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MONTE CARLO ALGORITHMS FOR OPTIMAL STOPPING
AND STATISTICAL LEARNING

BY DANIEL EGLOFF

Zurich Cantonal Bank

We extend the Longstaff–Schwartz algorithm for approximately solving
optimal stopping problems on high-dimensional state spaces. We reformulate
the optimal stopping problem for Markov processes in discrete time as a
generalized statistical learning problem. Within this setup we apply deviation
inequalities for suprema of empirical processes to derive consistency criteria,
and to estimate the convergence rate and sample complexity. Our results
strengthen and extend earlier results obtained by Clément, Lamberton and
Protter [Finance and Stochastics 6 (2002) 449–471].

1. Introduction. The problem of arbitrage-free pricing American options has
renewed the interest in efficient methods for numerically solving high-dimensional
optimal stopping problems. In this paper we explain how to solve a discrete-
time, finite-horizon optimal stopping problem by restating it as a generalized
statistical learning problem. We give a unified treatment of the Longstaff–Schwartz
and the Tsitsiklis–Van Roy algorithm. They use both Monte Carlo simulation
and linearly parameterized approximation spaces. We introduce a new class of
algorithms which interpolate between the Longstaff–Schwartz and Tsitsiklis–
Van Roy algorithm and relax the linearity assumption of the approximation spaces.

Learning an optimal stopping rule differs from the standard setup in statistical
and machine learning in the sense that it requires a series of learning tasks, one
for every time step, starting at the terminal horizon and proceeding backward. The
individual learning tasks are connected by the dynamic programming principle.
At each time step, the result depends on the outcome of the previous learning
tasks. Connecting the subsequent learning tasks to a recursive sequence of learning
problems leads to an error propagation. We control the error propagation by
using a Lipschitz property and a suitable error decomposition which relies on
the convexity of the approximation spaces. Finally, we estimate the sample error
with exponential tail bounds for the supremum of empirical processes. To apply
these techniques, we need to calculate the covering numbers of certain function
classes. An important type of function class for which good estimates on the
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covering numbers exist are the so called Vapnik–Chervonenkis (VC) classes, see
[1] or [51]. We prove that payoff functions evaluated at Markov stopping times
parameterized by a VC-class of functions is again a VC-class. The covering
number estimate of Haussler [23] then gives the required bounds. Our approach is
conceptually different from Clément, Lamberton and Protter [15], which is purely
tailored to the classical Longstaff–Schwartz algorithm with linear approximation.
By exploiting convexity and fundamental properties of VC-classes, we can prove
convergence and derive error estimates under less restrictive conditions, also if
both the dimension of the approximating spaces and the number of samples tends
to infinity.

This paper is structured as follows. The next background section discusses
recent developments in numerical techniques for optimal stopping problems and
summarizes the probabilistic tools which we use in this work. Section 3 reviews
discrete-time optimal stopping problems. Section 4 shows how to restate optimal
stopping as a statistical learning problem and introduces the dynamic look-ahead
algorithm. In Section 5 we state and comment on our main results: a general
consistency result for convergence, estimates of the overall error, the convergence
rate and the sample complexity. The focus of the work lies in estimating the sample
error. The proofs are deferred to Section 6 where we also introduce the necessary
tools of the Vapnik–Chervonenkis theory.

2. Background. Optimal stopping problems naturally arise in the context of
games where a player wants to determine when to stop playing a sequence of
games to maximize his expected fortune. The first systematic theory of optimal
stopping emerged with Wald and Wolfowitz [57] on the sequential probability ratio
test. The monographs by Chow, Robbins and Siegmund [14] and Shiryayev [46]
provide an extensive treatment of optimal stopping theory.

The general no-arbitrage valuation of American options in terms of an optimal
stopping problem begins with Bensoussan [5] and Karatzas [26]. Nowadays,
American option valuation is an important application of optimal stopping theory.
For more background on American options and financial aspects of the related
optimal stopping problem, we refer to [27].

2.1. Algorithms for solving optimal stopping problems. Optimal stopping
problems generally cannot be solved in closed form. Therefore, several numer-
ical techniques have been developed. Barone–Adesi and Whaley [2] propose a
semi-analytical approximation. The binomial tree algorithm of Cox, Ross and
Rubinstein [16] directly implements the dynamic programming principle. Other
approaches comprise Markov chain approximations (see [30]) direct integral equa-
tion and PDE methods. The PDE methods are based on variational inequalities,
developed in [6] or [25], the linear complementary problem (see [24]) or the free
boundary value problem (see [52]). However, the viability of any of these methods
is prohibited by the curse of dimensionality. For these algorithms the computing
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cost and storage needs grow exponentially with the dimension of the underlying
state space.

To address this limitation, new Monte Carlo algorithms have been proposed.
The first landmark papers in this direction are [9, 49] and [11]. Longstaff and
Schwartz [36] introduce a new algorithm for Bermudan options in discrete time.
It combines Monte Carlo simulation with multivariate function approximation.
They show how to solve the optimal stopping problem algorithmically by a nested
sequence of least-square regression problems and briefly outline a convergence
proof. Tsitsiklis and Van Roy [50] independently propose an alternative parametric
approximation algorithm on the basis of temporal-difference learning. Their
approach relies on stochastic approximation of fixed points of contraction maps.
They prove almost sure convergence by using stochastic approximation techniques
as developed in [7, 31] or [32]. The Longstaff–Schwartz, as well as the Tsitsiklis–
Van Roy algorithm, approximate the value function or the early exercise rule and,
therefore, provide a lower bound for the true optimal stopping value. Rogers [43]
proposes a method based on the dual problem which results in upper bounds.
The overview paper [12] describes the state of development of Monte Carlo
algorithms for optimal stopping as of 1998. A more recent reference is the book
of Glasserman [20]. A comparative study of various Monte Carlo algorithms for
optimal stopping can be found in [33].

Despite the contributions of Tsitsiklis and Roy [50], Longstaff and Schwartz
[36] and Rogers [43], many aspects of Monte Carlo algorithms for optimal
stopping, such as convergence and error estimates, remain unanswered. Clément,
Lamberton and Protter [15] provide a complete convergence proof and a central
limit theorem for the Longstaff–Schwartz algorithm. But there are so far no
results on more general possibly nonlinear approximation schemes, the rate of
convergence or error estimates. These problems are the main topics addressed in
this paper.

2.2. Probabilistic tools. The main probabilistic tools which we apply in this
paper are exponential deviation inequalities for suprema of empirical processes.
These tail bounds have been developed by Vapnik and Chervonenkis [55],
Pollard [40], Talagrand [48], Ledoux [34], Massart [37], Rio [42] and many
others. Compared to central limit theorems, they are nonasymptotic and provide
meaningful results already for a finite sample size. Deviation inequalities, together
with combinatorial estimates of covering numbers in terms of the Vapnik–
Chervonenkis dimension, are the cornerstones of statistical learning by empirical
risk minimization. For additional details on statistical learning theory, we refer to
[1, 17, 22, 38, 39, 53, 54, 56].

2.3. Basic notation. The following terminology and notation will be used
throughout this paper. Ifµ is a measure on a measurable space(M,A), we denote
by Lp(M,µ) the usualLp-spaces endowed with the norm‖ · ‖p,µ. If we need to
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indicate the measure space, we write‖ · ‖p,M,µ. Let dp,µ be the induced metric
dp,µ(f, g) = ‖f − g‖p,µ.

Let (M,d) be a metric space. IfU ⊂ M is an arbitrary subset, we define the
covering number

N(ε,U,d) = inf
{
n ∈ N

∣∣∣∃ {x1, . . . , xn} ⊂ M such that
(2.1)

∀x ∈ U min
i=1,...,n

d(x, xi) ≤ ε

}
,

which is the minimum number of closed balls of radiusε required to coverU .
The logarithm of the covering number is called the entropy. The growth rate of the
entropy forε → 0 is a measure for the compactness of the metric spaceU .

Let X,X1,X2, . . . be i.i.d. random elements on a measurable space(M,A)

with distribution P . The empirical measure of a random sampleX1, . . . ,Xn is
the discrete random measure given by

Pn(A) = 1

n

n∑
i=1

1{Xi∈A}, A ∈ A,(2.2)

or, if g is a function onM ,

Png = 1

n

n∑
i=1

g(Xi).(2.3)

The empirical measure is a random measure supported on(M∞,P ∞,A∞), where
M∞ = ∏

N M is the product space of countably many copies ofM , P ∞ the
product measure andA∞ the productσ -algebra. The random variablesXi can
now be identified with theith coordinate projections.

3. Review of discrete time optimal stopping. Let X = (Xt)t=0,...,T be a
discrete timeR

m-valued Markov process. We assumeX is canonically defined
on the path spaceX = R

m × · · · × R
m of T + 1 factors and identifyXt with

the projection onto the factort . We endowX with the Borelσ -algebraB. Let
Ft be the smallestσ -algebra generated by{Xs |s ≤ t} and F = (Ft )t=0,...,T the
corresponding filtration.

