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WALKS IN THE QUARTER PLANE: KREWERAS
ALGEBRAIC MODEL

BY MIREILLE BOUSQUEFMELouU!
CNRS Université Bordeaux 1

We consider planar lattice walks that start fra@) 0), remain in the
first quadranti, j > 0, and are made of three types of steps: North-East,
West and South. These walks are known to have remarkable enumerative and
probabilistic properties:

e they are counted by nice numbers [Krewer@shiers du B.U.R.(b
(1965) 5-105],

o the generating function of these numbers is algebraic [Gebs&fatist.
Plann. Inferencd 4 (1986) 49-58],

o the stationary distribution of the corresponding Markov chain in the
guadrant has an algebraic probability generating function [Flatto and Hahn,
SIAM J. Appl. Math44 (1984) 1041-1053].

These results are not well understood, and have been established via
complicated proofs. Here we give a uniform derivation of all of them, which

is more elementary that those previously published. We then go further by
computing the full law of the Markov chain. This helps to delimit the border

of algebraicity: the associated probability generating function is no longer
algebraic, unless a diagonal symmetry holds.

Our proofs are based on the solution of certain functional equations, which
are very simple to establish. Finding purely combinatorial proofs remains an
open problem.

1. Introduction. Letus begin with a very simple combinatorial statement: the
number of planar lattice walks that start and end0aD), consist of 3 steps that
can be North-East, South or West, and always remain in the nonnegative quadrant
i,j>0is

& 3n)
a@n)=————-——— .
S (n+1)(2n+1) ( n
An example of such a walk is given in Figure 1. This result, first proved by
Kreweras in 1965 [23], is rather intriguing, for at least two reasons.
First, this simple looking formula has no simple proof. If we consider instead
the more traditional square lattice walks (consisting of North, South, East and West
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Fic. 1. Kreweras walks in a quadrant

steps), then there exists a nice formula too: the numbenft@p walks, starting
and ending at the origin and confined in the first quadrant, is

B 1 2n +2)\?
b(zn)_(2n+1)(2n+2)<n+l> '

But the latter formula can be proved in a few lines (count first the number of such
walks having 2: horizontal steps, and then sum over all values:pfand admits
even a direct combinatorial explanation [20]. No similar derivation exists for the
numbersu(3n).

The second fact that makes the numhgf:) intriguing is that their generating
function, that is, the power seridsz) = >, a(3n)t", isalgebraic This means that
it satisfies a polynomial equatia(z, A(z)) = 0, whereP is a nontrivial bivariate
polynomial with rational coefficients. For combinatorialists, objects that have an
algebraic generating function are really special: this property suggests that one
should be able to factor them into smaller objects of the same type, and then
translate this factorization into a polynomial equation (or a system of polynomial
equations) defining the generating function. Let us take an example: it is known
that for any (finite) set of steps, the walks confined in the upper half-plane have an
algebraic generating function. There is a clear combinatorial understanding of this
property: the key idea is to factor the walk at the first time it returns tocthgis.

It is still an open problem to find an explanation of this type for the algebraicity
of the seriesA(r). Let us underline that not all walks in the quadrant have an
algebraic generating function: the generating function for the numh@s is
transcendental (see [8] for a stronger result).

A natural question—at least for a computer scientist—is whether the set of
words on the alphabdt:, b, ¢} that naturally encode Kreweras’ walks forms an
algebraic(or context-freg¢language [21]. These words contain as malsyash'’s,
as many’s asc’s, and each of their prefixes contains no mbethana’s, and no
morec’s thana's. Using thepumping lemmd[21], Theorem 4.7), one can prove
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that this language is not algebraic. Moreover, the words satisfying only the second
condition above, which encode walks ending anywhere in the quadrant, do not
form an algebraic language either [3]. However, we shall see that their generating
function is algebraic.

Then how does one prove Kreweras’ formula? In his original paper, Kreweras
consideredn-step walks in the quadrant going frof, 0) to (i, j). A step by
step construction of these walks gives an obvious recurrence relation for their
number, denoted below ;(n). Kreweras solved this recursion. His proof involves
guessing@ substantial part of the solution, and then proving several hypergeometric
identities. The latter part was then simplified by Niederhausen [28, 29]. A different
proof, due to Gessel, also requirgsessinghe bivariate generating function of
walks ending on the-axis, and then verifying that it satisfies a certain functional
equation [19].

On the probabilistic side, in the early 70’s Malyshev began to address the very
general problem of computing the stationary distribution of discrete homogeneous
Markov chains in the quadrant [26]. Several instances of this question actually
correspond to finding the equilibrium behavior of double-queue processes [11,
12, 17, 33]. This work culminated in 1999 with a book that is entirely devoted
to solving this problem in the case of unit increments [13]. The techniques used
in this book are far from elementary, involving sophisticated complex analysis,
Riemann surfaces and boundary value problems. Solutions are often expressed
in terms of elliptic functions. The book lists a number of cases in which the
stationary distribution has a rational generating function, and mentions exactly
onecase (actually due to Flatto and Hahn [17]) where this generating function is
algebraic. Not surprisingly, the set of increments of this random walk is the same as
in Kreweras’ problem. (A (partial) algebraicity criterion is actually given in [13],
Theorems 4.3.1 and 4.3.6, but it is only illustrated by Kreweras’ example.)

Hence, the following question: what is so special with this set of three steps?
Could one find a single argument that proves both the algebraicity of the generating
function that counts these walks and the algebraicity of the generating function for
the stationary distribution of the corresponding Markov chain?

This is the question we answer—positively—in this paper. For both the
combinatorial problem and the probabilistic one, it is very easy to establish a
functional equation defining the generating function. We solve both equations
using the same approach. The only difference is that we are dealing with formal
power series in the first problem, but with analytic functions in the second one. Our
solution is constructive (we do not have to guess anything) and more elementary
than the previously published ones. In particular, we always remain in the (small)
world of algebraic functions, and do not need to introduce elliptic functions.
The key to our approach is the combination of keenel methodwhich is also
central in [17] or [13]) with a special property of the kernel of the equations
we consider. Moreover, after having solved the counting problem (Section 2)
and the probabilistic one (Section 3), we combine both viewpoints and compute
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explicitly the full law of the Markov chain (Section 4). This actually marks the end
of algebraicity: the probability generating function is transcendental, unless the
transition probabilities satisfy a diagonal symmetry. Still, this generating function
belongs to the nice class BEfinite (or holonomig¢ series which is defined below.
Obviously, since this paper aims at explaining why a specific set of steps has
such special properties, it cannot compete in generality with the strength of the
machinery developed in [13]. Still, it is natural to ask how far our approach
could be generalized. It is actually while fighting with Kreweras’ walks that
| discovered it. But it turns out that other applications of this approach were
published before | was able to complete the present paper. In particular, most
of the results in Section 2 are already reported in some conference proceedings,
together with a general holonomy criterion for the enumeration of walks in the
guadrant [5]. More recently, the same ideas were applied to certain counting
problems on permutations [6]. Four new equations were thus solved in a uniform,
elementary way. Their solutions are usually transcendental, but holonomic, and
can be expressed as integrals of algebraic (quadratic) functions. | have not tried
to attack other stationary distribution examples. But it is likely that the method
presented here and in [6] can be applied to solve explicitly (and in an elementary
way) at leastertainspecific examples.
Let us conclude this section by giving some definitions and notation on
formal power series. Given a rirlg andk indeterminatess, ..., x¢, we denote
by L[x1,...,xt] the ring of polynomials inxq, ..., x; with coefficients inlL.
We denote byLL[[x1, ..., x;]] the ring of formal power series in the, that is,
of formal sums

1) > ama, ... nxgtexk,

n1>0,...,n;,>0

wherea(ni, ..., ng) € L. A Laurent polynomialn the x; is a polynomial in both
the x; and thex; = 1/x;. A Laurent seriesn thex; is a series of the form (1) in
which the summation runs ovag > m; for all i, with m; in Z. For F € LL[[¢]],
we denote by#"*1F the coefficient off” in F. If F is a formal series im whose
coefficients are Laurent seriesinwe denote by the positive part ofF in x,
that is,

) F=Y 1"y filmx' = Fr=)1"%" fi)x'.
n>0 ieZ n>0 >0

We define similarly the negative, nonnegative and nonpositive pa#s of

Assume, from now on, thdt is a field. We denote bi.(x1, ..., x¢) the field of
rational functions iy, ..., x; with coefficients inL. A seriesF in L[[x1, ..., x¢]]
is algebraicif there exists a nontrivial polynomiaP with coefficients inl. such
that P(F, x1,...,x;) = 0. The sum and product of algebraic series is algebraic.
The seriesF is D-finite if the partial derivatives ofF span a finite-dimensional
vector space over the fiell(x1, ..., xx); see [31] for the one-variable case,
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and [24, 25] otherwise. In other words, for<li < k, the seriesF satisfies a
nontrivial partial differential equation of the form

d; L

> Pui 8—12 =0,

=0 dx;

where Py ; is a polynomial in thex;. Any algebraic series is D-finite. The sum
and product of D-finite series are D-finite. The specializations of a D-finite series
(obtained by giving values frorh to some of the variables) are D-finite, if well
defined. Finally, if F is D-finite, then anydiagonal of F is also D-finite [24]
(the diagonal ofF in x1 andx, is obtained by keeping only those monomials
for which the exponents of; and x> are equal). We shall use the following
consequence of the proof of this resultFifz, x) € L[x, x][[#]] is algebraic (with

¥ = 1/x), then the positive part af in x is D-finite, as well as the coefficient of

in this series, for all.

2. Enumeration: thenumber of walks. Consider walks that start frof@, 0),
consist of South, West and North-East steps, and always stay in the first quadrant
(Figure 1). Leta; ;(n) be the number of-step walks of this type ending at j).

We denote by0 (x, y; 1) thecomplete generating functiamf these walks:

O, ;)= a;j(mx'yle".
i,j,n>0
We can construct these walks recursively, by starting f(0n0) and adding a step
at each time. This gives the equation

1 1
O, y:1) = 1+r(— 4 +xy)Q<x,y; 0 —L00c,0.0- L0, y;0).
X y y X

The first term in the right-hand side encodes the empty walk, reduced to the
point (0, 0). The next term shows the three possible ways one can add a step at
the end of a walk. However, one should not add a South step to a walk that ends
on thex-axis: the third term subtracts the contribution of this forbidden move, and
the last term takes care of the symmetric case. Equivalently,

() (xy —t(x+y+x2y9))Qx,y: 1) =xy —xtQ(x,0; 1) — yt Q(0, y: ).

