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We provide explicit sufficient conditions for absolute continuity and
equivalence between the distributions of two jump-diffusion processes that
can explode and be killed by a potential.

1. Introduction. The purpose of this paper is to give explicit, easy-to-check
sufficient conditions for the distributions of two jump-diffusion processes to be
equivalent or absolutely continuous. We consider jump-diffusions that can explode
and be killed by a potential. These processes are, in general, not semimartingales.
We characterize them by their infinitesimal generators.

The structure of the paper is as follows. In Section 2 we introduce the
notation and state the paper’s main result, which gives sufficient conditions for
the distributions of two jump-diffusions to be equivalent or absolutely continuous.
The conditions consist of local bounds on the transformation of one generator
into the other one and the assumption that the martingale problem for the second
generator has for all initial distributions a unique solution. The formulation of the
main theorem involves two sequences of stopping times. Stopping times of the first
sequence stop the process before it explodes. The second sequence consists of exit
times of the process from regions in the state space where the transformation of
the first generator into the second one can be controlled. Our main result applies
also in situations where the generalized Novikov condition ([19], Théoréme IV.3)
or Kazamaki-like criteria (e.g., [14—16]) are not satisfied. In Section 3 we show
how X can be turned into a semimartingale by embedding it in a larger state space
and stopping it before it explodes. The results of Section 3 are needed in the proof
of the paper’s main theorem, which is given in Section 4. In Section 5 we prove
a stronger version of the result of Section 2 for a particular set-up, involving the
carré-du-champ operator. In Section 6 we illustrate the main result by showing how
the characteristics of a Cox—Ingersoll-Ross [3] short rate process with additional
jumps and a potential can be altered by an absolutely continuous or equivalent
change of measure.
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There exists a vast literature on the absolute continuity of stochastic processes,
and below we guote some related publications. In contrast to many of those works,
the primary goal of this paper is to provide results that are based on explicit
assumptions which are easy to verify in typical applications. For two applications
in finance, see [2] and [1], which contain measure changes for multi-dimensional
diffusion models and multi-dimensional jump-diffusion models with explosion
and potential, respectively.

It and Watanabe [10], Kunita [18] and Palmowski and Rolski [24] discuss
absolute continuity for general classes of Markov processes.

Kunita [17] characterizes the class of all absolutely continuous Markov
processes with respect to a given Markov process. A special discussion for Lévy
processes can be found in Sato [29], Section 33.

Dawson [4], Liptser and Shiryaev [21] Kabanov, Liptser and Shiryaev [12],
Rydberg [28] and Hobson and Rogers [9] discuss absolute continuity of solutions
to stochastic differential equations. They are similar in spirit to Kadota and
Shepp [13], which contains sufficient conditions for the distribution of a Brownian
motion with stochastic drift to be absolutely continuous with respect to the Wiener
measure.

Pitman and Yor [25] and Yor [33] study mutual absolute continuity of (squared)
Bessel processes.

Lepingle and Mémin [19] and Kallsen and Shiryaev [14] provide conditions
for the uniform integrability of exponential local martingales in a general
semimartingale framework (see also Remark 2.7 below), extending the classical
results by Novikov [23] and Kazamaki [15].

Discussions of measure changes in a finance context can be found in Sin [30],
Lewis [20], Delbaen and Shirakawa [5, 6].

Wong and Heyde [32] give necessary and sufficient conditions for the stochastic
exponential of a Brownian motion integral to be a martingale in terms of the
explosion time of an associated process.

Among various excellent text books that discuss changes of measure in varying
degree of generality are, for example, McKean [22], Rogers and Williams [26],
Jacod and Shiryaev [11], Revuz and Yor [27] and Strook [31].

2. Statement of themain result. Let E be a closed subset & andEx =
E U {A} the one-point compactification df. If not mentioned otherwise, any
measurable functiorf on E is extended t& 5 by settingf (A) := 0. We let2 be
the space of cadlag functions: Ry — Ea such thatw(t—) = A or w(t) = A
impliesw(s) = A for all s > . (X;);>0 IS the coordinate process, given by

Xi(w) =w(t), t>0.
It generates the-algebra,

FX =0(X5:5 >0),
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and the filtration
FXi=0(X;:0<s<1), t>0.
It follows from Proposition 2.1.5 (a) in [8] that, for all closed subgetsf E A,
inf{t | X,_elTorX,el} is an(?,X)-stopping time
Hence,
Ta:=inflt | X, =A)=inf{t | X,_=AorX,=A)}
is an(F,X)-stopping time. Note that
X.=A on[Tx, o0)

so thatTx can be viewed as the lifetime &f. For the handling of explosion, we
introduce the(F,%)-stopping times

