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WALKS IN THE QUARTER PLANE: KREWERAS’
ALGEBRAIC MODEL

BY MIREILLE BOUSQUET-MÉLOU1

CNRS, Université Bordeaux 1

We consider planar lattice walks that start from(0,0), remain in the
first quadranti, j ≥ 0, and are made of three types of steps: North-East,
West and South. These walks are known to have remarkable enumerative and
probabilistic properties:

• they are counted by nice numbers [Kreweras,Cahiers du B.U.R.O6
(1965) 5–105],

• the generating function of these numbers is algebraic [Gessel,J. Statist.
Plann. Inference14 (1986) 49–58],

• the stationary distribution of the corresponding Markov chain in the
quadrant has an algebraic probability generating function [Flatto and Hahn,
SIAM J. Appl. Math.44 (1984) 1041–1053].
These results are not well understood, and have been established via
complicated proofs. Here we give a uniform derivation of all of them, which
is more elementary that those previously published. We then go further by
computing the full law of the Markov chain. This helps to delimit the border
of algebraicity: the associated probability generating function is no longer
algebraic, unless a diagonal symmetry holds.

Our proofs are based on the solution of certain functional equations, which
are very simple to establish. Finding purely combinatorial proofs remains an
open problem.

1. Introduction. Let us begin with a very simple combinatorial statement: the
number of planar lattice walks that start and end at(0,0), consist of 3n steps that
can be North-East, South or West, and always remain in the nonnegative quadrant
i, j ≥ 0 is

a(3n) = 4n

(n + 1)(2n + 1)

(
3n

n

)
.

An example of such a walk is given in Figure 1. This result, first proved by
Kreweras in 1965 [23], is rather intriguing, for at least two reasons.

First, this simple looking formula has no simple proof. If we consider instead
the more traditional square lattice walks (consisting of North, South, East and West
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FIG. 1. Kreweras’ walks in a quadrant.

steps), then there exists a nice formula too: the number of 2n-step walks, starting
and ending at the origin and confined in the first quadrant, is

b(2n) = 1

(2n + 1)(2n + 2)

(
2n + 2
n + 1

)2
.

But the latter formula can be proved in a few lines (count first the number of such
walks having 2m horizontal steps, and then sum over all values ofm) and admits
even a direct combinatorial explanation [20]. No similar derivation exists for the
numbersa(3n).

The second fact that makes the numbersa(3n) intriguing is that their generating
function, that is, the power seriesA(t) = ∑

n a(3n)tn, isalgebraic. This means that
it satisfies a polynomial equationP(t,A(t)) = 0, whereP is a nontrivial bivariate
polynomial with rational coefficients. For combinatorialists, objects that have an
algebraic generating function are really special: this property suggests that one
should be able to factor them into smaller objects of the same type, and then
translate this factorization into a polynomial equation (or a system of polynomial
equations) defining the generating function. Let us take an example: it is known
that for any (finite) set of steps, the walks confined in the upper half-plane have an
algebraic generating function. There is a clear combinatorial understanding of this
property: the key idea is to factor the walk at the first time it returns to thex-axis.
It is still an open problem to find an explanation of this type for the algebraicity
of the seriesA(t). Let us underline that not all walks in the quadrant have an
algebraic generating function: the generating function for the numbersb(2n) is
transcendental (see [8] for a stronger result).

A natural question—at least for a computer scientist—is whether the set of
words on the alphabet{a, b, c} that naturally encode Kreweras’ walks forms an
algebraic(or context-free) language [21]. These words contain as manya’s asb’s,
as manya’s asc’s, and each of their prefixes contains no moreb’s thana’s, and no
morec’s thana’s. Using thepumping lemma([21], Theorem 4.7), one can prove
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that this language is not algebraic. Moreover, the words satisfying only the second
condition above, which encode walks ending anywhere in the quadrant, do not
form an algebraic language either [3]. However, we shall see that their generating
function is algebraic.

Then how does one prove Kreweras’ formula? In his original paper, Kreweras
consideredn-step walks in the quadrant going from(0,0) to (i, j). A step by
step construction of these walks gives an obvious recurrence relation for their
number, denoted belowai,j (n). Kreweras solved this recursion. His proof involves
guessinga substantial part of the solution, and then proving several hypergeometric
identities. The latter part was then simplified by Niederhausen [28, 29]. A different
proof, due to Gessel, also requiresguessingthe bivariate generating function of
walks ending on thex-axis, and then verifying that it satisfies a certain functional
equation [19].

On the probabilistic side, in the early 70’s Malyshev began to address the very
general problem of computing the stationary distribution of discrete homogeneous
Markov chains in the quadrant [26]. Several instances of this question actually
correspond to finding the equilibrium behavior of double-queue processes [11,
12, 17, 33]. This work culminated in 1999 with a book that is entirely devoted
to solving this problem in the case of unit increments [13]. The techniques used
in this book are far from elementary, involving sophisticated complex analysis,
Riemann surfaces and boundary value problems. Solutions are often expressed
in terms of elliptic functions. The book lists a number of cases in which the
stationary distribution has a rational generating function, and mentions exactly
onecase (actually due to Flatto and Hahn [17]) where this generating function is
algebraic. Not surprisingly, the set of increments of this random walk is the same as
in Kreweras’ problem. (A (partial) algebraicity criterion is actually given in [13],
Theorems 4.3.1 and 4.3.6, but it is only illustrated by Kreweras’ example.)

Hence, the following question: what is so special with this set of three steps?
Could one find a single argument that proves both the algebraicity of the generating
function that counts these walks and the algebraicity of the generating function for
the stationary distribution of the corresponding Markov chain?

This is the question we answer—positively—in this paper. For both the
combinatorial problem and the probabilistic one, it is very easy to establish a
functional equation defining the generating function. We solve both equations
using the same approach. The only difference is that we are dealing with formal
power series in the first problem, but with analytic functions in the second one. Our
solution is constructive (we do not have to guess anything) and more elementary
than the previously published ones. In particular, we always remain in the (small)
world of algebraic functions, and do not need to introduce elliptic functions.
The key to our approach is the combination of thekernel method(which is also
central in [17] or [13]) with a special property of the kernel of the equations
we consider. Moreover, after having solved the counting problem (Section 2)
and the probabilistic one (Section 3), we combine both viewpoints and compute
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explicitly the full law of the Markov chain (Section 4). This actually marks the end
of algebraicity: the probability generating function is transcendental, unless the
transition probabilities satisfy a diagonal symmetry. Still, this generating function
belongs to the nice class ofD-finite (or holonomic) series, which is defined below.

Obviously, since this paper aims at explaining why a specific set of steps has
such special properties, it cannot compete in generality with the strength of the
machinery developed in [13]. Still, it is natural to ask how far our approach
could be generalized. It is actually while fighting with Kreweras’ walks that
I discovered it. But it turns out that other applications of this approach were
published before I was able to complete the present paper. In particular, most
of the results in Section 2 are already reported in some conference proceedings,
together with a general holonomy criterion for the enumeration of walks in the
quadrant [5]. More recently, the same ideas were applied to certain counting
problems on permutations [6]. Four new equations were thus solved in a uniform,
elementary way. Their solutions are usually transcendental, but holonomic, and
can be expressed as integrals of algebraic (quadratic) functions. I have not tried
to attack other stationary distribution examples. But it is likely that the method
presented here and in [6] can be applied to solve explicitly (and in an elementary
way) at leastcertainspecific examples.

Let us conclude this section by giving some definitions and notation on
formal power series. Given a ringL andk indeterminatesx1, . . . , xk , we denote
by L[x1, . . . , xk] the ring of polynomials inx1, . . . , xk with coefficients inL.
We denote byL[[x1, . . . , xk]] the ring of formal power series in thexi , that is,
of formal sums ∑

n1≥0,...,nk≥0

a(n1, . . . , nk)x
n1
1 · · ·xnk

k ,(1)

wherea(n1, . . . , nk) ∈ L. A Laurent polynomialin thexi is a polynomial in both
thexi and thex̄i = 1/xi . A Laurent seriesin thexi is a series of the form (1) in
which the summation runs overni ≥ mi for all i, with mi in Z. For F ∈ L[[t]],
we denote by[tn]F the coefficient oftn in F . If F is a formal series int whose
coefficients are Laurent series inx, we denote byF+ thepositive part ofF in x,
that is,

F = ∑
n≥0

tn
∑
i∈Z

fi(n)xi �⇒ F+ = ∑
n≥0

tn
∑
i>0

fi(n)xi.(2)

We define similarly the negative, nonnegative and nonpositive parts ofF .
Assume, from now on, thatL is a field. We denote byL(x1, . . . , xk) the field of

rational functions inx1, . . . , xk with coefficients inL. A seriesF in L[[x1, . . . , xk]]
is algebraic if there exists a nontrivial polynomialP with coefficients inL such
that P(F,x1, . . . , xk) = 0. The sum and product of algebraic series is algebraic.
The seriesF is D-finite if the partial derivatives ofF span a finite-dimensional
vector space over the fieldL(x1, . . . , xk); see [31] for the one-variable case,
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and [24, 25] otherwise. In other words, for 1≤ i ≤ k, the seriesF satisfies a
nontrivial partial differential equation of the form

di∑
�=0

P�,i

∂�F

∂x�
i

= 0,

whereP�,i is a polynomial in thexj . Any algebraic series is D-finite. The sum
and product of D-finite series are D-finite. The specializations of a D-finite series
(obtained by giving values fromL to some of the variables) are D-finite, if well
defined. Finally, ifF is D-finite, then anydiagonal of F is also D-finite [24]
(the diagonal ofF in x1 and x2 is obtained by keeping only those monomials
for which the exponents ofx1 and x2 are equal). We shall use the following
consequence of the proof of this result: ifF(t, x) ∈ L[x, x̄][[t]] is algebraic (with
x̄ = 1/x), then the positive part ofF in x is D-finite, as well as the coefficient ofxi

in this series, for alli.

2. Enumeration: the number of walks. Consider walks that start from(0,0),
consist of South, West and North-East steps, and always stay in the first quadrant
(Figure 1). Letai,j (n) be the number ofn-step walks of this type ending at(i, j).
We denote byQ(x,y; t) thecomplete generating functionof these walks:

Q(x,y; t) := ∑
i,j,n≥0

ai,j (n)xiyj tn.

We can construct these walks recursively, by starting from(0,0) and adding a step
at each time. This gives the equation

Q(x,y; t) = 1+ t

(
1

x
+ 1

y
+ xy

)
Q(x,y; t) − t

y
Q(x,0; t) − t

x
Q(0, y; t).

