6’s
formula for Z(?) := ¢*(C(B;:0)=G@) gnd omitting the index, we have from (4.4)

Z" = 7
L) B, 2 (° B tr B o p
(4.6) “‘fo Z d(—As +§f0 (68 = 0" d(Sh (@f = 9+ S m >s)

+ local Q£ -martingale.

By parts (1) and (2) of Proposition 1Z(") is a Q¥ -submartingale for any € ©
and aQF-martingale for the optimal strategy*. Since Z(®) > 0, this implies
by (4.6) that

—AB 4 % /((pB —NHTA(S) (9 — ) + %(mB) is increasing
for any? € ® and vanishes fof*. Hence, it follows that

B _ e B ot B _ @ B
A —eﬁses(_gn(sz 9NTA(S) (9"~ 9) + % (m >)

4.7) o o

_%, B o ; B gnfr B _

= S+ Sessini[ (o7 = )" d(5) (0 — 9),
where we can take the ess inf with respect to the strong order. To prove that
4.8) A8 =Z(mB),

we define the stopping times, := inf{r > 0||G,(¢®)| > n}. Thent, / T
stationarily, P-a.s., and” := ¢®Ijj0 ., is in © for everyn. Hence, we get, for
anyt < T, that

o t
essinf’ / (08 = 2" d(S);s (0F =09 < 5 /O (@B — 9T d(S), (9P — o)

a [tV

=5 | @H'd(S)ef —0
Tn
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asn — oo, which implies (4.8). Combining this with (4.4) shows th&{B; o)
indeed satisfies (4.5), and it is clear that we also have the boundary condition
Cr(B;a) = B. The BMO property ofy - S and L follows from Proposition 7,
applied with the paifM, R) = (S, QF).

(2) We already know from Proposition 4 th@tB; «) is bounded by B| . The
unigueness of a bounded solution of (4.5) and (3.2) follows from the comparison
in Theorem 8, applied with the paiM, R) = (S, QF). O

REMARKS. (1) In comparison to the work of Rouge and EIl Karoui [33] and
Hu, Imkeller and Muller [21], our BSDE result in Theorem 13 is at the same time
more and less general. We are able to work in a general continuous filtration, but
we have so far not included any constraints in our strategies. For the case where
dS; = o dW; under an equivalent martingale measg@eandF is generated by
a Brownian motion, our BSDE (4.5) can be rewritten as

o
dy; = —Eln,ztlzdt—l—z;thE underQ¥®,

wherell, denotes the projection on ker,) = (range{a}r))L. This agrees with the
BSDEs of Rouge and El Karoui [33] and Hu, Imkeller and Mduller [21] in that
particular case.

(2) One advantage of our approach is that even in a Brownian filtration, we need
not invoke general results on quadratic BSDEs. This allows us to avoid restrictive
assumptions (like boundedness) on the coefficients of our model. In fact, our only
requirement is the natural condition that the minimal entropy martingale measure
OF exists.

(3) The proof of Theorem 13 shows, in particular, that the value of the infimum
in (4.7) is obtained by choosinlj= ¢ . Because we already know that an optimal
strategy?* € © exists, we conclude that* = ¢?, and, in particular, thap? is
in ®. Moreover, we also see from (4.4) that tfrecomponent of the solution to
the BSDE (4.5) is given by the optimal strategy for the utility maximization
problem (4.1).

(4) If we only assume that is continuous while the filtration is general, we
can still show thaC (B; «) satisfies the semimartingale backward equation

P t

(49) Y, =Yo— 5( (M —aAY, — 1)) ~ 2y + f Yy dSs + Ly
o O<s<t 2 0

with boundary conditionYr = B, where A? denotes the dual predictable

projection of a locally integrable increasing process We do not have a

comparison theorem for such equations, but one can prove uniqueness directly

by showing that any bounded solution of (4.9) coincides with the exponential

utility indifference value proces€(B; «). The main difficulty with (4.9) is that

the presence of the compensated sum of jumps makes it very hard to derive any

properties of the solutiof.
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Note that bothys and L in the BSDE (4.5) depend on the risk aversion
parametety. We shall indicate this by writing (&), L(«).

5. Dynamic and further properties of the indifference valuation. In this
section we derive further properties of the exponential utility indifference value
processC (B; o). While some hold generally, others rely on the BSDE description
in Theorem 13 and thus need continuityfaf This will be specified if necessary
so that the only standing assumptions in this section are that

S is locally bounded an®#,, ; # @.
We first prove continuity o (B; «) in B.

