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MONTE CARLO ALGORITHMS FOR OPTIMAL STOPPING
AND STATISTICAL LEARNING

By DANIEL EGLOFF
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We extend the Longstaff-Schwartz algorithm for approximately solving
optimal stopping problems on high-dimensional state spaces. We reformulate
the optimal stopping problem for Markov processes in discrete time as a
generalized statistical learning problem. Within this setup we apply deviation
inequalities for suprema of empirical processes to derive consistency criteria,
and to estimate the convergence rate and sample complexity. Our results
strengthen and extend earlier results obtained by Clément, Lamberton and
Protter Finance and Stochastics 6 (2002) 449—-471].

1. Introduction. The problem of arbitrage-free pricing American options has
renewed the interest in efficient methods for numerically solving high-dimensional
optimal stopping problems. In this paper we explain how to solve a discrete-
time, finite-horizon optimal stopping problem by restating it as a generalized
statistical learning problem. We give a unified treatment of the Longstaff-Schwartz
and the Tsitsiklis—Van Roy algorithm. They use both Monte Carlo simulation
and linearly parameterized approximation spaces. We introduce a new class of
algorithms which interpolate between the Longstaff-Schwartz and Tsitsiklis—
Van Roy algorithm and relax the linearity assumption of the approximation spaces.

Learning an optimal stopping rule differs from the standard setup in statistical
and machine learning in the sense that it requires a series of learning tasks, one
for every time step, starting at the terminal horizon and proceeding backward. The
individual learning tasks are connected by the dynamic programming principle.
At each time step, the result depends on the outcome of the previous learning
tasks. Connecting the subsequent learning tasks to a recursive sequence of learning
problems leads to an error propagation. We control the error propagation by
using a Lipschitz property and a suitable error decomposition which relies on
the convexity of the approximation spaces. Finally, we estimate the sample error
with exponential tail bounds for the supremum of empirical processes. To apply
these techniques, we need to calculate the covering numbers of certain function
classes. An important type of function class for which good estimates on the
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covering numbers exist are the so called Vapnik—Chervonenkis (VC) classes, see
[1] or [51]. We prove that payoff functions evaluated at Markov stopping times
parameterized by a VC-class of functions is again a VC-class. The covering
number estimate of Haussler [23] then gives the required bounds. Our approach is
conceptually different from Clément, Lamberton and Protter [15], which is purely
tailored to the classical Longstaff-Schwartz algorithm with linear approximation.
By exploiting convexity and fundamental properties of VC-classes, we can prove
convergence and derive error estimates under less restrictive conditions, also if
both the dimension of the approximating spaces and the number of samples tends
to infinity.

This paper is structured as follows. The next background section discusses
recent developments in numerical techniques for optimal stopping problems and
summarizes the probabilistic tools which we use in this work. Section 3 reviews
discrete-time optimal stopping problems. Section 4 shows how to restate optimal
stopping as a statistical learning problem and introduces the dynamic look-ahead
algorithm. In Section 5 we state and comment on our main results: a general
consistency result for convergence, estimates of the overall error, the convergence
rate and the sample complexity. The focus of the work lies in estimating the sample
error. The proofs are deferred to Section 6 where we also introduce the necessary
tools of the Vapnik—Chervonenkis theory.

2. Background. Optimal stopping problems naturally arise in the context of
games where a player wants to determine when to stop playing a sequence of
games to maximize his expected fortune. The first systematic theory of optimal
stopping emerged with Wald and Wolfowitz [57] on the sequential probability ratio
test. The monographs by Chow, Robbins and Siegmund [14] and Shiryayev [46]
provide an extensive treatment of optimal stopping theory.

The general no-arbitrage valuation of American options in terms of an optimal
stopping problem begins with Bensoussan [5] and Karatzas [26]. Nowadays,
American option valuation is an important application of optimal stopping theory.
For more background on American options and financial aspects of the related
optimal stopping problem, we refer to [27].

2.1. Algorithms for solving optimal stopping problems. Optimal stopping
problems generally cannot be solved in closed form. Therefore, several numer-
ical techniques have been developed. Barone—Adesi and Whaley [2] propose a
semi-analytical approximation. The binomial tree algorithm of Cox, Ross and
Rubinstein [16] directly implements the dynamic programming principle. Other
approaches comprise Markov chain approximations (see [30]) direct integral equa-
tion and PDE methods. The PDE methods are based on variational inequalities,
developed in [6] or [25], the linear complementary problem (see [24]) or the free
boundary value problem (see [52]). However, the viability of any of these methods
is prohibited by the curse of dimensionality. For these algorithms the computing
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cost and storage needs grow exponentially with the dimension of the underlying
state space.

To address this limitation, new Monte Carlo algorithms have been proposed.
The first landmark papers in this direction are [9, 49] and [11]. Longstaff and
Schwartz [36] introduce a new algorithm for Bermudan options in discrete time.

It combines Monte Carlo simulation with multivariate function approximation.
They show how to solve the optimal stopping problem algorithmically by a nested
sequence of least-square regression problems and briefly outline a convergence
proof. Tsitsiklis and Van Roy [50] independently propose an alternative parametric
approximation algorithm on the basis of temporal-difference learning. Their
approach relies on stochastic approximation of fixed points of contraction maps.
They prove almost sure convergence by using stochastic approximation technigues
as developed in [7, 31] or [32]. The Longstaff—Schwartz, as well as the Tsitsiklis—
Van Roy algorithm, approximate the value function or the early exercise rule and,
therefore, provide a lower bound for the true optimal stopping value. Rogers [43]
proposes a method based on the dual problem which results in upper bounds.
The overview paper [12] describes the state of development of Monte Carlo
algorithms for optimal stopping as of 1998. A more recent reference is the book
of Glasserman [20]. A comparative study of various Monte Carlo algorithms for
optimal stopping can be found in [33].

Despite the contributions of Tsitsiklis and Roy [50], Longstaff and Schwartz
[36] and Rogers [43], many aspects of Monte Carlo algorithms for optimal
stopping, such as convergence and error estimates, remain unanswered. Clément,
Lamberton and Protter [15] provide a complete convergence proof and a central
limit theorem for the Longstaff-Schwartz algorithm. But there are so far no
results on more general possibly nonlinear approximation schemes, the rate of
convergence or error estimates. These problems are the main topics addressed in
this paper.

2.2. Probabilistic tools. The main probabilistic tools which we apply in this
paper are exponential deviation inequalities for suprema of empirical processes.
These tail bounds have been developed by Vapnik and Chervonenkis [55],
Pollard [40], Talagrand [48], Ledoux [34], Massart [37], Rio [42] and many
others. Compared to central limit theorems, they are nonasymptotic and provide
meaningful results already for a finite sample size. Deviation inequalities, together
with combinatorial estimates of covering numbers in terms of the Vapnik—
Chervonenkis dimension, are the cornerstones of statistical learning by empirical
risk minimization. For additional details on statistical learning theory, we refer to
[1, 17, 22, 38, 39, 53, 54, 56].

2.3. Basic notation. The following terminology and notation will be used
throughout this paper. Jt is a measure on a measurable spade.4), we denote
by L,(M, ) the usualL ,-spaces endowed with the nofm||, .. If we need to



MONTE CARLO ALGORITHMS FOR OPTIMAL STOPPING 1399

indicate the measure space, we wijte||, »,,.. Letd, , be the induced metric
dp,u(fa e=If- g”p,u-

Let (M, d) be a metric space. Il C M is an arbitrary subset, we define the
covering number

N(,U,d) = inf{n € N‘El{xl, ..., X%,} C M such that
(2.1)

.....

which is the minimum number of closed balls of radiusequired to covetU.
The logarithm of the covering number is called the entropy. The growth rate of the
entropy fore — 0 is a measure for the compactness of the metric space
Let X, X1, X»,... be i.i.d. random elements on a measurable sgate)
with distribution P. The empirical measure of a random sam@lg ..., X,, is
the discrete random measure given by

1 n
(2.2) Pn(A):r_lZ]l{X,'eA}, A € A,
i=1
or, if g is a function onM,
1 n
(2.3) Pag==~2 8(Xy).
i=1

The empirical measure is a random measure supportéén P>, A), where
M =[]y M is the product space of countably many copiesMf P> the
product measure ang* the producto-algebra. The random variablég can
now be identified with theth coordinate projections.