We shall often denot& (x, y; ¢) by Q(x,y) for short. Let us also denote the
seriesxtQ(x, 0;¢t) by R(x;t) or evenR(x). Using the symmetry of the problem
in x andy, the above equation becomes

(4) (xy —1(x +y +x%2))0(x, y) =xy — R(x) — R(Y).

Equation (3) is equivalent to a recurrence relation defining the numbers)
inductively with respect ta. Hence, it defines completely the seri@sx, y; ).
Still, the characterization we have in mind is of a different nature:
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THEOREM 1 (The number of walks). Let W = W (¢) be the power series in
defined by

W =12+ W3.
Then the generating function of Kreweragalks ending on the-axis is

Q(x,o;t):i<i_l_(i_}>h_—xwz>

tx\2t x W x

Consequentithe length generating function of walks endingiaD) is
W2i+l <C Ci-l—le)
24 1\ 4 )
whereC; = (zl.i)/(i +1) is theith Catalan numbeiThe Lagrange inversion formula
gives the number of such walks of length+ 2 as
4"(2i +1) <2i)<3n+2i>

m+i+1@n+2i+1)\i n )

x'10(x,0;7) =

aio(@n +2i) =

The aim of this section is to derive Theorem 1 from the functional equation (3).
Note that the complete generating functi@rix, y) can be recovered using (3):
AW —)VI—xW24+ /W -H)V1-—yw? 1

xv ;t == — T
QCx, y:1) xy—t(x+y +x2y2) Xyt

with x = 1/x andy = 1/y. For walks ending on the diagonal, we shall also obtain
a nice generating function:

THEOREM 2 (Walks ending on the diagonal)Let W = W (¢) be defined as
above Then the generating function of Kreweragalks ending on the diagonal
defined by

Qua(xit) == aji(mx't",
i,n>0
satisfies
W3
104(x: 1) = al s
V1—xW(@A+ W3/4) +x2W?2/4

The expression 00, becomes a bit simpler if we express it in terms of the

unique power serieg = Z(r) satisfyingZ = 1+ 4r3Z3. ThenW = 2rZ and

104 1) 2t7Z — x L3
dx; 1) = X.

V1—xtZ(1+ Z) + x%272
The last formula of Theorem 1 is due to Kreweras [23]. He also gave a closed
form expression for the number of walks containing exaptifest stepsg South
steps, and North-East steps, that is, for walks of length= p + ¢ + r ending
at(i, j) = (r — p,r — q). This expression is a double summation, with alternating
signs. We have not found anything simpler.
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2.1. The obstinate kernel methodThe kernel method is basically the only tool
we have to attack (4). This method has been around since, at least, the 1970s, and
is currently the subject of a certain revival (see [22], Exercises 2.2.1.4 and 2.2.1.11
and [11] for early uses of the method, and [1, 2, 7] for more recent combinatorial
applications). It consists in coupling the variahtesndy so as to cancel theernel
K (x,y) =xy —t(x + y + x2y?) [which is the coefficient ol (x, y) in (4)]. This
should give the “missing” information about the seri&).

As a polynomial iny, this kernel has two roots,

1—tx —/(L—1tX)% — 42

Yo(x) = o —t+ 324+ 0D,

1—tx 1—1tx)%— 42 X
Y1(x) = x+\/(2tx *) *_ ; — ¥t =52+ 0.

The elementary symmetric functions of theare
(5) Yo+Y1=§—)E2

and YgY1=1x.

The fact that they are polynomialsin= 1/x will play a very important role below.

Only the first root can be substituted forin (4) [the termQ(x, Y1; 1) is not
a well-defined power series i because of the negative powerrofhat occurs
in Y1]. We thus obtain a functional equation fBx):

(6) R(x) + R(Yp) = xYo.

It is not hard to see that this equation—once restated in terr®.0f0)—defines
uniquelyQ(x, 0; ¢) as a formal power series irwith polynomial coefficients irx.
Equation (6) is the standard result of the kernel method.

Still, we want to apply here thebstinatekernel method. That is, we shall not
content ourselves with (6), but we shall go on producing p@irst) that cancel
the kernel and use the information they provide on the s&{e$. This obstinacy
was inspired by the book [13] by Fayolle, lasnogorodski and Malyshev and, more
precisely, by Section 2.4 of this book, where one possible way to obtain such
pairs is described (even though the analytic context is different). We give here
an alternative construction.

Let (X, Y) # (0, 0) be a pair of Laurent series irwith coefficients in some field
such thatk (X, Y) = 0. Recall that, as a function of, the polynomialK (x, y)
is quadratic. Thus, let’ be the other solutionof the equationk (X, y) = 0.
We define the functiont by ¥ (X, Y) = (X, Y’). For instance, if(X,Y) is the
pair (x, Yp), thenW(X,Y) = (x, Y1). Similarly, we define®(X,Y) = (X', Y),
whereX’ is the other solution oK (x, Y) = 0. Note that® andW¥ are involutions
and that, in view of (5)X’ = Y’ = (XY)~1. In particular,®(x, Yo) = (Y1, Yo).
Let us examine the iterated action @fand ¥ on the pair(x, Yp): We obtain the
diagram of Figure 2.
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(J),Yo)
P o
(Y1, Y0) (z,Y1)
g ‘ ()
(Y1,2) (Yo, Y1)
tI’\‘ T
(Yz)a‘r)

Fic. 2. The orbit of(x, Yg) under the action ofd and ¥. The framed pairs can be substituted
for (x, y) in the functional equation

All these pairs of power series cancel the kernel. We have already seen that the
pair (x, Yp) can be substituted fak, y) in (4). This is also true, but less obvious,
for the pair(Yp, Y1): indeed, if we write

Qx,y;ty= Y A e e+ m),
k>max(£,m)

= > T e M aeekem k- m),
k>max(€,m)
and note thatpY1 = x, while tYy = x + O(¢), then we see thaD (Yp, Y1;1) iIsa
well-defined power series in with coefficients inQ[x, x]. The same argument
shows thatR (Y1) =tY10(0, Y1; t) is also well defined. Thus, the two pairs than
can be substituted farx, y) in the functional equation give us/o equations for
the unknown serie® (x):

R(x) + R(Yp) = xYo,

(7) i}
R(Yo) + R(Y1) = Yo¥Y1=x.

REMARK. Let p,q,r be three nonnegative numbers such that- g +
r=1. Take x = (pr)3¢=%3, y = (gr)¥3p=23, and t = (pgr)¥/3. Then
K(x,y;t)=0, so thatR(x) + R(y) = xy. This equation can be given a
probabilistic interpretation by considering random walks that make a North-East
step with (small) probability: and a West (resp. South) step with probability
(resp.q). This probabilistic argument, and the equation it implies, is the starting
point in Gessel's solution of Kreweras problem ([19], equation (21)).

2.2. Symmetric functions dfy andY;. After the kernel method, the next tool
in our approach is the extraction of the positive part of a power series, defined
by (2). This is where the values of the symmetric function§pandY;, become
crucial: the fact that they only involve negative powers ¢gee (5)] will simplify
the extraction of the positive part of certain equations.
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LEMMA 3. Let F(u,v;t) be a Laurent series inwith coefficients irC[u, v],
symmetric ik andv. Thatis F(u, v; t) = F (v, u; t). Then the serie§ (Yo, Y1; 1),
if well definedlis a Laurent series im with polynomial coefficients in. Moreovey
the constant term of this serigaken with respect t®, is F (0, 0; 1).

PROOF By linearity, it suffices to check this whefi is simply a symmetric
polynomial inu andv. But then it is a polynomial im + v anduv with complex
coefficients. The result follows thanks to (5)Y]

We now want to form a symmetric function &b and Y1, starting from the
equations of (7). The first one reads

R(Yp) —xYo=—R(x).
By combining both equations, we obtain the companion expression
R(Y1) —xY1=R(x)+2x —1/t.

Taking the difference (an alternative derivation of Kreweras’ result, obtained by
considering the produatR(Yo) — xYo)(R(Y1) — xY1), is presented in [5]) and
dividing by Yo — Y3 gives
(8) R(Yp) — R(Y7) , 2R(x)+2x — 1/t
—_— — X =1X s
Yo— Y1 VAX)
whereA (x) = (1 — tx)? — 4¢2x is the discriminant that occurs in botg andY;.
As a Laurent polynomial inx, A(x) has three roots. Two of them, say
Xo and X3, are formal power series i¥/t; the other is a Laurent series in

(for generalities on the roots of a polynomial o&fr), see [32], Chapter 6). The
coefficients of these series can be computed inductively:

Xo=1+22/1 + 66" +21°V1r + 80" + 12878 /r ...
X1=1—202Vt +6r* — 211 + 80" — 12878 /r ...
1
- 442
Hence,A(x) factors as

X5 —2r—12* 1607 — 268819 5068813 + .. ..

A(x) = ApA4(x)A_(x)
with
Ao = 41°Xo, Ar(x)=1—x/X>, A_(F)=(1—3Xo)(1—xXy).

Note thatAg, A, (x) and A_(x) are power series im with constant term 1.
Moreover,Ag has its coefficients i), while A, (x) has its coefficients iQ[x],
and A_(x) has its coefficients irQ[x]. This is an instance of the “canonical
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factorization” of power series d@[x, x][[¢]], which has already proved useful in
several path enumeration problems [4, 9, 18]. Going back to (8), and multiplying
through by,/A_(x), one obtains

__(R(Yp) — R(Y1) _ 2xR(x)+2—x/t
A ) e

Both sides of this identity are power series inith coefficients inQ[x, x]. But the
right-hand side only contains nonnegative powers oivhile the left-hand side,
except for a term-x, only contains nonpositive powers.ofin view of Lemma 3).
Extracting the positive part of the above equation thus gives

_ t (2xR(x)+2—x/t_2>
VAo VAL (x) .

The expression o) (x, 0) announced in Theorem 1 follows, given thgt= 1/ W?
and R(x) = xtQ(x, 0). The expansion oD(x,0) in x is straightforward, us-
ing1—+/1—4t =2ty ,.0Cyt". The value ofa; o(3n + 2i) follows using the
Lagrange inversion formula ([32], page 38).