T, :=inf{t | | X, = nor||X,| >n}, n>1,

where|| - || denotes the Euclidean norm B and||A|| := oo. Clearly,T,, < Ta, for
all n > 1. A transition toA occurs either by a jump or by explosion. Accordingly,
we define the F,X)-stopping times

—— Th, if T, = T for somen,
M Voo,  if T/ < Taforalln,
Tt = Th, if T, < Ta forall n,
00, if T, = T for somen,
1. T < Ta,
L P

Note that{Tiump < OO} N {Texp| < OO} =, I|mn_)oo Tl’l = Texp|, and T” < Texp|
on {Texpl < o0}. Hence, Teyp is predictable with announcing sequerGeA n

(see[11],1.2.15.a).
Since, by definition§2 contains only paths that stay ixafter explosion or after
a jump toA, the filtration(F,X) has the property stated in Proposition 2.1 below,

whose proof is given in the Appendix.

PROPOSITION2.1. LetT be an arbitrary(F,X)-stopping timeThen

Fi =T ATexpl — ( U fTATn>

n>1
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Fix a bounded and continuous functign R¢ — R¢ such thaty (§) = & on a
neighborhood of 0. Let, 3, y be measurable mappings @with values in the
set of positive semi-definite symmetecx d-matricesR? andRR., respectively.
Furthermore, letu be a transition kernel fronE to R4 and assume that the
functions

a(). B0y () and [ (€12 A DaC.de)

(2.1)
are bounded on every compact subsek of
Then,
13 2f(x) & 3f (x)
Af(x) = 5”221%- Oamon, gﬁi ()5 ~YOf ()

[ (a+O = ) = (7 £, 2@t d)

defines a linear operator from the spaceGf-functions onE with compact
support,Cf(E), to the space of bounded measurable functiong pB(E).

DEFINITION 2.2. We say that a probability measuPeon (22, %) is a
solution of the martingale problem fot if, for all f € C2(E),

f t
M/ = F(X)) — f(Xo) — /0 Af(X)ds, 10,

is aP-martingale with respect ta#,%). We say that the martingale problem for
A is well posed if for every probability distributiom on E, there exists a unique
solutionP of the martingale problem fa# such thatP o Xgl =1.

REMARK 2.3. 1. IfPis a solution of the martingale problem fdr, then with
respect taP, X is a possibly nonconservative, time-homogenous jump-diffusion
process. The time-homogeneous case can be included in the above set-up by
identifying one component of with timer.

2. If P is a solution of the martingale problem fot, then M/ is, for all
f e Cf(E), also aP-martingale with respect to‘ﬁi). Indeed, since all paths of
M/ are right-continuous, it follows from the backwards martingale convergence
theorem that, for alt, s € R such that < s,

Ep(M{ |71 = lim Bp[M]| 7] = lim M/ = ]

3. It is easy to see that if the martingale problem fbris well posed, then
for every probability distribution) on E 5, there exists a unique soluti@hof the
martingale problem fost such thatP o Xgl =1.

4. Throughout, we make use of the fact thitf (X,—)dS, = f§ f(Xu)dS,
for a continuous semimartingakeand every measurable functighsuch that the
integrals are defined.
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Let .4 be a second linear operator frdﬂj(E) to B(E), given by

af (x

3)6,'

) — 7 @) f(x)

U 2f(x) &
Af(x) = Emzzjlaij(x)axi o + ;ﬁi(x)

J
(2.2)

+ [ Fe+6) = 700 = (V700 X @) x. ),

wheref andj are measurable mappings frdirto R? andR ., respectively, and
is a transition kernel fronk to R? such thaf3, y andji satisfy the condition (2.1).

Let U be an open subset @, that is,U = U’ N E for some open subsét’
of R?. Assume that there exist measurable mappings

$1:U — RY, $2:U — (0,00) and ¢3:U x R? — (0, 00)
such that, for alk € U,

B = B +a(ga(v) + [ (#ar. &) — Dx ©ucr.de),

(2.3) 7(x) = d2(x)y (x),
(x,d&) = ¢p3(x, &) u(x, d§).