3. Review of discrete time optimal stopping. Let X = (X;);=o.....
discrete timeR™-valued Markov process. We assurkeis canonically defined
on the path spacé& = R™ x --- x R™ of T + 1 factors and identifyX, with
the projection onto the factar We endowX; with the Borelo-algebraB. Let
F; be the smallest-algebra generated byX;|s <t} andF = (F;);-0
corresponding filtration.

Let P be the law ofX on X andu; = Py, the law of X, onR™. We introduce
the spaces of Markol ,-functions

.....

B1) L,X)={h=(ho,....hr)lh; € Ly(R", u;), Vt=0,...,T},

with norm

T T
(3.2) 1Rl =" el p, =D ELlR(X)1PTYP.
=0 1=0
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For brevity, we drop the measurds u; and the coordinate projectiorns; in
our notation whenever no confusion is possible. Alsos i€ L,(X) and X =
(xo0,...,x7) € X is a point of the path space, we introduce the shorthand notation

(3-3) h(X)r = hy(xt).

3.1. Discrete time optimal stopping. In the following f € L1(X) is a nonneg-
ative reward or payoff function. The optimal stopping problem consists of finding
the value process
(3.4) Vi = esssup E[f:(X¢)| %],

€T (t,...,T)
where the supremum is taken over the fandily, ..., T) of all F-stopping times
with values ine, ..., T. Adding a positive constatto the payofff just increases
V; by e. We therefore can assume without loss of generality thatL1(X) is a
positive payoff function. A stopping rule* € 7 (¢, ..., T') is optimal for timer if
it attains the optimal value

(35) Vi :E[fr,*(Xr,*)w:'t]-
Once the value process is known, an optimal stopping rule atrtimigiven by
(3.6) T =inf{s > 1|V, < fi(X)}.

To exploit the Markov property of the underlying procegs we introduce the
value function

(3.7) v(x)= sup E[fr (X)X, =x].

The Markov property implie¥; = v;(X;). Closely related to the value procegs
is the process
(3.8) Q,= esssup E[fi(X))|F]=E[fe

€T (t+1,..,T) rrl

(X, )1 F2],

T
which is defined for alt =0, ..., T — 1. Again, by the Markov property, we get
the representatio®, = ¢,(X;), where

B9 @)= sup  E[f:(X0)|X; =x] ZE[ff;;l(Xr;;l)IXz =x].

teT (t+1,...,T)
We extend the definition of; up to the horizonT and setqgy = fr. The
functiong; is referred to as the continuation value. It represents the optimal value
at timer, subject to the constraint of not stopping aT he value function and the
continuation value are related by

(3.10) v (X)) = max(ft(Xz), QI(XT)), q:1(Xy) = E[vi1(Xr D)1 X¢ ]

The dynamic programming principle implies a recursive expression for the value,
the continuation value and the optimal stopping times. The recursion starts at
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the horizonT with vy (X7) = qr(X7) = fr(Xr) and proceeds backward for
t=T-1,...,0according to

(3.11) v (X)) = max(fi(X,), E[vi+1(X,+1)|X(1),
respectively,
(3.12) q:(Xy) = E[ma)<(ft+1(Xt+1)’ C]z+1(Xz+1))|Xt]-

Similarly, the recursion for the optimal stopping rutgs starts at the horizo
with 77 = T. Givenu,, respectivelyg, and the optimal stopping rule®_, at time
t + 1, the optimal stopping rule* is determined by

(3.13) Tt* = tIL{U[(Xt):ft(XI)} + Tt*+11{v;(X;)>ﬁ(Xt)}

= t1{g,x)<fixo} + Ty liq (X0 > £, (X))

From a theoretical point of view, the value functigrand the continuation valug
are equivalent since they both provide a solution to the optimal stopping problem.
However, from an algorithmic point of view, the continuation value is preferred.
Indeed,q; tends to be smoother than because the max operation introduces a
kink in the value function. We note that in continuous time this kink disappears,
since by the smooth fit principle, the value function connéttssmoothly to the
payoff function along the optimal stopping boundary.

Expression (3.13) for the optimal stopping rule suggests that we consider
stopping rules parameterized by functigns L1(X) with A7 = fr. The terminal
conditionk7 = fr reflects the terminal boundary conditiofj = T'. Let

(3.14) Ori(h) =0(fr —ho), 07, (h)=1=0(fi —hy),

where 6(s) = 10 Iis the heaviside function. Setr(h) = T and define
recursively

(3.15)  w(W)(X) =105, (h)(x1) + T141(M) (X0, (M) (x1), xeX.

For everyh € L1(X), we get a valid stopping rule (4) which does not anticipate
the future, because at each point in timehe knowledge ofX; is sufficient to
decide whether to stop or to continue.

DEFINITION 3.1. The family of stopping rulézr; (h)|h € L1(X), hy = fr}is
called the set oMarkov stopping rules.

The stopping rule; (k) depends only ony, ..., hr—1 and is therefore constant
as a function of the arguments, ... ., x,_1. Moreover, the recursion formula (3.13)
implies that the optimal stopping rutg® at timer is identical to the Markov
stopping ruler; (g).
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Applying the Markov stopping rule; (z) leads to the cash flow:, ;) (X<, x))-
More generally, we define, fotre X5, any O<w < T — ¢, andh € L1(X) with
ht = fr, the function

t+w s—

1
0w (fs )OO =D fi(xs)Or.s () (xs) [T 07, () (xr)
s=t r=t

(3.16) -

+ By ) [ 07, (1) (xr),

r=t

where we follow the convention that the product over an empty index set is equal
to one. The function, . ,( f, #) has a natural financial interpretation. It is the cash
flow we would obtain by holding the American option for, at mastperiods,
applying the stopping rule, (#), and selling the option at time+ w for the price
of h;1y(Xiyw), if it is not exercised before. We cadl; - ,(f, #) the cash flow
function induced byh.

Equations (3.9) and (3.12) provide two different representationg; ofin
terms ofd; -, (f, k), they can be re-expressed as follows. Becapqgel}(xﬁl) =
Jr1@ X 1) = Vev1:7—-1(f, 9), (3.9) becomes

(3-17) q:(X:) = E[Vrq1:7——1(f, @)1 X¢],

whereasd; +1:0(f, ¢) = Max(fi+1, g:+1) turns (3.12) into

(3.18) qr(Xy) = E[D+1:0(f, @) X1 ].

In fact, there is a whole family of representations, parameterizedwby
{O,..., T —t — 1}. Recursively expanding 1, ..., g:+w in (3.12) and using the
Markov property, we find that

(3-19) q1(Xy) = E[V41:0w(f, @) X:],

foranyO<w <T —r— 1.

4. Optimal stopping as a recursive statistical learning problem. The
calculation of the recursive series of nested regression problems (3.19) is becoming
increasingly demanding for high-dimensional state spaces. A further complication
is introduced if the transition densities of the Markov processare not
explicitly available. In this case, the only means to assess the distribution of the
Markov process is by simulating a large humber of independent sample paths
X1,X2,..., X,. These kind of problems are considered in statistical learning
theory.
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4.1. Dynamic look-ahead algorithm.  Assume a payofif € L2(X). We inter-
pret the unknown continuation valye € L>(R™, i) as an approximation of the
unknown optimal cash flow; 11, (f, ¢), in the sense that it only depends on the
state of the underlying Markov process at timdo reduce the problem further,
we choose, for every> 0, a suitable set of function®; defined oriR™. Let

(4.1) JH=1{h=(ho,...,hr): X — RTTYn, € 3¢,).
Given a finite amount of independent sample paths,

4.2) D, ={X1,..., X,},

we want to find a learning ruléy, that is, a map

(4.3) G Dn > G3e(Dp) = (G3¢,0(Dp), ..., Gse,7(Dn)) € H,

such thatg s ,(D,) provides an accurate approximation®f.1., (f,q) in ;.
The dynamic programming principle imposes consistency conditions on a learning
rule.

DEFINITION 4.1. A learning rulejy is called admissible i§ 5 (D)) = fr
and g (D), as a function ofD,,, does not depend on the sample paths up to
and including time — 1, or, equivalently, is a function ¢i; s[s > ¢,i =1, ...,n}
alone.