The first term in the right-hand side encodes the empty walk, reduced to the
point (0,0). The next term shows the three possible ways one can add a step at
the end of a walk. However, one should not add a South step to a walk that ends
on thex-axis: the third term subtracts the contribution of this forbidden move, and
the last term takes care of the symmetric case. Equivalently,(

xy − t (x + y + x2y2)
)
Q(x,y; t) = xy − xtQ(x,0; t) − ytQ(0, y; t).(3)

We shall often denoteQ(x,y; t) by Q(x,y) for short. Let us also denote the
seriesxtQ(x,0; t) by R(x; t) or evenR(x). Using the symmetry of the problem
in x andy, the above equation becomes(

xy − t (x + y + x2y2)
)
Q(x,y) = xy − R(x) − R(y).(4)

Equation (3) is equivalent to a recurrence relation defining the numbersai,j (n)

inductively with respect ton. Hence, it defines completely the seriesQ(x,y; t).
Still, the characterization we have in mind is of a different nature:
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THEOREM 1 (The number of walks). Let W ≡ W(t) be the power series int
defined by

W = t (2+ W3).

Then the generating function of Kreweras’ walks ending on thex-axis is

Q(x,0; t) = 1

tx

(
1

2t
− 1

x
−

(
1

W
− 1

x

)√
1− xW2

)
.

Consequently, the length generating function of walks ending at(i,0) is

[xi]Q(x,0; t) = W2i+1

2.4i t

(
Ci − Ci+1W

3

4

)
,

whereCi = (2i
i

)
/(i+1) is theith Catalan number. The Lagrange inversion formula

gives the number of such walks of length3n + 2i as

ai,0(3n + 2i) = 4n(2i + 1)

(n + i + 1)(2n + 2i + 1)

(
2i

i

)(
3n + 2i

n

)
.

The aim of this section is to derive Theorem 1 from the functional equation (3).
Note that the complete generating functionQ(x,y) can be recovered using (3):

Q(x,y; t) = (1/W − x̄)
√

1− xW2 + (1/W − ȳ)
√

1− yW2

xy − t (x + y + x2y2)
− 1

xyt
,

with x̄ = 1/x andȳ = 1/y. For walks ending on the diagonal, we shall also obtain
a nice generating function:

THEOREM 2 (Walks ending on the diagonal).Let W ≡ W(t) be defined as
above. Then the generating function of Kreweras’ walks ending on the diagonal,
defined by

Qd(x; t) := ∑
i,n≥0

ai,i(n)xitn,

satisfies

tQd(x; t) = W − x̄√
1− xW(1+ W3/4) + x2W2/4

+ x̄.

The expression ofQd becomes a bit simpler if we express it in terms of the
unique power seriesZ ≡ Z(t) satisfyingZ = 1+ 4t3Z3. ThenW = 2tZ and

tQd(x; t) = 2tZ − x̄√
1− xtZ(1+ Z) + x2t2Z2

+ x̄.

The last formula of Theorem 1 is due to Kreweras [23]. He also gave a closed
form expression for the number of walks containing exactlyp West steps,q South
steps, andr North-East steps, that is, for walks of lengthn = p + q + r ending
at (i, j) = (r − p, r − q). This expression is a double summation, with alternating
signs. We have not found anything simpler.
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2.1. The obstinate kernel method.The kernel method is basically the only tool
we have to attack (4). This method has been around since, at least, the 1970s, and
is currently the subject of a certain revival (see [22], Exercises 2.2.1.4 and 2.2.1.11
and [11] for early uses of the method, and [1, 2, 7] for more recent combinatorial
applications). It consists in coupling the variablesx andy so as to cancel thekernel
K(x, y) = xy − t (x + y + x2y2) [which is the coefficient ofQ(x,y) in (4)]. This
should give the “missing” information about the seriesR(x).

As a polynomial iny, this kernel has two roots,

Y0(x) = 1− t x̄ − √
(1− t x̄)2 − 4t2x

2tx
= t + x̄t2 + O(t3),

Y1(x) = 1− t x̄ + √
(1− t x̄)2 − 4t2x

2tx
= x̄

t
− x̄2 − t − x̄t2 + O(t3).

The elementary symmetric functions of theYi are

Y0 + Y1 = x̄

t
− x̄2 and Y0Y1 = x̄.(5)

The fact that they are polynomials inx̄ = 1/x will play a very important role below.
Only the first root can be substituted fory in (4) [the termQ(x,Y1; t) is not

a well-defined power series int , because of the negative power oft that occurs
in Y1]. We thus obtain a functional equation forR(x):

R(x) + R(Y0) = xY0.(6)

It is not hard to see that this equation—once restated in terms ofQ(x,0)—defines
uniquelyQ(x,0; t) as a formal power series int with polynomial coefficients inx.
Equation (6) is the standard result of the kernel method.

Still, we want to apply here theobstinatekernel method. That is, we shall not
content ourselves with (6), but we shall go on producing pairs(X,Y ) that cancel
the kernel and use the information they provide on the seriesR(x). This obstinacy
was inspired by the book [13] by Fayolle, Iasnogorodski and Malyshev and, more
precisely, by Section 2.4 of this book, where one possible way to obtain such
pairs is described (even though the analytic context is different). We give here
an alternative construction.

Let (X,Y ) �= (0,0) be a pair of Laurent series int with coefficients in some field
such thatK(X,Y ) = 0. Recall that, as a function ofy, the polynomialK(x, y)

is quadratic. Thus, letY ′ be the other solutionof the equationK(X,y) = 0.
We define the function� by �(X,Y ) = (X,Y ′). For instance, if(X,Y ) is the
pair (x,Y0), then �(X,Y ) = (x,Y1). Similarly, we define�(X,Y ) = (X′, Y ),
whereX′ is the other solution ofK(x,Y ) = 0. Note that� and� are involutions
and that, in view of (5),X′ = Y ′ = (XY)−1. In particular,�(x,Y0) = (Y1, Y0).
Let us examine the iterated action of� and� on the pair(x,Y0): We obtain the
diagram of Figure 2.
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FIG. 2. The orbit of(x,Y0) under the action of� and �. The framed pairs can be substituted
for (x, y) in the functional equation.

All these pairs of power series cancel the kernel. We have already seen that the
pair (x,Y0) can be substituted for(x, y) in (4). This is also true, but less obvious,
for the pair(Y0, Y1): indeed, if we write

Q(x,y; t) = ∑
k≥max(�,m)

tk+�+mxk−�yk−mak−�,k−m(k + � + m),

= ∑
k≥max(�,m)

tk+2m(xy)k−�(ty)�−mak−�,k−m(k + � + m),

and note thatY0Y1 = x̄, while tY1 = x̄ + O(t), then we see thatQ(Y0, Y1; t) is a
well-defined power series int , with coefficients inQ[x, x̄]. The same argument
shows thatR(Y1) = tY1Q(0, Y1; t) is also well defined. Thus, the two pairs than
can be substituted for(x, y) in the functional equation give ustwo equations for
the unknown seriesR(x):

R(x) + R(Y0) = xY0,
(7)

R(Y0) + R(Y1) = Y0Y1 = x̄.

REMARK. Let p,q, r be three nonnegative numbers such thatp + q +
r = 1. Take x = (pr)1/3q−2/3, y = (qr)1/3p−2/3, and t = (pqr)1/3. Then
K(x, y; t) = 0, so that R(x) + R(y) = xy. This equation can be given a
probabilistic interpretation by considering random walks that make a North-East
step with (small) probabilityr and a West (resp. South) step with probabilityp

(resp.q). This probabilistic argument, and the equation it implies, is the starting
point in Gessel’s solution of Kreweras problem ([19], equation (21)).

2.2. Symmetric functions ofY0 andY1. After the kernel method, the next tool
in our approach is the extraction of the positive part of a power series, defined
by (2). This is where the values of the symmetric functions ofY0 andY1 become
crucial: the fact that they only involve negative powers ofx [see (5)] will simplify
the extraction of the positive part of certain equations.
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LEMMA 3. LetF(u, v; t) be a Laurent series int with coefficients inC[u, v],
symmetric inu andv. That is, F(u, v; t) = F(v,u; t). Then the seriesF(Y0, Y1; t),
if well defined, is a Laurent series int with polynomial coefficients in̄x. Moreover,
the constant term of this series, taken with respect tōx, is F(0,0; t).

PROOF. By linearity, it suffices to check this whenF is simply a symmetric
polynomial inu andv. But then it is a polynomial inu + v anduv with complex
coefficients. The result follows thanks to (5).�

We now want to form a symmetric function ofY0 and Y1, starting from the
equations of (7). The first one reads

R(Y0) − xY0 = −R(x).

By combining both equations, we obtain the companion expression

R(Y1) − xY1 = R(x) + 2x̄ − 1/t.

Taking the difference (an alternative derivation of Kreweras’ result, obtained by
considering the product(R(Y0) − xY0)(R(Y1) − xY1), is presented in [5]) and
dividing byY0 − Y1 gives

R(Y0) − R(Y1)

Y0 − Y1
− x = tx

2R(x) + 2x̄ − 1/t√
�(x)

,(8)

where�(x) = (1− t x̄)2 − 4t2x is the discriminant that occurs in bothY0 andY1.
As a Laurent polynomial inx, �(x) has three roots. Two of them, say

X0 and X1, are formal power series in
√

t ; the other is a Laurent series int
(for generalities on the roots of a polynomial overC(t), see [32], Chapter 6). The
coefficients of these series can be computed inductively:

X0 = t + 2t2√t + 6t4 + 21t5√t + 80t7 + 1287
4 t8√t + · · · ,

X1 = t − 2t2√t + 6t4 − 21t5√t + 80t7 − 1287
4 t8√t + · · · ,

X2 = 1

4t2 − 2t − 12t4 − 160t7 − 2688t10 − 50688t13 + · · · .
Hence,�(x) factors as

�(x) = �0�+(x)�−(x̄)

with

�0 = 4t2X2, �+(x) = 1− x/X2, �−(x̄) = (1− x̄X0)(1− x̄X1).

Note that�0,�+(x) and �−(x̄) are power series int with constant term 1.
Moreover,�0 has its coefficients inQ, while �+(x) has its coefficients inQ[x],
and �−(x̄) has its coefficients inQ[x̄]. This is an instance of the “canonical
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factorization” of power series ofQ[x, x̄][[t]], which has already proved useful in
several path enumeration problems [4, 9, 18]. Going back to (8), and multiplying
through by

√
�−(x̄), one obtains

√
�−(x̄)

(
R(Y0) − R(Y1)

Y0 − Y1
− x

)
= t

2xR(x) + 2− x/t√
�0�+(x)

.