Let Ul c U? c --- be an increasing sequence of open subsetB siich that
U=U,>1U". We denoteUy = U U {A} andU} = U" U {A}, n > 1. For all
n > 1, we define

R,:=inf{t | X,_ ¢ Uy or X; ¢ Uy }.
Note that
R — R,, if R, <Ta,
00, if R, =Tha,
where
R, :=inf{r | X,_ ¢ U" or X, ¢ U"}, n>1

Since the setd/" are open in the topology of A, it follows from Proposi-
tion 2.1.5(a) of [8] that allr},, R, and therefore also,

R :=nli_)moo R,=inf{t | X;— ¢ Up Or X; ¢ Up},
Sy =R, AT, An,n>1,

n—oo

are (F,X)-stopping times. While the sequen@g < T» < --- takes care of a
possible explosion oK, the sequencé; < S» < --- appropriately localizes the
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stochastic logarithm of the density process for the measure change, see (4.2) below.
In view of (2.1) and the conventiofi(A) = 0 for measurable functiong,

1 S
A=l fo (@(X,)b1(Xy). d1(Xs)) ds
Sn
+ /0 (62(X,)10962(X,) — 2(X,) + 1)y (Xy) ds

Sll
+ [ [ (@300, 10003(X,. ) — #a(X,, &) + DX, dE) ds

is well defined for allkz > 1. With this notation we have the following:

THEOREM 2.4. LetP be a solution of the martingale problem fg¢ and Q
a solution of the martingale problem fot such thatQ] . x <« IP’|fx Assume that
for .+, the martingale problem is well posed and that

(2.4) Ep[e®] < o0,

forall n > 1.
Then there exists a nonnegative cadgupermartingale(D;);>o such that
for any (F,%)-stopping timeT’, the following properties hotd

(23)  Qlgxnires) = P1-Plexnras,y
(26)  IfQIT <Sx] =1, thenQpx = Dy -Plyx.

If Qlzx ~Plzx andP[T < Seo] = QIT < Soc] =1,
(2.7)
then@|$.Tx ~ Plfo.

If Q[T < Reo] =1and (DTATn)”21 is P-uniformly integrable

(2.8)
then@|}~7x = D7 'Plg;«]?(.

REMARK 2.5. The following is an easy-to-check sufficient criterion for (2.4):
Assume that for every > 1, there exists a finite constaft, such that, for all
xeU",

(2.9) (@ (x)¢1(x), p1(x)) < Ky,
(2.10) (#2(x)l0g¢2(x) — ¢2(x) + 1)y (x) < K,

@11) [ (#alr.©)logoa(r.§) - dax. ©) + Dur.d8) < Ky.

Then (2.4) is satisfied.
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REMARK 2.6. If P[Sso = 00] = 1, we obtain from (2.5) the loss of mass of
theP-supermartingaléD;);>o

1-Ep[Di]=1-Qlf < Soo] =QlSe0 =11, 1 € [0, 00).

REMARK 2.7. Forgs(x, &) = ¢?10):8) our measure changes are of the same
form as the generalized Esscher transforms discussed in [14] (see Theorem 2.19
in [14] or Theorem I11.7.23 in [11]).

3. Turning X into a semimartingale. In this section we show some prelim-
inary results that we will need in the proof of Theorem 2.4. The notation is the
same as in Section 2. For any procé&sand stopping tim&’, we denote byr”
the stopped process given By := Y, .7, ¢ > 0.

Assume thatP is a solution of the martingale problem fot. Since the
coordinate process can explode and be killed, itis, in general, not a semimartingale
with respect tadP. To turn it into a semimartingale, we stop it before it explodes
and identify the state\ with an arbitrary pointd in R? \ E. Without loss of
generality, we can assume that such a point exist& ¥ RY, we embedE
in R4*L by the map(x1, ..., xq) = (x1,...,xq4,0) and adjuste, B, u and x
as follows: For allx € E, we extenda(x) to a (d + 1) x (d + 1)-matrix by
settingo (x); g+1 = a(x)qg+1; :=0foralli =1,...,d + 1. B(x) is elongated to
a (d + 1)-dimensional vector by (x)s+1 := 0. The measureu(x, -) is extended
to R9*+1 py defining u(x, R9*+1\ R?) := 0. Finally, the truncation functiory
can be extended to a bounded and continuous function Réft to R?*1 such
that x(§) = &€ on a neighborhood of 0, or simply by setting it equal to zero
on R4*+1\ R4, Then, a probability measui® on (2, #X) is a solution of the
martingale problem forA in the Ré*+1-framework if and only if it is in the
R?-framework.