ProPOSITION14. Assume thaff is continuousIf (B"),en IS a bounded
sequence ir.*° such that(B") converges taB in probability for someB € L*°,
then for anyy > 0,

(5.1) sup sup |C/(B";a) —Ci(B;a)]— 0 in probability asn — oc.
ae(0,y]0<t<T

PROOF We go back to the proof of Theorem 8 and work there with the pair
(S, 0F) instead of(M, R) and the two generator®, —5%,B") and (0, -3, B).
The corresponding solutions af€ (B"; «), " («), L" («)) and (C(B; ), ¥ (),
L(a)) by Theorem 13. From (3.11), we get

Ci(B";a) — C1(B; @) = Egn(q)[B" — B|F:],
whereQ" () is given by
o

dQ"(«) = 8(2(L”(a) + L(a)))TdQE =: 7% (a)d QF.

The estimate (3.18) implies that

2
n 2
<r sup(ellB"lloe 4 llBllooy < oo,

(5.2) sup sud <
BMO(R) 2 neN

ae(0,y]neN

a
2 (L"(@) + L())

and so there exists, by Theorem 3.1 of [24], an expopentl, co) such that each
Z"(«) satisfies the reverse Holder inequam;](QE), that is,

Zr(a)\*
sup E [(T—> 37]5 L
Ogtng 0" Z?(a) ‘ ' (p)

for a constant,,. Note that because (5.2) is uniformsire N anda € (0, ], the
samep, ¢, work for all thesen, o simultaneously. Using now Bayes’ rule and
Holder's inequality, we get

Zi@ .,
ot Zhy "~ P15

<cp sup (Eyel|B" — BIY|F )Y,
0<t<T

sup sup |C/(B";a) —Ci(B;a)|= sup sup
ae(0,y]0<r<T ae(0,y]10=<t<T
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with g € (1, o0) conjugate top, and so (5.1) follows from Doob’s maximal
inequality. O

A natural assumption on a convex monetary utility functiodal L°°(F7) —
L*(#;) is a continuity of the following form: If a bounded sequen@"),
in L increases (or decrease#);a.s. to someB € L*°, then®,(B") increases
(or decreases)P-a.s. to®,(B). This is one possible extension to the dynamic
case of the semicontinuity requirements studied for static risk measures (or utility
functionals); see, for instance, [14] or [10] for a recent conditional version. For the
functional®q := Cy(-; @), the exponential utility indifference value at time 0, this
continuity could be deduced from the recent work of Barrieu and El Karoui [2];
see their Theorem 3.6 and Proposition 5.3. However, Proposition 14 is stronger in
that it provides such a result uniformly ire [0, T'] (and locally uniformly ine as
well).

The next result holds generally, that is, without continuity lof see also
Corollary 3.10 of [3].

ProPOSITION15. For eacha € (0, c0), C(B; «) is time-consistent in the
sense thatfor any B € L°°, we have

CU(C‘L'(B; a); 05) =Cy(B; ),

(5.3) N .
P-a.s. for any stopping times, T witho < t.

PROOF Because’;(B’; a) = B’ for any #;-measurables’, we obtain from
the dynamic programming equation (4.3) appliedte= C, (B; «) that

1 _ .
Co(B'; ) = = logessintE yi [¢* B0 =Cor £ 1 = C,(B;w),  P-as.
o ASC) 0

The financial interpretation of (5.3) is obvious: If we want to value the tifne
payoff B at timeo, we can either do this directly or first valg at timet > o
and then value the result, (B; «) at timeo. In both cases, the final valuation is
the same. As emphasized by Musiela and Zariphopoulou [30], such a consistency
property is highly desirable, and it is also known from the work of Rosazza Gianin
[32] that a nice BSDE representation is usually sufficient to derive it. For more
discussion and references on time-consistency aspects, we refer to [1].

As a direct consequence of Theorem 13 and Proposition 10, we also have the
following:

PrROPOSITION 16. If T is continuous the exponential utility indifference
valueC,(B; «) is locally Lipschitz-continuous ia, uniformly inz: For anyy > 0,
we have

sup |Cy(B;a) — Ci(B; )| < Kyl — o], P-as.
0<t<T
for all o, o’ € (0, y1, where the constark’,, depends only opr and B.