Let P be the law ofX on X andµt = PXt the law ofXt on R
m. We introduce

the spaces of MarkovLp-functions

Lp(X) = {h = (h0, . . . , hT )|ht ∈ Lp(Rm,µt), ∀ t = 0, . . . , T },(3.1)

with norm

‖h‖p =
T∑

t=0

‖ht‖p,µt =
T∑

t=0

E[|ht (Xt)|p]1/p.(3.2)
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For brevity, we drop the measuresP , µt and the coordinate projectionsXt in
our notation whenever no confusion is possible. Also, ifh ∈ Lp(X) and x =
(x0, . . . , xT ) ∈ X is a point of the path space, we introduce the shorthand notation

h(x)t ≡ ht (xt ).(3.3)

3.1. Discrete time optimal stopping. In the followingf ∈ L1(X) is a nonneg-
ative reward or payoff function. The optimal stopping problem consists of finding
the value process

Vt = ess sup
τ∈T (t,...,T )

E[fτ (Xτ )|Ft ],(3.4)

where the supremum is taken over the familyT (t, . . . , T ) of all F-stopping times
with values int, . . . , T . Adding a positive constantε to the payofff just increases
Vt by ε. We therefore can assume without loss of generality thatf ∈ L1(X) is a
positive payoff function. A stopping ruleτ ∗

t ∈ T (t, . . . , T ) is optimal for timet if
it attains the optimal value

Vt = E
[
fτ∗

t

(
Xτ∗

t

)|Ft

]
.(3.5)

Once the value process is known, an optimal stopping rule at timet is given by

τ ∗
t = inf{s ≥ t |Vs ≤ fs(Xs)}.(3.6)

To exploit the Markov property of the underlying processXt , we introduce the
value function

vt (x) = sup
τ∈T (t,...,T )

E[fτ (Xτ )|Xt = x].(3.7)

The Markov property impliesVt = vt (Xt). Closely related to the value processVt

is the process

Qt = ess sup
τ∈T (t+1,...,T )

E[fτ (Xτ )|Ft ] = E
[
fτ∗

t+1

(
Xτ∗

t+1

)|Ft

]
,(3.8)

which is defined for allt = 0, . . . , T − 1. Again, by the Markov property, we get
the representationQt = qt (Xt), where

qt (x) = sup
τ∈T (t+1,...,T )

E[fτ (Xτ )|Xt = x] = E
[
fτ∗

t+1

(
Xτ∗

t+1

)|Xt = x
]
.(3.9)

We extend the definition ofqt up to the horizonT and setqT = fT . The
functionqt is referred to as the continuation value. It represents the optimal value
at timet , subject to the constraint of not stopping att . The value function and the
continuation value are related by

vt (Xt ) = max
(
ft (Xt), qt (Xt )

)
, qt (Xt ) = E[vt+1(Xt+1)|Xt ].(3.10)

The dynamic programming principle implies a recursive expression for the value,
the continuation value and the optimal stopping times. The recursion starts at
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the horizonT with vT (XT ) = qT (XT ) = fT (XT ) and proceeds backward for
t = T − 1, . . . ,0 according to

vt (Xt ) = max
(
ft (Xt),E[vt+1(Xt+1)|Xt ]),(3.11)

respectively,

qt (Xt) = E
[
max

(
ft+1(Xt+1), qt+1(Xt+1)

)|Xt

]
.(3.12)

Similarly, the recursion for the optimal stopping rulesτ ∗
t starts at the horizonT

with τ ∗
T = T . Givenvt , respectively,qt and the optimal stopping ruleτ ∗

t+1 at time
t + 1, the optimal stopping ruleτ ∗

t is determined by

τ ∗
t = t1{vt (Xt )=ft (Xt )} + τ ∗

t+11{vt (Xt )>ft (Xt )}
(3.13)

= t1{qt (Xt )≤ft (Xt )} + τ ∗
t+11{qt (Xt )>ft (Xt )}.

From a theoretical point of view, the value functionvt and the continuation valueqt

are equivalent since they both provide a solution to the optimal stopping problem.
However, from an algorithmic point of view, the continuation value is preferred.
Indeed,qt tends to be smoother thanvt because the max operation introduces a
kink in the value function. We note that in continuous time this kink disappears,
since by the smooth fit principle, the value function connectsC1-smoothly to the
payoff function along the optimal stopping boundary.

Expression (3.13) for the optimal stopping rule suggests that we consider
stopping rules parameterized by functionsh ∈ L1(X) with hT = fT . The terminal
conditionhT = fT reflects the terminal boundary conditionτ ∗

T = T . Let

θf,t (h) = θ(ft − ht ), θ−
f,t (h) = 1− θ(ft − ht ),(3.14)

where θ(s) = 1{s≥0} is the heaviside function. SetτT (h) = T and define
recursively

τt (h)(x) = tθf,t (h)(xt ) + τt+1(h)(x)θ−
f,t (h)(xt ), x ∈ X.(3.15)

For everyh ∈ L1(X), we get a valid stopping ruleτt (h) which does not anticipate
the future, because at each point in timet , the knowledge ofXt is sufficient to
decide whether to stop or to continue.

DEFINITION 3.1. The family of stopping rule{τt (h)|h ∈ L1(X), hT = fT } is
called the set ofMarkov stopping rules.

The stopping ruleτt (h) depends only onht , . . . , hT −1 and is therefore constant
as a function of the argumentsx0, . . . , xt−1. Moreover, the recursion formula (3.13)
implies that the optimal stopping ruleτ ∗

t at time t is identical to the Markov
stopping ruleτt (q).
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Applying the Markov stopping ruleτt (h) leads to the cash flowfτt (h)(Xτt (h)).
More generally, we define, forx ∈ X , any 0≤ w ≤ T − t , andh ∈ L1(X) with
hT = fT , the function

ϑt : w(f,h)(x) =
t+w∑
s=t

fs(xs)θf,s(h)(xs)

s−1∏
r=t

θ−
f,r (h)(xr)

(3.16)

+ ht+w(xt+w)

t+w∏
r=t

θ−
f,r (h)(xr),

where we follow the convention that the product over an empty index set is equal
to one. The functionϑt : w(f,h) has a natural financial interpretation. It is the cash
flow we would obtain by holding the American option for, at most,w periods,
applying the stopping ruleτt (h), and selling the option at timet + w for the price
of ht+w(Xt+w), if it is not exercised before. We callϑt : w(f,h) the cash flow
function induced byh.

Equations (3.9) and (3.12) provide two different representations ofqt . In
terms ofϑt : w(f,h), they can be re-expressed as follows. Becausefτ∗

t+1
(Xτ∗

t+1
) =

fτt+1(q)(Xτt+1(q)) = ϑt+1 :T −t−1(f, q), (3.9) becomes

qt (Xt) = E[ϑt+1 : T −t−1(f, q)|Xt ],(3.17)

whereasϑt+1 : 0(f, q) = max(ft+1, qt+1) turns (3.12) into

qt (Xt) = E[ϑt+1 : 0(f, q)|Xt ].(3.18)

In fact, there is a whole family of representations, parameterized byw ∈
{0, . . . , T − t − 1}. Recursively expandingqt+1, . . . , qt+w in (3.12) and using the
Markov property, we find that

qt (Xt) = E[ϑt+1 :w(f, q)|Xt ],(3.19)

for any 0≤ w ≤ T − t − 1.

4. Optimal stopping as a recursive statistical learning problem. The
calculation of the recursive series of nested regression problems (3.19) is becoming
increasingly demanding for high-dimensional state spaces. A further complication
is introduced if the transition densities of the Markov processX are not
explicitly available. In this case, the only means to assess the distribution of the
Markov process is by simulating a large number of independent sample paths
X1,X2, . . . ,Xn. These kind of problems are considered in statistical learning
theory.
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4.1. Dynamic look-ahead algorithm. Assume a payofff ∈ L2(X). We inter-
pret the unknown continuation valueqt ∈ L2(R

m,µt) as an approximation of the
unknown optimal cash flowϑt+1 :w(f, q), in the sense that it only depends on the
state of the underlying Markov process at timet . To reduce the problem further,
we choose, for everyt ≥ 0, a suitable set of functionsHt defined onRm. Let

H = {h = (h0, . . . , hT ) :X → R
T +1|ht ∈ Ht }.(4.1)

Given a finite amount of independent sample paths,

Dn = {X1, . . . ,Xn},(4.2)

we want to find a learning rulêqH , that is, a map

q̂H :Dn �→ q̂H (Dn) = (
q̂H ,0(Dn), . . . , q̂H ,T (Dn)

) ∈ H ,(4.3)

such thatq̂H ,t (Dn) provides an accurate approximation ofϑt+1 : w(f, q) in Ht .
The dynamic programming principle imposes consistency conditions on a learning
rule.

DEFINITION 4.1. A learning ruleq̂H is called admissible if̂qH ,T (Dn) ≡ fT

and q̂H ,t (Dn), as a function ofDn, does not depend on the sample paths up to
and including timet −1, or, equivalently, is a function of{Xi,s |s ≥ t, i = 1, . . . , n}
alone.

We apply empirical risk minimization to recursively define an admissible
learning rule as follows. At the horizonT we set

q̂H ,T (Dn) ≡ fT .(4.4)

For t < T , equation (3.19) suggests that we approximate the cash flow function

ϑt+1 :w
(
f, q̂H (Dn)

)
,(4.5)

for some suitably selected parameterw = w(t) ∈ {0, . . . , T − t − 1}. We choose

q̂H ,t (Dn) = arg min
h∈Ht

Pn

∣∣h − ϑt+1 :w
(
f, q̂H (Dn)

)∣∣2
(4.6)

= arg min
h∈Ht

1

n

n∑
i=1

∣∣h(Xi,t ) − ϑt+1 :w
(
f, q̂H (Dn)

)
(Xi)

∣∣2,
which is an element ofHt with minimal empiricalL2-distance from the cash flow
function (4.5). Because the objective function in the optimization problem (4.6)
depends solely on the functionsq̂H ,s(Dn), s = t + 1, . . . , t + w + 1, we see by
induction that the empirical risk minimization algorithm (4.6) indeed leads to an
admissible learning rule.
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REMARK 4.2. It is important to note that, while the function̂qH (Dn) is a
function of x ∈ X , its choice depends on the sampleDn. Therefore,q̂H (Dn) is
a random element with values inH which is defined on the countable product
space(X∞,P ∞,F ∞). Strictly speaking, for a sample sizen, only the first
n coordinates ofX∞ are relevant. Analogously, the expectation

E[q̂H (Dn)] =
∫
X

q̂H (Dn)(x) dP (x)(4.7)

of q̂H (Dn) over the path spaceX is still a random variable onX∞.

DEFINITION 4.3. The dynamic look-ahead algorithm with look-ahead para-
meterw = w(t), 0≤ w(t) ≤ T − t − 1, approximates the continuation valueqt by
the empirical minimizer̂qH ,t (Dn) of (4.6).

The cash flow (4.5) depends on the nextw + 1 time periods, hence, it “looks
ahead”w + 1 periods. The algorithm is called “dynamic” because the look-ahead
parameterw may be chosen time and sample dependent. We simplify our notation
and drop the explicit dependency on the sampleDn, the sample sizen and the look-
ahead parameterw, writing q̂H ,t for the solution of the empirical minimization
problem (4.6).