We apply empirical risk minimization to recursively define an admissible
learning rule as follows. At the horizah we set

(44) C}H,T(Dn) = fr.
Fort < T, equation (3.19) suggests that we approximate the cash flow function
(45) ﬁt-{—l:w(f, é}((Dn)),

for some suitably selected parametes= w(t) € {0, ..., T —t — 1}. We choose

Gse.4(Dy) = a;gJTinPnlh — Vrs1:w(f. Gae (D)2
€Jt;

(4.6)
2

1 n
=argmin= " "|h(X;.) — ¥111:w(f. G (Dn))(X;)
hed; n i=1

which is an element of¢, with minimal empiricalL>-distance from the cash flow
function (4.5). Because the objective function in the optimization problem (4.6)
depends solely on the functiogge s(D,), s =t +1,...,t +w + 1, we see by
induction that the empirical risk minimization algorithm (4.6) indeed leads to an
admissible learning rule.
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REMARK 4.2. It is important to note that, while the functigi.(D,) is a
function of x € X, its choice depends on the samiidg. Therefore gz (D)) is
a random element with values i which is defined on the countable product
space(X >, P>, £°°). Strictly speaking, for a sample sizg only the first
n coordinates of*° are relevant. Analogously, the expectation

(4.7) Elie (D) = [ ax(Di)00dP ()
of g3 (D,) over the path spac¥ is still a random variable ot *°.

DEFINITION 4.3. The dynamic look-ahead algorithm with look-ahead para-
meterw = w(t), 0<w() < T —t — 1, approximates the continuation valyeby
the empirical minimizeg s ,(D,) of (4.6).

The cash flow (4.5) depends on the nex# 1 time periods, hence, it “looks
ahead"w + 1 periods. The algorithm is called “dynamic” because the look-ahead
parameteiw may be chosen time and sample dependent. We simplify our notation
and drop the explicit dependency on the saniplethe sample size and the look-
ahead parametan, writing g, for the solution of the empirical minimization
problem (4.6).

4.2. Tsitsklis~Van Roy and Longstaff-Schwartz algorithm. Both the
Tsitsiklis—Van Roy and the Longstaff-Schwartz algorithm are special instances
of the dynamic look-ahead algorithm. The Longstaff-Schwartz algorithm is based
on the cash flow function

LS
(4.8) V= fft+1(t7;e) (sz+1(ti%))7

which corresponds to the maximal possible value= T — ¢ — 1. On the other
extreme, the choice = 0 in (4.5) results in the much simpler expression

(4.9) PR = max(fi41. Gre.r+1),

used in the Tsitsiklis—Van Roy algorithm. In its initial form, this algorithm has
been developed to solve infinite horizon optimal stopping problems of ergodic
Markov processes. The advantageﬁj?fl is its numerical simplicity. On the

other handﬂ}fl is better suited to approximate the optimal stopping rule because
it incorporates all future time points up to the final horizon. This property is
particularly important for a Markov process with slow mixing properties.

The dynamic look-ahead algorithm introduced in Definition 4.3 interpolates be-
tween the Tsitsiklis—Van Roy and the Longstaff—Schwartz algorithm. A dynamic
adjustment of the look-ahead parametes w(¢) allows us to combine the algo-
rithmic simplicity of Tsitsiklis—Van Roy and the good approximation properties of
the Longstaff—-Schwartz approach. For instance, we may incie@sdor the last

few time steps to compensate the slow mixing of the Markov process.
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5. Mainresults. In our definition of the dynamic look-ahead algorithm (4.6),
we did not further specify the approximation scheme. The richer the set of
functions #¢,, the better it can approximate the optimal cash flow. On the other
hand, large setg¢, would require an abundance of samples to get a minimizer
in (4.6) with reasonably small variance. These conflicting objectives are generally
referred to as the bias-variance trade-off. To get a reasonable convergence behavior
of the dynamic look-ahead algorithm, we need to impose some restrictions on the
massiveness of the approximation spa#snd relate it to the number of samples
which are used to calculate the minimizers in (4.6).

The massiveness of a set of functions can be measured in terms of covering and
entropy numbers. The calculation of covering numbers of classes of function has
a long history dating back to Kolmogorov and Tikhomirov [29] and Birman and
Solomyak [8]. We refer to [13] for a modern approach and additional references.
An important type of function class for which covering numbers can be estimated
with combinatorial techniques are the so called Vapnik—Chervonenkis classes or
VC-classes, which are, by definition, classes of functions of finite VC-dimension.
Informally speaking, the VC-dimension measures the size of nonlinear sets of
functions by looking at the maximum number of sign alternations of its elements.
To give a precise definition, we consider a class of functgrdefined on some
setS. A set ofn points{xy, ..., x,} C S is said to be shattered Isyif there exists
r € R" such that, for every € {0, 1}, there is a functiorg € ¢ such that for
eachi, g(x;) > r; if b; =1, andg(x;) <r; if b; =0. The VC-dimension u&) of
g is defined as the cardinality of the largest set of points which can be shattered
by &. The function classes that will appear in the analysis of the fluctuations of the
empirical minimizers (4.6) very well fit in the theory of Vapnik—Chervonenkis. We
introduce the necessary tools of the VC-theory on the way as we prove the main
results in Section 6.

Our error decomposition crucially depends on the convexity and the uniform
boundedness of the class of functiof&. We will impose, for allz > 0, the
following three conditions:

(H1) The class¥; is a closed convex subset bf,(R™, i) for some 2< p < oc.

(H2) There exists a constant such that the VC-dimension off, satisfies
VC(H;) < d < 0.

(H3) The class#,; is uniformly bounded, that is, for some constdit |A,| <
H <ocoVh; € #.

The convexity and uniform boundedness assumption, fldspectively, (H) are
somewhat restrictive, but encompass many common approximation schemes, such
as bounded convex sets in finite-dimensional linear spaces, local polynomial
approximations or tensor product splines.

5.1. Consistency and convergence. The payoff function of an optimal stop-
ping problem is often unbounded. For example, in option pricing even the simplest
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payoff functions of American put and call options increase linearly in the underly-
ing. On the other hand, any numerical algorithm works at finite precision and tight
error or convergence rate estimates rely on some sort of boundedness assumptions.
We therefore introduce the truncation operafgr which assigns to a real valued
function g the bounded function

_|& if gl < B,
sign(g)B,  else

andtog € L ,(X) its coordinate-wise truncatidfy g = (Tggo, - .., Tggr). We then
replace the estimator (4.6) by

N N . N 2
(5:2)  Gge,.t =q4se,.:(Dp) =argminPy|h — 9141w (Tg, > Gae, (Dn)) |,

heHy ¢

(5.1) Tgg

whereTyg, f is the payoff truncated at a thresh@dgl. The estimator (5.2) rests on
the hypothesis that whenevéy,, ;(D,) is an approximation o for s > ¢ + 1,
then the cash flow), 1., (T3, f. Gs,(Dy)) is a sufficiently accurate substitute for
the unknown optimal cash flow; 1., (T, f,q). We justify this hypothesis in
Proposition 6.4 by proving a conditional Lipschitz continuity of the functional
h — V;41:0(Tg, f,h) at g. The error propagation of the recursive estimation
procedure is resolved in Corollary 6.2, which relies on the convexity of the
approximation architecture.

The first main result provides a sufficient condition on the growth of the number
of sample paths, the VC-dimension V¥, ;) of the approximation space#), ;
and the truncation leves, to ensure convergence. LEX >, P*°, £°°) be the
countable product space introduced in Remark 4.2. We use the nabatioR>°
and denote biE the expectation with respect ko

THEOREM 5.1. Assume the payoff f isin Lo(X) and #, is a sequence
of approximation spaces uniformly bounded by 8, such that (J;2, #, is dense
in Lz(X). Furthermore, assume that each #,, is closed, convex and
VC(Hp ) <d,. Let gz, , be the empirical Lo-minimizer from (5.2) for a look-
ahead parameter 0 < w(t) < T — ¢t — 1. Under the assumptions

dnBr109(Bn)

(5.3) By, — o, d, = 00, 0 (n — 00),
n
it follows that
(5.4) |6, — a:, — O,
in probability and in L1 (P). If, furthermore,
2|
(5.5) Bilogm) 0,

n
then the convergence in (5.4) holds almost surely.
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For the proof see Section 6.3.

Theorem 5.1 proves convergence of the truncated version (5.2) of the dynamic
look-ahead algorithm. It generalizes previous results in two directions. First, the
number of samples, the size of the approximation architecture (measured in terms
of the VC-dimension) and the truncation threshold are increased simultaneously.
Glasserman and Yu [21] address the same question for the Longstaff-Schwartz
algorithm with linear finite-dimensional approximation. They avoid truncation by
imposing fourth-order moment conditions and find that the number samples must
grow surprisingly fast. For example Xf; is log-normally distributed ana denotes
the dimension of the linear approximation space, the number of samples must be
proportional to exp:?). Second, Theorem 5.1 covers approximation architectures
of bounded VC-dimension and does not depend on the law of the underlying
Markov process. For instance, the convergence proof of Clément, Lamberton and
Protter [15] relies on the additional assumptiBty = f) = 0.