DYNAMIC EXPONENTIAL UTILITY INDIFFERENCE VALUATION 2133

6. Risk aversion asymptotics. In this section we study the behavior of the
exponential utility indifference value process as the risk aversion paramgters
to 0 or co. Earlier results on some aspects of this have been obtained by Rouge
and El Karoui [33], Becherer [3], Fujiwara and Miyahara [18] and Stricker [34],
among others; see below for more detailed comments. As before, our standing
assumptions in this section are that

S is locally bounded ani#, s # @.

6.1. Asymptotics fow \ 0. A simple adaptation of arguments from [34] gives
the following:

THEOREM17. ForeachB ¢ L*, we have
(6.1) IimoC,(B; o) = Eye[B|F] uniformly inz € [0, T'], P-a.s.
o—>

Moreoverwe have the estimate

(6.2) sup |C;(B: a) — Egr[B|#]| < aconst(B), P-as.
O<r<T

PrRoOF  With the notationZ; r := Zr/Z;, we know from Lemma 6 and the
representations (1.7) and (1.5) that, for ary[0, T'], « € (0, 00) andQ € P, ¢,

EQE[BLIE] <Ci/(B;a)
< Eg[B|F] — g(EQ[logZSTm] — Epellog Zf7| 7).
Moreover, the representation (1.4)8f implies that
EgllogZ /171 = EyellogZt 171 foranyQ eP, s,
and we have
log ZgT —logzf; = Iog(ZgT/ZfT) =log ZgT: 0*

wherez2: 2° denotes the density process@fwith respect toQ . Bayes’ rule
and the Fenchel inequalibz < O—ll(e"‘” + zlogz — 1) thus give

- NnE
Eg[BIFi1=Eps[BZ22 9 |7]
1 . nE . E
< ~(Egele*®| 7] + Ege[22% logz2. 2 |7] - 1)

1
=~ (Eqr[e”|Fi] + Eqllog 2% — log Zf; | ] ~ 1),
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and so we get

B -1
sup |C,(B; @) — Epe[BIF;1| < sup EQE[ —B’?fl]
0<t<T 0<t<T o

BecauseB is bounded, we have © eai—‘l — B < %|B||%, +conste?, P-a.s., and
s0 (6.2) and (6.1) both follow.

REMARK. The convergence lig,oC;(B; a) = Ee[B|F] has also been
obtained by Rouge and El Karoui [33] for arbitrary (but fixedj a Brownian
filtration, and forr = 0 by Becherer [3] and Stricker [34] in a general setting and
by Fujiwara and Miyahara [18] for geometric Lévy processes. Theorem 17 extends
the argument by Stricker [34], who also gave the convergence rate of @yrder
provide a uniform result for all € [0, T'].

If F is continuous, an alternative proof of Theorem 17 goes via the BSDE
description ofC(B; «) in Theorem 13. In fact, taking conditional expectations
betweerr andT in (4.5) and using (3.2) and the fact tha¥ («) d S andL(«) are
0F-martingales yields

Ci(B:a) = Ege[B|F:] + %EQEHL(O!))T — (L(c)): | F1).

Hence, (6.2) follows from the estimate (3.15) in Lemma 9. We now prove that we
also have convergence of the strategidea).

THEOREM18. Suppose thdf is continuous and write the Galtchouk—Kunita—
Watanabe decomposition 8fe L™ under Qf as

(6.3) VE = E,e[B|F] = V0E+/z//EdS+LE.
Then we have

: _ E ; E
(6.4) Olli)nofl/f(a)ds—/l// dS  inBMO(QE),
(6.5) IimoL(a) =LE in BMO(Q¥)

and more preciselywe even have

H/w(a)dS—/wEdS

< aconst(B).

2
+|IL(a) — LE|2
(66) BMO(QE) BMO(QE)
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PROOFE SinceF is continuous, all processes below are continuous. Using (6.3)
and Theorem 13, we obtain from Ité’s formula, omitting the argumeéntnda
for the moment, that

T
(Cr—VEY2=(C, —VE2 _2 / €, — vEYLa(Ly,
t 2

T E E
+/t W — W EYT d (S (W — )
6.7) .
+f d(L — L),
t

T

+2/ (Cy — Vf)d(/(w —sz)dS+L—LE) .

t u
Since VE is a boundedQ”-martingale, [ £ dS and L are in BMO(QF)
and thusQ*-martingales. Hence, the last term in (6.7) is like its integrator a
0F-martingale because the integrand is bounded. Taking conditional expectations
and usingCr (B) = B = V£ yields
g

}7] + (C(B; a) — VF)
|

<2||Bllocax SUp ”L(a)”éMO(QE) uniformly inz.
a€(0,00)

T E\tr E
Eje [/t (Yule) =¥, ) d(S)u(Yula) — )

T
+EQE[/t d{L() — LE), 2

r E
_ aEQE[ / (Cs(B: ) — VE) d(L(0)),s

< 2||Blloc @ E g [(L(ct)) T — (L(0))¢| 7]

Hence, (6.4)—(6.6) all follow from (3.16), and we also again recover (61)).