4.2. Tsitsiklis–Van Roy and Longstaff–Schwartz algorithm. Both the
Tsitsiklis–Van Roy and the Longstaff–Schwartz algorithm are special instances
of the dynamic look-ahead algorithm. The Longstaff–Schwartz algorithm is based
on the cash flow function

ϑLS
t+1 = fτt+1(q̂H )

(
Xτt+1(q̂H )

)
,(4.8)

which corresponds to the maximal possible valuew = T − t − 1. On the other
extreme, the choicew = 0 in (4.5) results in the much simpler expression

ϑTR
t+1 = max(ft+1, q̂H ,t+1),(4.9)

used in the Tsitsiklis–Van Roy algorithm. In its initial form, this algorithm has
been developed to solve infinite horizon optimal stopping problems of ergodic
Markov processes. The advantage ofϑTS

t+1 is its numerical simplicity. On the
other hand,ϑLS

t+1 is better suited to approximate the optimal stopping rule because
it incorporates all future time points up to the final horizon. This property is
particularly important for a Markov process with slow mixing properties.

The dynamic look-ahead algorithm introduced in Definition 4.3 interpolates be-
tween the Tsitsiklis–Van Roy and the Longstaff–Schwartz algorithm. A dynamic
adjustment of the look-ahead parameterw = w(t) allows us to combine the algo-
rithmic simplicity of Tsitsiklis–Van Roy and the good approximation properties of
the Longstaff–Schwartz approach. For instance, we may increasew(t) for the last
few time steps to compensate the slow mixing of the Markov process.
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5. Main results. In our definition of the dynamic look-ahead algorithm (4.6),
we did not further specify the approximation scheme. The richer the set of
functionsHt , the better it can approximate the optimal cash flow. On the other
hand, large setsHt would require an abundance of samples to get a minimizer
in (4.6) with reasonably small variance. These conflicting objectives are generally
referred to as the bias-variance trade-off. To get a reasonable convergence behavior
of the dynamic look-ahead algorithm, we need to impose some restrictions on the
massiveness of the approximation spacesHt and relate it to the number of samples
which are used to calculate the minimizers in (4.6).

The massiveness of a set of functions can be measured in terms of covering and
entropy numbers. The calculation of covering numbers of classes of function has
a long history dating back to Kolmogorov and Tikhomirov [29] and Birman and
Solomyak [8]. We refer to [13] for a modern approach and additional references.
An important type of function class for which covering numbers can be estimated
with combinatorial techniques are the so called Vapnik–Chervonenkis classes or
VC-classes, which are, by definition, classes of functions of finite VC-dimension.
Informally speaking, the VC-dimension measures the size of nonlinear sets of
functions by looking at the maximum number of sign alternations of its elements.
To give a precise definition, we consider a class of functionsG defined on some
setS. A set ofn points{x1, . . . , xn} ⊂ S is said to be shattered byG if there exists
r ∈ R

n such that, for everyb ∈ {0,1}n, there is a functiong ∈ G such that for
eachi, g(xi) > ri if bi = 1, andg(xi) ≤ ri if bi = 0. The VC-dimension vc(G) of
G is defined as the cardinality of the largest set of points which can be shattered
by G. The function classes that will appear in the analysis of the fluctuations of the
empirical minimizers (4.6) very well fit in the theory of Vapnik–Chervonenkis. We
introduce the necessary tools of the VC-theory on the way as we prove the main
results in Section 6.

Our error decomposition crucially depends on the convexity and the uniform
boundedness of the class of functionsHt . We will impose, for all t ≥ 0, the
following three conditions:

(H1) The classHt is a closed convex subset ofLp(Rm,µt) for some 2≤ p ≤ ∞.
(H2) There exists a constantd such that the VC-dimension ofHt satisfies

vc(Ht ) ≤ d < ∞.
(H3) The classHt is uniformly bounded, that is, for some constantH , |ht | ≤

H < ∞ ∀ht ∈ Ht .

The convexity and uniform boundedness assumptions (H1), respectively, (H3) are
somewhat restrictive, but encompass many common approximation schemes, such
as bounded convex sets in finite-dimensional linear spaces, local polynomial
approximations or tensor product splines.

5.1. Consistency and convergence. The payoff function of an optimal stop-
ping problem is often unbounded. For example, in option pricing even the simplest
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payoff functions of American put and call options increase linearly in the underly-
ing. On the other hand, any numerical algorithm works at finite precision and tight
error or convergence rate estimates rely on some sort of boundedness assumptions.
We therefore introduce the truncation operatorTβ , which assigns to a real valued
functiong the bounded function

Tβg =
{

g, if |g| ≤ β,

sign(g)β, else,
(5.1)

and tog ∈ Lp(X) its coordinate-wise truncationTβg = (Tβg0, . . . , TβgT ). We then
replace the estimator (4.6) by

q̂Hn,t = q̂Hn,t (Dn) = argmin
h∈Hn,t

Pn

∣∣h − ϑt+1 :w(t)

(
Tβnf, q̂Hn(Dn)

)∣∣2,(5.2)

whereTβnf is the payoff truncated at a thresholdβn. The estimator (5.2) rests on
the hypothesis that wheneverq̂Hn,s(Dn) is an approximation ofqs for s ≥ t + 1,
then the cash flowϑt+1 :w(Tβnf, q̂Hn(Dn)) is a sufficiently accurate substitute for
the unknown optimal cash flowϑt+1 : w(Tβnf, q). We justify this hypothesis in
Proposition 6.4 by proving a conditional Lipschitz continuity of the functional
h �→ ϑt+1 :w(Tβnf,h) at q. The error propagation of the recursive estimation
procedure is resolved in Corollary 6.2, which relies on the convexity of the
approximation architecture.

The first main result provides a sufficient condition on the growth of the number
of sample pathsn, the VC-dimension vc(Hn,t ) of the approximation spacesHn,t

and the truncation levelβn to ensure convergence. Let(X∞,P ∞,F ∞) be the
countable product space introduced in Remark 4.2. We use the notationP = P ∞
and denote byE the expectation with respect toP.

THEOREM 5.1. Assume the payoff f is in L2(X) and Hn is a sequence
of approximation spaces uniformly bounded by βn such that

⋃∞
n=1 Hn is dense

in L2(X). Furthermore, assume that each Hn,t is closed, convex and
vc(Hn,t ) ≤ dn. Let q̂Hn,t be the empirical L2-minimizer from (5.2) for a look-
ahead parameter 0≤ w(t) ≤ T − t − 1. Under the assumptions

βn → ∞, dn → ∞,
dnβ

2
n log(βn)

n
→ 0 (n → ∞),(5.3)

it follows that ∥∥q̂Hn,t − qt

∥∥
2 → 0,(5.4)

in probability and in L1(P). If, furthermore,

β2
n log(n)

n
→ 0,(5.5)

then the convergence in (5.4)holds almost surely.
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For the proof see Section 6.3.
Theorem 5.1 proves convergence of the truncated version (5.2) of the dynamic

look-ahead algorithm. It generalizes previous results in two directions. First, the
number of samples, the size of the approximation architecture (measured in terms
of the VC-dimension) and the truncation threshold are increased simultaneously.
Glasserman and Yu [21] address the same question for the Longstaff–Schwartz
algorithm with linear finite-dimensional approximation. They avoid truncation by
imposing fourth-order moment conditions and find that the number samples must
grow surprisingly fast. For example, ifXt is log-normally distributed andn denotes
the dimension of the linear approximation space, the number of samples must be
proportional to exp(n2). Second, Theorem 5.1 covers approximation architectures
of bounded VC-dimension and does not depend on the law of the underlying
Markov process. For instance, the convergence proof of Clément, Lamberton and
Protter [15] relies on the additional assumptionP(q = f ) = 0.

In (5.2) we reduce unbounded to bounded payoffs by truncating at a suitable
cutoff level. The next result bounds the approximation error in terms of the cutoff
level.

PROPOSITION5.2. Let 1 ≤ p < ∞ and f ∈ Lp(X) be a nonnegative payoff
function. If q̄β is the continuation value of the truncated payoff Tβf , it follows
that

‖qt − q̄β,t‖p → 0,(5.6)

for β → ∞, and if 1 < r < p, then

‖qt − q̄β,t‖r ≤
T∑

s=t+1

(
r

∫ ∞
β

ur−1P(ft+1 > u)du

)1/r

≤ O
(
β(r−p)/r).(5.7)

For the proof see Section 6.5.
The bound (5.7) can be refined in terms of Orlicz norms. The Orlicz norm of a

random variableY is defined as

‖Y‖ψ = inf{C > 0|E[ψ(|Y |C−1)] ≤ 1},(5.8)

whereψ is a nondecreasing, convex function withψ(0) = 0. Note thatψ(y) = yp

reduces to the usualLp-norms. If‖ft+1‖ψ < ∞, Markov’s inequality implies the
tail bound

P(ft+1 > u) ≤ 1

ψ(u‖ft+1‖−1
ψ )

,(5.9)

which we then can apply to the middle term in (5.7). In particular,ψp(x) =
exp(xp) − 1 leads to the exponential bound

P(ft+1 > u) ≤ exp
(−up‖ft+1‖−1

ψp

)(
1− exp

(−βp‖ft+1‖−1
ψp

))−1
,(5.10)
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for all u ≥ β. In financial applications a typical situation isft+1 = f (exp(Xt+1)),
whereXt+1 is normally distributed andf (y) ≤ Cyq has polynomial growth. The
tail estimate

P(ft+1 > u) ≤ O

(
1

log(u)
exp

(− log(u)2))(5.11)

is a direct consequence of the well-known asymptotic expansion

1− �(u) ≤ φ(u)u−1
(

1− 1

u2 + 3

u4 + O(u−6)

)
(5.12)

for the tail of the standard normal distribution� with densityφ. (5.11) improves
the rate of orderO(β1−p/r) in (5.7) considerably, despite the logarithmic terms in
the exponent.

5.2. Error estimate and sample complexity. Theorem 5.1 shows that si-
multaneously increasing the truncation threshold, the VC-dimension of the
approximation architecture and the number of samples at a proper rate, the re-
sulting estimator (5.2) converges to the solution of the optimal stopping problem.
Proposition 5.2 quantifies the error of an initial truncation at a fixed threshold.
We continue the error analysis of the dynamic look-ahead algorithm by truncating
unbounded payoffs at a sufficiently large threshold
 and considering a single ap-
proximation architectureH . The second main result bounds the overall error for
bounded payoff functions in terms of the approximation error and the sample error,
generalizing the familiar bias-variance trade-off in nonparametric regression and
density estimation.