The process

)2' = X]l[O,TA) + ajlm,oo)
is also(F,¥)-adapted and has right-continuous path&fh However, X7, - = A

(explosion) is still possible for this process.
Let T be a(F,X)-stopping time such that < Texpl, then

(3.1) Utr <mi=2,
n>1

and, therefore, (2.1) implies that the followiri@,*)-predictable processes and

random measure are well defined forall
tAT

Bl = | By (X)X (@ = X)) ds,

tAT
cr ::/ a(Xy)ds,
0

vI(dt, dg) = [u(X;, dE) + v (X()8y—x, (dE)|1y<T) dt.
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Condition (2.1) also guarantees thdtsatisfies Condition 2.13 on page 77 of [11].
Note that one can choose with compact support such that(d — x) = 0 for
all x € E. In that case, the expression fBf becomes simpler. Fof Cf(R")

(the space of bounded?-functions onR?), define the process

A o 1 G 2’ A
MIT =X - X -2 Y ——= ¢/ -vfX")-B"
2 i,;::l 8)6,' 3Xj Y

—(fFXT+8) = FXT) = (VFEXT), x @) x0T

(*-" denotes stochastic integration with respect to a semimartingale &hd “
stochastic integration with respect to a random measure, for the definition of
stochastic integrals with respect to semimartingales and random measures, see,
e.g., [11]). The restriction of a functiofi € C?(R¢) to E is in C2(E). Recall that

by convention,f (A) = a(A) = B(A) = y(A) = u(A, ) = 0. Thus, it can easily

be checked that

(3.2) Mt =m!" + r@NT,  1=z0,
where

T tAT
N; :=10<7)<trT} _/o y(Xy)ds, t>0.

LEMMA 3.1. Let T be an (F*)-stopping time withT < Texpl- Then the
processN” is an (%), P)-martingale

PROOF  Fix n > 1. We first show thatv’" is an (%), P)-martingale. Let

(fx) be asequence iﬁf(Rd) with 0 < f; <1 andf; =1 on the ball with center 0
and radiusk, By. By Remark 2.3 part 24/ Tn is an ((FX), P)-martingale for
everyk. Note that7,, = 0 if || Xo| > n. Hence, we have, for all > n,

tAT,

Mtfk,Tn — fk(XtTn) — fr(Xo) —/0 A fi(Xs) ds
= fk(XtTn) - fk(XO)

tAT,
(o= [ A+ = Do) ) .

Clearly, for allw,
lim fk(Xz/\T,,) = L(AT,<Ta)-
k— 00

Moreover, it can be deduced from (2.1) and Lebesgue’s dominated convergence
theorem that, for al,

AT, tAT, d
f / | fi(Xs + &) — 1u(Xy, dE) ds 5[ WXy, RO\ B_y)ds — 0,
0 R\ By _,, 0
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ask — oo. Furthermore, it follows from (2.1) that there exists a constarguch
that

fk»Tn AT d
M7 " <1+ A (ly (XDl + (X, R\ Br—p)) ds <1+ cpt,

for all kK > n. Hence, it follows from Lebesgue’s dominated convergence theorem
that for allr > 0,

—mfeTn s NI in L' ask — oo,

which shows thatv7» is an((#,% ), P)-martingale. This and (3.1) imply that” is
an((f‘-”,ﬂi), P)-local martingale, and, therefore, by the Doob—Meyer decomposition
theorem ([11], 1.3.15)N7 is also a uniformly integrable martingale with respect
to (F%),P). O

Notice that T < Texp implies {Ta <t AT} = {Tjump < t A T}. Hence,
Lemma 3.1 says thqftﬁ” v (X,)ds is the predictable compensator for the time
of a jump of the stopped process’ to A. As a consequence, we obtain that
Tjump = oo P-almost surely o X # A} if and only if y (X;) = 0 P-almost surely
for all ¢.

PrRoOPOSITION3.2. Assume thaP is a solution of the martingale problem
for 4 and T is an (F%)-stopping time such thal' < Texpl- Then for all

f e C2RY, m/T is a local martingale on(S, (F,X);>0,P) and X7 is
a semimartingale on(Q, (¥,X),>0.P) with characteristics(B”, CT,vT) with
respect to the truncation function.