In (5.2) we reduce unbounded to bounded payoffs by truncating at a suitable
cutoff level. The next result bounds the approximation error in terms of the cutoff
level.

PROPOSITIONS.2. Let 1< p <oo and f € L,(X) be a nonnegative payoff
function. If g4 is the continuation value of the truncated payoff 7 f, it follows
that

(5.6) llgr — Gg.cll, = O,
for 8 — co,andif 1 <r < p, then
r 00 1/r
G7) g —apilr< ) (r/ﬂ WP (fip1 > u)du) < 0(BTPI7).
s=t+1

For the proof see Section 6.5.
The bound (5.7) can be refined in terms of Orlicz norms. The Orlicz norm of a
random variabld is defined as

(5.8) IYlly =inf{C > O[E[y (|Y|C™H] < 1},

wherey is a nondecreasing, convex function witfi0) = 0. Note that) (y) = y”
reduces to the usudl,-norms. If|| f;11lly < oo, Markov’s inequality implies the
tail bound

1
(5.9) P(frpamu) s ———,
T Gl il D

which we then can apply to the middle term in (5.7). In particulag(x) =
exp(x?) — 1 leads to the exponential bound

(5.10) P(fis1>u) < exp(—u |l firallyh) (1 — exp(—B | fraall, 1)
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for all u > 8. In financial applications a typical situation fs.1 = f(exp(X;+1)),
whereX; 1 is normally distributed ang'(y) < Cy? has polynomial growth. The
tail estimate

(5.11) P(fix1>u) < O<Iog(u) exp(— |Og(u)2)>

is a direct consequence of the well-known asymptotic expansion
1 3

(5.12) 1-®w) sqb(u)ul(l— —+—+ 0(u6))
u u

for the tail of the standard normal distributidnwith density¢. (5.11) improves
the rate of orde (81~7/") in (5.7) considerably, despite the logarithmic terms in
the exponent.

5.2. Error estimate and sample complexity. Theorem 5.1 shows that si-
multaneously increasing the truncation threshold, the VC-dimension of the
approximation architecture and the number of samples at a proper rate, the re-
sulting estimator (5.2) converges to the solution of the optimal stopping problem.
Proposition 5.2 quantifies the error of an initial truncation at a fixed threshold.
We continue the error analysis of the dynamic look-ahead algorithm by truncating
unbounded payoffs at a sufficiently large thresh®ldnd considering a single ap-
proximation architecture?. The second main result bounds the overall error for
bounded payoff functions in terms of the approximation error and the sample error,
generalizing the familiar bias-variance trade-off in nonparametric regression and
density estimation.

THEOREM 5.3. Consider a payoff f € Loo(X) with || fillcoc < ©. Assume
that each #; is a closed convex set of functions, uniformly bounded by H, with
vC(H;) <d. Let Gz (Dy) bethe empirical Lo-minimizer from (4.6) for a look-
ahead parameter O<w(@) <T —t — 1.Set B = max(®, H). Then,

ElllGse.:(Dn) — q:113]

<2.16""  max inf ||k — g3
(5.13) s=t,... 1+w(t)+1heH;
699832 + log(6998K 82 lo
n n

where
v=2d(cw(®)+1), K =6e*d+1?(c(w(r)d + 1)*(10248)"
and

c(w()) =2(w(t) + 2) logy(e(w(r) + 2)).
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For the proof see Section 6.3.

The effectiveness of a learning algorithm can be quantified by the number of
samples which are required to produce with high confideneeslan almost
minimizer
(5.14) 11gses(Dn) —arl3 < inf Ih —qil5+e  ¥r=0....T-1,

for a certain error accuraey In (5.14) the error is measured relative to the minimal
approximation error at time step It is evident from (5.13) that an accurate
estimate is only obtained if the approximation error in all previous learning tasks
is small as well. To disentangle sample complexity and approximation error, we
measure the performance of the learning rule relative to the overall approximation
error in (5.13).

COROLLARY 5.4. Assume f € Loo(X) with || fi]loo < © and let #¢ be asin
Theorem 5.3. The sample complexity

c(g,8) = min{no“v’n > no,

(5.15) P(||éﬁ,z<dn) — a3

>2.16"® max inf ||h — qs||%+8> < 3}
s=t,...,t+w(t)+1hehg

of the empirical Ly-minimizer (4.6)is bounded by

(5.16) c(e,8) <2-1399Gw(r) + 2)16w(’)ﬁ2max<;—L |og(§), v Iog<1>>,

€
where 8, v and K areasin Theorem5.3.

For the proof see Section 6.3.

Theorem 5.3 and Corollary 5.4 estimate the sample error for a fixed approx-
imation scheme and truncation threshold. The bound (5.13) and the complexity
estimate (5.16) hold uniformly for any law of and payoff functionf with
I/l < ®. Hence, the bounds are independent of the distribution of the un-
derlying Markov process, the optimal stopping time and the smoothness of the
continuation value. The asymptotic ratlog(n)n—1) of the sample error [the
second term on the right-hand side of (5.13)] is typical for nonparametric least
square estimates with approximation schemes of finite VC-dimension, see, for ex-
ample, [22], Theorem 11.5.

If we impose additional assumptions on the smoothness of the continuation
valueq, the approximation errors ipd g, , ||h — qs||% in (5.13) can be estimated
further by approximation theory. Smoothness assumptions are not unreasonable.
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Although for many financial applications the payoff is only continuous or
piecewise continuous, the continuation value is often smooth. The degree of
smoothness of is crucial for how to choose approximation spacés to get

the most favorable rate of convergence by properly balancing the approximation
error and the sample error.

Smoothness is often measured in terms of Sobolev spa&(s&p(sz,/\)),
whereQ C R™ is a domain inR™ andA is the Lebesgue measure &n These
are functions € L, (2, A) which have all their distributional derivatives of order
up tok in L,(2,1). The Sobolev (semi-)normig|l, k0,2 May be regarded as a
measure of smoothness for a functipa W"(L,,(Q, A)).

In practical applications of the Longstaff-Schwartz algorithm, approximation
by polynomials performs rather well. Lef, be the space of multivariate
polynomials onR™ with coordinate wise degree at most- 1. For simplicity,
we assumeX; is localized to a sufficiently large cublec R™. This assumption
can be satisfied by applying a truncation argument similar to the one developed in
Proposition 5.2.

COROLLARY 5.5. Assumethat X; islocalizedtoacube I C R", f € Ly (X),
and that the continuation value ¢; isin the Sobolev space W* (Lo (1, 1)) for all .
Define the sequence of approximation architectures

(5.17) Hnt ={p € Pyym+201lPlloc, 1,0 < 211qt ll oo,k 1,1}
Then,
(5.18) E[||Ge,.(Dn) — ¢ ]3] < O (log(ryn =2/ @+m),

If u; has a bounded density with respect to the Lebesgue measure and ¢, €
Wk(Lp(I, A)) for some p > 2, the same result holds if we replace #, ; in (5.17)
by

(5.19) Hy,e = {p € Pyvo20lIPllp 15 < 20qell pok.1.1}-

PrROOE The result essentially follows from Jackson-type estimates, Theo-
rem 6.2 in Chapter 7 of [18]. See Section 6.4]

Corollary 5.5 is a prototypical application of Theorem 5.3 to global approx-
imation by polynomials. Other approximation schemes can be treated similarly,
as long as the conditions {H-(H3) are satisfied. To get the rate stated in Corol-
lary 5.5, the dimension”/™+2%) of the polynomial approximation architecture
(5.17) has to grow with increasing sample size, such that the approximation error
and the sample error are balanced. The rate (5.18) is up to a logarithmic term the
lower minimax rate of convergence for estimating regression functions; see [47].
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5.3. Discussion and remarks. The Longstaff—-Schwartz algorithm and its
generalization, the dynamic look-ahead algorithm, perform surprisingly well for
many practical applications, such as pricing American options which are not too
far in or out of the money. This empirical observation can be explained as follows.
It follows from (3.19) that an approximation of the optimal cash flyw -, (f, q)
can be used to estimate the continuation value at timecloser look at definition
(3.16) shows that for the maximal possible value=T — ¢t — 1 the cash flow
%+1:w(f, h) is close (in thel.o-sense) to the optimall; 1., (f, ¢) if the signs of
f —h andf —q disagree only on a subset of the path space with small probability,
or, equivalently, if the probability of the symmetric difference,

(5.20) P{f —h>0A{f —q >0},

is small. Note that a small probability (5.20) does not necessarily entail that the
functionsh andgq are close in thé.o-sense. If the look-ahead parameiesatisfies
w<T—1t—1,theny; 1., (f, h) is agood approximation of the optimal cash flow

if, in addition to a small probability (5.20), also tlie-distance betweeh; 1, +1

and the unknown continuation valye, 11 is small. Consequently, a look-ahead
parameter &< w < T — ¢ — 1 requires good approximations f@g+1, ..., gr-1.
Determining accurate and stable estimators fomwith 7 close to 1 may be
difficult to achieve, in particular, if the samples of the Markov process do not
cover sufficiently large parts of the state space. This explains why the Tsitsiklis—
Van Roy algorithm (corresponding to = 0) may perform badly for finite horizon
problems.