Loosely speaking, the interpretation of Theorem 18 is that, in the small risk
aversion limit, exponential indifference hedging converges to risk-minimization
under the minimal entropy martingale meas@€. To see this, note that the in-
tegrandy £ in the decomposition (6.3) a8 is (the risky asset component of) the
strategy which is risk-minimizing in the sense of Folimer and Sondermann [15]
with respect toQ£. Hence, Theorem 18 says that, for vanishing risk aversion
the gains procesfy («) dS from thew-optimal strategy for exponential utility in-
difference valuation converges to the gains process fronpthaisk-minimizing
strategy. As in Theorem 17, we even obtain a convergence rate.

REMARK. The convergence in (6.4) was conjectured by D. Becherer in private
discussions with one of the authors. Theorem 18 also explains the observation
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made after Corollary 4.3 of Young [35] that, in a particular model for valuing
catastrophe bonds by exponential utility indifference, formally setting O
reproduces an earlier alternative approach.

6.2. Asymptotics forr " oco. Our last contribution is a study of the large risk
aversion asymptotics @ (B; «). To that end, we recall threuperreplication price
process

C/(B) :=essSufEp[B| %], O0<t<T,
QeP,
where we can and do choose an RCLL version. By the optional decomposition
theorem (see [12] or [27])C*(B) is the smallest RCLL process with final
value B at time T which is a Q-supermartingale for alp € P,, and it admits
a decomposition

(6.8) C*(B) = C§(B) + / v*dS — K*,

wherey* is anR?-valued predictablé-integrable process anki* is an optional

increasing process null at 0. In gener&F; is neither unique nor continuous; see

Example 1 of [12]. But if the filtration is continuou&’* is actually predictable,

hence, unique by the Doob—Meyer decomposition theorem, and beCauBgis

bounded, that result then also implies tii&tis Q£ -integrable andy* is in ©.
From part (2) of Lemma 6, we know that

(6.9) Ci(B;a) <C/(B), P-a.s. foreach € [0, T].

Moreover, we also have

(6.10) C/(B) =essSUEg[B|#:], P-a.s. foreach € [0, T].
ere,f

In fact, Bayes’ rule gives
Eo[B|Fi1=Ep[Zf BIF|/EplZ§|F:]  for Q eP,,

and by Theorem 1.1 and Corollary 1.3 of [22], the séﬁQ eP,}NL>®(P)C
{ZTQ|Q e P, r} is dense ir{ZTQ|Q e P,} for the L1(P)-norm. SinceB € L*®(P),
(6.10) readily follows.

For the next result, we need some notation.Det (D;)o<;<r be anincreasing
predictable RCLL process null at 0 such tht, S¥) < D forall i,k =1,...,d.
We chooseD strictly increasing and bounded (uniformly inw); for instance,
D, =1+ tant(Zf.Ll(S"),) will do. If S is continuous, we can and do choose
D continuous as well. We define thé & d) matrix-valued predictable process
X =(X,)o<<r by d(S); = X,dD; and the finite measure on Q := Q x [0, T']
by 1 := QF ® D. Then we have

</ﬁdS,/ﬁ'dS>:fﬂtr§ﬂ’dD for 9, 9" € L(S)
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and
2

T
[T 1
0 L2(QF) T

if [ dS is square-integrable und@” . Ford = 1, we do not need all this notation
since we can tak® = (S) andX = 1, the measurg is then the Doléans measure
of (S) underQ¥.

(6.11)

t
LY(QE) = 1972011,

THEOREM 19. Assume thaF is continuousFix B € L*™ and any stopping
timez. Then

(1) Pllimy—o Ci(B;x) = CF(B) forall ¢ € [0,T]] = 1. (This is true even
without continuity off or S.)

(2) limy— 00 C1(B; o) = C¥(B) strongly inL" (QF) for everyr € [1, 00).

(3) liMy—s oo f§ Vu(@)dS, = [§ ¥} dS, weakly inL" (QF) for everyr € [1, 00).

(4) limg— oo $(L(e))r = K weakly inL" (QF) for everyr € [1, 00).