2.3. The algebraic kernel methodWe present in this section another proof
of Theorem 1 based on a variation of the kernel method. This variation does
not require us to cancel the kernel, but, instead, builds on one of its algebraic
properties. This variant has some drawbacks—since the kernel is not zero, we
are handling bigger equations—nbut it also has some advantages. In particular, we
obtain at some point an equation that is the counterpart of (8), but in which it is
obvious that the left-hand side is nonpositivexinThis will be helpful in the next
section, where we handle analytic functions rather than power series. Finally, this
variant of the kernel method provides a proof of Theorem 2.

Let us return to the original equation (4), or, equivalently, to

xyK;(x,y)Q(x,y) =xy — R(x) — R(y),

whereK, (x, y) =1—t(x + y + xy) is therational versionof the kernelK. The
fact that the diagram of Figure 2 is nice actually stems from an invariance property
of K,:

Ky (x,y) =K, (xy,y) =Ky (x,xy) = K;.

Applying iteratively the (involutive) transformation®: (x, y) — (xy,y) and
v (x,y) — (x,xy) gives the set of pairs of Figure 2A, on whidh. takes the
same value. Note that Figure 2A specializes to Figure 2 wher).

Now, all pairs of the above diagram can be substituted (fory) in the
functional equation: the resulting series are power seriasviith coefficients
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(z,9)

L

in Q[x, x, y, ¥]. This gives no less thathreeequations:

xyK,Q(x,y) =xy — R(x) = R(y),
xK,Q(xy,y) =x — R(xy) — R(y),
VK, Q(x,xy) =y — R(x) — R(xy).
We sum the first and third equations, and subtract the second one, so as to

keepR(x) as the only unknown function on the right-hand side:

Ky (xyQ(x,y) —%Q(xy,y) + yO(x,Xy)) =xy —X +J — 2R(x)
1—

Equivalently,

o _ .1 1/1 _
O xyQU.1) ~FOGT. ) + Qi)+ 7 = (7 27 ~2RW)).
The kernelK (x, y) factors as-tx2(y — Yo)(y — Y1). Converting ¥K into partial
fractions ofy yields the following expression for the reciprocal of the (rational)
kernelK,:

11 ( 1 N 1 1)
KﬁJA(x) 1-3Y0 1-y/n
DOVYE+ D Y'Y, )
A(x (n>0 n>1

Note that this expansion is valid in the set of formal power series \nith
coefficients inQl[x, x, y, y]. Let us extract in (9) the constant term in the
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seriesxyQ(x, y) andyQ(x, xy) do not contribute, and we obtain
£ 04(F) + 1 1/tr—2x —2R(x)
—X X - =
¢ t N/XE)

where the serieg),; is the diagonal ofQ(x, y), and counts walks ending on

the diagonal. The above equation should be compared to (8): basically, both
equations are equivalent, but their negative parts on the left-hand side are written
in two different ways. We now proceed as above, using the canonical factorization
of A(x), which gives

1 .\ 1/t —2% —2R(x)
VAT —0un) = HE

Extracting the nonnegative part gives, as before, the valig.of, and Theorem 1.
Extracting the negative part gives

\/A_—(x)(% - XQdoz)) -

VAo

Recall thatAg = 412X, = 412/ W2 and A_(x) = (1 — ¥Xo)(1 — ¥X1), where
Xo and X1 are the two “small” roots ofA(x). We can express their elementary
symmetric functions in terms of the third rodf, = 1/ W2. This gives

1 2
=

A_(X)=1—xWA+ W3/4) + x2W?/4,

and this provides the expression@f;(x) given in Theorem 2.

3. Probability: a Markov chain and its stationary distribution. We con-
sider a Markov chain on the quadrant, whose transition probabiflities;; k, £)
are schematized in Figure 3. More precisely,ifor 0 andj > 0, the probability

FIG. 3. The transition probabilities
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of going from(i, j) to (k, £) is
p, ifk=i—1andl¢=j,
TG, j k. 0)=1gq, if k=iand¢=j—1,
r, fk=i+landl=j+1,
wherep, g, r are three positive real numbers summing to 1. When the gain}

lies on the border of the quadrant, the transition probabilities are modified as
follows: fori > 0O,

! if k=i —1and¢ =0,
T(i,o;k,e)z{”’ the=i—tlan
r, fk=i+landé=1,
and forj > 0,
. " if k=0and¢ =; —1,
TO jiko={7" /
r’, fk=1land¢=;+1,

where p’,r’,q”,r"” are positive numbers such that + r' = ¢” + " = 1.
Finally, we takeT (0, 0; 1, 1) = 1. Note that this chain is irreducible (all states
communicate) and has period 3.

A probability distribution(p;, ;);,j>o is stationaryfor the above transition if for
allk, ¢ >0,

pre=>_pijT(, jik, 0.
i,J
Our objective is to find the stationary distribution of the above transition, when

it exists. It is customary to encode a distribution by its probability generating
function

M, y)= Y pijx'y,
i,j>0
but is is more convenient here to sdilt(x, y) into four parts: firstpg o0, and then
the three following generating functions:
Px,y)= > pijx'y/.  P@=)piox',  P(»)=Y pojy.
i,j=1 i>1 j=1
Then the distributiorip; ;); j>o is stationary if and only if
(1—px—qy—rxy)P(x,y) + 1~ p'x —r'xy) Pr(x)

(10)
+1—q"y —r"xy)P2(y) + (1 — xy) po,o = 0.

Note that the numbers; ; have to sum to 1: hence, the above series are absolutely
convergent forjx| < 1 and|y| < 1, and define analytic functions fox| < 1,
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|y| < 1. Moreover,

(11) poo+ P+ P+ P(L D=1

3.1. The main results. The stationary distribution of this Markov chain was
computed in [13] in the case where the transition probabilities are related by

/ 1

(12) P_P ._y and 122 _g
r r’ ror’
Equivalently,
p/ — p , r/ — r ’ q// — q ’ I’N — r )
p+r p+r q+tr q+tr

It is known that this chain has a stationary distribution if and onky<f min(p, q)
(see [14, 27] for general results on Markov chains in the quadrant). It will be shown
in Lemma 6 that the condition is necessary, and it will follow from the results of
Section 4, where we compute the law of the chain, that it is sufficient. For the
moment, we rely on the general results of [14, 27].

Under the conditions of (12), which we assume to hold in this section, we have

rl

1-p'x—r'xy=—1—-pxi—gy—rxy+q(3—1),

.S

/

1-q"y —r"xy=—(1— pi —qy —rxy + p(x — 1),

~

Lol

l1-xy=—(1-pi—qi—rxy+pE—-1+q(-1)
so that the functional equation (10) can be nicely rewritten as
(13) A—-px—gy—rxy)Q0x,y)=¢q(1 -y 0,0+ p(l-x)0(,y)
with
(14) Q(x,y) = poo+r'Prx) +r"Pa(y) +rP(x,y).

This equation was first met by Flatto and Hahn [17] in their study of a system
of two parallel queues with two demands (with continuous time). They solved
this equation using nontrivial complex analysis, multivalued analytic functions and
a parametrization of the kernel by elliptic functions—to end up witlalgebraic
solutionQ(x, y). We shall rederive their result in a more elementary way, and state
it in a more symmetric fashion.

THEOREM4 (Solution of Flatto and Hahn's equation)Assume < min(p, g).
There existsup to a multiplicative constanta unique solution of(13) that is
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analytic in{|x|, |y| < 1} and whose series expansion converges|for|y| < 1.
This solution satisfies

0(0,0)

,0) =
Ot O = A= ra/p)
X ((l— L)vl—xqrwz— ﬂ(l— i)vl— prw2>,
pw p qw
0,0
0@, y) 2.9

A= py/e)A—ry/q)
1
X ((l— L)vl— yprw? — Q(l— —)vl—qrwz),
qw q pw
where w is the smallest positive solution @f = 2 + pgrw3. The complete

generating functionQ(x, y) can be obtained usingl13). When p = ¢, then
w = 1/p, and the above expressions simplify to

0(0,0)
JI=rx/p

If » > min(p, ¢), no solution of(13) converges onx|, |y| < 1.

0(x,00=00,x)=

Observe that exchangingandg, andx andy, leaves the solution unchanged, in
conformity with the diagonal symmetry of the model. From the algebraic equation
definingw, it is not difficult to see that

(pw — D*(L— grw?) = (quw — D*(L - prw?) = (rw — D*(L — pguw).
Moreover, an elementary study of the functifty) = pqrz3 — z + 2 gives bounds
for w:

1 1

(15) —<w<——<
M NI

wherem = min(p, g) and M = max(p, ¢), with equalities holding if and only if
p =gq. Hence,

O<Mw — 1)\/1—mrw2
=—(mw-1Hv1- Mrw? = —(w—-DHVv1- pqwz,

and this allows us to rewrite the second part of the expressiong (ef 0)

and Q(0, y) in various ways. This will be useful in Section 3.3, where we make
further comments on this solution, and relate it to Flatto and Hahn’s formulation.
We shall prove Theorem 4 in Section 3.2. For the moment, let us derive from it the

1 1
—_— < _’
m r

(16)
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stationary distribution of the Markov chain of Figure 3. This result is actually not
given explicitly in [13].

COROLLARY 5 (The stationary distribution). Assumer < min(p, q). Let
w be the smallest positive solution of = 2 + pgrw®. The Markov chain
schematized in Figure3, with the additional condition(12), has a unique
stationary distribution(p; ;), given by

_w(p—r)g—r)p—ql

o oraci~ rwV1—pqu?
Y piox' = Q(x 0) - 0(0,0)),

i>0

> pojy! = = Q(O y) — 0(0,0)),

j>0

. 1
> pix'y! =200, y) = 0(x,0) = 0(0,y) + 0(0,0)),

i>0,j>0
where Q(x, y) is the function of Theorem, taken with Q(0,0) = pg 0. When
p = ¢, then the expression gl o should be taken to be

0,0 = %(1 —r/p)¥2.

If » > min(p, q), then the Markov chain has no stationary distribution

PROOFE The stationary distribution is related to the ser@6x, y) satisfy-
ing (13) by (14), so that the expressions of the three series above are obvious.
We only have to determine which value ¢f(0, 0) guarantees the normalizing
condition (11). This condition reads

1
00,0)+ — (Q(l 0) — 0(0,0)) + W(Q(O’ 1) - 0(0,0)

+ ;(Q(L 1)-0(1,0-0(0,1)+0(0,0)=

that is,

17) 01,1)—¢q010-p0201=r
Wheny = 1, a factor(1 — x) comes out of (13), leaving
(18) (p—rx)Q(x,1)=pQ(0,1).