As opposed to the empirically demonstrated efficiency of the Longstaff—
Schwartz algorithm, the results of Theorem 5.3 and Corollary 5.4 are somewhat
pessimistic. For practical parameter valuess, d, w and large enough cutoff
level 8, the sample complexity bound (5.16) leads to a very large sample size. The
reason for the pessimistic sample size estimates is twofold. First, the estijpator
is sensitive to error propagation effects caused by the backward induction. This
leads to error estimates such as (5.13) which depend exponentially on the number
of look-ahead periodsv(z). The minimal choicew = 0 would resolve the
exponential dependence but, as explained above, may have limited capabilities to
approximate the optimal cash flow. Another reason is the generality of our error
estimates. We already observed thatleads to an accurate approximation of the
optimal cash flow if the probability of the symmetric differenf&{ f — gy >
O}A{f — g > 0}) is small. However, it is difficult to derive error estimates
which take this effect into account without imposing additional assumptions on
the smoothness of the payoff and the distribution of the stopping time in the
neighborhood ofg = f}.

We considered in this work estimators based on straightforward empirical
Lo-risk minimization. A deficiency of the simple estimator considered in Corol-
lary 5.5 is that the degree of smoothness and an upper boufig;fg « 7., has to
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be known. There exists a variety of advanced nonparametric regression estimators
which have been developed to cope with the shortcomings of the basic empirical
risk minimization procedure. The main generalizations in this direction are sieve
estimators studied, for example, by Shen and Wong [45], Shen [44] and Brige and
Massart [10], adaptive methods such as complexity regularization, penalization
and model selection; see [3, 22] and the references therein.

The benefit of conditions (P—(H3) is that convexity arguments and
VC-techniques lead to error estimates without the necessity of imposing further as-
sumptions on the Markov proceXs On the downside, some important commonly
used approximation schemes are excluded. For instance, conditidedhflicts
with approximation in Sobolev or Besov balls, which have infinite VC-dimension,
and the convexity condition (#J is incompatible with many interesting nonlinear
approximation schemes, such agerm approximation, wavelet thresholding or
neural network architectures.

A promising approach to extend and refine the results of this work is to
approximate the cash flow,.,(f,h) by a suitably smoothed version with
better Lipschitz continuity properties. We then can express the massiveness of
the approximation schemes directly in terms of covering numbers and exploit
the dependency of the covering numbers on the radius of the function class.
The additional step of first bounding the VC-dimension becomes unnecessary.
However, this approach is of less generality because it depends on the additional
assumptions that the probabiliB({|g — f| < €}) decays to zero as— 0 and the
semi-group generated by the Markov proc¥dsas good smoothing properties.

Once we have selected a sequence of approximation architecisresthe
final step toward an implementation is to determine a computationally efficient
algorithm that minimizes the empiricdly-risk (5.2) over#,  in a polynomial
number of time steps. Unfortunately, for many approximation spaces, such
as certain neural network architectures, constructing a solution which nearly
minimizes the empiricalo-risk turns out to be NP-complete or even NP-hard.
Thus, there might still exist serious complexity theoretic barriers to efficient
numerical implementations of specific approximation schemes.

6. Proofs. The proof of the main results, Theorems 5.1 and 5.3, is divided
into tree steps. The strategy is as follows. First, we prove in Corollary 6.2 an
error decomposition in terms of an approximation error and an expected centered
loss (6.3). The second step is to estimate the covering numbers of the so called
centered loss class (6.28), see Corollary 6.10. The last step is to apply empirical
process techniques to bound the fluctuation of the expected centered loss in terms
of the covering numbers.

6.1. Error decomposition. We assume from now on without further mention-
ing that# C L»(X) and that all approximation spacéé are closed and convex.
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Before we can state our main error decomposition we need to introduce some more
notation. Let

(6.1) 7, - La(R™, ) — H;
denote the projection onto the closed convex subiget L>(R™, u,) and set
(6.2) Pry, =, o E[-|X; =11 L2(X, P) — H;.

For anyh = (ho, ..., ht): X — RT+1 with hr = fr, we introduce the centered
loss

(6.3) Li(h) =1 = Dry1:w(fs DI = [Pry, D1 (fo 1) = 1w (S, |

In favor of a more compact notation, we have dropped the dependerigy: bf
on the look-ahead parameter Note that the centered logs$/) only depends on
hy,...,hr—_1 and can take on negative values. Howevgl, (4)] > 0, as we will
see in Lemma 6.3.

We decompose the overall error into an approximation error, a sample error and
a third term which captures the error propagation caused by the recursive definition
of the dynamic look-ahead estimator.

PROPOSITIONG6.1. Assume that gz is the result of an admissible learning
rule. Then

t+w—+1

(6.4) Nlgse.s —aillz = inf |k —gillz+ EU @) +3 37 Nldse.s —asllz.
! s=t+1

In general, we cannot approximate.1 -, (f, ) by functionsi, € Lo(R?, ;)
arbitrarily well and, therefore,
(6.5) inf E[lh — 941:0(f. 4#)°1> O,
h,eJ(’[
For this reason we base our error decomposition (6.4) on the more complicated

centered loss function, which expresses the sample error relative to the optimal
one-step expected loss

(6.6) E[|Pry, Or41:w(fs dae) — D110 (S, a0))%]-

The first term on the right-hand side of (6.4) is the approximation error, a de-
terministic quantity, which can be analyzed by approximation theory. The second
term E[l;(Gs)]1%/? is usually referred to as the sample error. The last term in (6.4)
collects the error propagation introduced by the previous learning tasks through
the dynamic programming backward recursion.
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COROLLARY 6.2. Let
(6.7) er= inf lh—qll2+ Ell:(g)1%?
heﬂ,

denote the one-step error. Then,

t+w+1

(6.8) Idses —ailla<e +3 Y &4 le,
s=t+1

and

(6.9 l1gses —aillz <4t max (inf ||h—qs||z+E[zs<c}m]1/2).
s=t,....t+w+1\heH,

ProoF This follows at once from (6.4) by recursively inserting the error
estimate (6.4) fos >t +1. O

The proof of the error decomposition (6.4) crucially relies on the convexity of
the approximation spaces, Lemma 6.3 and a Lipschitz estimat& fer,, ( f, k)
as a function of:, Proposition 6.4.

LEMMA 6.3. Denote by
(6.10) pr(M)(x) = E[Dr41:0(f, D)X = x]
the regression function of 9,1, (f, k). For any h € # with hy = fr,
(6.11) | — ﬂ;ft,ot(h)Hg = e —pry, Orv1:u(f, h)H% < E[l;/(h)].
In particular, E[I;(h)] > O.
ProoF The proofis identical to the proof of Lemma 5 in [17]. Becapgé)

is the regression function @f 1, (f, &), which only depends ol 11, ..., hr_1,
we have, for all; € La(R?, u;),

(6.12) ks — pr (W3 = Ellhy — Ors1:0(fs )% = 101 (B) = Ory1:0(fr )7

Let h € ¢ be arbitrary. Since#(; is convex and since pf Or1.w(f, h) =
7z, pr(h) minimizes the distance to (h), it follows that

(6.13) <Pt(h) — 13,00 (h), hy — T3, ,Ot(h)> <O0.