THEOREM 5.3. Consider a payoff f ∈ L∞(X) with ‖ft‖∞ ≤ 
. Assume
that each Ht is a closed convex set of functions, uniformly bounded by H , with
vc(Ht ) ≤ d. Let q̂H ,t (Dn) be the empirical L2-minimizer from (4.6) for a look-
ahead parameter 0≤ w(t) ≤ T − t − 1. Set β = max(
,H). Then,

E[‖q̂H ,t (Dn) − qt‖2
2]

≤ 2 · 16w(t) max
s=t,...,t+w(t)+1

inf
h∈Hs

‖h − qs‖2
2

(5.13)

+ 2 · 16w(t)(w(t) + 2
)(6998β2 + log(6998Kβ2)

n
+ v log(n)

n

)
,

where

v = 2d
(
c(w(t)) + 1

)
, K = 6e4(d + 1)2(c(w(t))d + 1

)2
(1024eβ)v

and

c(w(t)) = 2
(
w(t) + 2

)
log2

(
e(w(t) + 2)

)
.
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For the proof see Section 6.3.
The effectiveness of a learning algorithm can be quantified by the number of

samples which are required to produce with high confidence 1− δ an almost
minimizer

‖q̂H ,t (Dn) − qt‖2
2 ≤ inf

ht∈Ht

‖ht − qt‖2
2 + ε ∀ t = 0, . . . , T − 1,(5.14)

for a certain error accuracyε. In (5.14) the error is measured relative to the minimal
approximation error at time stept . It is evident from (5.13) that an accurate
estimate is only obtained if the approximation error in all previous learning tasks
is small as well. To disentangle sample complexity and approximation error, we
measure the performance of the learning rule relative to the overall approximation
error in (5.13).

COROLLARY 5.4. Assume f ∈ L∞(X) with ‖ft‖∞ ≤ 
 and let H be as in
Theorem 5.3.The sample complexity

c(ε, δ) = min
{
n0

∣∣∣∀n ≥ n0,

P

(
‖q̂h,t (dn) − qt‖2

2(5.15)

≥ 2 · 16w(t) max
s=t,...,t+w(t)+1

inf
h∈hs

‖h − qs‖2
2 + ε

)
≤ δ

}

of the empirical L2-minimizer (4.6) is bounded by

c(ε, δ) ≤ 2 · 13996
(
w(t) + 2

)
16w(t)β2 max

(
1

ε
log

(
K

δ

)
, v log

(
1

ε

))
,(5.16)

where β, v and K are as in Theorem 5.3.

For the proof see Section 6.3.
Theorem 5.3 and Corollary 5.4 estimate the sample error for a fixed approx-

imation scheme and truncation threshold. The bound (5.13) and the complexity
estimate (5.16) hold uniformly for any law ofX and payoff functionf with
‖f ‖∞ ≤ 
. Hence, the bounds are independent of the distribution of the un-
derlying Markov process, the optimal stopping time and the smoothness of the
continuation value. The asymptotic rateO(log(n)n−1) of the sample error [the
second term on the right-hand side of (5.13)] is typical for nonparametric least
square estimates with approximation schemes of finite VC-dimension, see, for ex-
ample, [22], Theorem 11.5.

If we impose additional assumptions on the smoothness of the continuation
valueq, the approximation errors infh∈Hn,s ‖h − qs‖2

2 in (5.13) can be estimated
further by approximation theory. Smoothness assumptions are not unreasonable.
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Although for many financial applications the payoff is only continuous or
piecewise continuous, the continuation value is often smooth. The degree of
smoothness ofq is crucial for how to choose approximation spacesHn to get
the most favorable rate of convergence by properly balancing the approximation
error and the sample error.

Smoothness is often measured in terms of Sobolev spacesWk(Lp(�,λ)),
where� ⊂ R

m is a domain inR
m andλ is the Lebesgue measure on�. These

are functionsg ∈ Lp(�,λ) which have all their distributional derivatives of order
up to k in Lp(�,λ). The Sobolev (semi-)norm‖g‖p,k,�,λ may be regarded as a
measure of smoothness for a functiong ∈ Wk(Lp(�,λ)).

In practical applications of the Longstaff–Schwartz algorithm, approximation
by polynomials performs rather well. LetPr be the space of multivariate
polynomials onR

m with coordinate wise degree at mostr − 1. For simplicity,
we assumeXt is localized to a sufficiently large cubeI ⊂ R

m. This assumption
can be satisfied by applying a truncation argument similar to the one developed in
Proposition 5.2.

COROLLARY 5.5. Assume that Xt is localized to a cube I ⊂ R
m, f ∈ L∞(X),

and that the continuation value qt is in the Sobolev space Wk(L∞(I, λ)) for all t .
Define the sequence of approximation architectures

Hn,t = {p ∈ Pn1/(m+2k) |‖p‖∞,I,λ ≤ 2‖qt‖∞,k,I,λ}.(5.17)

Then,

E
[∥∥q̂Hn,t (Dn) − qt

∥∥2
2

] ≤ O
(
log(n)n−2k/(2k+m)).(5.18)

If µt has a bounded density with respect to the Lebesgue measure and qt ∈
Wk(Lp(I, λ)) for some p ≥ 2, the same result holds if we replace Hn,t in (5.17)
by

Hn,t = {
p ∈ Pn1/(m+2k) |‖p‖p,I,λ ≤ 2‖qt‖p,k,I,λ

}
.(5.19)

PROOF. The result essentially follows from Jackson-type estimates, Theo-
rem 6.2 in Chapter 7 of [18]. See Section 6.4.�

Corollary 5.5 is a prototypical application of Theorem 5.3 to global approx-
imation by polynomials. Other approximation schemes can be treated similarly,
as long as the conditions (H1)–(H3) are satisfied. To get the rate stated in Corol-
lary 5.5, the dimensionnm/(m+2k) of the polynomial approximation architecture
(5.17) has to grow with increasing sample size, such that the approximation error
and the sample error are balanced. The rate (5.18) is up to a logarithmic term the
lower minimax rate of convergence for estimating regression functions; see [47].
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5.3. Discussion and remarks. The Longstaff–Schwartz algorithm and its
generalization, the dynamic look-ahead algorithm, perform surprisingly well for
many practical applications, such as pricing American options which are not too
far in or out of the money. This empirical observation can be explained as follows.
It follows from (3.19) that an approximation of the optimal cash flowϑt+1 :w(f, q)

can be used to estimate the continuation value at timet . A closer look at definition
(3.16) shows that for the maximal possible valuew = T − t − 1 the cash flow
ϑt+1 :w(f,h) is close (in theL2-sense) to the optimalϑt+1 :w(f, q) if the signs of
f −h andf −q disagree only on a subset of the path space with small probability,
or, equivalently, if the probability of the symmetric difference,

P({f − h > 0}�{f − q > 0}),(5.20)

is small. Note that a small probability (5.20) does not necessarily entail that the
functionsh andq are close in theL2-sense. If the look-ahead parameterw satisfies
w < T − t −1, thenϑt+1 :w(f,h) is a good approximation of the optimal cash flow
if, in addition to a small probability (5.20), also theL2-distance betweenht+w+1
and the unknown continuation valueqt+w+1 is small. Consequently, a look-ahead
parameter 0≤ w < T − t − 1 requires good approximations forqw+1, . . . , qT −1.
Determining accurate and stable estimators forqt with t close to 1 may be
difficult to achieve, in particular, if the samples of the Markov process do not
cover sufficiently large parts of the state space. This explains why the Tsitsiklis–
Van Roy algorithm (corresponding tow = 0) may perform badly for finite horizon
problems.

As opposed to the empirically demonstrated efficiency of the Longstaff–
Schwartz algorithm, the results of Theorem 5.3 and Corollary 5.4 are somewhat
pessimistic. For practical parameter valuesε, δ, d, w and large enough cutoff
levelβ, the sample complexity bound (5.16) leads to a very large sample size. The
reason for the pessimistic sample size estimates is twofold. First, the estimatorq̂H

is sensitive to error propagation effects caused by the backward induction. This
leads to error estimates such as (5.13) which depend exponentially on the number
of look-ahead periodsw(t). The minimal choicew = 0 would resolve the
exponential dependence but, as explained above, may have limited capabilities to
approximate the optimal cash flow. Another reason is the generality of our error
estimates. We already observed thatq̂H leads to an accurate approximation of the
optimal cash flow if the probability of the symmetric differenceP({f − q̂H >

0}�{f − q > 0}) is small. However, it is difficult to derive error estimates
which take this effect into account without imposing additional assumptions on
the smoothness of the payoff and the distribution of the stopping time in the
neighborhood of{q = f }.

We considered in this work estimators based on straightforward empirical
L2-risk minimization. A deficiency of the simple estimator considered in Corol-
lary 5.5 is that the degree of smoothness and an upper bound for‖qt‖∞,k,I,λ has to
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be known. There exists a variety of advanced nonparametric regression estimators
which have been developed to cope with the shortcomings of the basic empirical
risk minimization procedure. The main generalizations in this direction are sieve
estimators studied, for example, by Shen and Wong [45], Shen [44] and Brige and
Massart [10], adaptive methods such as complexity regularization, penalization
and model selection; see [3, 22] and the references therein.

The benefit of conditions (H1)–(H3) is that convexity arguments and
VC-techniques lead to error estimates without the necessity of imposing further as-
sumptions on the Markov processX. On the downside, some important commonly
used approximation schemes are excluded. For instance, condition (H2) conflicts
with approximation in Sobolev or Besov balls, which have infinite VC-dimension,
and the convexity condition (H3) is incompatible with many interesting nonlinear
approximation schemes, such asn-term approximation, wavelet thresholding or
neural network architectures.

A promising approach to extend and refine the results of this work is to
approximate the cash flowϑt :w(f,h) by a suitably smoothed version with
better Lipschitz continuity properties. We then can express the massiveness of
the approximation schemes directly in terms of covering numbers and exploit
the dependency of the covering numbers on the radius of the function class.
The additional step of first bounding the VC-dimension becomes unnecessary.
However, this approach is of less generality because it depends on the additional
assumptions that the probabilityP({|q −f | < ε}) decays to zero asε → 0 and the
semi-group generated by the Markov processX has good smoothing properties.

Once we have selected a sequence of approximation architecturesHn,t , the
final step toward an implementation is to determine a computationally efficient
algorithm that minimizes the empiricalL2-risk (5.2) overHn,t in a polynomial
number of time steps. Unfortunately, for many approximation spaces, such
as certain neural network architectures, constructing a solution which nearly
minimizes the empiricalL2-risk turns out to be NP-complete or even NP-hard.
Thus, there might still exist serious complexity theoretic barriers to efficient
numerical implementations of specific approximation schemes.