Settingx = 1 gives
01,1 = —Q(O 1,
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and, of course, a symmetric argument yields

0(1.1) = qLQ(l, 0).

—r
Hence, the normalizing condition (17) reads
q—r
(19) 01,0 =—F—.
3q
Now, from the expression af(x, 0) given in Theorem 4, we obtain, jf # ¢,
0,0
0(1,0) = rQ©.0 ((pw — DV1—grw? — (qw — HV1— pruw?).
w(p —q)(p—r)
Using (16), the above expression 9«1, 0) can be rewritten as

2p0(0,0)(1 — rw)v1— pgw?
wlp —ql(p—r) ’

and the condition (19) gives the value @f0, 0) = poo.
When p = ¢, the simplified expression a?(x, 0), given in Theorem 4, gives
0(1,0)=0Q(0,0)//1—r/p, and the result follows. O

0(1.0 =

3.2. Proof of Theoremd4. Our solution of (13) follows the same idea as
Section 2.3: we shall exploit an invariance property of the kernel. However,
we do not have the length variableany more, which means that we are no
longer in a power series context, but rather in the world of functions of two
complex variables andy. Consequently, certain operations that were performed
formally in Section 2.3 (e.g., the extraction of coefficients) now need to be justified
analytically. The analytic lemmas we need are gathered in Section 3.2.1. In
Section 3.2.2, our main functional equation (13) is transformedmbdunctional
equations defining two function& (x, y) and F(x, y), which are respectively
symmetric and anti-symmetric inandy. Section 3.2.3 is the heart of the proof:
there we solve these two equations, using the algebraic kernel method. The reader
may skip directly to the latter section in order to recognize the logic of the kernel
method, transferred to an analytic context.

3.2.1. Preliminary results. Our first lemma tells us that the domain of
convergence o (x, y) is actually larger than the unit polydige| < 1, |y| < 1.

LEMMA 6. LetQ(x, y) be a power series solution ¢i.3) that has honnega-
tive coefficients and converges fail < 1 and|y| < 1. Then this series also con-
verges in the following domain

{IxI <p/r Iyl =BU{Ix| <1, |yl <q/r}.
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Moreovey
0(0,1) 010
A ST

In particular, such a solutionQ(x, y) can only exist ifr < min(p, ¢): if this
inequality does not holdhe Markov chain has no stationary distribution

0kx,1)=

PrROOF For |x| < 1, the expression oD(x,1) follows from (18). The
expression ofQ(1, y) is, of course, symmetric. These two series must converge
when x = 1 andy = 1: this forcesr to be smaller tharp and g. Given the
nonnegativity of the coefficients, the values @fx, 1) and Q(1, y) imply the
convergence 00 (x, y) in the desired domain.J

The extraction of coefficients will be based on the following result ([30],
Chapter 10, Exercise 25).

PROPOSITION 7. Let f(z) be an analytic function in the annulug =
{r < |z| < R}. There exists a unique bi-infinite sequeneg),cz such that for
all z € A,

f(Z) = Zanzn-

nez

Moreover the convergence is absoluta other words f is the sum of a function
analytic in the disK|z| < R} and a function analytic fofz| > r.

It will be convenient to work with an equation whose kernel is symmetric in
x andy. In (13), let us replace by px andy by gy. Multiplying through byxy
gives
(xy —x —y — pgrx’y?) Q(px, qy)
+x(1—¢gy)Q(px,0) + y(1— px)Q(0,qy) =0.

Let K (x,y) =xy —x — y — pgrx?y? denote the kernel of this equation. The
discriminant ofK , taken as a polynomial in, is (x — 1)2 — 4pgrx3. Let us denote

(20)

A(x)=(1-5%)%—4pgrx.

LEMMA 8. Assume < min(p, q). Letm = min(p,g) and M = max(p, q).
The three roots oA\ (x), denotedx;, i =0, 1, 2, are real and satisfy
1 1 1

O<xog<l<xi<—<—<-<xo.
M~ m r
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PrROOFE The variations ofA (x) are easy to study. Note thai(x) is a square
whenx=1/p,1/q or1/r. O

Recall thatw is defined as the smallest positive solutiomof 2+ pgrw?®. This
implies that ¥(pgrw?) = x2. The lemma above gives the following factorization
of A, which will play the role of thecanonical factorizatiorof Section 2:

(21) A(x) = AoAy(x)A_(X)
with
Ag=4pqrxz = 4/w2,
(22) Ar(x) =1—x/x2=1— pgrw’x,
A_(X) = (1 —xx0)(1—xx1).
As a polynomial iny, the kernelK (x, y) of (20) has two roots:

1-x—JVAK) 1-x4+JVAK)
Yo)=——F———, i) =——————.
2pqrx 2pqrx
The elementary symmetric functions of theare polynomials ik = 1/x:
Sl & _
Yotvi= 7Y and yorp= .
pqr pqr

Using the canonical factorization &, we see tha¥p andY; are at least analytic
in the annulusr1 < |x| < x2. Let us study these functions a bit more precisely
whenx is real. The following lemma is illustrated by Figure 4.

LEMMA 9. We still assume that < min(p, ¢). The functiongp and Y1 are
well defined and real fox € (—o0, xo] U [x1, x2]. In particular,
Yo(1/M) =1/m, Yo(1/m) =Yo(1/r)=1/M,
Y1(/M) =Y1(1/m) = 1/r, Y1(1/r) =1/m.
Each of the derivativeg’j(x) and Y;(x) admits a unique zero on the inter-
val [x1, x2], respectively denoted hy andv,. Moreover
1 1 1

XM1I<—=<M=w<—<v<-—<Ix.
M m r

The functionYy decreases between and vy, and increases betwean and x»,
while the function; increases between andv1, and then decreases up ig.
Finally, for x € (1/m, x2), one has

1
— < Yo(x).
pqx

PrROOF The proof is a bit tedious, but elementary. We merely sketch the
different steps.
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"
-

FiG. 4. The real branches of the functioi's, for p =1/3,¢g =1/2 andr = 1/6.

The first assertion comes from the study of the discrimimafit) (Lemma 8).
The values ofY; at the points IM,1/m and 1/r are obtained by a direct
calculation.

Let us now focus on the intervéit{, x2]. Given that(1 — x)Y; =1+ pqerl?
andx > x1 > 1, we have O< Yp(x) < Y1(x). The derivatives ofy and Y1 with
respect toc can be written

Ya(x)—7(<x—2)—— 1). Yl’(x>=—N_(<x— 21 -1)

Given thatYy and Y1 are positive onixs, x2], any root of these derivatives will
be larger than 2. The equation satisfied by #hemplies that these roots are
also solutions ofc — 2 = pgrx3. The polynomialpgrz® — z + 2 has two roots
larger than 2. Let us denote thamanduvs, with v1 < v2. Note thatv, is actually
the numberw defined in Theorem 4. If = v;, then A(x) = (x — 3)2. Hence,
v; belongs to the intervdlxy, xo]. Evaluating the numerators f, andY; at vy
and vz shows thatv; cancelsY;, while v, cancelsY. Finally, we compute the
numerators ofy andY; atx; andxz. This determines the sign of these derivatives
and completes the study of the variationggfand Y.

The last assertion is proved by studying the functyor K (x, y), for x fixed.

Il

Let x € (x1,x2) and lety belong to the annulugYp(x) < |y| < Y1(x)}. Let
K, =K/(xy)=1—x —y— pgrxy be the rational version of the kernel. Then the
following expansion is convergent:

11 < 1 1 1)
KﬁJA(x) 1-3Yo 1—y/11

nyr 4+ ny—"n],
J—Mx (Zo ° ZJ 1)

(23)




WALKS IN THE QUARTER PLANE 1471

Let F(y) be analytic in the same annulus. Let us write

F) =Y fiy'=F )+ fo+ F*(y,
i€Z

whereF™ and F~ are the positive and negative partsfafThen

F
[y°] [éy ) NG (F~(1/YD) + fo+ F(Y0))
(24) ' )
= M(Ff(pqero) + fo+ F1(Yp)).
In particular, if F(y) = G(y) — G(xy/(pgr)), then
0 F(y) .
(25) [y~] X = 0.

3.2.2. Simplification of the functional equationLet us go back to (20). The
function Q(x, y) = Q(px,qy)/((L — px)(1 — gy)) satisfies an equation that is
symmetric inx andy:

(26)  (xy —x —y — pqrx®y?)Q(x,y) + xQ(x,0) + yQ(0, y) =0,

Yet we shall see that this function is, in general, not symmetria iand y

(Section 3.3). We shall symmetrize it by consideri@gx, y) + O(y, x). More
precisely, we shall study separately the functidis, y) and D(x, y) (as in Sum
and Difference) defined by

S, y) =1 =gx)(1—=py)Q(px,qy) + (1= px)(L—gy)Q(py. qx),

D(x,y) =1—gx)(1— py)Q(px,qy) — (1= px)(L—qy) Q(py, gx).
By Lemma 6, these functions are analytic in
1

1 1 1
28 = z —ty il =
(28) D {|x|<r,|y|<M} {|x|<M,|y|<r}

(27)

with M = max(p, ¢). Note thatS(x, y) andD(x, y) satisfythe same equation
S, Y)(xy —x =y = parx®y?)
+x(1—py)1—gy)Sx,0) + y(1 - px)(1—4x)S(0, y) =0,
D(x,y)(xy —x =y = pgrx®y?)
+x(1—py)(1—gy)D(x,0)+ y(1 — px)(1—¢gx)D(0, y) =0.

However,S(x, y) is symmetric inx and y, while D(x, y) = —D(y, x). We shall
solve separately the two equations, taking into account the respective symmetry
or anti-symmetry condition. For each equation, we will obtain a unique solution,

(29)
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up to a multiplicative factor. A relation between the two factors will be found by
noticing that, by definition of and D,

1 1
(30) s<—,0>+D(—,o):o.
q q
First we rewrite the above equations Srand D, by expressing (1 — py) x
(1 — gy) in terms of the kernel: indeed,
rx(L—py)L—gqy) =@ —X)(x+y—xy(p+q) —XK(x, ).

Let K, = K/(xy) =1— k% —y — pgrxy. The equation satisfied by can be
rewritten as

xyrS(x,y) —yS(x,0) — xS, y) _

K, X — 0+ —r)SO,
ty—x(ptq) (X —r)S(x,0) + (y —r)S(0, y)

(31)
with
(32) Tx)=A—-rx)Sx,00=1—-rx)S@O, x).
Similarly,

g, 2PN =YD = PO _ (z_ypix, 0+ G- 1D, )

x+y—xy(p+q)
=E(x) — E(y),

where
(33) Ex)=(x—r)D(x,00=—(x —r)D(0, x).