Therefore,
IPrse, Drt:w (o h) = hel5 = |76, 00(h) = he |5

(6.14) ) 5
< llps(h) — h¢ll5 — ”/Ot(h) - an,Pt(h)Hz-
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Because both; andr g, p; (h) are in#; we can apply (6.12) twice, which shows
that the right-hand side of (6.14) is equal to

o () — hell3 — | e (h) — w30, 00 (W) |5
(6.15)

= E[lhy — Or41:0(f. )2 = 36,00 (h) — D10 (f. ). O

Forw = 0, we immediately obtain frorrmax(a, x) — maxa, y)| < |x — y| and
Jensen’s inequality the uniform Lipschitz bound

(6.16)  IE[i+1:0(f,8) — Prit1:00f, WIXi lp = 18r+1 — hutallp-

More generally, we have the following conditional Lipschitz continuity at the
continuation value.

PROPOSITIONG6.4. Foreveryh e L,(X)withhr = frandO<w <T —1,
IEMi41:w(fs WDIXi] = gillp
(6.17) = E[0i41:w(fs h) — MaX(fi4+1, gr+D1 X1 p
= E@D+1:0w(fi 1) = P10 (fs 1 X p-

Furthermore,
t+w+1

(618) ”E[ﬁt—l—l:w(fv h) - ﬁt—i—l:w(f’ Q)lXt]”p = Z ”hs — s ”p
s=t+1

A similar estimate for the special case=T7T — ¢t — 1 can also be found
in [15]. Note that the uniform Lipschitz estimate (6.16) does not extend $00.
Proposition 6.4 only provides a Lipschitz estimate at the continuation value.

PROOF First note that, from the Markov property,

(6-19) E[941:w(q) — Yq1:wM) X ] = E[D141:w(q) — Vrg1:wh)|F].

Equation (6.17) follows directly from the recursive definitiorypfThe casey =0
is covered in (6.16). Faw > 0O, it follows from the definition o, 1., that

IEW+1:w(q) — 91w (W F
<|E[fi+1(071+1(q) — O f.141(h))
07 1@V 20-1(@) = 07, 1 (WD 20-1(WIF]| -
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Adding and subtracting the terga 1(6r,:+1(q) — 61,:+1(h)), the triangle inequal-
ity implies
IE[O1+1:w(q) — Dr1:w (W) Fe]l p
< |E[(fi+r — @10 (O f1+1(@) — Or12(W) I F2]],
+[E[67, 1@ 12:0-1(q)
- 9;t+1(h)19t+2: w-1(h) + qr41(07,141(q) — Of.41(h)) | F7] Hp
Now

Or14+1(q) = Opi41(h) =L 1>, 1) — L fiya=hisa)

=10<fiy1—qrr1<tiri—air1) — Lhii1—gri1<fir1—qi11<0}>

which leads to
(fi+1—g1+1) (]l{Oifz+l—611+1<ht+1—¢1t+l} - ]l{h,+1—q,+1§f,+1—q[+1<0})
< (he41 = qr+D Lhy 1 —gi1>0) — Pl — @+ DL, 1—g,11<0)
<lht+1— qi11l.

By the Markov propertyg, +1(X;11) = E[9/12:w-1(¢)|Fi+1]. Becaus#,1(q)
andéy;1(h) areo (X;+1)-measurable, it follows that

E[qi+10f+1(q) — 0f,141(h)) | F]
(6.20) =E[E[0142:w-1(@| Fi+110 f,14+1(q) — 05, +1(h))| F]
= E[V142:w-1@)(Of.r+1(q) — Op111(W) | F¢].
By Jensen’s inequality, this leads to
IEDr+1:w(q) — D10 (W F] p
< lgr+1 — hesallp
+ [ E[¥r2:0-1(@) (L= 0p.141(0) — Dry2:w-2(MOF, 1 (DI F]],
= gr+1 = husallp + |E[(Dr42:0-1(9) = Or42:0-2(W)0,  (WIF]],
< Mgr+1 = hetallp + | E[Or42:w-1(q) — Or42:w—1(h) | Frialll p-
The proof is completed by induction ]

PROOF OFPROPOSITIONG6.1. Introduce the regression function
(6.21) p3.1(x) = E[Dr41:w(f, §2)| X; = X]
of %1411:w(f, g5) and let
(6.22) G =T, P30 = Plyg, Vr1:w(fs de)
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be its projection ont@, . By the triangle inequality,

(6.23) gt — qill2 < 1qse.t — qoeicll2 + 11qse.c — Paeill2+ 1 03e,c — qill2.

Again, by the triangle inequality and becau&g is convex so that the projec-
tion g, from Lo(R™, ;) onto #; is distance decreasing,

IGge.c — Paeill2 = |7z P30 — et
(6.24) = Hﬂﬂ,ﬁ,}t’,t — Ty, 4t “2 + H”Jt’,% —4q: “2 +llg: — psecll2
< |ws.qr — qelly + 2llg: — psesll2:
Inserting (6.24) back into (6.23) gives

(6.25) 1Igz, —qill2 < hien;f Ih —qill2+ 1dse.: — qe.ell2 + 3l pse.c — qull2.
t

By Lemma 6.3,
(6.26) IGse.c — Goecllz =Gz — 730 Pges |l < ElL(G3e)1Y2.
For the third term in (6.25), by Proposition 6.4,

1556, — qell2 = | E[Dr11:w(f. G3e) — Dr1:0(fs @1 Xe1ll2

(6.27) t+w+1

< D ldss —asll2-

s=t+1 O

6.2. Covering number bounds. We define the so-called centered loss class
(6.28) Li(H) ={l;(h)|h € H}.

To bound the fluctuations of the sample erii¥, (§)1/? later on in Section 6.3,
we require bounds on the empirich}-covering numbersV (e, L;(F#), d1, p,) of
the centered loss class.

The first step is to bound the covering numbers®Hi#) in terms of the
covering numbers of¢; and the cash flow class which is defined as

(6.29) Gt = {10 (f, W)Ih € H}.

LEMMA 6.5. Let1l< p <oo.If #; isuniformly bounded by A and the cash
flow class 4, by ©, then, for w > 0,

(6.30) N(8(H + ©)e, Li(H).dy p,) < N(e, H,.dp.p,)°N(e. G, dp.p,)>.
For w = 0, the estimate (6.30)simplifies to
(6.31) N(8(H + ©)e, Li(H).dp.p,) < N(e, Hy.dp.p,)*N(e, Hiy1.dp. p,)°.
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Note that if the payoff functiory is in L,.(X) and the approximation spaces
J, are uniformly bounded by7, then®; 1., (f, h) < ® = max(|| f|l~, H) and
the assumptions of Lemma 6.5 are satisfied.

PrROOF OFLEMMA 6.5. We first recall some basic properties of covering
numbers. IfF and§ are two classes of functions afd+ g ={f + g|f € F,
g € 4} is the class of formal sums or differences, then, for ail 2 < oo,

6.32)  N(e.F+6.dpp)< N(% 7, d,,,Pn)N(%, g, d,,,P,,>.

Furthermore, ifg class of functions uniformly bounded by, it follows from

lef — g3lIb . = Pu(g1— g2)7(g1+ 82)7 < (2G)P g1 — g2} p, that

(6.33) N(e, 4% dp p,) < N(% - dp,Pn)’
Enlarging a class increases the covering numbers. Now
(6.34) Li(H) C (s — G2 — (Pry, G — Go)°.

Because py, §: C #;, itis sufficient to bound the covering number of the slightly
larger class

(6.35) Li(H) = (H: — §)? — (H — )%

If #, is uniformly bounded byH < oo and 941, (f, h) < ®, we get from
(6.32) and (6.33)

N(e, £i(H),d, p,)
(6.36) P 2 €
= <8(H +o) 7 d’”’") N<8(H +0)
Forw = 0, the Lipschitz bound (6.16) directly leads to
(6.37) N(e, 9:,dp p,) < N(e, Hit1,dp p,).
(6.31) follows directly from (6.36) and (6.37)[]

2
79’l‘adp,Pn) .

A simple example for which tight covering number bounds exists are subsets of
linear vector spaces. Ift, = {h € X|||h]lcc < R} and X is a linear vector space
of dimensiond, then

4R d
(6.38) N(e, Hi,d2.p,) < N(e, (h € K|P,h? < R?),da p,) < ( i 8) :
The first inequality in (6.38) is obvious becaus#k is a subset ofh € X |P,h? <

R2}. The second inequality is standard and can be found, for instance, in
[13] or [51].
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Inequality (6.38) would provide uniform covering number estimates for (6.31)
in case of linear approximation spaces ang 0. We can not apply (6.38) to upper
bound the right-hand side of (6.30) in the general situation 0 because the cash
flow class§; is not anymore a subset of a linear space, even if the underlying
approximation spacé; is a finite-dimensional linear vector space. This is where
the Vapnik—Chervonenkis theory comes into play.