PROOFE Fix n > 1. In view of (3.2), Remark 2.3 part 2 and Lemma 3.1,
MS T is an((F,X), P)-martingale for allf € CZ(RY).

Now let f € CZ(R?). Thenffi € C2A(R?), where thef, € C2(R?) are as in the
proof of Lemma 3.1, and for all > n,

|¢le’Tn _ szfvanl
<IfX") = fr&)
IAT, )
+,/o A‘Qd\Bknlf(XS"f_g)_ffk(Xs-f—S)lv (ds, d§)

~ N tAT,
< F(Renr,) = F(Ring)| + 1 Flloo /0 vTn(ds, RO\ By_y).
Obviously,
|f(Xinz,) — Ffi(Xiar,)| =0 inLYask — oo,
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and as in the proof of Lemma 3.1, it can be deduced from (2.1) that
tAT,
/ VI (ds, R\ By_n) — O in Lt ask — oo,
0

Hence M/ Tr is an((F%), P)-martingale, for alk > 1. This, together with (3.1),
implies thatm /T is an((}jﬁ) P)-local martingale. Thus, it follows from [11],

11.2.42, thatX T is an((F,X), P)-semimartingale with the claimed characteristics.
O

4. Proof of Theorem 24. There exists a nonnegativef; -measurable
random variabléDg such that

Q|5:OX =Dg- P|}~Ox.

For eacthz 1, let/15 denote the integer-valued random measure associated to the
jumps of X5» (see [11], 11.1.16). By Proposition 3.2, it§F;¥), P)-compensator
is 15 It can easily be checked that

1 ylogy y+1
S LA A— | f 0,2
37 -1z orve®2l

and

} vlogy =y +1 fory>2
3~ y—1 -

(Notice however that ligL, o Mly*l 00.) Hence, it follows from (2.4) that
Ep[([¥ (X, §) = LP A 1Y (X, §) — 1)) xv>] < 00

for the nonnegative measurable functipnU x R? — R, defined by
V(x,8) = ¢2(X)L(xte=0) + ¢3(x, §)Lixt£eE)-

Consequently, by [11], 11.1.33 c,

[(W(X_, &) — 1)] % (25 —vS)
is a well defineot(?x) P)-local martingale. Moreover, it follows from (2.4) that

Ep[fo ' (a(Xs)¢1(XS),¢1(XS)>dS] U
Hence, by [11], 111.4.5,
P1(X) - X5ne

is a well-defined continuoqsf‘”x) P)-local martingale, wherd& Sr-¢ denotes the
continuous martingale part &f5, relative to the measut® In summary,

4.1) L™= ¢1(X) - X5C 4 [(W(X_, &) — 1)] % (A5 —v5)
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isa WeII-defineo[(}‘,ﬁ), P)-local martingale with

Sy
(L€, L€)oo = (L7, L), = fo (@(X)p1(X,). d1(Xy)) ds
and

AL" = [ (X;—, AX;) — 11, > —L

AX5n£0
This latter property assures that the stochastic exponeitidl) is a strictly posi-
tive ((}j’j), P)-local martingale. Moreover, it follows from Théoréme V.3 of [19],
together with (2.4), tha& (L") is a uniformly integrable((?,ﬂi),P)-martingale,
which implies that

(4.2) D" := Do& (L")

iS a nonnegative, uniformly integrabdeff‘ti), P)-martingale.
Obviously, forn > m,

D} =D} forallz < S,,.

Therefore, forr < Sy (w), and also forr = Sy (w) if Se(w) = S (w) for some
m > 1, one can define

D (w):= lim Dj'(w) > 0.
n— oo
Note that, for alln > 1, & (L") is strictly positive. Hence,
(4.3) D >0 forallr € [0, Ss) ON{Dg > 0}.
Since(Dgf)nzl = (Dgn)nzl is a nonnegative martingale, the limit
0 . |i [ee)
Dy = nILmoo Dy’ >0
existsPP-almost surely, and
D, = Dfol]_{t<goo} —+ Dg:o]l{sooff}’ re [0, o],

is a nonnegative cadlag process. It follows from Fatou’s lemma that, for-al
and everxa‘b‘,’j)—stopping times,

Ep[Ds|F X1 < lim Ep[Dsns,|FX]1= lim Dipsns, = Dins-
n—oo n—oo
In particular,D is a supermartingale and
(4.4) Ep[Dr] < 1.