Both sides of this identity are power series int with coefficients inQ[x, x̄]. But the
right-hand side only contains nonnegative powers ofx, while the left-hand side,
except for a term−x, only contains nonpositive powers ofx (in view of Lemma 3).
Extracting the positive part of the above equation thus gives

−x = t√
�0

(
2xR(x) + 2− x/t√

�+(x)
− 2

)
.

The expression ofQ(x,0) announced in Theorem 1 follows, given thatX2 = 1/W2

and R(x) = xtQ(x,0). The expansion ofQ(x,0) in x is straightforward, us-
ing 1− √

1− 4t = 2t
∑

n≥0 Cnt
n. The value ofai,0(3n + 2i) follows using the

Lagrange inversion formula ([32], page 38).

2.3. The algebraic kernel method.We present in this section another proof
of Theorem 1 based on a variation of the kernel method. This variation does
not require us to cancel the kernel, but, instead, builds on one of its algebraic
properties. This variant has some drawbacks—since the kernel is not zero, we
are handling bigger equations—but it also has some advantages. In particular, we
obtain at some point an equation that is the counterpart of (8), but in which it is
obvious that the left-hand side is nonpositive inx. This will be helpful in the next
section, where we handle analytic functions rather than power series. Finally, this
variant of the kernel method provides a proof of Theorem 2.

Let us return to the original equation (4), or, equivalently, to

xyKr(x, y)Q(x, y) = xy − R(x) − R(y),

whereKr(x, y) = 1 − t (x̄ + ȳ + xy) is therational versionof the kernelK . The
fact that the diagram of Figure 2 is nice actually stems from an invariance property
of Kr :

Kr(x, y) = Kr(x̄ȳ, y) = Kr(x, x̄ȳ) ≡ Kr.

Applying iteratively the (involutive) transformations� : (x, y) 
→ (x̄ȳ, y) and
� : (x, y) 
→ (x, x̄ȳ) gives the set of pairs of Figure 2A, on whichKr takes the
same value. Note that Figure 2A specializes to Figure 2 wheny = Y0.

Now, all pairs of the above diagram can be substituted for(x, y) in the
functional equation: the resulting series are power series int with coefficients



WALKS IN THE QUARTER PLANE 1461

FIG. 2A.

in Q[x, x̄, y, ȳ]. This gives no less thanthreeequations:

xyKrQ(x, y) = xy − R(x) − R(y),

x̄KrQ(x̄ȳ, y) = x̄ − R(x̄ȳ) − R(y),

ȳKrQ(x, x̄ȳ) = ȳ − R(x) − R(x̄ȳ).

We sum the first and third equations, and subtract the second one, so as to
keepR(x) as the only unknown function on the right-hand side:

Kr

(
xyQ(x, y) − x̄Q(x̄ȳ, y) + ȳQ(x, x̄ȳ)

) = xy − x̄ + ȳ − 2R(x)

= 1− Kr

t
− 2x̄ − 2R(x).

Equivalently,

xyQ(x, y) − x̄Q(x̄ȳ, y) + ȳQ(x, x̄ȳ) + 1

t
= 1

Kr

(
1

t
− 2x̄ − 2R(x)

)
.(9)

The kernelK(x, y) factors as−tx2(y − Y0)(y − Y1). Converting 1/K into partial
fractions ofy yields the following expression for the reciprocal of the (rational)
kernelKr :

1

Kr

= 1√
�(x)

(
1

1− ȳY0
+ 1

1− y/Y1
− 1

)

= 1√
�(x)

( ∑
n≥0

ȳnY n
0 + ∑

n≥1

ynY−n
1

)
.

Note that this expansion is valid in the set of formal power series int with
coefficients inQ[x, x̄, y, ȳ]. Let us extract in (9) the constant term iny: the
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seriesxyQ(x, y) andȳQ(x, x̄ȳ) do not contribute, and we obtain

−x̄Qd(x̄) + 1

t
= 1/t − 2x̄ − 2R(x)√

�(x)
,

where the seriesQd is the diagonal ofQ(x,y), and counts walks ending on
the diagonal. The above equation should be compared to (8): basically, both
equations are equivalent, but their negative parts on the left-hand side are written
in two different ways. We now proceed as above, using the canonical factorization
of �(x), which gives

√
�−(x̄)

(
1

t
− x̄Qd(x̄)

)
= 1/t − 2x̄ − 2R(x)√

�0�+(x)
.

Extracting the nonnegative part gives, as before, the value ofR(x), and Theorem 1.
Extracting the negative part gives

√
�−(x̄)

(
1

t
− x̄Qd(x̄)

)
− 1

t
= − 2x̄√

�0
.

Recall that�0 = 4t2X2 = 4t2/W2 and �−(x̄) = (1 − x̄X0)(1 − x̄X1), where
X0 andX1 are the two “small” roots of�(x). We can express their elementary
symmetric functions in terms of the third root,X2 = 1/W2. This gives

�−(x̄) = 1− x̄W(1+ W3/4) + x̄2W2/4,

and this provides the expression ofQd(x) given in Theorem 2.

3. Probability: a Markov chain and its stationary distribution. We con-
sider a Markov chain on the quadrant, whose transition probabilitiesT (i, j ;k, �)

are schematized in Figure 3. More precisely, fori > 0 andj > 0, the probability

FIG. 3. The transition probabilities.
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of going from(i, j) to (k, �) is

T (i, j ;k, �) =



p, if k = i − 1 and� = j ,

q, if k = i and� = j − 1,

r, if k = i + 1 and� = j + 1,

wherep,q, r are three positive real numbers summing to 1. When the point(i, j)

lies on the border of the quadrant, the transition probabilities are modified as
follows: for i > 0,

T (i,0;k, �) =
{

p′, if k = i − 1 and� = 0,

r ′, if k = i + 1 and� = 1,

and forj > 0,

T (0, j ;k, �) =
{

q ′′, if k = 0 and� = j − 1,

r ′′, if k = 1 and� = j + 1,

where p′, r ′, q ′′, r ′′ are positive numbers such thatp′ + r ′ = q ′′ + r ′′ = 1.
Finally, we takeT (0,0;1,1) = 1. Note that this chain is irreducible (all states
communicate) and has period 3.

A probability distribution(pi,j )i,j≥0 is stationaryfor the above transition if for
all k, � ≥ 0,

pk,� = ∑
i,j

pi,j T (i, j ;k, �).

Our objective is to find the stationary distribution of the above transition, when
it exists. It is customary to encode a distribution by its probability generating
function

�(x,y) = ∑
i,j≥0

pi,j x
iyj ,

but is is more convenient here to split�(x,y) into four parts: first,p0,0, and then
the three following generating functions:

P(x, y) = ∑
i,j≥1

pi,j x
iyj , P1(x) = ∑

i≥1

pi,0x
i, P2(y) = ∑

j≥1

p0,j y
j .

Then the distribution(pi,j )i,j≥0 is stationary if and only if

(1− px̄ − qȳ − rxy)P (x, y) + (1− p′x̄ − r ′xy)P1(x)
(10)

+ (1− q ′′ȳ − r ′′xy)P2(y) + (1− xy)p0,0 = 0.

Note that the numberspi,j have to sum to 1: hence, the above series are absolutely
convergent for|x| ≤ 1 and |y| ≤ 1, and define analytic functions for|x| < 1,
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|y| < 1. Moreover,

p0,0 + P1(1) + P2(1) + P(1,1) = 1.(11)

3.1. The main results. The stationary distribution of this Markov chain was
computed in [13] in the case where the transition probabilities are related by

p

r
= p′

r ′ := α and
q

r
= q ′′

r ′′ := β.(12)

Equivalently,

p′ = p

p + r
, r ′ = r

p + r
, q ′′ = q

q + r
, r ′′ = r

q + r
.

It is known that this chain has a stationary distribution if and only ifr < min(p, q)

(see [14, 27] for general results on Markov chains in the quadrant). It will be shown
in Lemma 6 that the condition is necessary, and it will follow from the results of
Section 4, where we compute the law of the chain, that it is sufficient. For the
moment, we rely on the general results of [14, 27].

Under the conditions of (12), which we assume to hold in this section, we have

1− p′x̄ − r ′xy = r ′

r

(
1− px̄ − qȳ − rxy + q(ȳ − 1)

)
,

1− q ′′ȳ − r ′′xy = r ′′

r

(
1− px̄ − qȳ − rxy + p(x̄ − 1)

)
,

1− xy = 1

r

(
1− px̄ − qȳ − rxy + p(x̄ − 1) + q(ȳ − 1)

)
so that the functional equation (10) can be nicely rewritten as

(1− px̄ − qȳ − rxy)Q(x, y) = q(1− ȳ)Q(x,0) + p(1− x̄)Q(0, y)(13)

with

Q(x,y) = p0,0 + r ′P1(x) + r ′′P2(y) + rP (x, y).(14)

This equation was first met by Flatto and Hahn [17] in their study of a system
of two parallel queues with two demands (with continuous time). They solved
this equation using nontrivial complex analysis, multivalued analytic functions and
a parametrization of the kernel by elliptic functions—to end up with analgebraic
solutionQ(x,y). We shall rederive their result in a more elementary way, and state
it in a more symmetric fashion.

THEOREM4 (Solution of Flatto and Hahn’s equation).Assumer < min(p, q).
There exists, up to a multiplicative constant, a unique solution of(13) that is
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analytic in {|x|, |y| < 1} and whose series expansion converges for|x|, |y| ≤ 1.
This solution satisfies

Q(x,0) = Q(0,0)

(1− qx/p)(1− rx/p)

×
((

1− x

pw

)√
1− xqrw2 − qx

p

(
1− 1

qw

)√
1− prw2

)
,

Q(0, y) = Q(0,0)

(1− py/q)(1− ry/q)

×
((

1− y

qw

)√
1− yprw2 − py

q

(
1− 1

pw

)√
1− qrw2

)
,

where w is the smallest positive solution ofw = 2 + pqrw3. The complete
generating functionQ(x,y) can be obtained using(13). When p = q, then
w = 1/p, and the above expressions simplify to

Q(x,0) = Q(0, x) = Q(0,0)√
1− rx/p

.

If r ≥ min(p, q), no solution of(13) converges on|x|, |y| ≤ 1.

Observe that exchangingp andq, andx andy, leaves the solution unchanged, in
conformity with the diagonal symmetry of the model. From the algebraic equation
definingw, it is not difficult to see that

(pw − 1)2(1− qrw2) = (qw − 1)2(1− prw2) = (rw − 1)2(1− pqw2).