6. Proofs. The proof of the main results, Theorems 5.1 and 5.3, is divided
into tree steps. The strategy is as follows. First, we prove in Corollary 6.2 an
error decomposition in terms of an approximation error and an expected centered
loss (6.3). The second step is to estimate the covering numbers of the so called
centered loss class (6.28), see Corollary 6.10. The last step is to apply empirical
process techniques to bound the fluctuation of the expected centered loss in terms
of the covering numbers.

6.1. Error decomposition. We assume from now on without further mention-
ing thatH ⊂ L2(X) and that all approximation spacesHt are closed and convex.
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Before we can state our main error decomposition we need to introduce some more
notation. Let

πHt :L2(R
m,µt) → Ht(6.1)

denote the projection onto the closed convex subsetHt ⊂ L2(R
m,µt) and set

prHt
= πHt ◦ E[·|Xt = ·] :L2(X,P ) → Ht .(6.2)

For anyh = (h0, . . . , hT ) :X → R
T +1 with hT = fT , we introduce the centered

loss

lt (h) = |ht − ϑt+1 :w(f,h)|2 − ∣∣prHt
ϑt+1 :w(f,h) − ϑt+1 :w(f,h)

∣∣2.(6.3)

In favor of a more compact notation, we have dropped the dependency oflt (h)

on the look-ahead parameterw. Note that the centered losslt (h) only depends on
ht , . . . , hT −1 and can take on negative values. However,E[lt (h)] ≥ 0, as we will
see in Lemma 6.3.

We decompose the overall error into an approximation error, a sample error and
a third term which captures the error propagation caused by the recursive definition
of the dynamic look-ahead estimator.

PROPOSITION 6.1. Assume that q̂H is the result of an admissible learning
rule. Then

‖q̂H ,t − qt‖2 ≤ inf
h∈Ht

‖h − qt‖2 + E[lt (q̂H )]1/2 + 3
t+w+1∑
s=t+1

‖q̂H ,s − qs‖2.(6.4)

In general, we cannot approximateϑt+1 :w(f, q̂H ) by functionsht ∈ L2(R
d,µt)

arbitrarily well and, therefore,

inf
ht∈Ht

E[|ht − ϑt+1 :w(f, q̂H )|2] > 0.(6.5)

For this reason we base our error decomposition (6.4) on the more complicated
centered loss function, which expresses the sample error relative to the optimal
one-step expected loss

E
[∣∣prHt

ϑt+1 :w(f, q̂H ) − ϑt+1 :w(f, q̂H )
∣∣2].(6.6)

The first term on the right-hand side of (6.4) is the approximation error, a de-
terministic quantity, which can be analyzed by approximation theory. The second
termE[lt (q̂H )]1/2 is usually referred to as the sample error. The last term in (6.4)
collects the error propagation introduced by the previous learning tasks through
the dynamic programming backward recursion.
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COROLLARY 6.2. Let

et = inf
h∈Ht

‖h − qt‖2 + E[lt (q̂H )]1/2(6.7)

denote the one-step error. Then,

‖q̂H ,t − qt‖2 ≤ et + 3
t+w+1∑
s=t+1

4s−t−1es,(6.8)

and

‖q̂H ,t − qt‖2 ≤ 4w+1 max
s=t,...,t+w+1

(
inf

h∈Hs

‖h − qs‖2 + E[ls(q̂H )]1/2
)
.(6.9)

PROOF. This follows at once from (6.4) by recursively inserting the error
estimate (6.4) fors ≥ t + 1. �

The proof of the error decomposition (6.4) crucially relies on the convexity of
the approximation spaces, Lemma 6.3 and a Lipschitz estimate forϑt+1 :w(f,h)

as a function ofh, Proposition 6.4.

LEMMA 6.3. Denote by

ρt (h)(x) = E[ϑt+1 : w(f,h)|Xt = x](6.10)

the regression function of ϑt+1 :w(f,h). For any h ∈ H with hT = fT ,∥∥ht − πHt ρt (h)
∥∥2

2 = ∥∥ht − prHt
ϑt+1 :w(f,h)

∥∥2
2 ≤ E[lt (h)].(6.11)

In particular, E[lt (h)] ≥ 0.

PROOF. The proof is identical to the proof of Lemma 5 in [17]. Becauseρt (h)

is the regression function ofϑt+1 :w(f,h), which only depends onht+1, . . . , hT −1,
we have, for allht ∈ L2(R

d,µt ),

‖ht − ρt (h)‖2
2 = E[|ht − ϑt+1 :w(f,h)|2 − |ρt (h) − ϑt+1 :w(f,h)|2].(6.12)

Let h ∈ H be arbitrary. SinceHt is convex and since prHt
ϑt+1:w(f,h) =

πHt ρt (h) minimizes the distance toρt (h), it follows that〈
ρt (h) − πHt ρt (h), ht − πHt ρt (h)

〉 ≤ 0.(6.13)

Therefore,∥∥prHt
ϑt+1 :w(f,h) − ht

∥∥2
2 = ∥∥πHt ρt (h) − ht

∥∥2
2

(6.14)
≤ ‖ρt (h) − ht‖2

2 − ∥∥ρt (h) − πHt ρt (h)
∥∥2

2.
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Because bothht andπHt ρt (h) are inHt we can apply (6.12) twice, which shows
that the right-hand side of (6.14) is equal to

‖ρt (h) − ht‖2
2 − ∥∥ρt (h) − πHt ρt (h)

∥∥2
2

(6.15)
= E

[|ht − ϑt+1 :w(f,h)|2 − ∣∣πHt ρt (h) − ϑt+1 :w(f,h)
∣∣2]. �

Forw = 0, we immediately obtain from|max(a, x)− max(a, y)| ≤ |x − y| and
Jensen’s inequality the uniform Lipschitz bound

‖E[ϑt+1 : 0(f, g) − ϑt+1 : 0(f,h)|Xt ]‖p ≤ ‖gt+1 − ht+1‖p.(6.16)

More generally, we have the following conditional Lipschitz continuity at the
continuation value.

PROPOSITION6.4. For every h ∈ Lp(X) with hT = fT and 0≤ w ≤ T − t ,

‖E[ϑt+1 : w(f,h)|Xt ] − qt‖p

= ‖E[ϑt+1 : w(f,h) − max(ft+1, qt+1)|Xt ]‖p(6.17)

= ‖E[ϑt+1 : w(f,h) − ϑt+1 :w(f, q)|Xt ]‖p.

Furthermore,

‖E[ϑt+1 :w(f,h) − ϑt+1 :w(f, q)|Xt ]‖p ≤
t+w+1∑
s=t+1

‖hs − qs‖p.(6.18)

A similar estimate for the special casew = T − t − 1 can also be found
in [15]. Note that the uniform Lipschitz estimate (6.16) does not extend tow > 0.
Proposition 6.4 only provides a Lipschitz estimate at the continuation value.

PROOF. First note that, from the Markov property,

E[ϑt+1 :w(q) − ϑt+1 :w(h)|Xt ] = E[ϑt+1 :w(q) − ϑt+1 :w(h)|Ft ].(6.19)

Equation (6.17) follows directly from the recursive definition ofqt . The casew = 0
is covered in (6.16). Forw > 0, it follows from the definition ofϑt+1 :w that

‖E[ϑt+1 : w(q) − ϑt+1 :w(h)|Ft ]‖p

≤ ∥∥E[
ft+1

(
θf,t+1(q) − θf,t+1(h)

)
+ θ−

f,t+1(q)ϑt+2:w−1(q) − θ−
f,t+1(h)ϑt+2:w−1(h)|Ft

]∥∥
p.
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Adding and subtracting the termqt+1(θf,t+1(q)− θf,t+1(h)), the triangle inequal-
ity implies

‖E[ϑt+1 : w(q) − ϑt+1 :w(h)|Ft ]‖p

≤ ∥∥E[
(ft+1 − qt+1)

(
θf,t+1(q) − θf,t+1(h)

)|Ft

]∥∥
p

+ ∥∥E[
θ−
f,t+1(q)ϑt+2 : w−1(q)

− θ−
f,t+1(h)ϑt+2 :w−1(h) + qt+1

(
θf,t+1(q) − θf,t+1(h)

)|Ft

]∥∥
p.

Now

θf,t+1(q) − θf,t+1(h) = 1{ft+1≥qt+1} − 1{ft+1≥ht+1}
= 1{0≤ft+1−qt+1<ht+1−qt+1} − 1{ht+1−qt+1≤ft+1−qt+1<0},

which leads to

(ft+1 − qt+1)
(
1{0≤ft+1−qt+1<ht+1−qt+1} − 1{ht+1−qt+1≤ft+1−qt+1<0}

)
≤ (ht+1 − qt+1)1{ht+1−qt+1>0} − (ht+1 − qt+1)1{ht+1−qt+1<0}
≤ |ht+1 − qt+1|.

By the Markov property,qt+1(Xt+1) = E[ϑt+2 : w−1(q)|Ft+1]. Becauseθf,t+1(q)

andθf,t+1(h) areσ(Xt+1)-measurable, it follows that

E
[
qt+1

(
θf,t+1(q) − θf,t+1(h)

)|Ft

]
= E

[
E[ϑt+2 : w−1(q)|Ft+1](θf,t+1(q) − θf,t+1(h)

)|Ft

]
(6.20)

= E
[
ϑt+2 :w−1(q)

(
θf,t+1(q) − θf,t+1(h)

)|Ft

]
.

By Jensen’s inequality, this leads to

‖E[ϑt+1 : w(q) − ϑt+1 :w(h)|Ft ]‖p

≤ ‖qt+1 − ht+1‖p

+ ∥∥E[
ϑt+2 :w−1(q)

(
1− θf,t+1(h)

) − ϑt+2 :w−1(h)θ−
f,t+1(h)|Ft

]∥∥
p

= ‖qt+1 − ht+1‖p + ∥∥E[(
ϑt+2 :w−1(q) − ϑt+2 :w−1(h)

)
θ−
f,t+1(h)|Ft

]∥∥
p

≤ ‖qt+1 − ht+1‖p + ‖E[ϑt+2 :w−1(q) − ϑt+2 :w−1(h)|Ft+1]‖p.