We have taken into account the fact thagx, y) is anti-symmetric, so that, in
particular,D (0, 0) = 0. The functionsl’ and E are analytic forlx| < 1/r.

From the fact that the curve 4+ y = xy(p + ¢) intersects the domain of
convergence of(x, y) (near the origin), we derive from (31) the existence of a
functionU (x, y), analytic in®D, such that

xyrS(x,y) —yS(x,0) —xS0,y)=(x+y—xy(p+q)U(x,y).

A similar statement holds for the functiatyr D(x, y) — yD(x, 0) —x D(0, y). But
this function vanishes as soon.xas- 0 or y = 0, so that we can actually write

xyrD(x,y) — yD(x,0) —xD(0,y) = xy(x +y —xy(p +q))F(x, y),

for a function F that is analytic isD. Finally, we shall need the following initial
conditions:

(34) U(x,00=-5(0,0=-20(0,0), T(0)=20(0,0).
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Equations (29) have thus been replaced by the following simpler equations:
(35) K U(x,y)=xT(x)+ yT (),

(36) KyxyF(x,y) = E(x) — E(y),

whereK, =1—x —y — pgrxy andU, T, F, E are analytic in the domaitD
defined by (28).

3.2.3. The algebraic kernel methodWe apply the algebraic kernel method of
Section 2.3 to (35)—(36). We observe th&ét satisfies the following invariance

condition:
Xy Xy
Ky (x,y) = Kr<—a y) = Kr<xs —) =K,.
pqr prqr

Recall thatm = min(p,q) and M = max(p, gq). Let us fix x in the interval
(1/m, 1/r) and restricty to the annulus

1
37 Y —.
(37) o(x) <yl < i
By Lemma 9, this annulus is nonempty, and, moreover,
1
(38) — <[yl < Y1i(x).
pgx

The pairs(x, y) and(xy/(pgr), y) both belong to the domain of convergende
and we thus have, in addition to (35)—(36),

iy AN
(39) KrU(—y,y) =pqrxyT<—y) + 3T (y),
pqr pqr
(40) K,LF<ﬂ,y) =E<ﬂ> —E®y).
pqr \pqr pqr

A linear combination of (35) and (39) gives
Xy 1/ _ _ Xy
2U(x,y) — U<—y, y) = —(2xT(x) +yT(y) — pqrxyT(—y>)-
prqr K, pqr
In view of (37)—(38), the expansion of/ X, given by (23) is convergent. Recall

that x is fixed; we can now use (25) to extract from the above equation the
coefficient ofy®. We obtain

T\ 2%T
(41) 2U(x,0)—Ud<p);r)= \/%,

whereU,;(x) denotes the diagonal of the serigéx, y):

U, y)= Y uijx'y) = Usx)=) uix'.
i,j>0 i>0




1474 M. BOUSQUET-MELOU

Given thatU (x, y) converges absolutely in the domain given by (28), the sub-
seriesU;(x) is convergent fotx| < 1/(r M). By analytic continuation, (41) holds
in the annulus{l/m < |x| < 1/r}. Recall thatU (x, 0) is actually a constant
[see (34)]. We now use the canonical factorizationAqf), given by (21). We

multiply (41) by /A _(x):

_m(4g(o, 0+ Ud(pfﬂ,)) = \/%'

Using Proposition 7, we can extract the nonnegative part of this function. Given
thatU,(0) = U (0, 0) = —20Q(0, 0), we obtain, using (22),

(42) T(x) = 20(0, 0) (1 _ %)N/Aqx).

In view of (31)—(32), we have completed the determination of the Sum func-
tion S(x, y).

Let us now work with (36) and (40). Let us divide (36) & and extract the
coefficient ofy®. We obtain

E(x) = E(Yo).

If we do the same with (40), we simply find 8 0 [recall that F(x, y) is
antisymmetric]. However, if we extract instead the coefficientypfve obtain,
using (24),

X X
—Fi| — | = E(0) — E(Yo),
pqr pqr
where
F(x,y)= Z fi,jxiyj = FMNkx)= Zfi,iJrlxi-
i,j>0 i>0

By combining both equations, and extracting the nonnegative part, one sees that
E(x) is actually a constant (0). In view of (32)—(33) and (42), one has

S(r.0) = 50, x) = 2200 (1 - i)«/A.,_(x)
1—rx w

and

xE(0)
1—rx’
The identity (30) completes the determinationfof

1
E(0) = —20(0,0) (q - E)vma/cn.

We can now expres® (x, 0) and Q(0, x) explicitly, using (27). Thanks to (16),
this gives exactly Theorem 4.

D(x,00=—-D(0,x) =
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3.3. Comments on the solution.

3.3.1. Asymptotics. For a good understanding of the solution of Theorem 4,
or, equivalently, of the stationary distribution of Corollary 5, it is useful to
determine the dominant singularities of the functignér, 0) and Q(O, y), and,
hence, the asymptotic behavior of the numbgsg and pg ;. This is why we
briefly rederive below a result already proven in [17].

PrRopPoOSITION 10. Assumer < min(p,q). The asymptotic decay of the
stationary probabilities; o depends on the relative valuesptindg:

o If p=¢g,thenQ(x, 0) is the reciprocal of a square ropind asi goes to infinity

pio~c(r/p)i~Y?
for some positive constant

o If p < g, then Q(x,0) has a simple pole ap/r as its unique dominant
singularity The decay of the numbeyg g is given by

pio~c(r/p).
e If p> g, thenQ(x, 0) has a square root singularity dt/(grw?) as its unique
dominant singularityand
pio~ c(grw?)'i—3/2,
PROOF We use standard results that relate the singularities of a series to the
asymptotic behavior of its coefficients (see, e.g., [16]).
When p = ¢, the result is clear in view of Theorem 4. Otherwise, the three
possible singularities o (x, 0) are p/q, p/r and ¥ (grw?). The inequalities
of (15) imply
p D 1
—< =< .
q r qrw2
Hence, our first candidate for the radius@(x, 0) is p/q. However, the numerator
of Q(x, 0) vanishes at this point, so that there is no polg/at. Our next candidate
is p/r. For this value ofc, the numerator 0 (x, 0) is

(1— i)ﬂ— pqu? — z(1— i)ﬂ— prw?.

rw r qw
According to (16), the first term in this difference is negativep I& ¢, then the
second term is positive. Hence, the difference is negativeqnd0) has, indeed,
a simple pole ap/r.

However, if p > ¢, then (16) shows that the numerator @fx, 0) cancels
at x = p/r, so that the only singularity 0O (x, 0) is a square root singularity
at 1/(grw?).

Note that one can compute explicitly, in the same way, the multiplicative
constants denotedin the proposition. [
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3.3.2. An asymmetry of the solutionAs observed above, the function
O(x,y) = Q(px,qy)/ (1 — px)(1— gy)) satisfies an equation that is symmetric
in x andy [see (26)]. Hence, we could expe@{x, y) to be a symmetric function
of x andy. This is equivalent to the condition

Q(px.0)  Q0.qx)
1—px 1—gx

Q(X,O)—Q(O,X): 0.

However, we derive from Theorem 4 and (16) that

20(0,0)x (pw — V1 — grw?
wl—px)(L—gx)(L—rx)

0(x,0) — Q(0,x) =

By (15), this quantity differs from 0, unlegav = 1, which forcesp =¢. If p =4,

the solution satisfie®) (x, 0) = Q(0, x), so that the symmetry property naturally
holds. Otherwise, the asymmetry of the result comes from the asymmetric
conditions we have require@(x, y) must converge whejpx| < 1 and|gy| < 1.

3.3.3. Flatto and Hahns expression. Assumep < ¢g. Equation (16) shows
that the numerator of (0, y) vanishes whew = ¢/p andy = ¢g/r. Let us denote

8(y) = V1 — yprw?. Then the numerator af (0, y) is a polynomial ins(y), of
degree 3, and two of its roots at&;/p) = V1 — grw? ands(q/r) = V1 — pqw?.

The third root is then easily determined to be/1— prw?. Hence, up to a
multiplicative constant independent ofthe numerator 00 (0, y) factors as

(\/1—yprw2 — \/l—qrwz)(\/l—yprw2 —Vi-— pqwz)

X (\/1—yprw2—|—\/1—prw2).

The denominator 0© (0, y) is already factored i, and also vanishes at=¢q/p
andy = ¢/r. Up to a multiplicative constant, it factors as

(\/1— yprw2+\/l—qrw2)(\/l— yprw? — \/l—qrwz)

X (\/1— yprw? +vV1— pqwz)(\/l— yprw? —vV1-— pqw?).
Two simplifications occur, and, finally,

_ W (y)
(43) 0(0,y)=0(0, O)W,

where

\/l—yprwz—i-\/1—prw2

U(y) = .
g (\/1—yprw2—|—\/1—qrw2)(\/l—yprwz—i-\/l—pqwz)
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Now, using (16), the functio® (x, 0) can be rewritten as

0(0,0)
(1—-gx/p)(1—rx/p)

X ((1— :—w>m+x<

In this form, the numerator of)(x, 0) now looks more like the numerator of
Q(0, y). More precisely, denoting the latter numerator By (y)), the former

numerator is exactly- P(—v'1 — xgrw?), and, hence, factors as

Qx,0) =

L Wi-ari?).

1— —
pw

(\/l—xqrwz—l-\/l—qrwz)(\/l—xqrwz+\/1— pqwz)

X (\/1—xqrw2— \/1—prw2).

The denominator ofQ(x, 0) is also easily factored; two simplifications occur
again, and we end up with

B D(x)
(44) 0(x,0=0(, O)W’
where
_ 2 _ 2
O() = Vi xqrw +V1 qrw

(\/l—xqrwz-l—\/l—prwz)(\/l—xqrwz—\/l—pqwz)'

Expressions (43) and (44) are, with our notation, the forms given in Flatto and
Hahn’'s paper [17]. They are nicely factored, and it is easy to derive from them
the singularities o) (x, 0) and Q (0, y). However, they have two drawbacks: first,
they are only valid whemp < ¢, and hide the symmetry of the result gnandg,

which is clear from the expressions of Theorem 4. Second, they somehow contain
“two many” radicals, and suggest thé@ft(x, 0) and Q(0, y) will be algebraic of
degree 3x 2% over the fieldQ(p, ¢, x, y), whereas, as suggested by Theorem 4,
they have only degree 3 22 = 12. This can be checked using a computer algebra
package, like M\PLE.