Moreover, an elementary study of the functionf (z) = pqrz3 − z+2 gives bounds
for w:

1

M
≤ w ≤ 1√

pq
≤ 1

m
<

1

r
,(15)

wherem = min(p, q) andM = max(p, q), with equalities holding if and only if
p = q. Hence,

0 ≤ (Mw − 1)
√

1− mrw2

(16)
= −(mw − 1)

√
1− Mrw2 = −(rw − 1)

√
1− pqw2,

and this allows us to rewrite the second part of the expressions ofQ(x,0)

andQ(0, y) in various ways. This will be useful in Section 3.3, where we make
further comments on this solution, and relate it to Flatto and Hahn’s formulation.
We shall prove Theorem 4 in Section 3.2. For the moment, let us derive from it the



1466 M. BOUSQUET-MÉLOU

stationary distribution of the Markov chain of Figure 3. This result is actually not
given explicitly in [13].

COROLLARY 5 (The stationary distribution).Assumer < min(p, q). Let
w be the smallest positive solution ofw = 2 + pqrw3. The Markov chain
schematized in Figure3, with the additional condition(12), has a unique
stationary distribution(pi,j ), given by

p0,0 = w(p − r)(q − r)|p − q|
6pq(1− rw)

√
1− pqw2

,

∑
i>0

pi,0x
i = 1

r ′
(
Q(x,0) − Q(0,0)

)
,

∑
j>0

p0,j y
j = 1

r ′′
(
Q(0, y) − Q(0,0)

)
,

∑
i>0,j>0

pi,j x
iyj = 1

r

(
Q(x,y) − Q(x,0) − Q(0, y) + Q(0,0)

)
,

whereQ(x,y) is the function of Theorem4, taken withQ(0,0) = p0,0. When
p = q, then the expression ofp0,0 should be taken to be

p0,0 = 1
3(1− r/p)3/2.

If r ≥ min(p, q), then the Markov chain has no stationary distribution.

PROOF. The stationary distribution is related to the seriesQ(x,y) satisfy-
ing (13) by (14), so that the expressions of the three series above are obvious.
We only have to determine which value ofQ(0,0) guarantees the normalizing
condition (11). This condition reads

Q(0,0) + 1

r ′
(
Q(1,0) − Q(0,0)

) + 1

r ′′
(
Q(0,1) − Q(0,0)

)

+ 1

r

(
Q(1,1) − Q(1,0) − Q(0,1) + Q(0,0)

) = 1,

that is,

Q(1,1) − qQ(1,0) − pQ(0,1) = r.(17)

Wheny = 1, a factor(1− x̄) comes out of (13), leaving

(p − rx)Q(x,1) = pQ(0,1).(18)

Settingx = 1 gives

Q(1,1) = p

p − r
Q(0,1),
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and, of course, a symmetric argument yields

Q(1,1) = q

q − r
Q(1,0).

Hence, the normalizing condition (17) reads

Q(1,0) = q − r

3q
.(19)

Now, from the expression ofQ(x,0) given in Theorem 4, we obtain, ifp �= q,

Q(1,0) = pQ(0,0)

w(p − q)(p − r)

(
(pw − 1)

√
1− qrw2 − (qw − 1)

√
1− prw2 )

.

Using (16), the above expression forQ(1,0) can be rewritten as

Q(1,0) = 2pQ(0,0)(1− rw)
√

1− pqw2

w|p − q|(p − r)
,

and the condition (19) gives the value ofQ(0,0) = p0,0.
Whenp = q, the simplified expression ofQ(x,0), given in Theorem 4, gives

Q(1,0) = Q(0,0)/
√

1− r/p, and the result follows. �

3.2. Proof of Theorem4. Our solution of (13) follows the same idea as
Section 2.3: we shall exploit an invariance property of the kernel. However,
we do not have the length variablet any more, which means that we are no
longer in a power series context, but rather in the world of functions of two
complex variablesx andy. Consequently, certain operations that were performed
formally in Section 2.3 (e.g., the extraction of coefficients) now need to be justified
analytically. The analytic lemmas we need are gathered in Section 3.2.1. In
Section 3.2.2, our main functional equation (13) is transformed intotwo functional
equations defining two functionsU(x, y) and F(x, y), which are respectively
symmetric and anti-symmetric inx andy. Section 3.2.3 is the heart of the proof:
there we solve these two equations, using the algebraic kernel method. The reader
may skip directly to the latter section in order to recognize the logic of the kernel
method, transferred to an analytic context.

3.2.1. Preliminary results. Our first lemma tells us that the domain of
convergence ofQ(x,y) is actually larger than the unit polydisc|x| ≤ 1, |y| ≤ 1.

LEMMA 6. Let Q(x,y) be a power series solution of(13) that has nonnega-
tive coefficients and converges for|x| ≤ 1 and |y| ≤ 1. Then this series also con-
verges in the following domain:

{|x| < p/r, |y| ≤ 1} ∪ {|x| ≤ 1, |y| < q/r}.
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Moreover,

Q(x,1) = Q(0,1)

1− rx/p
and Q(1, y) = Q(1,0)

1− ry/q
.

In particular, such a solutionQ(x,y) can only exist ifr < min(p, q): if this
inequality does not hold, the Markov chain has no stationary distribution.

PROOF. For |x| ≤ 1, the expression ofQ(x,1) follows from (18). The
expression ofQ(1, y) is, of course, symmetric. These two series must converge
when x = 1 and y = 1: this forcesr to be smaller thanp and q. Given the
nonnegativity of the coefficients, the values ofQ(x,1) and Q(1, y) imply the
convergence ofQ(x,y) in the desired domain.�

The extraction of coefficients will be based on the following result ([30],
Chapter 10, Exercise 25).

PROPOSITION 7. Let f (z) be an analytic function in the annulusA =
{r < |z| < R}. There exists a unique bi-infinite sequence(an)n∈Z such that for
all z ∈ A,

f (z) = ∑
n∈Z

anz
n.

Moreover, the convergence is absolute. In other words, f is the sum of a function
analytic in the disk{|z| < R} and a function analytic for|z| > r .

It will be convenient to work with an equation whose kernel is symmetric in
x andy. In (13), let us replacex by px andy by qy. Multiplying through byxy

gives

(xy − x − y − pqrx2y2)Q(px, qy)
(20)

+ x(1− qy)Q(px,0) + y(1− px)Q(0, qy) = 0.

Let K(x, y) = xy − x − y − pqrx2y2 denote the kernel of this equation. The
discriminant ofK , taken as a polynomial iny, is (x −1)2 −4pqrx3. Let us denote

�(x) = (1− x̄)2 − 4pqrx.

LEMMA 8. Assumer < min(p, q). Let m = min(p, q) and M = max(p, q).
The three roots of�(x), denotedxi , i = 0,1,2, are real and satisfy

0< x0 < 1< x1 <
1

M
≤ 1

m
<

1

r
≤ x2.
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PROOF. The variations of�(x) are easy to study. Note that�(x) is a square
whenx = 1/p,1/q or 1/r . �

Recall thatw is defined as the smallest positive solution ofw = 2+pqrw3. This
implies that 1/(pqrw2) = x2. The lemma above gives the following factorization
of �, which will play the role of thecanonical factorizationof Section 2:

�(x) = �0�+(x)�−(x̄)(21)

with

�0 = 4pqrx2 = 4/w2,

�+(x) = 1− x/x2 = 1− pqrw2x,(22)

�−(x̄) = (1− x̄x0)(1− x̄x1).

As a polynomial iny, the kernelK(x, y) of (20) has two roots:

Y0(x) = 1− x̄ − √
�(x)

2pqrx
, Y1(x) = 1− x̄ + √

�(x)

2pqrx
.

The elementary symmetric functions of theYi are polynomials in̄x = 1/x:

Y0 + Y1 = x̄(1− x̄)

pqr
and Y0Y1 = x̄

pqr
.

Using the canonical factorization of�, we see thatY0 andY1 are at least analytic
in the annulusx1 < |x| < x2. Let us study these functions a bit more precisely
whenx is real. The following lemma is illustrated by Figure 4.

LEMMA 9. We still assume thatr < min(p, q). The functionsY0 andY1 are
well defined and real forx ∈ (−∞, x0] ∪ [x1, x2]. In particular,

Y0(1/M) = 1/m, Y0(1/m) = Y0(1/r) = 1/M,

Y1(1/M) = Y1(1/m) = 1/r, Y1(1/r) = 1/m.

Each of the derivativesY ′
0(x) and Y ′

1(x) admits a unique zero on the inter-
val [x1, x2], respectively denoted byv2 andv1. Moreover,

x1 <
1

M
≤ v1 = w ≤ 1

m
< v2 <

1

r
≤ x2.

The functionY0 decreases betweenx1 and v2, and increases betweenv2 andx2,
while the functionY1 increases betweenx1 andv1, and then decreases up tox2.

Finally, for x ∈ (1/m,x2), one has

1

pqx
< Y0(x).

PROOF. The proof is a bit tedious, but elementary. We merely sketch the
different steps.
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FIG. 4. The real branches of the functionsYi , for p = 1/3, q = 1/2 andr = 1/6.

The first assertion comes from the study of the discriminant�(x) (Lemma 8).
The values ofYi at the points 1/M,1/m and 1/r are obtained by a direct
calculation.

Let us now focus on the interval[x1, x2]. Given that(1 − x̄)Yi = 1 + pqrxY 2
i

andx ≥ x1 > 1, we have 0< Y0(x) ≤ Y1(x). The derivatives ofY0 andY1 with
respect tox can be written

Y ′
0(x) = 1

x
√

�

(
(x − 2)

Y0

x
− 1

)
, Y ′

1(x) = − 1

x
√

�

(
(x − 2)

Y1

x
− 1

)
.

Given thatY0 andY1 are positive on[x1, x2], any root of these derivatives will
be larger than 2. The equation satisfied by theYi implies that these roots are
also solutions ofx − 2 = pqrx3. The polynomialpqrz3 − z + 2 has two roots
larger than 2. Let us denote themv1 andv2, with v1 < v2. Note thatv1 is actually
the numberw defined in Theorem 4. Ifx = vi , then�(x) = (x − 3)2. Hence,
vi belongs to the interval[x1, x2]. Evaluating the numerators ofY ′

0 andY ′
1 at v1

andv2 shows thatv1 cancelsY ′
1, while v2 cancelsY ′

0. Finally, we compute the
numerators ofY ′

0 andY ′
1 atx1 andx2. This determines the sign of these derivatives

and completes the study of the variations ofY0 andY1.
The last assertion is proved by studying the functiony 
→ K(x, y), for x fixed.