The proof is completed by induction.�

PROOF OFPROPOSITION6.1. Introduce the regression function

ρ̄H ,t (x) = E[ϑt+1 :w(f, q̂H )|Xt = x](6.21)

of ϑt+1 :w(f, q̂H ) and let

q̄H ,t = πHt ρ̄H ,t = prHt
ϑt+1 : w(f, q̂H )(6.22)
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be its projection ontoHt . By the triangle inequality,

‖q̂H ,t − qt‖2 ≤ ‖q̂H ,t − q̄H ,t‖2 + ‖q̄H ,t − ρ̄H ,t‖2 + ‖ρ̄H ,t − qt‖2.(6.23)

Again, by the triangle inequality and becauseHt is convex so that the projec-
tion πHt from L2(R

m,µt) ontoHt is distance decreasing,

‖q̄H ,t − ρ̄H ,t‖2 = ∥∥πHt ρ̄H ,t − ρ̄H ,t

∥∥
2

≤ ∥∥πHt ρ̄H ,t − πHt qt

∥∥
2 + ∥∥πHt qt − qt

∥∥
2 + ‖qt − ρ̄H ,t‖2(6.24)

≤ ∥∥πHt qt − qt

∥∥
2 + 2‖qt − ρ̄H ,t‖2.

Inserting (6.24) back into (6.23) gives

‖q̂H ,t − qt‖2 ≤ inf
h∈Ht

‖h − qt‖2 + ‖q̂H ,t − q̄H ,t‖2 + 3‖ρ̄H ,t − qt‖2.(6.25)

By Lemma 6.3,

‖q̂H ,t − q̄H ,t‖2 = ∥∥q̂H ,t − πHt ρ̄H ,t

∥∥
2 ≤ E[lt (q̂H )]1/2.(6.26)

For the third term in (6.25), by Proposition 6.4,

‖ρ̄H ,t − qt‖2 = ‖E[ϑt+1 : w(f, q̂H ) − ϑt+1 :w(f, q)|Xt ]‖2

(6.27)
≤

t+w+1∑
s=t+1

‖q̂H ,s − qs‖2. �

6.2. Covering number bounds. We define the so-called centered loss class

Lt (H) = {lt (h)|h ∈ H}.(6.28)

To bound the fluctuations of the sample errorE[lt (q̂H )]1/2 later on in Section 6.3,
we require bounds on the empiricalL1-covering numbersN(ε,Lt (H), d1,Pn) of
the centered loss class.

The first step is to bound the covering numbers ofLt (H) in terms of the
covering numbers ofHt and the cash flow class which is defined as

Gt = {ϑt+1 :w(f,h)|h ∈ H}.(6.29)

LEMMA 6.5. Let 1 ≤ p ≤ ∞. If Ht is uniformly bounded by H and the cash
flow class Gt by 
, then, for w ≥ 0,

N
(
8(H + 
)ε,Lt (H), dp,Pn

) ≤ N
(
ε,Ht , dp,Pn

)2
N

(
ε,Gt , dp,Pn

)2
.(6.30)

For w = 0, the estimate (6.30)simplifies to

N
(
8(H + 
)ε,Lt (H), dp,Pn

) ≤ N
(
ε,Ht , dp,Pn

)2
N

(
ε,Ht+1, dp,Pn

)2
.(6.31)
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Note that if the payoff functionf is in L∞(X) and the approximation spaces
Ht are uniformly bounded byH , thenϑt+1:w(f,h) ≤ 
 ≡ max(‖f ‖∞,H) and
the assumptions of Lemma 6.5 are satisfied.

PROOF OF LEMMA 6.5. We first recall some basic properties of covering
numbers. IfF andG are two classes of functions andF ± G = {f ± g|f ∈ F ,

g ∈ G} is the class of formal sums or differences, then, for all 1≤ p ≤ ∞,

N
(
ε,F ± G, dp,Pn

) ≤ N

(
ε

2
,F , dp,Pn

)
N

(
ε

2
,G, dp,Pn

)
.(6.32)

Furthermore, ifG class of functions uniformly bounded byG, it follows from
‖g2

1 − g2
2‖p

p,Pn
= Pn(g1 − g2)

p(g1 + g2)
p ≤ (2G)p‖g1 − g2‖p

p,Pn
that

N
(
ε,G2, dp,Pn

) ≤ N

(
ε

2G
,G, dp,Pn

)
,(6.33)

Enlarging a class increases the covering numbers. Now

Lt (H) ⊂ (Ht − Gt )
2 − (

prHt
Gt − Gt

)2
.(6.34)

Because prHt
Gt ⊂ Ht , it is sufficient to bound the covering number of the slightly

larger class

L̃t (H) = (Ht − Gt )
2 − (Ht − Gt )

2.(6.35)

If Ht is uniformly bounded byH < ∞ and ϑt+1,w(f,h) ≤ 
, we get from
(6.32) and (6.33)

N
(
ε, L̃t (H), dp,Pn

)
(6.36)

≤ N

(
ε

8(H + 
)
,Ht , dp,Pn

)2

N

(
ε

8(H + 
)
,Gt , dp,Pn

)2

.

Forw = 0, the Lipschitz bound (6.16) directly leads to

N
(
ε,Gt , dp,Pn

) ≤ N
(
ε,Ht+1, dp,Pn

)
.(6.37)

(6.31) follows directly from (6.36) and (6.37).�

A simple example for which tight covering number bounds exists are subsets of
linear vector spaces. IfHt = {h ∈ K|‖h‖∞ ≤ R} andK is a linear vector space
of dimensiond, then

N
(
ε,Ht , d2,Pn

) ≤ N
(
ε, {h ∈ K|Pnh

2 ≤ R2}, d2,Pn

) ≤
(

4R + ε

ε

)d

.(6.38)

The first inequality in (6.38) is obvious becauseHt is a subset of{h ∈ K|Pnh
2 ≤

R2}. The second inequality is standard and can be found, for instance, in
[13] or [51].
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Inequality (6.38) would provide uniform covering number estimates for (6.31)
in case of linear approximation spaces andw = 0. We can not apply (6.38) to upper
bound the right-hand side of (6.30) in the general situationw > 0 because the cash
flow classGt is not anymore a subset of a linear space, even if the underlying
approximation spaceHt is a finite-dimensional linear vector space. This is where
the Vapnik–Chervonenkis theory comes into play.

An important type of function class for which good uniform estimates on the
covering numbers exist without assuming any linear structure are the so called
Vapnik–Chervonenkis classes or VC-classes, introduced in [55] for classes of
indicator functions, that is, classes of sets. LetC be a class of subsets of a setS.
We say that the classC picks out a subsetA of a setσn = {x1, . . . , xn} ⊂ S

of n elements ifA = C ∩ σn for someC ∈ C. The classC is said to shatterσn

if each of its 2n subset can be picked out byC. The VC-dimension ofC is the
largest integern such that there exists a set ofn points which can be shattered
by C, that is,

vc(C) = sup{n|�n(C) = 2n},(6.39)

where

�n(C) = max{x1,...,xn} card
{
C ∩ {x1, . . . , xn}|C ∈ C

}
(6.40)

is the so-called growth or shattering function. A classC is called a Vapnik–
Chervonenkis or VC-class if vc(C) < ∞. A VC-class of dimensiond shatters
no set ofd + 1 points. The “richer” the classC is, the larger the cardinality of
sets which still can be shattered. We illustrate it by a simple example. The class
of left open intervals{(−∞, c]|c ∈ R} cannot shatter any two-point set because
it cannot pick out the largest of the two points and therefore has VC-dimension
one. By similar reasoning, the class of intervals{(−a, b]|a, b ∈ R} shatters two-
point sets, but fails to shatter three-point sets: it cannot pick out the largest and the
smallest point of a three-point set. On the contrary, the collection of closed convex
subsets ofR2 has infinite VC-dimension: Consider a setσn of n points on the
unit circle. Every subsetA ⊂ σn of the 2n subsets can be picked out by the closed
convex hullco(A) of A. A peculiar property of a VC-class is that the shattering
function of VC-classes grows only polynomially inn, more precisely, we have the
following result which is due to Sauer, Vapnik–Chervonenkis and Shelah; see [51],
Corollary 2.6.3, or [19].

LEMMA 6.6 (Sauer’s lemma). If C is a VC-class with VC-dimension d =
vc(C), then

�n(C) ≤
d∑

i=0

(
n

i

)
≤ 1.5

nd

d! ≤
(

en

d

)d

.(6.41)
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VC-classes have a variety of permanence properties which allow the construc-
tion of new VC-classes from basic VC-classes by simple operations such as com-
plements, intersections, unions or products. We again refer to [51], Section 2.6.5,
or [19].

The concept of VC-classes of sets can be extended to classes of functions
in several ways. A common approach is to associate to a class of functions its
subgraph class. More precisely, the subgraph of a real-valued functiong on an
arbitrary setS is defined as

Gr(g) = {(x, t) ∈ S × R|t ≤ g(x)}.(6.42)

A class of real-valued functionsG on S is called a VC-subgraph class, or just
VC-class, if its class of subgraphs is a VC-class and the VC-dimension ofG is
defined as

vc(G) = vc
({Gr(g)|g ∈ G}).(6.43)

An equivalent definition is obtained by extending the notion of shattering. A class
of real-valued functionsG is said to shatter a set{x1, . . . , xn} ⊂ S if there isr ∈ R

n

such that for everyb ∈ {0,1}n, there is a functiong ∈ G such that for eachi,
g(xi) > ri if bi = 1, andg(xi) ≤ ri if bi = 0. The definition

vc(G) = sup
{
n|∃ {x1, . . . , xn} ⊂ S shattered byG

}
(6.44)

agrees with (6.43). For the proof note that a set is shattered by the subgraph class
{Gr(g)|g ∈ G} if and only if it is shattered by the class of indicator functions
{θ(g(x) − t)|g ∈ G}, whereθ(s) = 1{s≥0}. The VC-dimension (6.44) for classes
of functions is often called pseudo-dimension, see [23] and [41]. An alternative
generalization is obtained by so called VC-major classes, originally introduced by
Vapnik. For more details on the relation of the two concepts, we refer to [19].

LEMMA 6.7. Let G be a finite-dimensional real vector space of measurable
real-valued functions. Then, the class of sets G+ = {{g ≥ 0}|g ∈ G} is a VC-class
with vc(G+) ≤ dim(G). If g0 is a fixed function, then vc((g0 + G)+) = vc(G+).
Finally, G is a VC-class and vc(G) = dim(G).