(5) liMy—soo((¥ (@) — Y)Y S (W (@) — ¥*)2 = 0 strongly in L7 (i) for every
pell 2.

PrROOFE (@) The first part of the argument is almost as in [33]. From (6.9),
(1.7) and (1.5), we have, for ang € P, ¢, that

Q E
C/(B)>Ci(B;a) > E [BI}‘]—E E IogZ—T’}‘ —E oz |ogZ_T’}"
A 74 B a7 i V)

Letting « — oo and using (6.10) yields ligy, ~ C/(B; o) = C/(B), P-a.s. for
eacht € [0, T]. Then (1) follows becaus€(B; @) and C*(B) are both right-
continuous, and (2) then follows because all these processes are uniformly
bounded byj| B||«. Clearly, this argument does not use the continuit of S.

(b) We already know thaC*(B) and eachC(B;«) are RCLL Qf-super-
martingales; see the remark following Proposition 12. Because we also have
the convergence in (2) and a uniform boufi@#| . on all these processes,
Theorem VII.18 of [9] implies that at each stopping time, hé&-compensators
converge weakly inLY(QF) as « — oo. This still does not need continuity
of F or S, but it also does not lead us very far because we cannot identify the
compensators in general.

(c) Now assume that is continuous. Thed' (B; @) can be written as

(6.12) C(B;a)=Co(B;oz)—|—/1//(oz)dS+L(oz) - %(L(oz))

by Theorem 13. From (6.12) and (6.8), we can therefore identify the
Qf-compensators d5(L(a)) andK*, respectively, so that (b) gives

(6.13) L(@), =K  weaklyinLY(QF).

I. o
Jam 5
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Due to (3.17) in Lemma 9. («) converges to 0 iBMO(QF) asa — oo, and this
implies

(6.14) lim Le(@)=0  strongly inL?(Q").

By combining (6.14) and (6.13) with (2) and (6.12) and (6.8), we obtain
T T
(6.15) Iimoo/ V() dS, :/ vids,  weaklyinL(QF).
o—> 0 0

Hence, (3) follows from (6.15) if the familfyfy v, («) d Sy | € (0, 00)} is bounded
in L7 (QF) for everyr e [1, c0). In view of (2) and (6.12), each of the families
{$(L(@))c]er € (0,00)} and {L.(a)|a € (0, 00)} is then bounded irL” (QF) if
and only if the other one is, and so (4) follows from (6.13)1if; («) |« € (O, c0)}
is bounded inL" (QF) for everyr € [1, c0).

(d) ForN® € {[ ¥ («x)dS, L(x)}, the energy inequalities give, for eaete N,

sup Egel[((N*)r — (N*))"|F] < nl||N®

|| Eys
O<t<T BMO(O™)

see [24], page 28. Using the Burkholder—-Davis—Gundy inequalities and the
estimates (3.14) and (3.16) in Lemma 9, applied willh, R) = (S, 0F), thus
yields

2n
sup EQE|:< sup |N,‘"|> }< sup const(n)E o [((N)r)"]

ae(0,00) 0<t<T ae(0,00)

2n
ae(0,00)
Hence,{NZ|a € (0, 00)} is bounded inL"(QF) for everyr e [1, 00), as desired
in (c).
(e) To prove (5), we sef(«) := ¥ (a) —y* and note from (3) thalt/y 7. («) d S|
a € (0,00)} is bounded inL" (QF) for everyr € [1, 00). In view of (6.11), this
means, for = 2, that

T 2
sup (@ "Zn@)ll 1,y = Sup H fo nu(e)dS,

ae(0,00) ae(0,

<0
L2(QF)

so that the family{(n(«)"Zn(«))Y?|a € (0, c0)} is bounded inL2(u). Hence,
(5) follows as soon as we prove that

(6.16) Jim n(e)"En@)=0  inu-measure.

(f) The proof of (6.16) is a slight variation of an argument due to Peng [31]. We
first apply Ité’s formula and use (6.12) and (6.8), suppressing for the moment all
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argumentsr and B, to obtain, for any stopping times < p,

(Ch— Cp)?

= (C* C)2—|—2/ (CE —Cy )( d{L >s—d1<s*>

(6'17) * tr * * *
+ / W = ) d{S) (U — W) + (L) — (LYo + [K*1) — [K*]o

Z/Gp(c;’;_ - cu_)d</(¢* - w)dS—L>u.