�

Let x ∈ (x1, x2) and lety belong to the annulus{Y0(x) < |y| < Y1(x)}. Let
Kr = K/(xy) = 1− x̄ − ȳ −pqrxy be the rational version of the kernel. Then the
following expansion is convergent:

1

Kr

= 1√
�(x)

(
1

1− ȳY0
+ 1

1− y/Y1
− 1

)
(23)

= 1√
�(x)

( ∑
n≥0

ȳnY n
0 + ∑

n≥1

ynY−n
1

)
.
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Let F(y) be analytic in the same annulus. Let us write

F(y) = ∑
i∈Z

fiy
i = F−(ȳ) + f0 + F+(y),

whereF+ andF− are the positive and negative parts ofF . Then

[y0]F(y)

Kr

= 1√
�(x)

(
F−(1/Y1) + f0 + F+(Y0)

)
(24)

= 1√
�(x)

(
F−(pqrxY0) + f0 + F+(Y0)

)
.

In particular, ifF(y) = G(y) − G(x̄ȳ/(pqr)), then

[y0]F(y)

Kr

= 0.(25)

3.2.2. Simplification of the functional equation.Let us go back to (20). The
function Q̄(x, y) = Q(px,qy)/((1 − px)(1 − qy)) satisfies an equation that is
symmetric inx andy:

(xy − x − y − pqrx2y2)Q̄(x, y) + xQ̄(x,0) + yQ̄(0, y) = 0.(26)

Yet we shall see that this function is, in general, not symmetric inx and y

(Section 3.3). We shall symmetrize it by consideringQ̄(x, y) + Q̄(y, x). More
precisely, we shall study separately the functionsS(x, y) andD(x,y) (as in Sum
and Difference) defined by

S(x, y) = (1− qx)(1− py)Q(px, qy) + (1− px)(1− qy)Q(py, qx),
(27)

D(x,y) = (1− qx)(1− py)Q(px, qy) − (1− px)(1− qy)Q(py, qx).

By Lemma 6, these functions are analytic in

D =
{
|x| < 1

r
, |y| < 1

M

}
∪

{
|x| < 1

M
, |y| < 1

r

}
(28)

with M = max(p, q). Note thatS(x, y) andD(x,y) satisfythe same equation:

S(x, y)(xy − x − y − pqrx2y2)

+ x(1− py)(1− qy)S(x,0) + y(1− px)(1− qx)S(0, y) = 0,
(29)

D(x,y)(xy − x − y − pqrx2y2)

+ x(1− py)(1− qy)D(x,0) + y(1− px)(1− qx)D(0, y) = 0.

However,S(x, y) is symmetric inx andy, while D(x,y) = −D(y,x). We shall
solve separately the two equations, taking into account the respective symmetry
or anti-symmetry condition. For each equation, we will obtain a unique solution,
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up to a multiplicative factor. A relation between the two factors will be found by
noticing that, by definition ofS andD,

S

(
1

q
,0

)
+ D

(
1

q
,0

)
= 0.(30)

First we rewrite the above equations onS andD, by expressingx(1 − py) ×
(1− qy) in terms of the kernel: indeed,

rx(1− py)(1− qy) = (r − x̄)
(
x + y − xy(p + q)

) − x̄K(x, y).

Let Kr = K/(xy) = 1 − x̄ − ȳ − pqrxy. The equation satisfied byS can be
rewritten as

Kr

xyrS(x, y) − yS(x,0) − xS(0, y)

x + y − xy(p + q)
= (x̄ − r)S(x,0) + (ȳ − r)S(0, y)

(31)
= x̄T (x) + ȳT (y)

with

T (x) = (1− rx)S(x,0) = (1− rx)S(0, x).(32)

Similarly,

Kr

xyrD(x, y) − yD(x,0) − xD(0, y)

x + y − xy(p + q)
= (x̄ − r)D(x,0) + (ȳ − r)D(0, y)

= E(x) − E(y),

where

E(x) = (x̄ − r)D(x,0) = −(x̄ − r)D(0, x).(33)

We have taken into account the fact thatD(x,y) is anti-symmetric, so that, in
particular,D(0,0) = 0. The functionsT andE are analytic for|x| < 1/r .

From the fact that the curvex + y = xy(p + q) intersects the domain of
convergence ofS(x, y) (near the origin), we derive from (31) the existence of a
functionU(x, y), analytic inD , such that

xyrS(x, y) − yS(x,0) − xS(0, y) = (
x + y − xy(p + q)

)
U(x, y).

A similar statement holds for the functionxyrD(x, y)−yD(x,0)−xD(0, y). But
this function vanishes as soon asx = 0 ory = 0, so that we can actually write

xyrD(x, y) − yD(x,0) − xD(0, y) = xy
(
x + y − xy(p + q)

)
F(x, y),

for a functionF that is analytic isD . Finally, we shall need the following initial
conditions:

U(x,0) = −S(0,0) = −2Q(0,0), T (0) = 2Q(0,0).(34)



WALKS IN THE QUARTER PLANE 1473

Equations (29) have thus been replaced by the following simpler equations:

KrU(x, y) = x̄T (x) + ȳT (y),(35)

KrxyF(x, y) = E(x) − E(y),(36)

whereKr = 1 − x̄ − ȳ − pqrxy and U,T ,F,E are analytic in the domainD
defined by (28).

3.2.3. The algebraic kernel method.We apply the algebraic kernel method of
Section 2.3 to (35)–(36). We observe thatKr satisfies the following invariance
condition:

Kr(x, y) = Kr

(
x̄ȳ

pqr
, y

)
= Kr

(
x,

x̄ȳ

pqr

)
≡ Kr.

Recall thatm = min(p, q) and M = max(p, q). Let us fix x in the interval
(1/m,1/r) and restricty to the annulus

Y0(x) < |y| < 1

M
.(37)

By Lemma 9, this annulus is nonempty, and, moreover,

1

pqx
< |y| < Y1(x).(38)

The pairs(x, y) and(x̄ȳ/(pqr), y) both belong to the domain of convergenceD ,
and we thus have, in addition to (35)–(36),

KrU

(
x̄ȳ

pqr
, y

)
= pqrxyT

(
x̄ȳ

pqr

)
+ ȳT (y),(39)

Kr

x̄

pqr
F

(
x̄ȳ

pqr
, y

)
= E

(
x̄ȳ

pqr

)
− E(y).(40)

A linear combination of (35) and (39) gives

2U(x, y) − U

(
x̄ȳ

pqr
, y

)
= 1

Kr

(
2x̄T (x) + ȳT (y) − pqrxyT

(
x̄ȳ

pqr

))
.

In view of (37)–(38), the expansion of 1/Kr given by (23) is convergent. Recall
that x is fixed; we can now use (25) to extract from the above equation the
coefficient ofy0. We obtain

2U(x,0) − Ud

(
x̄

pqr

)
= 2x̄T (x)√

�(x)
,(41)

whereUd(x) denotes the diagonal of the seriesU(x, y):

U(x, y) = ∑
i,j≥0

ui,j x
iyj �⇒ Ud(x) = ∑

i≥0

ui,ix
i .
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Given thatU(x, y) converges absolutely in the domainD given by (28), the sub-
seriesUd(x) is convergent for|x| < 1/(rM). By analytic continuation, (41) holds
in the annulus{1/m < |x| < 1/r}. Recall thatU(x,0) is actually a constant
[see (34)]. We now use the canonical factorization of�(x), given by (21). We
multiply (41) by

√
�−(x̄):

−√
�−(x̄)

(
4Q(0,0) + Ud

(
x̄

pqr

))
= 2x̄T (x)√

�0�+(x)
.

Using Proposition 7, we can extract the nonnegative part of this function. Given
thatUd(0) = U(0,0) = −2Q(0,0), we obtain, using (22),

T (x) = 2Q(0,0)

(
1− x

w

)√
�+(x).(42)

In view of (31)–(32), we have completed the determination of the Sum func-
tion S(x, y).

Let us now work with (36) and (40). Let us divide (36) byKr and extract the
coefficient ofy0. We obtain

E(x) = E(Y0).

If we do the same with (40), we simply find 0= 0 [recall that F(x, y) is
antisymmetric]. However, if we extract instead the coefficient ofy, we obtain,
using (24),

x̄

pqr
F1

(
x̄

pqr

)
= E(0) − E(Y0),

where

F(x, y) = ∑
i,j≥0

fi,j x
iyj �⇒ F1(x) = ∑

i≥0

fi,i+1x
i.

By combining both equations, and extracting the nonnegative part, one sees that
E(x) is actually a constantE(0). In view of (32)–(33) and (42), one has

S(x,0) = S(0, x) = 2
Q(0,0)

1− rx

(
1− x

w

)√
�+(x)

and

D(x,0) = −D(0, x) = xE(0)

1− rx
.

The identity (30) completes the determination ofE:

E(0) = −2Q(0,0)

(
q − 1

w

)√
�+(1/q).

We can now expressQ(x,0) andQ(0, x) explicitly, using (27). Thanks to (16),
this gives exactly Theorem 4.
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3.3. Comments on the solution.

3.3.1. Asymptotics. For a good understanding of the solution of Theorem 4,
or, equivalently, of the stationary distribution of Corollary 5, it is useful to
determine the dominant singularities of the functionsQ(x,0) andQ(0, y), and,
hence, the asymptotic behavior of the numberspi,0 and p0,j . This is why we
briefly rederive below a result already proven in [17].

PROPOSITION 10. Assumer < min(p, q). The asymptotic decay of the
stationary probabilitiespi,0 depends on the relative values ofp andq:

• If p = q, thenQ(x,0) is the reciprocal of a square root, and, asi goes to infinity,

pi,0 ∼ c(r/p)ii−1/2

for some positive constantc.
• If p < q, then Q(x,0) has a simple pole atp/r as its unique dominant

singularity. The decay of the numberspi,0 is given by

pi,0 ∼ c(r/p)i .

• If p > q, thenQ(x,0) has a square root singularity at1/(qrw2) as its unique
dominant singularity, and

pi,0 ∼ c(qrw2)ii−3/2.

PROOF. We use standard results that relate the singularities of a series to the
asymptotic behavior of its coefficients (see, e.g., [16]).

When p = q, the result is clear in view of Theorem 4. Otherwise, the three
possible singularities ofQ(x,0) are p/q, p/r and 1/(qrw2). The inequalities
of (15) imply

p

q
<

p

r
<

1

qrw2 .