PROOF. For the first two statements we refer to [19], Theorem 4.2.1, or [51],
Section 2.6. The last statement follows from the first two: Letg0(x, t) = −t and
consider the affine class of functionsg0 +G onS × R. Then, the subgraph class of
G is precisely(g0 + G)+. �

An important property of VC-classes is that their covering numbersN(ε,

G, dp,µ) are polynomial inε−1 for ε → 0. More precisely, we have the following
estimates for the covering numbers of VC-classes due to Haussler [23]; see also
[51], Theorem 2.6.7.
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LEMMA 6.8. Let G ⊂ Lp(µ) be a class of functions with an envelope G ∈
Lp(µ), that is, g ≤ G for all g ∈ G. Then,

N(ε‖G‖p,µ,G, dp,µ) ≤ e
(
vc(G) + 1

)
2vc(G)

(
2e

ε

)p vc(G)

.(6.45)

After this short digression on VC-theory, we continue estimating the empirical
L1-covering numbers of the centered loss classLt (H). The next result is
fundamental to generalize the estimate (6.31) to a strictly positive look-ahead
parameterw > 0. It bounds the VC-dimension ofGt in terms of the VC-dimension
of the approximation spacesHt+1, . . . ,Ht+w+1.

PROPOSITION6.9. Assume that, for all s ≥ t , Hs are VC-classes of functions
with vc(Hs) ≤ d. Then Gt is a VC-class with VC-dimension

vc(Gt ) ≤ c(w)d,(6.46)

where c(w) = 2(w + 2) log2(e(w + 2)).

Inequalities (6.30), (6.31), (6.45) and (6.46) finally lead to explicit uniform
bounds for the empiricalL1-covering numbers of the centered loss classLt (H).

COROLLARY 6.10. Assume that all Hs are classes of functions uniformly
bounded by H and with bounded VC-dimension vc(Hs) ≤ d. If the cash flow
function satisfies ϑt+1 :w(f,h) ≤ H , then

N
(
ε,Lt (H), d1,Pn

)

(6.47)
≤




e4(d + 1)2(c(w)d + 1
)2

(
64eH

ε

)2d(c(w)+1)

, for w ≥ 1,

e4(d + 1)4
(

64eH

ε

)4d

, for w = 0.

Optimal stopping is a particular stochastic control problem with a simple
control space. The proof of Proposition 6.9 relies on the observation that the
VC-dimension of the class of indicator functionsCs = {θf,s(h)|hs ∈ Hs}, which
appear in the definition ofτt (h) and ϑt+1:w(h), is bounded by vc(Hs). It is
an interesting question how Proposition 6.9 can be extended to more general
stochastic control problems.

Before we proceed to the proof of Proposition 6.9, we add a remark on
VC-classes and their VC-dimension. LetA be a class of sets. The class of
indicator functions{1A|A ∈ A} is a VC-class in the sense that its subgraph class
is a VC-class if and only ifA is a VC-class and vc(A) = vc({1A|A ∈ A}). Let
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θ(x) = 1{x≥0}. If A is a VC-class, vc(A) = d, then by Sauer’s Lemma 6.6, for
x1, . . . , xn and allt ∈ R

n,

card
{(

θ
(
1A(xi) − ti

))
i=1,...,n|A ∈ A

} ≤
(

en

d

)d

.(6.48)

Conversely, if we find a polynomial bound like (6.48),A must be a VC-class and
we can bound its VC-dimension.

To prove Proposition 6.9, we first establish the following general result on
VC-classes.

LEMMA 6.11. Let X, Y be two sets and A, B VC-classes of subsets of X
(resp. Y). Assume that vc(A) ≤ d, vc(B) ≤ d. Let f :X → R and g :Y → R be
nonnegative functions. Define the class of functions

F (A,B)
(6.49)

= {
FA,B(x, y) = 1A(x)f (x) + 1Ac(x)1B(y)g(y)|A ∈ A,B ∈ B

}
.

Then F (A,B) is a VC-subgraph class, its growth function is bounded by

�n

(
F (A,B)+

) ≤
(

en

d

)2d

(6.50)

and

vc
(
F (A,B)

) ≤ 2d log2(e).(6.51)

The estimates (6.50)and (6.51)generalize to

F (A,H) = {FA,h(x, y) = 1A(x)f (x) + 1Ac(x)h(y)|A ∈ A, h ∈ H},(6.52)

where H is a VC-class of function with vc(H) = vc(H+) ≤ d.

PROOF. Given points(xi, yi) ∈ X × Y and ti ∈ R, i = 1, . . . , n, we need to
bound the cardinality of{(

θ
(
FA,B(xi, yi) − ti

))
i=1,...,n|A ∈ A,B ∈ B

}
,(6.53)

as a subset of the binary cube{0,1}n. Because

FA,B(x, y) = 1B(yi)
(
g(yi) − 1A(xi)g(yi)

) + 1A(xi)f (xi),

and(g(yi) − 1A(xi)g(yi)) ≥ 0, we find that

θ
(
FA,B(xi, yi) − ti

)
(6.54)

=
{

θ
(
1B(yi) − τi(A)

)
, onS+(A) = {(xj , yj )|1Ac(xj )g(yj ) > 0},

θ
(
1A(xi)f (xi) − ti

)
, onS0(A) = {(xj , yj )|1Ac(xj )g(yj ) = 0},
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where

τi(A) = ti − 1A(xi)f (xi)

g(yi) − 1A(xi)g(yi)
.(6.55)

Fix A and varyB over B. Because vc(B) ≤ d, we see from (6.54) and Sauer’s
lemma, that the binary set{(

θ
(
FA,B(xi, yi) − ti

))
i=1,...,n|B ∈ B

}
(6.56)

has cardinalityK bounded above by(end−1)d . Let

b1(A), . . . , bK(A)(6.57)

enumerate the distinct elements of (6.56) generated by setsBk . For (xi, yi) ∈
S0(A), we have

bk,i(A) = θ
(
1A(xi)f (xi) − ti

)
,(6.58)

and if (xi, yi) ∈ S+(A),

bk,i(A) = θ
(
1Bk

(yi) − τi(A)
)

(6.59)
=




θ
(
1A(xi) − τi(Bk)

)
,

onS+(Bk) = {(xj , yj )|f (xj ) − 1B(xj )g(yj ) > 0},
1− θ

(
1A(xi) − τi(Bk)

)
,

onS−(Bk) = {(xj , yj )|f (xj ) − 1B(xj )g(yj ) < 0},
θ
(
1Bk

(yi)g(yi) − ti
)
,

onS0(Bk) = {(xj , yj )|f (xj ) − 1B(xj )g(yj ) = 0}.
Consequently, Sauer’s lemma again implies that for each fixedk the binary set

{bk(A)|A ∈ A}(6.60)

has cardinality at most(end−1)d . This proves (6.50). Again, by Sauer’s lemma,
veryn0 > 0 such that

card
{(

θ
(
FA,B(xi, yi) − ti

))
i=1,...,n|A ∈ A,B ∈ B

} ≤
(

en

d

)2d

< 2n,(6.61)

for all n > n0 is an upper bound of vc(F (A,B)+). To find n0, we look for
solutionsn0 = dj that are multiples ofd. (6.61) leads to the condition

log2(ej) < j,

which is satisfied, for example, byj = 2 log2(e). The extension toF (A,H) is
straightforward. Replaceθ(1B(yi) − τi(A)) in (6.54) byθ(h(yi) − τi(A)), where
τi(A) = (ti − f (xi))/1Ac(xi) and follow the same lines of reasoning.�
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PROOF OF PROPOSITION 6.9. Recall definition (3.16) of the cash flow
function, according to which

ϑt+1 :w(f,h) = θf,t+1(h)ft+1 + · · · + θf,t+w+1(h)

t+w∏
r=t+1

θ−
f,r (h)ft+w+1

(6.62)

+
t+w+1∏
r=t+1

θ−
f,r (h)ht+w+1.

Because the classes of indicator functions

Cs = {
θf,s(h) = 1{fs−hs≥0}|hs ∈ Hs

}
,

(6.63)
C−

s = {
θ−
f,s(h) = 1{fs−hs<0}|hs ∈ Hs

}
,

are VC classes with VC-dimension

vc(C−
s ) = vc(Cs) = vc

(
(fs − Hs)

+) = vc(H+
s ) = vc(Hs) ≤ d,(6.64)

we can recursively apply Lemma 6.11 to derive the bound

card
{(

θ
(
ϑt+1 :w(f,h)(xi ) − ti

))
i=1,...,n|h ∈ H

} ≤
(

en

d

)d(w+2)

.(6.65)

The VC-dimension ofGt is then estimated as in the proof of Lemma 6.11. This
completes the proof of Proposition 6.9.�

6.3. Proofs of Theorems 5.1and 5.3. The centered losslt (q̂H ) depends on the
sampleDn. To control the fluctuations of the random variableE[lt (q̂H )], we need
uniform estimates over the whole centered loss classLt (H). The usual procedure
is to apply exponential deviation inequalities for the empirical process{√

n(E[l] − Pnl)|l ∈ Lt (H)
}

(6.66)

indexed byLt (H), which are closely related to the uniform law of large numbers.
For background, we refer to [22, 40, 48, 51].

The application of standard deviation inequalities to the whole centered loss
classLt (H) is not efficient since the empirical minimizer is close to the actual
L2-minimizer with high probability. Therefore, the random elementlt (q̂H ) is
with high probability in a small subset ofLt (H). To get sharper estimates, the
empirical process needs to be localized such that more weight is assigned to these
loss functions. Lee, Bartlett and Williamson [35] proved the following localized
deviation inequality.

THEOREM 6.12 ([35], Theorem 6). Let L be a class of functions such that
|l| ≤ K1, E[l] ≥ 0, and for some K2 ≥ 1,

E[l2] ≤ K2E[l] ∀ l ∈ L.(6.67)
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Let a, b > 0 and 0< δ < 1
2. Then, for all

n ≥ max
(

4(K1 + K2)

δ2(a + b)
,

K2
1

δ2(a + b)

)
,(6.68)

P

(
sup
l∈L

E[l] − Pn(l)

E[l] + a + b
≥ δ

)

≤ 2 sup
x1,...,x2n∈X2n

N

(
δb

4
,L, d1,P2n

)
exp

(
− 3δ2an

4K1 + 162K2

)
(6.69)

+ 4 sup
x1,...,x2n∈X2n

N

(
δb

4K1
,L, d1,P2n

)
exp

(
−δ2an

2K2
1

)
,

where P2n is the empirical measure supported at (x1, . . . , x2n).