Now, let f € CCZ(E) and setf(d) = f(A) = 0. Then, it follows from (3.2) that
M5 = M/S. By Remark 2.3 part 2M /5 is an ((FX), P)-martingale, and
obviously, it has bounded jumps. Therefore, it follows from Lemma l11.3.14 in [11]
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that (M-St L™y and (M /-5, D5 exist and(M /S, DSy = D5 . (M f-5+ L1y,
It can be seen from 11.2.36, 11.2.43 and the proof of 11.2.42 in [11] that

(4.5) M5 = MIH = VX)X [f (X +8) = fXD]* (25 = v)

is the decomposition of//5" into a continuous and a purely discontinuous
((}‘tﬁ), P)-local martingale part. Hence,

t
(MIS Ly, = /O (V£ (Xy), a(Xy)ba(X,)) ds

F(Lf (X +E) — FOOIY (X, E) — 1]) % v,
which shows that, for al > 0,

~ t ~
M/ = F(X) = f(Xo) — /0 AS(Xy)ds
r 1
= M — (M5 Ly, = M —/0 s dM5, Do
Nl

Thus, it follows from Girsanov’s theorem for local martingales in the form of [11],
1.3.11, that M/-% is an (FX), D5 - P)-martingale. By the definition of)

and the optional sampling theorem,”5 is also an((F,%), Q)-martingale. By
Remark 2.3, part 3, we can apply Theorem 4.6.1 of [8] (observe that for the proof
of [8], Theorem 4.6.1, it is only needed th§f is an (¥,%)-stopping time, see
also [8], Lemma 4.5.16) to conclude that

Ds,-P=Q  onf#.
Now, let A € JTTX. It can easily be checked that, for al> 1,
AN{T < Sy} € X7
Thus,

Q[AN|{T < Sx}1= lim Q[AN{T < S,}]= lim EP[DSHAT]]-{T<S”}]]-A]
= lim Ep[Drir<s,)Lla] =Ep[Drlir<s.)lal.

where the first and the last equality follow from the monotone convergence
theorem. This proves (2.5).
Equation (4.6) applied td = Q2 yields

QIT < Sool =Ep[Drl(r<s.}]-
Hence, ifQ[T < So] =1, then (4.4) shows that
4.7 Ep[Dr]=1 andDy =0 on{T > S} P-a.s,
which proves (2.6).
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If, in addition,Ql%x ~ P|3_-0X, thenDg > 0 P-a.s. and it follows from (4.3) that
D7 > 0on{T < S} P-a.s., which together with (4.7) implies that

(4.8) [T > S} ={Dr=0  P-as.

Property (2.7) is now a consequence of (4.8) and (2.6).
If Q[T < Rl =1, thenQ[T AT, < Se] =1, for all n > 1. Therefore,
it follows from (2.6) that

=D Pl .
ngrT);Tn TAT, IfTXATn

Moreover, since lim., o T, = Texpl > Soo, We have lim_. o D77, = D7 P-a.s.
Hence, if (Drar,)n>1 is uniformly integrable, thenDr .7, — Dr in Li(P).
Therefore,

. =D7-P|-
Q|"LTXAT,, r |‘/'TX/\T,1 ’

forall n > 1, which, by Proposition 2.1, implies (2.8), and the theorem is proved.

5. Carré-du-champ operator. Part (2.8) of Theorem 2.4 yields absolute
continuity onlfo with respect toIP’|TTx, also on{T > Texpi}. In this section
we consider a special choice ¢f, ¢> and¢s, which even provides equivalence
beyond explosion. This is an extension of [27], Section VIII.3, and involves the
carré-du-champ operator : CCZ(E) X CCZ(E) — B(E) defined by

[(f,8):=A(fg) — fAg—gAS.

In contrast to above, we now first introduce a probability meagusuch that
Q~Pon ?’tﬁ for all # > 0, and then find the appropriate generatofor which
Q solves the martingale problem.

Fix h € C?(E). ThenH :=¢" — 1€ C?(E), and we can define

_ " AH(Xs)
.— Lh(Xt)—h(Xo) _ s
D, =" 0 exp( /o (%) ds).