Hence, our first candidate for the radius ofQ(x,0) is p/q. However, the numerator
of Q(x,0) vanishes at this point, so that there is no pole atp/q. Our next candidate
is p/r . For this value ofx, the numerator ofQ(x,0) is(

1− 1

rw

)√
1− pqw2 − q

r

(
1− 1

qw

)√
1− prw2.

According to (16), the first term in this difference is negative. Ifp < q, then the
second term is positive. Hence, the difference is negative, andQ(x,0) has, indeed,
a simple pole atp/r .

However, if p > q, then (16) shows that the numerator ofQ(x,0) cancels
at x = p/r , so that the only singularity ofQ(x,0) is a square root singularity
at 1/(qrw2).

Note that one can compute explicitly, in the same way, the multiplicative
constants denotedc in the proposition. �
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3.3.2. An asymmetry of the solution.As observed above, the function
Q̄(x, y) = Q(px,qy)/((1− px)(1− qy)) satisfies an equation that is symmetric
in x andy [see (26)]. Hence, we could expectQ̄(x, y) to be a symmetric function
of x andy. This is equivalent to the condition

Q̄(x,0) − Q̄(0, x) = Q(px,0)

1− px
− Q(0, qx)

1− qx
= 0.

However, we derive from Theorem 4 and (16) that

Q̄(x,0) − Q̄(0, x) = 2Q(0,0)x(pw − 1)
√

1− qrw2

w(1− px)(1− qx)(1− rx)
.

By (15), this quantity differs from 0, unlesspw = 1, which forcesp = q. If p = q,
the solution satisfiesQ(x,0) = Q(0, x), so that the symmetry property naturally
holds. Otherwise, the asymmetry of the result comes from the asymmetric
conditions we have required:̄Q(x,y) must converge when|px| < 1 and|qy| < 1.

3.3.3. Flatto and Hahn’s expression. Assumep < q. Equation (16) shows
that the numerator ofQ(0, y) vanishes wheny = q/p andy = q/r . Let us denote
δ(y) =

√
1− yprw2. Then the numerator ofQ(0, y) is a polynomial inδ(y), of

degree 3, and two of its roots areδ(q/p) =
√

1− qrw2 andδ(q/r) =
√

1− pqw2.

The third root is then easily determined to be−
√

1− prw2. Hence, up to a
multiplicative constant independent ofy, the numerator ofQ(0, y) factors as

(√
1− yprw2 −

√
1− qrw2 )(√

1− yprw2 −
√

1− pqw2 )
× (√

1− yprw2 +
√

1− prw2 )
.

The denominator ofQ(0, y) is already factored iny, and also vanishes aty = q/p

andy = q/r . Up to a multiplicative constant, it factors as

(√
1− yprw2 +

√
1− qrw2 )(√

1− yprw2 −
√

1− qrw2 )
× (√

1− yprw2 +
√

1− pqw2 )(√
1− yprw2 −

√
1− pqw2 )

.

Two simplifications occur, and, finally,

Q(0, y) = Q(0,0)
�(y)

�(0)
,(43)

where

�(y) =
√

1− yprw2 +
√

1− prw2

(
√

1− yprw2 +
√

1− qrw2 )(
√

1− yprw2 +
√

1− pqw2 )
.
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Now, using (16), the functionQ(x,0) can be rewritten as

Q(x,0) = Q(0,0)

(1− qx/p)(1− rx/p)

×
((

1− x

pw

)√
1− xqrw2 + x

(
1− 1

pw

)√
1− qrw2

)
.

In this form, the numerator ofQ(x,0) now looks more like the numerator of
Q(0, y). More precisely, denoting the latter numerator byP(δ(y)), the former
numerator is exactly−P(−

√
1− xqrw2 ), and, hence, factors as(√

1− xqrw2 +
√

1− qrw2 )(√
1− xqrw2 +

√
1− pqw2 )

× (√
1− xqrw2 −

√
1− prw2 )

.

The denominator ofQ(x,0) is also easily factored; two simplifications occur
again, and we end up with

Q(x,0) = Q(0,0)
�(x)

�(0)
,(44)

where

�(x) =
√

1− xqrw2 +
√

1− qrw2

(
√

1− xqrw2 +
√

1− prw2 )(
√

1− xqrw2 −
√

1− pqw2 )
.

Expressions (43) and (44) are, with our notation, the forms given in Flatto and
Hahn’s paper [17]. They are nicely factored, and it is easy to derive from them
the singularities ofQ(x,0) andQ(0, y). However, they have two drawbacks: first,
they are only valid whenp ≤ q, and hide the symmetry of the result inp andq,
which is clear from the expressions of Theorem 4. Second, they somehow contain
“two many” radicals, and suggest thatQ(x,0) andQ(0, y) will be algebraic of
degree 3× 24 over the fieldQ(p, q, x, y), whereas, as suggested by Theorem 4,
they have only degree 3× 22 = 12. This can be checked using a computer algebra
package, like MAPLE.

4. Enumeration and probability: the law of the chain. In this section we
consider again the Markov chain illustrated in Figure 3. We start this chain at
time 0 at the origin of the lattice, and address the question of computing the
probabilitypi,j (n) that the walk reaches the point(i, j) at timen. This question
is, in essence, close to Section 2: we are againenumeratingpaths according to
a certain weight. This weight is the probability that the trajectory begins with this
path. But this question is also related to Section 3, since we expect the probability
pi,j (3n − i − j) to converge to 3pi,j asn goes to infinity, whenr < min(p, q),
wherepi,j is the stationary distribution of the chain (the factor 3 accounts for the
periodicity of the chain).
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The notation we adopt is similar to that of Section 3: we introduce the following
four generating functions for the probabilitiespi,j (n):

P0,0 = ∑
n≥0

p0,0(n)tn,

P1(x) = ∑
n,i>0

pi,0(n)xitn,

P2(y) = ∑
n,j>0

p0,j (n)yj tn,

P (x, y) = ∑
n,i,j>0

pi,j (n)xiyj tn.

The step by step construction of the walks gives the following functional equation:

(1− px̄t − qȳt − rxyt)P (x, y) + (1− p′x̄t − r ′xyt)P1(x)

+ (1− q ′′ȳt − r ′′xyt)P2(y) + (1− xyt)P0,0 = 1.

Again, we assume that the transition probabilities on the border of the quadrant
are related to those inside the quadrant by the conditions of (12). This allows us to
rewrite the above functional as

(1− px̄t − qȳt − rxyt)Q(x, y) + q(ȳt − 1)Q(x,0) + p(x̄t − 1)Q(0, y) = r

with

Q(x,y) = P0,0 + r ′P1(x) + r ′′P2(y) + rP (x, y).(45)

It will be convenient to have a kernel symmetric inx andy, and our starting point
will actually be(

xy − t (x + y + pqrx2y2)
)
Q(px,qy)

(46)
+ (t − qy)xQ(px,0) + (t − px)yQ(0, qy) = rxy.

We are back to the (safe) world of formal power series int with coeffi-
cients inQ(x, y), and we will mimic the obstinate kernel method of Sections
2.1 and 2.2. The only new difficulty arises from the absence of symmetry, since
Q(x,0) �= Q(0, x) whenp �= q.

The kernel of the above equation, considered as a polynomial iny, has two
roots,

Y0(x) = 1− t x̄ −
√

(1− t x̄)2 − 4pqrt2x

2pqrtx
= t + x̄t2 + O(t3),

Y1(x) = 1− t x̄ +
√

(1− t x̄)2 − 4pqrt2x

2pqrtx
= x̄

pqrt
− x̄2

pqr
− t − x̄t2 + O(t3).
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The elementary symmetric functions of theYi are again polynomials in 1/x:

Y0 + Y1 = x̄(1− t x̄)

pqrt
and Y0Y1 = x̄

pqr
.

The discriminant�(x) = (1− t x̄)2 − 4pqrt2x vanishes for three values ofx: two
of them, sayX0 and X1, are power series in

√
t , while the third one,X2, is a

Laurent series int that starts with a term int−2. Let us defineZ ≡ Z(t) to be the
unique power series int such that

Z = 1+ 4pqrt3Z3.

Then 4pqrt2X2Z
2 = 1, and the canonical factorization of�(x) reads

�(x) = �0�+(x)�−(x̄)

with

�0 = 4pqrt2X2 = 1

Z2 , �+(x) = 1− x/X2 = 1− 4pqrt2Z2x,(47)

�−(x̄) = (1− x̄X0)(1− x̄X1) = 1− tZ(1+ Z)x̄ + t2Z2x̄2.(48)

As in Section 3, it will be convenient to handle two functionsS(x, y) andD(x,y),
which are, respectively, symmetric and antisymmetric inx andy. We define them
by

S(x, y) = (t − qx)(t − py)Q(px, qy) + (t − px)(t − qy)Q(py, qx),
(49)

D(x,y) = (t − qx)(t − py)Q(px, qy) − (t − px)(t − qy)Q(py, qx).

Then

t
(
xy − t (x + y + pqrx2y2)

)
S(x, y) + (t − py)(t − qy)xS(x,0)

(50)
+ (t − px)(t − qx)yS(0, y) = G(x,y) + G(y,x),

t
(
xy − t (x + y + pqrx2y2)

)
D(x,y) + (t − py)(t − qy)xD(x,0)

(51)
+ (t − px)(t − qx)yD(0, y) = G(x,y) − G(y,x),

where

G(x,y) = rxyt (t − qx)(t − py).

4.1. Statement of the results.After all the algebraic series we have met, one
might expect the probability generating function of the law of the chain to be
algebraic again. This is, however, only true ifp = q.
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THEOREM 11 (The symmetric case).Assumep = q. The three-variate
generating function for the probabilitiespi,j (n) is algebraic, and can be expressed
explicitly in terms of the unique power seriesZ ≡ Z(t) satisfying Z = 1 +
4pqrt3Z3. In particular, the generating function of walks ending at the origin
is algebraic of degree6:

P0,0 = ∑
n≥0

p0,0(3n)t3n

= r

p

(√
1− pZ(1+ Z) + p2Z2

1− 2pZ
− 1

)
= r

p

(√
�−(p/t)

1− 2pZ
− 1

)
,

where �−(x̄) is given by(48). More generally, the seriesQ(px,0) = P0,0 +
r ′P1(px) is given by(

t − x(1− p) + prx2t2)Q(px,0)

= r

2p

(
(2tZ − x)

√
�−(p/t)

√
�+(x)

Z(1− 2pZ)
− 2t + x(1− p)

)
,

where�+(x) is given by(47). The expression ofP0,0 can be recovered from the
value ofQ(px,0) by settingx = 0.