4. Enumeration and probability: the law of the chain. In this section we
consider again the Markov chain illustrated in Figure 3. We start this chain at
time 0 at the origin of the lattice, and address the question of computing the
probability p; ;(n) that the walk reaches the poi@t ;) at timen. This question
is, in essence, close to Section 2: we are againmeratingpaths according to
a certain weight. This weight is the probability that the trajectory begins with this
path. But this question is also related to Section 3, since we expect the probability
pi,j(3n —i — j) to converge to B, ; asn goes to infinity, when < min(p, q),
wherep; ; is the stationary distribution of the chain (the factor 3 accounts for the
periodicity of the chain).
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The notation we adopt is similar to that of Section 3: we introduce the following
four generating functions for the probabilitips ; (n):

Poo=_ poo(mr",

n>0

Pi(x)= ) piomx't",

n,i>0

Pa(y)= ) poj(m)y't",
n,j>0

P(x,y)= Y pijmx'y/i".
n,i,j>0
The step by step construction of the walks gives the following functional equation:
(1— pxt — gyt —rxyt)P(x,y) + (1 — p’'xt — r'xyt) P1(x)
+ @A —q"yt —r"xyt) P2(y) + (L — xyt) Poo = 1.

Again, we assume that the transition probabilities on the border of the quadrant
are related to those inside the quadrant by the conditions of (12). This allows us to
rewrite the above functional as

Q- pxt —gyt —rxyt)Q(x,y) +q(t —1)Q(x,0) + p(xt =1 QO,y) =r
with
(45) Q(x,y) = Poo+r Pi(x)+r"Pay) +rP(x,y).

It will be convenient to have a kernel symmetricirandy, and our starting point
will actually be

(xy — t(x +y + pgrx®y?) Q(px, qy)

+(—qy)xQ(px,0) + (t — px)yQ(0, gy) =rxy.

We are back to the (safe) world of formal power seriestirwith coeffi-
cients inQ(x, y), and we will mimic the obstinate kernel method of Sections
2.1 and 2.2. The only new difficulty arises from the absence of symmetry, since
Q(x,0) # 0(0,x) whenp #g.

The kernel of the above equation, considered as a polynomig] fras two
roots,

(46)

1—1x =V (1—1%)2 — 4pgri’x
Yolx) = (2pqrt3c P2 —rv w2+ 003,

1— 13 +V(1—12)2 —4dpgri’x & %2

= — —t— %2+ 0@5).
2pgrtx pqrt  pqr

Yi(x) =




WALKS IN THE QUARTER PLANE 1479

The elementary symmetric functions of theare again polynomials in/k:
Sl 7 _
Yotvi= 3" and vori=
pqrt pqr

The discriminaniA (x) = (1 — rx)2 — 4pgrt2x vanishes for three values of two
of them, sayXo and X, are power series iR/z, while the third one X, is a
Laurent series im that starts with a term in—2. Let us defineZ = Z(¢) to be the
unique power series insuch that

Z=1+ 4pqrt323.
Then 4pqrt?X,Z? = 1, and the canonical factorization af(x) reads
A(x) = AoA4(x)A_(X)
with
47 o= Apgri®Xs = — Ar(x)=1—x/Xp=1—4pqri®z?
(47) 0=4pqri°Xa= 7. +(x)=1—x/Xo=1—4pqri“Zx,
(48) A_(X)=1—xXo(1l—xX1)=1—1tZ(1+ Z)x +12Z°%°.

As in Section 3, it will be convenient to handle two functigts, y) andD(x, y),
which are, respectively, symmetric and antisymmetrie endy. We define them

by
(49) S(x,y)= @ —qgx)t — py)Q(px,qy) + (t — px)(t —qy)Q(py, gx),
D(x,y)=(t —qx)(t — py)Q(px,qy) — (t — px)(t —qy) Q(py, qx).

Then

50) t(xy —1(x +y 4 pgrx®y?)S(x, y) + (t — py)(t — qy)xS(x,0)
+ (@ — px)(t —qx)yS0,y) =G(x,y)+G(y, x),
t(xy —t(x +y + pgrx®y?)D(x, y) + (t — py)(t — gy)xD(x,0)

+ @ = px)(t—qx)yD(0,y) =G(x,y) — G(y, x),

(51)

where
G(x,y)=rxyt(t —qx)(t — py).

4.1. Statement of the resultsAfter all the algebraic series we have met, one
might expect the probability generating function of the law of the chain to be
algebraic again. This is, however, only trueit= g.
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THEOREM 11 (The symmetric case).Assumep = ¢g. The three-variate
generating function for the probabilitigs; ; (n) is algebraic and can be expressed
explicitly in terms of the unique power serigs= Z(r) satisfyingZ = 1 +
4pgrt3Z3. In particular, the generating function of walks ending at the origin
is algebraic of degreé:

Poo=)_ poo(Bn)t*

n>0
B L(ﬂ— pZ(+2)+p?Z% 1) B L(./—A_(p/t) ~ 1)
T p 1-2pZ T p\ 1-2pz ’

where A_(x) is given by(48). More generally the seriesQ(px,0) = Poo +
r’ P1(px) is given by

(t—x(1= p) + prx®t®) Q(px.0)

_ L((th —X)VA_(p/D)V A+ (x)
2p Z(1—-2pZ)

where A (x) is given by(47). The expression afy o can be recovered from the
value of Q(px, 0) by settingr = 0.

—2t—|—X(1—p)),

This theorem, and all the results of this section, will be proved in Section 4.2.
What happens in the general case? We have expressed the @épiesyy)
in terms of two seriesS(x, y) and D(x, y), which are, respectively, symmetric
and antisymmetric inx and y. It turns out that the Sum serie$(x, y) is
always algebraic, while the Difference seriBgx, y) is transcendental (unless
p = q). The algebraicity of (x, y) has an interesting consequence: The generating
function Py o that counts walks ending at the origiraisvays algebraiceven when

P#q.

THEOREM 12 (The general case: algebraic partl.he seriesS(x, y) defined
by (49) is algebraic and can be expressed explicitly in terms of the unique power
seriesZ = Z(r) satisfyingZ = 1+4pgrt3Z3. In particular, the coefficient af%y°
in S(x, y) is an algebraic series in. Itis equal t02t2Po,o, where Py o counts walks
ending at the originand we have
2pqPoo+r(1—r)=Apq+ Agp,
whereA , , is the following algebraic series in
4 (pA=2p)—qr’) VA (p/D)
ra 1-131-2p2)
and A_(x) is given by(48). The algebraic serie® o has degreé if p = ¢, and
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degreel?2 otherwise More generallythe seriesS(x, y) satisfies
S(x,0 H
(x,0) 47 (x)
t 2pq

(t—@A—-p)x+ tzqrxz)(t —A—-qg)x+ tzprxz)

. (2Z — x)/A4(x)
N 2pqZ

(Ap,qu’q(x) + Aq,qu,p(x))’

where A, (x) is given by(47), and F, ,(x) and H(x) denote the following
polynomials irv andx:

Fpox)=(@—xq)(t—A—g)x+ tzprxz),
H(x)=q(2t —x+ px)Fp 4(x)+ p2t —x +gx)Fy p(x)

(52)
—(p— C])zxz(zrf -1-pA—-qg)x+ 2pqrx2t2).

The expression afp o can be recovered from the valueSix, 0) by settingx = 0.
An expression fof (x, y) can be obtained using0).

This theorem will allow us to complete the proof of the following result,
announced in Section 3.

COROLLARY 13. The Markov chain schematized in Figugewith the border
conditions of (12), is ergodic(i.e., has a stationary distributionif and only if
r<min(p, q).

Theorem 12 specializes to Theorem 11 wies q. It states that walks ending
at the origin have an algebraic generating function. What about the generating
functions P1(x) and P»>(y) that count walks ending on the- or y-axis? By
symmetry of the modelP1(x) is algebraic if and only ifPo(y) is algebraic too.

In view of (45), (46) and (49), this holds if and only §f(x, 0) and D(x, O) are
algebraic. Ifp = ¢, thenD(x, y) is obviously zero, and Theorem 11 tells us that
all the generating functions under consideration are algebrajcAfy, we shall
prove thatD(x, 0) is transcendental (but D-finite), and give an explicit expression
of it.

So far, we have expressed many of our series in terms of the canonical factoriza-
tion of the discriminanfA (x). This is the case, for instance, in Theorem 12, where
the expression af (x, 0) involves./A (x), which we could call the positiveul-
tiplicative part of /A (x). In order to expres®(x, 0), we need to introduce the
positiveadditivepart of ./ A(x), as defined by (2). More precisely, the expression
of D(x, 0) will involve the positive (additive) part of

VA(X)

qrt 1-—2tx — pqrtxz).

(53) B(x):=Yg—-Y1)(2t —x + pqrtxs) =
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We shall compute below the expansion Bfin ¢ and x, using the Lagrange
inversion formula. In particular, we will see that the positive (additive) pai(af
reads
(54) BY(x) = —xt —x?4+2CH(x),
where all terms irCt (x) are multiples oft3. We then define the seri€s™ () by
1— 2kt
pqt

(55) B(x) = +2C~ (%) — xt — x>+ 2CT (x).

Observe thatA(t/p), and, hence,B(t/p), is a well-defined Laurent series
in ¢. Clearly, C*(t/p) is well defined too: consequently, by difference, we can
defineC~(p/¢) as a Laurent series in even though it would be meaningless to
replacex by p/t in the expansion of ~ (x).

THEOREM 14 (The general case: transcendental paiyhen p # ¢, the
seriesD(x, y) defined by(49) is D-finite but transcendental’he same holds for
its specializationD (x, 0). Consequentlthe seriesP;(x) and P»>(y) which count
walks ending on the- or y-axis are transcendentarl he seriedD (x, 0) satisfies

D(x,0)

rxt

(t—A-px+ tzqrxz)(t —A-g)x+ tzprxz)
+x(p — q)(l2(1 —r)rxl— x/2+1)

=rx(p—q)*CT(x) - (PC™(p/)Fpq(x) —qC™(q/1) Fg p(x)),

113

whereC™ (x) and C~(x) are defined by54)—(55)and as in Theoreni2,
Fpg(x) = —xq)(t — (L —q)x + t*prx?).

An expression ob (x, y) can then be obtained usir{§1).