Integration by parts, using(e"¥)) = dM* + AH(X)dt, yields

t AH (X,
(5.1)  dD;=e¢ "0 exp(— f %ds) dMP =D, e "E=) apmH
o e s

Since D is uniformly bounded on compact time intervals, we conclude fhat
is a strictly positive((}‘,’j),]P’)—martingale. As in [26], Theorem IV.38.9, it can
be deduced from the Daniell-Kolmogorov extension theorem that there exists a
probability measur& on F X such that) = D, - P on # forall + > 0.
In view of (3.2) [we setH (3) = 0] and (4.5), we have

M5 — pH-S1 = YhX) | RSne | (XA _ hXOY g (350 Sn),
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so that, together with (5.1), we obtain
D" = §(VA(X) - X5n€ 4 (M X-HO=hEX) _q) 4 (S0 — vSmy),

for all n > 1. Comparing this to (4.1) suggests that we are in the situation of
Theorem 2.4 with

(5.2) $1(x)=Vh(x),  ¢a(x)=e " and ¢3(x,§) = FTOTD),
which clearly satisfy (2.9)—(2.11) for all € E and a fixed constarit > 0.

THEOREM5.1. Q is a solution of the martingale problem fot: C?(E) —
B(E) given by

(5.3) Af=Af+ FUZ /)
which equalg2.2) with (2.3)and (5.2).

PROOF A straightforward calculation yields
I'(f, 8)(x) =({a(x)V f(x), Vg(x)) + ¥ (x) f(x)g(x)
[ G +8 = ) (g0 +6) — g()ux. d8).

which makes it easy to see that (5.3) equals (2.2) with (2.3) and (5.2).
Let f € C3(E). Lemma 5.2 below shows that

(Mt mty, /F(f H)(X,)ds, t>0.
Therefore,

M = (X)) - f(Xo) — /O AS(Xy)ds
t t
— (X)) — f(Xo) — f AF(Xy)ds — [ XD g, My,
0 0

t 1]
=Mf—f > am’, Dy,
0 Ds_

and it follows from Girsanov’s theorem for local martingales [11], 111.3.11, that
M7 is an((¥%), Q)-martingale, which proves the theorentl

LEMMA 5.2. If f, g € C3(E), then
! m#), = [T X ds.

Proor Literally the same as the proof of Proposition VIII.3.3 in [27]]
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6. Example. We here apply Theorem 2.4 to a one-dimensional diffusion with
compound Poisson jumps and a constant killing rate. In [2], it is applied to a multi-
dimensional diffusion, and in [1] to a multi-dimensional jump-diffusion model.

Let (', F/,P") be a probability space that carries the following three inde-
pendent random objects: a one-dimensional standard Brownian m@¥op-o;

a compound Poisson process;);>o with jump arrival ratex > 0 and positive
jumps that are distributed according to a probability measuom (0, co); and an
exponentially distributed random variabiewith mean% >0.Lethg>0,h1€R
ando > 0. It is well known that the SDE

(6.1) dV; = (bo+ b1V)) dt + o/ V, dW;, Vo=v>0,

has a unique strong solutioW, stays nonnegative, and

2
(6.2) V never reaches zerob > %

(Cox, Ingersoll and Ross [3] model the short term interest rates by the solution of
an SDE of the form (6.1).) It follows from a comparison argument that the same is
true for the equation

(6.3) dY; = (bo + b1Y,)dt +0/Y, dW; +dNy, Yo=y>0.
The process
Z = Y]l[oyt) + A]l[r,oo)

takes values itEx, for E = R, and its distributior? is a probability measure on
the measurable spa¢®, # %) introduced in Section 2. It can be checked tha
a solution of the martingale problem for

AL ) = 162" (x) + (bo+ b1x) £ (x) — y.f (x)
+ / Lf(x +€) — f)hm(dE).
0
Let
Af(x) = 302xf"(x) + (bo + b1x) f'(x) — 7 (x) f (x)
4 / TG4 E) — FOOAG, dE),
0

where by > ”—2, b1 € R, 7(x) = jo + 71, for some (o, 71) € ]Ri \ {(0, 0)},
andji(x, -) is, for allx > 0, a measure ofD, co) of the formii(x, d&) = [mo(€) +
m1(&)x]am(d§), for nonnegative measurable functiomg, m1: (0, o0) — Ry,
such thatimg(§), m1(§¢)) € Ri \ {(0,0)} for all ¢ > 0 and

/Ooo [(mo(&) + my(€)x)m(d€) <00 forallx >0,
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wherel (1) = ulogu —u + 1. It follows from Theorem 2.7 in [7] that the martingale
problem for A is well posed. LetQ be the solution of the martingale problem
for 4 with initial distribution 8y. It can be deduced from (6.2) and a comparison
argument that

(6.4) Qrthere exists a> 0 such thatX;, =0 orX,_ =0]=0.