This theorem, and all the results of this section, will be proved in Section 4.2.
What happens in the general case? We have expressed the seriesQ(px,qy)

in terms of two seriesS(x, y) and D(x,y), which are, respectively, symmetric
and antisymmetric inx and y. It turns out that the Sum seriesS(x, y) is
always algebraic, while the Difference seriesD(x,y) is transcendental (unless
p = q). The algebraicity ofS(x, y) has an interesting consequence: The generating
functionP0,0 that counts walks ending at the origin isalways algebraic, even when
p �= q.

THEOREM 12 (The general case: algebraic part).The seriesS(x, y) defined
by (49) is algebraic and can be expressed explicitly in terms of the unique power
seriesZ ≡ Z(t) satisfyingZ = 1+4pqrt3Z3. In particular, the coefficient ofx0y0

in S(x, y) is an algebraic series int . It is equal to2t2P0,0, whereP0,0 counts walks
ending at the origin, and we have

2pqP0,0 + r(1− r) = Ap,q + Aq,p,

whereAp,q is the following algebraic series int :

Ap,q = (p(1− 2p) − qrt3)
√

�−(p/t)

(1− t3)(1− 2pZ)

and�−(x̄) is given by(48).The algebraic seriesP0,0 has degree6 if p = q, and
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degree12 otherwise. More generally, the seriesS(x, y) satisfies

(
t − (1− p)x + t2qrx2)(t − (1− q)x + t2prx2)S(x,0)

t
+ rH(x)

2pq

= (2tZ − x)
√

�+(x)

2pqZ

(
Ap,qFp,q(x) + Aq,pFq,p(x)

)
,

where �+(x) is given by(47), and Fp,q(x) and H(x) denote the following
polynomials int andx:

Fp,q(x) = (t − xq)
(
t − (1− q)x + t2prx2),

H(x) = q(2t − x + px)Fp,q(x) + p(2t − x + qx)Fq,p(x)
(52)

− (p − q)2x2(2rt − (1− p)(1− q)x + 2pqrx2t2).
The expression ofP0,0 can be recovered from the value ofS(x,0) by settingx = 0.
An expression forS(x, y) can be obtained using(50).

This theorem will allow us to complete the proof of the following result,
announced in Section 3.

COROLLARY 13. The Markov chain schematized in Figure3, with the border
conditions of (12), is ergodic (i.e., has a stationary distribution) if and only if
r < min(p, q).

Theorem 12 specializes to Theorem 11 whenp = q. It states that walks ending
at the origin have an algebraic generating function. What about the generating
functions P1(x) and P2(y) that count walks ending on thex- or y-axis? By
symmetry of the model,P1(x) is algebraic if and only ifP2(y) is algebraic too.
In view of (45), (46) and (49), this holds if and only ifS(x,0) andD(x,0) are
algebraic. Ifp = q, thenD(x,y) is obviously zero, and Theorem 11 tells us that
all the generating functions under consideration are algebraic. Ifp �= q, we shall
prove thatD(x,0) is transcendental (but D-finite), and give an explicit expression
of it.

So far, we have expressed many of our series in terms of the canonical factoriza-
tion of the discriminant�(x). This is the case, for instance, in Theorem 12, where
the expression ofS(x,0) involves

√
�+(x), which we could call the positivemul-

tiplicative part of
√

�(x). In order to expressD(x,0), we need to introduce the
positiveadditivepart of

√
�(x), as defined by (2). More precisely, the expression

of D(x,0) will involve the positive (additive) part of

B(x) := (Y0 − Y1)(2t − x + pqrtx3) =
√

�(x)

pqrt
(1− 2t x̄ − pqrtx2).(53)
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We shall compute below the expansion ofB in t and x, using the Lagrange
inversion formula. In particular, we will see that the positive (additive) part ofB(x)

reads

B+(x) = −xt − x2 + 2C+(x),(54)

where all terms inC+(x) are multiples ofx3. We then define the seriesC−(x̄) by

B(x) = 1− 2x̄t

pqt
+ 2C−(x̄) − xt − x2 + 2C+(x).(55)

Observe that�(t/p), and, hence,B(t/p), is a well-defined Laurent series
in t . Clearly,C+(t/p) is well defined too: consequently, by difference, we can
defineC−(p/t) as a Laurent series int , even though it would be meaningless to
replacex by p/t in the expansion ofC−(x).

THEOREM 14 (The general case: transcendental part).When p �= q, the
seriesD(x,y) defined by(49) is D-finite but transcendental. The same holds for
its specializationD(x,0). Consequently, the seriesP1(x) andP2(y) which count
walks ending on thex- or y-axis are transcendental. The seriesD(x,0) satisfies

(
t − (1− p)x + t2qrx2)(t − (1− q)x + t2prx2)D(x,0)

rxt

+ x(p − q)
(
t2(1− r)rx2 − x/2+ t

)
= rx(p − q)t2C+(x) − t

1− t3

(
pC−(p/t)Fp,q(x) − qC−(q/t)Fq,p(x)

)
,

whereC+(x) andC−(x̄) are defined by(54)–(55)and, as in Theorem12,

Fp,q(x) = (t − xq)
(
t − (1− q)x + t2prx2).

An expression ofD(x,y) can then be obtained using(51).

Note the similarities between the expressions ofS(x,0) (Theorem 12)
andD(x,0) (Theorem 14). One could take the sum and difference of these ex-
pressions to recover the seriesQ(px,0) andQ(0, qx), but, as no significant sim-
plification arises, we shall not do this.

There is still one natural question that is not answered by the combination of
the above two theorems: we have seen that the generating functionP0,0 of walks
ending at the origin is algebraic, but that the seriesP1(x) that counts walks ending
on thex-axis is transcendental. Yet, fori > 0, the coefficient ofxi in P1(x), being

Pi,0 := ∑
n≥0

pi,0(n)tn,

counts walks ending at(i,0) and might be algebraic. The following corollary tells
us that this is not (systematically) the case.
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COROLLARY 15. Some of the seriesPi,0 are transcendental.

NOTE. We can obtain an explicit expression of the seriesC+(x) andC−(x̄)

by expandingB(x) in x andt . Let us write

Y0 − Y1 = 2Y0 − (Y0 + Y1) = 2Y0 − x̄(1− x̄t)

pqrt
,

and observe that the seriesY0, which cancels the kernel, is Lagrangian int :

Y0 = t (1+ x̄Y0 + pqrxY 2
0 ).

The Lagrange inversion formula yields

B(x) = (1− x̄t)(1− 2x̄t)

pqrt
− xt − x2

+ 2
∑
n≥2

tn
�n/2�∑
k=0

x3k−n+2(pqr)k
(3k − n + 1)(3k − n)(n − 2)!

k!(k + 1)!(n − 2k)! .

Consequently,

C+(x) = ∑
n≥2

tn
�n/2�∑

k=�(n−1)/3�
x3k−n+2(pqr)k

(3k − n + 1)(3k − n)(n − 2)!
k!(k + 1)!(n − 2k)! .

One may also write an explicit expansion ofC−(x̄).

4.2. Proofs.

PROOF OF THEOREM 12. Let us start from (50) definingS(x, y). As in
Section 2.1, the pairs(x,Y0) and(Y0, Y1) cancel the kernel and can be substituted
for (x, y) in this equation. We thus obtain two equations:

(t − pY0)(t − qY0)T (x) + (t − px)(t − qx)T (Y0)

= G(x,Y0) + G(Y0, x),
(56)

(t − pY1)(t − qY1)T (Y0) + (t − pY0)(t − qY0)T (Y1)

= G(Y0, Y1) + G(Y1, Y0),

with T (x) = xS(x,0). Let us form a symmetric function ofY0 andY1 based on a
divided difference: We multiply the first equation by 2(t − pY1)(t − qY1) and the
second one by(t −px)(t − qx), and take the difference of the resulting equations,

2(t − pY0)(t − qY0)(t − pY1)(t − qY1)T (x)

+ (t − px)(t − qx)
(
(t − pY1)(t − qY1)T (Y0) − (t − pY0)(t − qY0)T (Y1)

)
= 2(t − pY1)(t − qY1)

(
G(x,Y0) + G(Y0, x)

)
− (t − px)(t − qx)

(
G(Y0, Y1) + G(Y1, Y0)

)
.
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Recall that

K(x, y) = xy − t (x + y + pqrx2y2) = −pqrtx2(y − Y0)(y − Y1).

We use this identity to express the coefficient ofT (x) as a Laurent polynomial in
x and t . Then, we separate the symmetric and anti-symmetric parts of the right-
hand side using

�(Y0, Y1) = 1
2

(
�(Y0, Y1) + �(Y1, Y0)

) + 1
2

(
�(Y0, Y1) − �(Y1, Y0)

)
.

This gives

2
(t − (1− p)x + t2qrx2)(t − (1− q)x + t2prx2)

pqr2x4 T (x) + tH(x)

p2q2rx3

= −(t − px)(t − qx)
(57)

× (
(t − pY1)(t − qY1)T (Y0) − (t − pY0)(t − qY0)T (Y1)

)
+ (Y0 − Y1)

t2J (x)

pqx
,

whereH(x) is given by (52) andJ (x) is also a polynomial inx andt :

J (x) = qFp,q(x) + pFq,p(x) + x(p − q)2(t − rx).

As we are getting used to the method, let us merge the next two steps: instead of
first dividing by(Y0 − Y1) and then multiplying by

√
�−(x̄), let us divide (57) by

2
√

�+(x)/(pqrx) = −2t (Y0 − Y1)/
√

�0�−(x̄). We obtain, in view of (47),

(t − (1− p)x + t2qrx2)(t − (1− q)x + t2prx2)

rx3
√

�+(x)
T (x) + tH(x)

2pqx2
√

�+(x)

=
√

�−(x̄)

2Z

×
(
(t − px)(t − qx)

× (t − pY1)(t − qY1)T (Y0) − (t − pY0)(t − qY0)T (Y1)

t (Y0 − Y1)
− tJ (x)

pqx

)
.

The left-hand side of this equation, as a Laurent series inx, has valuation−2,
while the right-hand side only involves powers ofx smaller than or equal to 2.
Extracting the positive part inx, and mutiplying byx2 gives

(t − (1− p)x + t2qrx2)(t − (1− q)x + t2prx2)

rx
√

�+(x)
T (x)

(58)

+ tH(x)

2pq
√

�+(x)
= L(x),
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whereL(x) is a polynomial inx, of degree 4, with coefficients inQ[t, T1, T2, T3],
whereTi ≡ Ti(t) denotes the coefficient ofxi in T (x). We do not give the explicit
expression ofL(x), but refer the reader to his/her favorite computer algebra
system.