An important type of function class for which good uniform estimates on the
covering numbers exist without assuming any linear structure are the so called
Vapnik—Chervonenkis classes or VC-classes, introduced in [55] for classes of
indicator functions, that is, classes of sets. Celbe a class of subsets of a set
We say that the clas€ picks out a subsef of a seto, = {x1,...,x,} C S
of n elements ifA = C N g, for someC € C. The classC is said to shattes,,
if each of its 2 subset can be picked out §. The VC-dimension of® is the
largest integer such that there exists a set mfpoints which can be shattered
by ¢, that is,

(6.39) Ve(@) = supin| A, (C) = 2"},

where

(6.40) A,,(@):{ max}card{Cﬂ{xl,...,anCeG}
X1yeeer X

is the so-called growth or shattering function. A cladsis called a Vapnik—
Chervonenkis or VC-class if ¥€) < co. A VC-class of dimension shatters

no set ofd + 1 points. The “richer” the clase is, the larger the cardinality of
sets which still can be shattered. We illustrate it by a simple example. The class
of left open intervalg(—o0, c]|c € R} cannot shatter any two-point set because

it cannot pick out the largest of the two points and therefore has VC-dimension
one. By similar reasoning, the class of intervflsa, bl|a, b € R} shatters two-
point sets, but fails to shatter three-point sets: it cannot pick out the largest and the
smallest point of a three-point set. On the contrary, the collection of closed convex
subsets ofR? has infinite VC-dimension: Consider a sgt of n points on the

unit circle. Every subsed C o, of the 2 subsets can be picked out by the closed
convex hullco(A) of A. A peculiar property of a VC-class is that the shattering
function of VC-classes grows only polynomially in more precisely, we have the
following result which is due to Sauer, Vapnik—Chervonenkis and Shelah; see [51],
Corollary 2.6.3, or [19].

LEMMA 6.6 (Sauer's lemma). If € is a VC-class with VC-dimension d =
ve(C@), then

d

d d
(6.41) INGEDD (’;) < 1.5% < (%) .

i=0
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VC-classes have a variety of permanence properties which allow the construc-
tion of new VC-classes from basic VC-classes by simple operations such as com-
plements, intersections, unions or products. We again refer to [51], Section 2.6.5,
or [19].

The concept of VC-classes of sets can be extended to classes of functions
in several ways. A common approach is to associate to a class of functions its
subgraph class. More precisely, the subgraph of a real-valued funct@mman
arbitrary setS is defined as

(6.42) Gr(g) ={(x,t) e S xRt < g(x)}.

A class of real-valued functiong on S is called a VC-subgraph class, or just
VC-class, if its class of subgraphs is a VC-class and the VC-dimensignief
defined as

(6.43) ve(§) = ve({Gr(g)lg € §}).

An equivalent definition is obtained by extending the notion of shattering. A class
of real-valued functiong is said to shatter a séty, ..., x,} C S ifthere isr ¢ R”

such that for every € {0, 1}", there is a functiorg € § such that for eacl,

g(x;) >r; if b =1, andg(x;) <r; if b; = 0. The definition

(6.44) ve($) = supn|3{x1, ..., x,} C S shattered by}

agrees with (6.43). For the proof note that a set is shattered by the subgraph class
{Gr(g)|g € 4} if and only if it is shattered by the class of indicator functions
{0(g(x) —t)lg € 4}, wherebd(s) = 1(;>0y. The VC-dimension (6.44) for classes

of functions is often called pseudo-dimension, see [23] and [41]. An alternative
generalization is obtained by so called VC-major classes, originally introduced by
Vapnik. For more details on the relation of the two concepts, we refer to [19].

LEMMA 6.7. Let ¢ be a finite-dimensional real vector space of measurable
real-valued functions. Then, the class of sets §* = {{g > 0}|g € ¢} isa VC-class
with ve(g1) < dim(4). If go is a fixed function, then vc((go + §)™) = ve(g™).
Finally, ¢ isa VC-classand vc(4g) = dim(4).

PrROOF For the first two statements we refer to [19], Theorem 4.2.1, or [51],
Section 2.6. The last statement follows from the first two: ¢gtc, 1) = —r and
consider the affine class of functiogg+ ¢ on S x R. Then, the subgraph class of
g is precisely(go + ). O

An important property of VC-classes is that their covering numbeécs,
4,d, ) are polynomial ine=1 for ¢ — 0. More precisely, we have the following
estimates for the covering numbers of VC-classes due to Haussler [23]; see also
[51], Theorem 2.6.7.
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LEMMA 6.8. Let § C L,(n) be a class of functions with an envelope G <
L,(n),thatis, g <G for all g € §. Then,

¢\ PVC(§)
(6.45)  N(lGlpus G dp) < e(ve§) + 1)2vc<9>(_e> ,
&

After this short digression on VC-theory, we continue estimating the empirical
L1i-covering numbers of the centered loss clagg#). The next result is
fundamental to generalize the estimate (6.31) to a strictly positive look-ahead
parameter > 0. It bounds the VC-dimension @f, in terms of the VC-dimension
of the approximation space®; .1, ..., Hr1wi1.

PROPOSITIONG.9. Assumethat, for all s > ¢, #, are VC-classes of functions
with ve(#;) < d. Then g, isa VC-class with VC-dimension

(6.46) ve(§r) < c(w)d,
where c(w) = 2(w + 2) logy (e(w + 2)).

Inequalities (6.30), (6.31), (6.45) and (6.46) finally lead to explicit uniform
bounds for the empirical1-covering numbers of the centered loss Cl&$67).

COROLLARY 6.10. Assume that all #, are classes of functions uniformly
bounded by H and with bounded VC-dimension vc(#;) < d. If the cash flow
function satisfies ¥,+1.4,(f, h) < H, then

N(e, £:(H), d1.p,)

64¢ H 2d(c(w)+1)
(6.47) e+ DP(ctrd + )70 L forw>1,
&
= 64e H \*
e*d + 1)4<—) , for w =0.
&

Optimal stopping is a particular stochastic control problem with a simple
control space. The proof of Proposition 6.9 relies on the observation that the
VC-dimension of the class of indicator functio®s = {0 (h)|hs € H}, which
appear in the definition ot;(h) and ©¥,4+1.,(h), is bounded by VE#Hs). It is
an interesting question how Proposition 6.9 can be extended to more general
stochastic control problems.

Before we proceed to the proof of Proposition 6.9, we add a remark on
VC-classes and their VC-dimension. Let be a class of sets. The class of
indicator functiong14]A € A} is a VC-class in the sense that its subgraph class
is a VC-class if and only if4 is a VC-class and \et) = vc({ll4]A € A}). Let



1422 D. EGLOFF

0(x) =10 If A is a VC-class, vea) = d, then by Sauer's Lemma 6.6, for
x1,...,x, and allr e R,

éen d
(6.48) card (0(La(xi) —1i));—y  ,|A € A} < (F) ’

Conversely, if we find a polynomial bound like (6.48),must be a VC-class and
we can bound its VC-dimension.

To prove Proposition 6.9, we first establish the following general result on
VC-classes.

LEMMA 6.11. Let X, Y be two sets and 4, B VC-classes of subsets of X
(resp. Y). Assume that ve(A) <d, ve(B) <d.Let f: X —-Randg: Y — R be
nonnegative functions. Define the class of functions

F (A, B)
={Fap(x,y) =1a(x)f(x) +Lac(x)1p(y)g(»)|A € A, B € B}.
Then ¥ (A, 8B) isa VC-subgraph class, its growth function is bounded by

(6.49)

2d
- + en
(6.50) An(F (A, B)T) < ( g )
and
(6.51) VC(F (A, B)) < 2dlogy(e).

The estimates (6.50)and (6.51)generalize to
(6.52) F (A, H)={Fan(x,y) =1ax)f(x)+ Lac(x)h(y)|A € A, h € ¢},
where # is a VC-class of function with ve(#) = ve(H# ™) < d.