We setU = (0,00) and U,, = (1/n,n), n > 1. Since we have no explosion,
(6.4) implies thatQ[ S, = oco] = 1. Furthermore, the measurable mappings
l;o —bo 51 — b1

= , eU,
$1(x) o i x

1 .
P2(x) = ;(yo+ V1X), xeU,

mo(§) +my(&)x, W$:>Qx
1, if £ <0,

satisfy the conditions (2.9)—(2.11), and for al U,

$3(x,8) =

eU,

l;o + l;lx =bo+ b1x + ozxqbl(x),
Y (x) =¢2(x)y,
p(x,d§) = ¢3(x, §)Am(d§).
Therefore, Theorem 2.4 applies, and we obtain that

Q|}*TX < P|}‘TX

for all (F,%)-stopping times" < co. Moreover, ifbg > "—2, then
P[Ss = 00] = 1 — P[there exists @ > 0 such thatX; =0 or X;_ =0] =1,
and Theorem 2.4 yields that
QL@TX ~ P|$TX

for all (F,%)-stopping timesT < oo. If we identify A with —1, the procesZ
becomes the semimartingale

2 = Y]l[ovf) - ]l[f’oo).

It can be seen from (6.3) thdif = Lj0<r<r}0+/Y: dW;. The random measuye

associated to the jumps ¢f is an integer-valued random measureR)in with
compensator

v(dt,d§) = Ljozr<rydt x (hm(d§) + yd_1_7,(d5)).



MEASURE CHANGES FOR JUMP-DIFFUSION PROCESSES 1729

Since the distribution of
V(Zi—,8) = $2(Zi )V (z,_te=—1) + $3(Zi—, §)Lz,_+£>0),
and the stochastic exponential
D' =E&(pu(Z) - Z°+ (Y(Z_, &) — 1) x (L — )
only depend on the distribution &, it follows from (4.7) that
Ep[D;] =Ep[D;]=1.

Hence,D’ is alP’-martingale, and for alt > 0, D; - P’ is a probability measure
on (€', £') under which the distribution of the stopped procefsis equal

to Q|}~rx. If bg > % then D; > 0 P’-almost surely for alk € R4, and D, - P’
is equivalent ta? .

APPENDIX

PROOF OFPROPOSITION2.1. Itis clear that

(A.1) FF D F Ty 2 a< U fTXATn>.
n>1
To show the reverse inclusions, we first prove that
(A.2) ?XCG(UJ%;;).
n>1

Note that for allr > 0, and all Borel subsetB of E,
{X: € B} ={X; € B} N {Texpl > 1} = U({Xz € B} N {T, > t}),

n>1

and for alln > 1,

{X: € BYN{T, >t} € 7.
Hence,
(A.3) {X,eB}ea(UrTf).

n>1
Moreover, for allt > 0,
{Xi = A} ={Texp < t} U {Tjump < 1}

= ( (T < t}) U ({Tjump < 1} N {Texpl > 1})

n>1

= ( (T < t}) U | {Tjump < 1} N H{T,, > 1}).

n>1 n>1
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It can easily be checked that, for alk> 1,

{T, <t} and {Tjump<1}N{T, >t} belong toF,".
Hence,

{thA}ea<U}‘T{f),

n>1

which, together with (A.3), implies (A.2).
For every sefd € X, we write

A =[AN{T < Texpl}] U[ANA{T > Texpi}]
(A.49)

:|:U AN|{T < Tn}:| U [ANH{T = Texpl}].

n>1
Observe that, for akt > 1,
(A.5) AN{T < Ty} e ¥ 1 .
For every class of subsgtof 2, we define

G T = Texpl} :={G N{T = Texpl} | G € §}.
It follows from (A.2) that

(A.6) AO{TZTepr}€U<U$T),f)m{TZTexpl},

n>1

and it can easily be checked that

cr<U ?}j) ﬂ{TZTexp|}CO‘<U Fi, T = Texpl}) CG<U ?ﬁ‘AT,,)-

n>1 n>1 n>1

Hence, (A.4), (A.5) and (A.6) imply that
FEC 0( U }'TXATH),
n>1

which, together with (A.1), proves the propositiorn.]
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