We now have to determine the three unknown functionsT1, T2 and T3.
Fortunately, we can computeT (x) at three values ofx using (56): first atx = t/p,
then atx = t/q, and finally atx = W , whereW is the unique power series int that
satisfiesK(W,W) = 0 [so thatW = Y0(W)]. Remarkably,W is simply related to
the parameterZ by W = 2tZ. The three values ofT (x) that we obtain are

T (t/p) = t3(p − q)(q − r +
√

(1− p)2 − 4t3qr )

2p2q(1− t3)
,(59)

T (t/q) = t3(q − p)(p − r +
√

(1− q)2 − 4t3pr )

2pq2(1− t3)
,(60)

T (W) = rtW2.

Settingx = W in (58), we find that the left-hand side vanishes. Hence,L(W) = 0,
and this gives an expression ofT2 in terms ofT1:

T2 = −rt + 2r − 1

2t
T1.

The polynomialL(x) now takes the following form:

L(x) = (W − x)(t (t − x − tpqrx3)M0 + M1x
2)

pqrW
,(61)

where

M0 = pqT1 + r(p + q)t2,

and M1 involves bothT1 and T3. It remains to evaluate (58) atx = t/p and
x = t/q, using the expressions ofT (t/p) and T (t/q) given by (59) and (60),
to obtain

M0 = t3

1− t3

(
(p(1− 2p) − t3qr)

√
�−(p/t)

t − pW

+ (q(1− 2q) − t3pr)
√

�−(q/t)

t − qW

)
,

M1 = t3

1− t3

(
(p(1− 2p) − t3qr)(q(1− q) + prt3)

√
�−(p/t)

t − pW

+ (q(1− 2q) − t3pr)(p(1− p) + qrt3)
√

�−(q/t)

t − qW

)
.
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Theorem 12 follows, using (61) and (58).�

PROOF OF COROLLARY 13. We have already seen that the condition
r < min(p, q) is necessary for the chain to have a stationary distribution (Lem-
ma 6). Assume this condition holds. As the chain is irreducible, it suffices to
prove that the point(0,0) is positive recurrent, that is, that the probabilityp0,0(3n)

converges to a positive constant asn goes to infinity [10]. The generating function
of these numbers, denotedP0,0, is given explicitly in Theorem 12.

This leads us to determine the smallest singularity of the seriesAp,q . The
technique is standard for algebraic functions, and we only sketch the main steps.
The seriesZ becomes singular att3 = 1/(27pqr) > 1. Then, we note that

p(1− 2p) − qrt3 = (1− 2pZ)(1+ (2p − 1)Z(1+ 2pZ))

4pZ3 ,

so that there is actually no pole inAp,q if Z reaches 1/(2p). Moreover, if
�−(p/t) = 0, then �(t/p) = 0. But, ast increases from 0 to 1,�(t/p) =
(1 − p)2 − 4qrt3 decreases from(1 − p)2 to (q − r)2 and thus does not vanish.
Hence,Ap,q (andAq,p) has its smallest singularity att3 = 1, and this singularity
is a simple pole. Consequently, the coefficient oft3n in Ap,q tends to a constant as
n → ∞. The same holds forAq,p.

It remains to show that the sum of these two constants is not zero. We are
actually going to compute them explicitly: this will not only conclude the proof
of the corollary, but also allow us to recover the value ofp0,0 given in Corollary 5.
First, we note thatZ(1) = 1+ 4pqrZ(1)3, and conclude thatZ(1) = w/2, where
w is the real number defined in Theorem 4. Then, the definition of the canonical
factorization gives, whent = 1,

�(1/p) = (q − r)2 = �0�+(1/p)�−(p),

and so by (47),

√
�−(p) = (q − r)w

2
√

1− qrw2
.

Thus, ast → 1,

2pqP0,0 ∼ w

2(1− t3)

(
(p(1− 2p) − qr)(q − r)

(1− pw)
√

1− qrw2
+ (q(1− 2q) − pr)(p − r)

(1− qw)
√

1− prw2

)
.

Note thatp(1 − 2p) − qr = (q − p)(p − r). Using (16), we rewrite the above
identity as

2pqP0,0 ∼ 1

1− t3

w(p − r)(q − r)|p − q|
(1− rw)

√
1− pqw2

.
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It follows that, asn → ∞,

p0,0(3n) → w(p − r)(q − r)|p − q|
2pq(1− rw)

√
1− pqw2

.

Given that the chain has period 3, this agrees with Corollary 5.�

PROOF OFTHEOREM 14. Let us start from (51) definingD(x,y). The pairs
(x,Y0) and (Y0, Y1) cancel the kernel and can be substituted for(x, y) in this
equation. We thus obtain

(t − pY0)(t − qY0)E(x) − (t − px)(t − qx)E(Y0) = G(x,Y0) − G(Y0, x),

(t − pY1)(t − qY1)E(Y0) − (t − pY0)(t − qY0)E(Y1) = G(Y0, Y1) − G(Y1, Y0),

with E(x) = xD(x,0) = −xD(0, x). We now want to form a symmetric function
of Y0 andY1 based on a sum. We multiply the first equation by 2(t −pY1)(t −qY1)

and the second one by(t − px)(t − qx), and take the sum of the resulting
equations:

2(t − pY0)(t − qY0)(t − pY1)(t − qY1)E(x)

− (t − px)(t − qx)
(
(t − pY1)(t − qY1)E(Y0) + (t − pY0)(t − qY0)E(Y1)

)
= 2(t − pY1)(t − qY1)

(
G(x,Y0) − G(Y0, x)

)
+ (t − px)(t − qx)

(
G(Y0, Y1) − G(Y1, Y0)

)
.

As above, we use the expression of the kernel to express the coefficient ofE(x)

as a Laurent polynomial inx andt , and split the right-hand side into a symmetric
and an anti-symmetric part. After multiplying byx, we obtain

2
(t − (1− p)x + t2qrx2)(t − (1− q)x + t2prx2)

pqr2x3 E(x) + t (p − q)I (x)

p2q2rx2

= x(t − px)(t − qx)
(62)

× (
(t − pY1)(t − qY1)E(Y0) + (t − pY0)(t − qY0)E(Y1)

)
+ (p − q)

t3B(x)

pq
,

whereB(x) is given by (53) and

I (x) = −x3pq − t3pqrx3 + pqr(1− 2r)t2x4 + (r + 3pq)x2t − (1+ r)xt2 + t3.

As a Laurent series inx, the left-hand side of the above identity has valuation−2.
The term involvingE(Y0) and E(Y1) only involves powers ofx smaller than
or equal to 2. ButB(x) is a series int with coefficients inQ[x, x̄], containing
arbitrarily large positive and negative ofx, and this is where the transcendence of
the solution stems from.
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Note that the coefficients ofx and x2 in B(x) are especially simple, being,
respectively,−t and −1. Let Ei ≡ Ei(t) denote the coefficient ofxi in E(x).
Given thatE(x) = xD(x,0) andD(x,y) is antisymmetric, we haveE0 = E1 = 0.
Let us first extract from (62) the coefficient ofx: we obtain a relation between
E2 andE3,

E3 = r

t
E2 + r(q − p).

Now, extracting the positive part of (62) and multiplying byx gives

2
(t − (1− p)x + t2qrx2)(t − (1− q)x + t2prx2)

pqr2x2 E(x)

(63)

= x(p − q)t3B+(x)

pq
+ L(x),

where B+(x) is the positive part ofB(x) and L(x) is a polynomial inx (of
degree 3) with coefficients inQ[p,q, t,E2,E4]:

L(x) = −2
pqrx3t2 + tx − t2 − r(1− r)x2t3 + x2(r2 − pq)

pqr2 E2

+ 2
x2t2

pqr2E4 − (p − q)
(1− 2r)t3

pq
x3(64)

+ (p − q)t
2+ 2r + t3r

pqr
x2 − 2(p − q)

t2

pqr
x.

We have to determine two unknown functionsE2 andE4. From (49) and the
fact thatT (x) = xS(x,0) andE(x) = xD(x,0), we derive thatE(t/p) = T (t/p)

and E(t/q) = −T (t/q). We evaluate (63) atx = t/p and x = t/q, using the
expressions ofT (t/p) and T (t/q) given by (59) and (60). One thus obtains
expressions ofE2 andE4 in terms of

√
�(t/p),

√
�(t/q),B+(t/p) andB+(t/q).

They become much simpler using

B+(x) =
√

�(x)

pqrt
(1− 2t x̄ − pqrtx2) − 1− 2t x̄

pqt
− 2C−(x̄).

One finds

E2 = t2r

1− t3

(
qC−(q/t) − pC−(p/t)

)
and

E4 = r2

1− t3

(
q(1− q − pt3)C−(q/t) − p(1− p − qt3)C−(p/t)

)

− r(p − q)(2r + 1)

2t
.
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The expression ofD(x,0) = E(x)/x follows from these values, using (63), (64)
and (54).

Let us now discuss the algebraic nature ofD(x,0) [equivalently, ofE(x)].
If E(x) were algebraic, then so would be all the coefficientsEi . In particular,
the seriesL(x) given by (64) and occurring in the right-hand side of (63) would
be algebraic too. By difference, the positive part ofB(x), denoted above byB+(x)

would be algebraic, and so would be all its coefficients. But the coefficient ofx3

in B(x) is

4
∑
k≥0

t3k+2(pqr)k+1 (3k)!
k!(k + 1)!(k + 2)! .

As k → ∞, the coefficient oft3k+2 in this series is asymptotic to(27pqr)k/k4,
up to a positive multiplicative constant. Because of the factork−4, this cannot be
the asymptotic behavior of the coefficients of an algebraic series [15], so that our
initial hypothesis is false: The seriesD(x,0) is not algebraic. However, the general
results on D-finite series recalled at the end of Section 1 imply that it is D-finite.

�

PROOF OF COROLLARY 15. Assume all the seriesPi,0 are algebraic. By
symmetry, all the seriesP0,j , which count walks ending on they-axis, are
algebraic too. In other words, the coefficient ofxi in Q(x,0) and Q(0, x) is
algebraic. In view of (49), this holds forS(x,0) andD(x,0) as well.

We already know, by Theorem 12, thatS(x,0) is algebraic. Let us work
with D(x,0) to obtain a contradiction. We thus assume that the coefficient ofxi in
the seriesE(x) = xD(x,0) is algebraic. By (63), this implies that the coefficient
of xi in B+(x) is algebraic too, for alli. The same asymptotic argument as above
proves that this is wrong.�
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