The last term is aQ”-martingale because the integrand is bounded and the
integrator is aQf-martingale due to/* € ® and Lemma 9. MoreoverQ =
C(B; @) is continuous by Theorem 13, and (6.8) giveX* = —AC* because

S is continuous. Hencg¢K *] = Z(AKS*)2 = — [ AC*dK* and, therefore,

/(ci _ c_)(% d{L) — dK*) FIK*] = /(C* - C)(% d(L) — dK*).

Adding and subtractingk *], — [K*], in (6.17) and taking expectations therefore
yields

o)
Ege| [ i = v ais) wi — v |
+ Egel(L)y — (L)) + Eel(CE — Co)?]

= Eel(Ch— Cp)2 +2E o [/p(c;“ = Cs)<dK;" - %d(L)sﬂ

+ EQE [[K*]p - [K*](T]
T
< Egel(Ch— C)21+ 2E g [ [ - cs)dK;‘] + Ege[IK*], — K]

because”* — C > 0 by (6.9). On the left-hand side, the middle term goes to 0 as
a — oo by (3.17), and the last term goes to 0 as well, due to (1). On the right-hand
side, the first term goes to 0 as— oo due to (1) and the second by using (1)
and dominated convergence, becadSee LY(QF). Sincen(a) = ¥ (a) — v*,

we thus obtain that

IlmsupEQE[/ (a)”En(oz)dD}

o—> 00

(618) =lim SUpEQE |:/p Nu (a)trd<S>u Nu (Ol)i|

= EQE[[K*],O - [K*]O']

for all stopping timesr < p.
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Now we use Lemma 20 below (with = K* and 8 = D) to obtain, for any
8, e > 0, finitely many pairwise disjoint interval§oy, ©1]1, k=0,1,..., N, such
that O< oy, <1 < T and

N N

u( ok, rk]]) =Eye [ > (Dgy — ng)]
k=0 k=0

(6.19)

€ — ¢
> Epe[Dr] — > = n(2) — >

N
(6.20) ZEQE[ > (AKT*)Z}f%S.
k=0

o <t<Tg

Note thatEQE[(K;)z] < oo follows from (4). Applying the estimate (6.18) for
eacho = oy, p = 7 and taking the sum frorh= 0 to N, we have from (6.20) that

ol Tk N Se
"mSUpZ EQE[/ n(a)trzn(a)dD] < ZEQE[ Z (AK,*)Z] <.
k=0 % =0 2

@—00 k o <t<Tg

Thus, there exists somg(3, ¢) such that, for allk > «g(8, ¢), we have

N Tk t oe
S Ege U n@) rzn(amD] <%
k=0 Ok 2

which implies by Markov’s inequality that

N
u(( ok, m]]) N{n@) 'S n() > 5}) <

k=0
Combining this with (6.19) implies that

NI ®

(@) =8}) <e  foralla >, ¢)

so thaty («)" X n(«) converges to 0 ip-measure. This completes the proof]

REMARKS. (1) The pointwise convergence in (1) of Theorem 19 has also been
given by Rouge and El Karoui [33], although it is not quite clear from their proof
how (6.10) comes in. In addition to a uniform resulttinve also provide here in
(3) and (5) the convergence of the strategies and in (4) of the residual terms in the
BSDE forC(B; «).

(2) To the best of our knowledge, Theorem 19 is the first result in continuous
time on the convergence of strategies in utility indifference valuation. For related
work in a one-period model, see [6].

In the proof of Theorem 19, we have used the following technical result
originally due to Peng [31] for the cage = .
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LEMMA 20. Suppose that the filtratioR is continuousLet A = (A;)o<:<7 be
an increasing RCLL process withp = 0 and E[A%] < oo, andletf = (B;)o<i<T
be a continuous increasing process wigh= 0 and E[Sr] < oco. Then for any
8,& > 0, there exist finitely many stopping times, 7z, k = 0,1,..., N, with
0 < oy < 1 < T and such that

(i) loi, tillNTlox, wll=2  fori #k,
N

(ii) E[Z(ﬂrk _,Bok):| > E[Br]—e,
k=0

(iii) ﬁ: E[ > (AA,)Z} <3§.
k=0

Ok <t =T

PrROOF This is done almost exactly as in [31]. Continuitydfensures that
all stopping times are predictable, hence, foretellable, so that Lemma A.2 of [31]
still holds. Continuity of8 guarantees that we can obtain (ii) as in [31]J

Acknowledgments. M. Schweizer thanks Dirk Becherer and Susanne
Kloppel for helpful discussions, and Christian Bender for suggesting to use the
result by Peng [31].
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