Note the similarities between the expressions $ifc, 0) (Theorem 12)
and D(x, 0) (Theorem 14). One could take the sum and difference of these ex-
pressions to recover the seri@gpx, 0) and Q(0, ¢gx), but, as no significant sim-
plification arises, we shall not do this.

There is still one natural question that is not answered by the combination of
the above two theorems: we have seen that the generating furigtpof walks
ending at the origin is algebraic, but that the seRg6c) that counts walks ending
on thex-axis is transcendental. Yet, for- 0, the coefficient ok’ in Py(x), being

Pio:=Y pio(n)i",
n>0

counts walks ending &f, 0) and might be algebraic. The following corollary tells
us that this is not (systematically) the case.
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COROLLARY 15. Some of the serieB; o are transcendental

NOTE. We can obtain an explicit expression of the setiggx) andC~ (x)
by expandingB(x) in x and¢. Let us write

x(1—Xxt)
pqrt
and observe that the serigg, which cancels the kernel, is Lagrangiarrin
Yo=t(1+ Yo+ pqrxYQ).
The Lagrange inversion formula yields

Yo—Y1=2Yo— (Yo+ Y1) =2Yp —

B(x) = A-3xn1-2%) of 32
pqrt
/Al _— L Bk —n+1)Bk—n)(n—2)!
+2nX>:22‘ IZ:OX (pqr) k!(k—l—l)!(l’l—Zk)! :
Consequently, :
Ln/2] L Bk —n—+1)3k—n)(n—2)!

o= 3 2

n=2  k=[(n—1)/3] k!(k +1)!(n — 2k)!

One may also write an explicit expansion®f ().
4.2. Proofs.

PROOF OF THEOREM 12. Let us start from (50) defining(x, y). As in
Section 2.1, the pair&e, Yo) and(Yy, Y1) cancel the kernel and can be substituted
for (x, y) in this equation. We thus obtain two equations:

(t = pYo)(t —qYO)T (x) + (t — px)(t — qx)T (Yo)
= G(x, Yo) + G(Yo, x),

(t — pY1)(t —qY1)T (Yo) + (t — pYo)(t —qYo)T (Y1)
=G (Yo, Y1) + G(Y1, Yo),

with T'(x) = xS(x, 0). Let us form a symmetric function dfy andY; based on a
divided difference: We multiply the first equation byt2- pY1)(t — ¢¥1) and the
second one byt — px)(t — gx), and take the difference of the resulting equations,

2(t — pYo)(t — qYo)(t — pY1)(t —qY1)T (x)
+ (t — px)(t — gx)((t — pY1)(t — qYD)T (Yo) — (t — pYo)(t — qYo)T (Y1)
=2(t — pY1)(t — qY1)(G(x, Yo) + G (Yo, x))
— (t — px)(t — qx)(G (Yo, Y1) + G (Y1, Y0)).

(56)
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Recall that
K(x,y) =xy —t(x +y+ pqrx®y?) = —pqrtx?(y — Yo)(y — Y1).

We use this identity to express the coefficienffd) as a Laurent polynomial in
x and¢. Then, we separate the symmetric and anti-symmetric parts of the right-
hand side using

W (Yo, Y1) = 3(W (Yo, Y1) + W (Y1, Y0)) + 3(¥ (Yo, Y1) — W (Y1, Y0)).

This gives

_(1_ 2 e (1 2 .2
2(t 11— p)x +tegrx )(2t . A1—qg)x +t°prx )T(x)+ t2H2()c)3
pqr X p q rx
=—(— px)(t —qx)
(57)
x ((t — pY1)(t — qY1)T (Yo) — (t — pYo)(t — qY0)T (Y1)
2
+(Yo— vy W),
pqgx

whereH (x) is given by (52) and/ (x) is also a polynomial inc andz:

J(X) =qFpq () + pFy p(x) +x(p — )*(t — rx).
As we are getting used to the method, let us merge the next two steps: instead of
first dividing by (Yo — Y1) and then multiplying bx/A _(x), let us divide (57) by
2V A+ (x)/(pgrx) = =2t (Yo — Y1)/+/AoA—_(x). We obtain, in view of (47),

(t — (L— p)x +t2qrx®)(t — (L — q)x + t?prx?) I tH(x)
RN ) RPN Y e
VAT
2z

x ((r Pt — qx)

o (t = pY1)(t —qY)T (Yo) — (t — pYo)(r —qY0)T (Y1) tJ(X))
t(Yo— Y1) pgx /)
The left-hand side of this equation, as a Laurent series, ihas valuation—2,

while the right-hand side only involves powers.ofsmaller than or equal to 2.
Extracting the positive part in, and mutiplying byx? gives

(t — (1— p)x +t2qrx?)(t — (L — q)x + t?prx?)
rx+/ A4 (x)
tH(x)

.
2pg /Ay (x)

T (x)

(58)
L(x),
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whereL(x) is a polynomial inx, of degree 4, with coefficients iQ[z, T4, T», T3],
whereT; = T;(r) denotes the coefficient af in 7 (x). We do not give the explicit
expression ofL(x), but refer the reader to his/her favorite computer algebra
system.

We now have to determine the three unknown functidis7> and Ts.
Fortunately, we can compuf®(x) at three values of using (56): firstakt =¢/p,
then atx =¢/¢, and finally att = W, whereW is the unique power series irthat
satisfiesK (W, W) = 0 [so thatW = Yo(W)]. Remarkably,W is simply related to
the parameteZ by W = 2t Z. The three values df (x) that we obtain are

Bp—q)q—r+vV Q- p?—43qr)

(59) T(t/p)=

2p%q(1—13) ’

_Blg—p)(p—r+VA-q9?—4pr)

(60) T(t/q) = S T = ,
T(W) =rtW?2.

Settingx = W in (58), we find that the left-hand side vanishes. Herdgéy) = 0,
and this gives an expressionBf in terms ofT1:

2r—1
To=—rt+

T1.

The polynomialL (x) now takes the following form:

(61) L(x) = (W_x)(t(t_x_tpqrxg)MO-i-Mlxz)’
pqrwW

where
Mo = pqTi+r(p+q)t?,

and My involves both77 and T3. It remains to evaluate (58) at=¢/p and
x =t/q, using the expressions df(¢/p) and T(¢/q) given by (59) and (60),
to obtain

oo L <(p(1—2p)—t3qr)«/A-(p/t)
07173 t—pW
p
(q(1—29) — 3pr)/A_(q]1) )
+ b
t—qW
v O ((p(1—2p>—t3qr><q<1—q>+prr3>¢A_(p/t)
1_
1-13 t—pW

L ad—2q) - 3pr)(p(L— p) +qrt3) /A (q/1) )
t—qW '
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Theorem 12 follows, using (61) and (58)

PROOF OF COROLLARY 13. We have already seen that the condition
r < min(p, g) is necessary for the chain to have a stationary distribution (Lem-
ma 6). Assume this condition holds. As the chain is irreducible, it suffices to
prove that the point0, 0) is positive recurrent, that is, that the probabilityo(3n)
converges to a positive constantiagoes to infinity [10]. The generating function
of these numbers, denotdy o, is given explicitly in Theorem 12.

This leads us to determine the smallest singularity of the setigs. The
technique is standard for algebraic functions, and we only sketch the main steps.
The seriesZ becomes singular af = 1/(27pgr) > 1. Then, we note that

1-2pZ)1+@2p—-1)Z(1+2pZ))
4p73 ’

p(L—2p) —qri®=

so that there is actually no pole in,, if Z reaches A(2p). Moreover, if
A_(p/t) =0, then A(z/p) = 0. But, ast increases from 0 to 1A(z/p) =
(1 — p)2 — 4grt® decreases fromil — p)? to (¢ — r)? and thus does not vanish.
Hence,A, , (and A, ,) has its smallest singularity at = 1, and this singularity
is a simple pole. Consequently, the coefficient¥fin A, 4 tends to a constant as
n — oo. The same holds fod, .

It remains to show that the sum of these two constants is not zero. We are
actually going to compute them explicitly: this will not only conclude the proof
of the corollary, but also allow us to recover the valuggp given in Corollary 5.
First, we note thaZ (1) = 1+ 4pgrZ(1)3, and conclude thaZ (1) = w/2, where
w is the real number defined in Theorem 4. Then, the definition of the canonical
factorization gives, when=1,

A(L/p) = (g —r)?= AoAL(1/p)A_(p),
and so by (47),

VA _(p) = M
g

Thus, ag — 1,

2pg Poo~ = ((p(l_ZP)_qr)(q_r)+(Cl(l—ZQ)—PV)(p—r)>
) 2(1—13) (1—pw)m (1_qw)m .

Note thatp(1 — 2p) — gr = (¢ — p)(p — r). Using (16), we rewrite the above
identity as

w(p—r)g—r)lp—ql

1
1-83 Q- rw)W/1-pquw?

2pq Poo ~
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It follows that, as: — oo,
0.6(3n) — w(p—r)g—r)lp—ql
’ qu(l—rw)vl—pqw2

Given that the chain has period 3, this agrees with Corollary’b.

PROOF OFTHEOREM 14. Let us start from (51) definin®(x, y). The pairs
(x, Yo) and (Yg, Y1) cancel the kernel and can be substituted (fory) in this
eqguation. We thus obtain

(t — pYo)(t —qYO)E(x) — (t — px)(t — qx)E(Yo) = G(x, Yo) — G(Yo, x),
(t — pY1)(t —qY1)E(Yo) — (t — pYo)(t — qYo) E(Y1) = G (Yo, Y1) — G (Y1, Y0),

with E(x) =xD(x,0) = —x D(0, x). We now want to form a symmetric function
of Yp andY; based on a sum. We multiply the first equation y-2pY1)(t —gY1)
and the second one by — px)(tr — gx), and take the sum of the resulting
equations:

2(t — pYo)(t — qYo)(t — pY1)(t —qY1) E(x)
—(t = px)(t — qx)((t = pY1)(t — qY1) E(Yo) + (t — pYo)(t — qY0) E(Y1))
=2(t — pYD)(t — qY1)(G(x, Yo) — G(Yo, x))
+ (t — px)(t — gx)(G (Yo, Y1) — G(Y1, Y0)).