A similar bound has been obtained by Cucker and Smale ([17], Proposition 7)
for L∞-covering numbers. Theorem 6.12 has been improved in [28] by applying
chaining techniques, and in [4] by using concentration properties of local
Rademacher averages. For additional background on related bounds, we refer to
[34, 37, 42, 48]. The advantage of Theorem 6.12, as compared to the Pollard’s
deviation inequality, is that it improves the quadratic dependence onε in standard
deviation inequalities to a linear dependence.

The centered loss has a special structure which allows it to bound its variance
in terms of its expectation.

LEMMA 6.13. Let Ht be convex, uniformly bounded by H < ∞, and assume
that ϑt+1 :w(f,h) ≤ 
 for some constant 
 < ∞. Then the centered loss class
Lt (H) is uniformly bounded and, for all l ∈ Lt (H),

|l| ≤ 4H(
 + H),
(6.70)

E[l2] ≤ 4(
 + H)2E[l].

PROOF. We get from the definition (6.3) oflt (h) that

lt (h) = (
ht − prHt

ϑt+1 :w(f,h)
)

× (
ht + prHt

ϑt+1 :w(f,h) − 2ϑt+1 :w(f,h)
)

(6.71)

≤ 2(
 + H)
(
ht − prHt

ϑt+1:w(f,h)
)
.

Therefore,

E[lt (h)2] ≤ 4(
 + H)2E
[∣∣ht − prHt

ϑt

∣∣2] ≤ 4(
 + H)2E[lt (h)],
where the last step follows form Lemma 6.3.�
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Our plan is to apply Theorem 6.12 to a suitably scaled loss class

λLt (H) = {λl|l ∈ Lt (H)},(6.72)

where we chooseλ such that|λl| ≤ 1 [the scaling gives a termβ2
n in the

consistency condition (5.3) instead ofβ4
n ]. Because an empirical risk minimizer

satisfiesPn(lt (q̂H )) ≤ 0, it follows that, for anyε > 0 and scaling factorλ > 0,

P
(
E[lt (q̂H )] ≥ ε

) ≤ P
(
E[lt (q̂H )] ≥ 2Pn

(
lt (q̂H )

) + ε
)

= P

(
E[lt (q̂H )] − Pn(lt (q̂H ))

E[lt (q̂H )] + ε
≥ 1

2

)
(6.73)

≤ P

(
sup

l∈λLt (H)

E[l] − Pn(l)

E[l] + λε
≥ 1

2

)
.

Assume that the conditions of Lemma 6.13 are satisfied and setβ = max(
,H).
If we choose the scaling factorλ = 1/(8β2), the scaled classλLt (H) satisfies

|λl| ≤ 1,
(6.74)

E[(λl)2] ≤ 2E[λl].
Theorem 6.12 applied withL = λLt (H), K1 = 1, K2 = 2, a = b = ε/(16β2),
δ = 1/2 implies

P
(
E[lt (q̂H )] ≥ ε

)
(6.75)

≤ 6 sup
x1,...,x2n

N

(
ε

128β2 ,
1

8β2Lt (H), d1,P2n

)
exp

(
− nε

6998β2

)
,

for n ≥ 382β2/ε. The ε-covering number ofλLt (H) is the same as the
(λ−1ε)-covering number of the unscaled classLt (H). If the VC-dimension of
Hs , s ≥ t are bounded byd, the covering number bound (6.47) shows that

P
(
E[lt (q̂H )] ≥ ε

) ≤ K

(
1

ε

)v

exp
(
− nε

6998β2

)
,(6.76)

where

v = v(w,d) = 2d
(
c(w) + 1

)
(6.77)

and

K = K(d,w,β) = 6e4(d + 1)2(c(w)d + 1
)2

(1024eβ)v(d,w).(6.78)

PROOF OFTHEOREM 5.1. βn is a sequence of truncation thresholds tending
to infinity. If q̄βn,t is the continuation value for the truncated payoffTβnf , we get
from (5.6) that‖qt − q̄βn,t‖2 → 0. The error decomposition (6.4) separates the
approximation error and the sample error. The denseness assumption implies that
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the approximation error infh∈Hn,t ‖h − q̄βn,t‖2 tends to zero ifn → ∞. It remains
to analyze the sample errorE[lt (q̂Hn)] for underlying payoffTβnf .

We apply (6.76) toH = Hn, for which d = dn and β = βn. There exists a
constantC(ε,w) such that, for every fixedε > 0,

P
(
E

[
lt

(
q̂Hn

)] ≥ ε
) ≤ C(ε,w)exp

(
dn log(βn) − nε

6998β2
n

)
.(6.79)

The right-hand side converges to zero for every fixedε > 0 if n/β2
n diverges

to infinity faster thandn log(βn) or if dnβ
2
n log(βn)n

−1 → 0. Convergence in
probability follows from (6.4) by induction. Convergence inL1(P) is shown by
evaluating

E
[
E

[
lt

(
q̂Hn

)]] ≤ ε +
∫ ∞
ε

P
(
E

[
lt

(
q̂Hn

)]
> t

)
dt,(6.80)

using the estimate (6.79). Conditions (5.3) and (5.5) imply
∞∑

n=1

P
(
E

[
lt

(
q̂Hn

)] ≥ ε
)

≤ C(ε,w)

∞∑
n=1

exp
(
dn log(βn) − nε

6998β2
n

)
(6.81)

= C(ε,w)

∞∑
n=1

n−n/(log(n)β2
n)((ε/6998)−dnβ2

n log(βn)/n) < ∞.

Almost sure convergence follows from the Borel–Cantelli lemma.�

PROOF OF THEOREM 5.3. Integrating (6.76) overε shows that, for any

κ ≥ 382β2

n
,

E
[
E[lt (q̂H )]] =

∫ ∞
0

P
(
E[lt (q̂H )] ≥ ε

)
dε

≤ κ + Knv
∫ ∞
κ

exp
(
− nε

6998β2

)
dε(6.82)

≤ κ + Knv−16998β2 exp
(
− nκ

6998β2

)
.

Setting

κ = 6998β2

n
log(6998Kβ2nv) ≥ 382β2

n
,(6.83)

leads to the upper bound

E
[
E[lt (q̂H )]] ≤ 6998β2 + log(6998Kβ2)

n
+ v log(n)

n
.(6.84)
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Corollary 6.2 implies that

E[‖q̂H ,t − qt‖2
2]

≤ 2 · 16w+1
(

max
s=t,...,t+w+1

inf
h∈Hs

‖h − qs‖2
2 + E

[
max

s=t,...,t+w+1
E[ls(q̂H )]

])
.

But

E

[
max

s=t,...,t+w+1
E[ls(q̂H )]

]
≤ (w + 2) max

s=t,...,t+w+1
E

[
E[ls(q̂H )]].

Apply (6.84) to complete the proof.�

PROOF OFCOROLLARY 5.4. Estimate (6.76) implies

P
(
E[lt (q̂H )] ≥ ε

) ≤ K exp
(
− nε

13996β2

)
exp

(
− nε

13996β2 − log(ε)v

)
.(6.85)

By straightforward calculations, the right-hand side is smaller thanδ for all n

satisfying

n ≥ 13996β2 max
(

1

ε
log

(
K

δ

)
, v log

(
1

ε

))
.(6.86)

The sample complexity bound (5.16) follows from Corollary 6.2 and (6.85), (6.86)
with ε = ε/(32(w + 2)16w). �

6.4. Proof of Corollary 5.5. Becauseqt ∈ Wk(L∞(I, λ)), Jackson-type esti-
mates imply that, for everyr > k, there exists a polynomialpr ∈ Pr ,

‖pr − qt‖∞,I,λ ≤ CI r−k ‖qt‖∞,k,I,λ.(6.87)

The constantCI only depends onI , but not onr or qt . See, for instance, [18],
Theorem 6.2, Chapter 7. Consequently,

‖pr‖∞,I,λ ≤ ‖pr − qt‖∞,I,λ + ‖qt‖∞,I,λ ≤ 2‖qt‖∞,k,I,λ(6.88)

for r sufficiently large. We therefore may restrict the minimization to the convex,
uniformly bounded set of functionsHn,t as defined in (5.17). The VC-dimension
of Hn,t is bounded bynm/(m+2k). Theorem 5.3 applies. BecauseXt is localized
to I , the approximation error in (5.13) is bounded by

inf
p∈Hn,t

‖p − qt‖2
2 ≤ inf

p∈Hn,t

‖p − qt‖2∞,I,λ ≤ CIn
−2k/(2k+m)‖qt‖∞,k,I,λ.(6.89)

Inserting vc(Hn,t ) ≤ nm/(m+2k) into (5.13) shows that the sample error is of the
order

O
(
log(n)n−2k/(2k+m)).

The extension toµt with bounded density with respect to Lebesgue measure is
proved identically.
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6.5. Proof of Proposition 5.2. Note that

|max(a, x) − max(a, y)| ≤ |x − y|.(6.90)

The representation of the continuation value in terms of the transition functions
gives

‖qt − q̄β,t‖p = ‖E[max(ft+1, qt+1) − max(Tβft+1, q̄β,t+1)|Xt ]‖p

≤ ‖E[ft+1 − Tβft+1|Xt ]‖p + ‖E[qt+1 − q̄β,t+1|Xt ]‖p

≤ ∥∥(ft+1 − β)1{ft+1>β}
∥∥
p + ‖qt+1 − q̄β,t+1‖p.

If f ∈ Lp(X), then‖(ft+1 − β)1{ft+1>β}‖p → 0 for β → ∞. We first recall that
for a nonnegative random variableY andr > 1,

E[Y r ] = r

∫ ∞
0

yr−1P(Y > y)dy.(6.91)

Then (5.7) follows from

∥∥(ft+1 − β)1{ft+1>β}
∥∥r
r = r

∫ ∞
0

ur−1P
(
(ft+1 − β)1{ft+1>β} > u

)
du

= r

∫ ∞
β

(u − β)r−1P(ft+1 > u)du

≤ r

∫ ∞
β

ur−1P(f
p
t+1 > up)du

≤ r

p − r
E[f p

t+1]βr−p ≤ O(βr−p),

where we have used Markov’s inequality to get to the last line.
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