As above, we use the expression of the kernel to express the coeffici€nk pf
as a Laurent polynomial im and¢, and split the right-hand side into a symmetric
and an anti-symmetric part. After multiplying by we obtain

—(1— 2 2\t (1 _ 2. ...2 _
2(t (1—p)x +tegrx°)(t — (1 CI)X+IP”X)E(X)+I(P q)I(x)
pqrix3 p2q2rx2
=x(t — px)(t —gx)
(62)
x ((t = pY1)(t — qY1) E(Yo) + (t — pY0)(t — qY0) E(Y1))
3B
+(p—q)t (x),
rq

whereB(x) is given by (53) and
1(x) = —x3pq — 2 pqrx® + pgr(1 — 2r)tx* + (r + 3pq)x®t — A+ r)xt® + 2.

As a Laurent series in, the left-hand side of the above identity has valuati¢h
The term involving E(Yp) and E (Y1) only involves powers ofc smaller than
or equal to 2. ButB(x) is a series i with coefficients inQ[x, x], containing
arbitrarily large positive and negative of and this is where the transcendence of
the solution stems from.
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Note that the coefficients of andx2 in B(x) are especially simple, being,
respectively,—r and —1. Let E; = E;(¢) denote the coefficient af’ in E(x).
Given thatE (x) = xD(x, 0) andD(x, y) is antisymmetric, we havEg = E1 = 0.
Let us first extract from (62) the coefficient ®f we obtain a relation between
E> andEs,

E3="Ez+r(g—p).
Now, extracting the positive part of (62) and multiplying byives
(t — (L= p)x +t2qrx?)(t — (L — q)x + 1?prx?)
pqrix?
B*(x)

2

E(x)
(63)

=x(p— )t +L(x),

where BT (x) is the positive part ofB(x) and L(x) is a polynomial inx (of
degree 3) with coefficients iQ[ p, g, t, E2, E4]:

pqrx3t2 +ix —12— r(l— r)x2t3 + )cz(r2 - pq)

L(x)=-2 5 E>
par
2.2 3
X<t (1—2r)t
(64) 12 () T
pqr
24 2r +13r 12
+(p—gt————x*—2(p—q)—x.
pqr

We have to determine two unknown functiofs and E4. From (49) and the
fact thatT (x) = xS(x, 0) andE(x) = xD(x, 0), we derive thatE(¢t/p) =T (¢t/p)
and E(t/q) = —T(t/q). We evaluate (63) at =¢/p andx = t/q, using the
expressions off'(¢t/p) and T(¢t/q) given by (59) and (60). One thus obtains
expressions of; andE,4 interms of/A(t/p), /A(t/q), BT (t/p) andB*(t/q).
They become much simpler using

VA 1—-2tx
x) 1—2tx — pqrtxz) — il

pqrt pqt

BT (x)=

—2C7(%).

One finds

t2r

Ez=1—3(aC (/)= pC™(p/1)
and
2

Es=1—(a(1—q — pr)C™(q/t) = p(L— p—gr)C(p/1)

_rp—q@2r+1
2t '
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The expression oD (x, 0) = E(x)/x follows from these values, using (63), (64)
and (54).

Let us now discuss the algebraic naturelofx, 0) [equivalently, of E (x)].
If E(x) were algebraic, then so would be all the coefficiehis In particular,
the seried.(x) given by (64) and occurring in the right-hand side of (63) would
be algebraic too. By difference, the positive parBaf), denoted above bB ™ (x)
would be algebraic, and so would be all its coefficients. But the coefficient of
in B(x) is

3k)!
45 342 k+1 ( ‘
2 e e G o)

As k — oo, the coefficient of%*2 in this series is asymptotic t@7pqr)*/k*,

up to a positive multiplicative constant. Because of the faktdr, this cannot be

the asymptotic behavior of the coefficients of an algebraic series [15], so that our

initial hypothesis is false: The seriégx, 0) is not algebraic. However, the general

results on D-finite series recalled at the end of Section 1 imply that it is D-finite.
]

PROOF OF COROLLARY 15. Assume all the serieB; o are algebraic. By
symmetry, all the seriedp ;, which count walks ending on the-axis, are
algebraic too. In other words, the coefficient .gf in Q(x,0) and Q(0, x) is
algebraic. In view of (49), this holds f&¥(x, 0) andD(x, 0) as well.

We already know, by Theorem 12, th&{x,0) is algebraic. Let us work
with D(x, 0) to obtain a contradiction. We thus assume that the coefficieritiof
the seriesE (x) = xD(x, 0) is algebraic. By (63), this implies that the coefficient
of x' in B*(x) is algebraic too, for all. The same asymptotic argument as above
proves that this is wrong.[

Acknowledgments. The story of this paper started when Roland Bacher re-
discovered experimentally Kreweras’ result for walks ending at the origin, and
advertised his conjecture. | found it nice and started to advertise it too. | am very
grateful to Ira Gessel who told me that this “conjecture” had already been proved
four times (at least), and indicated the right references. This paper has benefited
from discussions with many colleagues, in particular, Eric Amar, Jean Berstel,
Guy Fayolle, Serguei Fomin, Jean-Francois Marckert, Marni Mishna and Nicolas
Pouyanne. | thank them warmly for their interest and their help with complex
analysis, context-free languages, functional equations, Markov chains, English and
what not.

REFERENCES

[1] BANDERIER, C., BOUSQUEFMELOU, M., DENISE, A., FLAJOLET, P., GARDY, D. and
Gouyou-BEAUCHAMPS, D. (2002). Generating functions for generating tré&screte
Math. 246 29-55.



1490 M. BOUSQUET-MELOU

(2]

(3]
(4]

(5]
(6]
(7]
(8]
9]
(10]

(11]

(12]

(13]

(14]
(15]
(16]
(17]
(18]
(19]
(20]
(21]
[22]
(23]
(24]

(25]
(26]

BANDERIER, C. and EAJOLET, P. (2002). Basic analytic combinatorics of directed lattice
paths.Theoret. Comput. Sc281 37-80.

BERSTEL J. (2003). Personal communication.

BousQUEFMELOU, M. (2001). Walks on the slit plane: Other approaches:. in Appl. Math.

27 243-288.

BOUSQUEFMELOU, M. (2002). Counting walks in the quarter plane. NMtathematics and
Computer Scienc2 49—67. Birkhauser, Basel.

BousQUEFMELOU, M. (2003). Four classes of pattern-avoiding permutations under one roof:
Generating trees with two labeElectron. J. Combin9. Research Paper 19.

BOUSQUEFMELOU, M. and RETKOVSEK, M. (2000). Linear recurrences with constant
coefficients: The multivariate cadBiscrete Math225 51-75.

BoOUSQUEFMELOU, M. and RETKOVSEK, M. (2003). Walks confined in a quadrant are not
always D-finite.Theoret. Comput. Sc807 257-276.

BOUSQUEFMELOU, M. and SSHAEFFER G. (2002). Walks on the slit planBrobab. Theory
Related Fieldd24 305-344.

CHUNG, K. L. (1967). Markov Chains with Stationary Transition Probabilitie&nd ed.
Springer, New York.

FAYOLLE, G. and hASNOGORODSK| R. (1979). Solutions of functional equations arising in the
analysis of two-server queueing modelsPrformance of Computer Syste(is Aratod,

B. Butrimenko and E. Gelenbe, eds.) 289-303. North-Holland, Amsterdam.

FAYOLLE, G. and ASNOGORODSK| R. (1979). Two coupled processors: The reduction to a
Riemann-Hilbert problenZ. Wahrsch. Verw. Gebietly 325-351.

FAvOLLE, G., IASNOGORODSK| R. and MaALYSHEV, V. (1999). Random Walks in
the Quarter-Plane Algebraic MethodsBoundary Value Problems and Applications
Springer, Berlin.

FAYOLLE, G., MALYSHEV, V. A. and MENSHIKOV, M. V. (1995).Topics in the Constructive
Theory of Countable Markov Chain€ambridge Univ. Press.

FLAJOLET, P. (1987). Analytic models and ambiguity of context-free languagésoret.
Comput. Sci49 283-309.

FLAJOLET, P. and LyzKO, A. (1990). Singularity analysis of generating functioB$AM
J. Discrete Math3 216-240.

FLATTO, L. and HaHN, S. (1984). Two parallel queues created by arrivals with two demands. 1.
SIAM J. Appl. Math44 1041-1053.

GESSEL |. M. (1980). A factorization for formal Laurent series and lattice path enumeration.
J. Combin. Theory Ser. 28 321-337.

GESSEL |. M. (1986). A probabilistic method for lattice path enumeratidnStatist. Plann.
Inferencel4 49-58.

GuY, R. K., KRATTENTHALER, C. and 2GAN, B. E. (1992). Lattice paths, reflections, and
dimension-changing bijectionArs Combin34 3-15.

HopcROFT J. E. and WLmAN, J. D. (1969).Formal Languages and Their Relation to
Automata Addison—Wesley, Reading, MA.

KNUTH, D. E. (1975)The Art of Computer Programmirig 2nd ed. Addison—Wesley, Reading,
MA.

KREWERAS G. (1965). Sur une classe de problémes liés au treillis des partitions d'entiers.
Cahiers du B.U.R.06 5-105.

LIPSHITZ, L. (1988). The diagonal of a D-finite power series is D-finide.Algebra 113
373-378.

LIPSHITZ, L. (1989). D-finite power series. Algebral22 353—-373.

MALYSEV, V. A. (1972). An analytic method in the theory of two-dimensional positive random
walks. Siberian Math. J13 917-929.



WALKS IN THE QUARTER PLANE 1491

[27] MALYSEV, V. A. (1972). Classification of two-dimensional positive random walks and almost
linear semi-martingale§oviet. Math. Dokl13 136-139.

[28] NIEDERHAUSEN H. (1980). Sheffer polynomials in path enumerationPhoceedings of the
West Coast Conference on CombinatariGsaph Theory and Computing. Z. Chinn
and D. McCarthy, eds.) 281-294. Utilitas, Winnipeg, Canada.

[29] NIEDERHAUSEN, H. (1983). The ballot problem with three candidatesropean J. Combirt
161-167.

[30] RuDIN, W. (1974).Real and Complex Analysignd ed. McGraw-Hill, New York.

[31] StANLEY, R. P. (1980). Differentiably finite power seridsuropean J. Combirl 175-188.

[32] STANLEY, R. P. (1999)Enumerative Combinatoricd Cambridge Univ. Press.

[33] WRIGHT, P. E. (1992). Two parallel processors with coupled inptk. in Appl. Probab24
986-1007.

CNRS, LABRI

UNIVERSITE BORDEAUX 1

351 GOURS DE LALIBERATION
33405 TRLENCE CEDEX

FRANCE

E-MAIL : mireille.bousquet@Iabri.fr