PROOF Given points(x;, y;) € X x ¥ ands; e R, i =1,...,n, we need to
bound the cardinality of

(6.53) {(O(Fa,B(xi, yi) — 1)1
as a subset of the binary cub@ 1}". Because
Fap(x,y)=1p0)(g(y) —1alx)g(yi)) + La(x;) f(x:),
and(g(yi) — La(xi)g(yi)) = 0, we find that
O(Fa,B(xi, yi) —ti)
(6.54) 0(Lp(vi) — T (A)), on Sy (A) = {(xj, y)ILac(x;)g(v)) > O},

0@t i) — 1), onSo(A) ={(x;, y)|lac(x;)g(y;) = O},

A€ A Be B,

.....
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where
(655) 7(A) = 15 A f(xi) ‘
g(yi) —La(xi)g(yi)
Fix A and varyB over 8. Because v¢B) < d, we see from (6.54) and Sauer’s
lemma, that the binary set
(6.56) {(O(Fa,B(xis yi) = ti));—1.. 1B € B}

has cardinalityk bounded above bgend —1)?. Let

(6.57) b1(A), ..., bk (A)

enumerate the distinct elements of (6.56) generated by Bet&or (x;, y;) €
So(A), we have
(6.58) br,i(A) =0(La(x) f(xi) — 1),
and if (x;, yi) € S1.(A),

bi,i(A) =0(1p, (yi) — Ti(A))
0(La(xi) — 7i(By)),

onSy(By) ={(xj, y)If(x;) —1p(x;)g(y;) > 0},
1-6(La(x) — 5 (B)).

onS_(Bk) ={(xj, yp)If(xj) —Lp(xj)g(y;) <O},

0(Lp, (y)g(yi) — i)
onSo(Bi) = {(xj, y)If(x;) —1p(x;)g(y;) =0}.

Consequently, Sauer’s lemma again implies that for each fixbd binary set

(6.59)

(6.60) {br(A)|A € A}
has cardinality at mostend —1)?. This proves (6.50). Again, by Sauer’s lemma,
veryng > 0 such that

2d
(661) card(@(FA,B(x,-, vi) — ti))i:l ..... nlA €A, Be JB} < (%) < 2"

for all n > ng is an upper bound of (& (4, B)"). To find ng, we look for
solutionsng = dj that are multiples ofl. (6.61) leads to the condition

log,(ej) < J,

which is satisfied, for example, by= 2log,(e). The extension tdf (A, #) is
straightforward. Replac&(1(y;) — 1;(A)) in (6.54) byo (h(y;) — 7;(A)), where
7;(A) = (t; — f(x;))/1 4c(x;) and follow the same lines of reasoning.]
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PROOF OF PROPOSITION 6.9. Recall definition (3.16) of the cash flow
function, according to which

t+w
Ori1:w(fo ) =0001(h) fror + -+ 4+ 0prwrat) [ 67,(B) frywia
=t+1
(6.62) =
t+w+1
+ [T 05 Whiwia.
r=t+1

Because the classes of indicator functions
Cy = {055 (h) =15,—n,20)lhs € Hs},
C; = {07, (h) =15, —n,<0)lhs € H;},
are VC classes with VC-dimension
(6.64) VvC(C;) =Ve(Cy) = ve((fy — Hy)T) = ve(H,) = ve(Hy) < d,

(6.63)

we can recursively apply Lemma 6.11 to derive the bound
en>d(w+2)

.....

The VC-dimension of; is then estimated as in the proof of Lemma 6.11. This
completes the proof of Proposition 6.9

6.3. Proofsof Theorems5.1and 5.3,  The centered logs(g %) depends on the
sampleD,,. To control the fluctuations of the random variallg, ()], we need
uniform estimates over the whole centered loss classg¢). The usual procedure
is to apply exponential deviation inequalities for the empirical process

(6.66) {VR(EL = Pl € £,(3)}

indexed by.L; (#), which are closely related to the uniform law of large numbers.
For background, we refer to [22, 40, 48, 51].

The application of standard deviation inequalities to the whole centered loss
class.L; (#) is not efficient since the empirical minimizer is close to the actual
Lo>-minimizer with high probability. Therefore, the random eleméii§s) is
with high probability in a small subset of;(#). To get sharper estimates, the
empirical process needs to be localized such that more weight is assigned to these
loss functions. Lee, Bartlett and Williamson [35] proved the following localized
deviation inequality.

THEOREM 6.12 ([35], Theorem 6). Let £ be a class of functions such that
|| < K1, E[I] > 0,and for some Ko > 1,

(6.67) E[I’1 < K2E[l] VledL.
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Leta,b>0and 0 < § < 3. Then, for all

MK1+Kz)  K? )

(6.68) n> max( 21D 2aih)

P(supE[l] 10 > 8)
le£ Elll+a+b
382an )

Sb
6.69 <2 N|—,L,d T

4

+4 sup N( ob L,d ) exp( 82an>
A ,d1, P n - )
X1, Xpp €X2 4K1 ° 2K12.

where P», isthe empirical measure supported at (x1, ..., x2;,).

A similar bound has been obtained by Cucker and Smale ([17], Proposition 7)
for L.,-covering numbers. Theorem 6.12 has been improved in [28] by applying
chaining techniques, and in [4] by using concentration properties of local
Rademacher averages. For additional background on related bounds, we refer to
[34, 37, 42, 48]. The advantage of Theorem 6.12, as compared to the Pollard’s
deviation inequality, is that it improves the quadratic dependenceimstandard
deviation inequalities to a linear dependence.

The centered loss has a special structure which allows it to bound its variance
in terms of its expectation.

LEMMA 6.13. Let #; be convex, uniformly bounded by H < oo, and assume
that 9,114, (f, h) < © for some constant ® < oco. Then the centered loss class
L, (F) isuniformly bounded and, for all I € £, (),

l| =<4H(® + H),

(6.70) , ,
E[l7]1 <4(© + H) E[I].

PROOF We get from the definition (6.3) df () that
li(h) = (hy = Py, D141:w(fo 1))
(6.71) x (h + Pry, Dr+1:w(fs h) — 2041w (fo h))
<20+ H)(ht — Pry, Or1.0 ([, 1))
Therefore,
Ell; (1?1 < 4© + H)?E[|h, — pry, 9:|°] < 4© + H)2E[L ()],

where the last step follows form Lemma 6.3
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Our plan is to apply Theorem 6.12 to a suitably scaled loss class
(6.72) AL (H) = M|l € L (FH)},

where we choose. such that|rl| < 1 [the scaling gives a terng? in the

consistency condition (5.3) instead ,6;1‘]. Because an empirical risk minimizer

satisfiesP, (I;(Gs)) < 0, it follows that, for any > 0 and scaling factok > 0,
P(El:(Gs)] = &) <P(E[L:(G3)] = 2Pu(l: (G3)) + €)

:P(E[lz(éﬂ)] — Pulli(Gs0)) })
Ell;(qs0)]+ ¢ 2

(6.73)

text ey EN]+Ae 2

Assume that the conditions of Lemma 6.13 are satisfied anfl setax(®, H).
If we choose the scaling factar= 1/(882), the scaled class., (#) satisfies

Al <1,
E[(M)?] < 2E[M].

Theorem 6.12 applied witle = AL, (#), K1 =1, K»=2,a =b = ¢/(1682),
8 =1/2 implies

P(EU: (G512 €)

g 1 ne
<6 sup N|——=,=>5LI(H), d eXP\ —=goaa? |
=°. <128,62 gpz 1) “’2") p( 699882)

.....

(6.74)

(6.75)

for n > 38282/¢. The e-covering number ofi.L,(#) is the same as the
(»~1e)-covering number of the unscaled clags(#). If the VC-dimension of
Hs, s >t are bounded by, the covering number bound (6.47) shows that

(6.76) PEIL G0l =) < K(7 ) exp( 57 )
where

(6.77) v=v(w,d)=2d(c(w) +1)

and

(678) K=K, w, B) = 6@4(d + 1)2(C(U))d + 1)2(102Akﬂ)v(d,w)

PrROOF OFTHEOREM5.1. B, is a sequence of truncation thresholds tending
to infinity. If gg, ; is the continuation value for the truncated paytif f, we get
from (5.6) that|lg; — gg,./Il2 — 0. The error decomposition (6.4) separates the
approximation error and the sample error. The denseness assumption implies that
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the approximation error ipt s, , lh — gp, ;|2 tends to zero i — oo. It remains
to analyze the sample errdi{/; (G ,)] for underlying payoffTs, f.

We apply (6.76) to# = #,, for whichd = d,, and g = B,. There exists a
constantC (e, w) such that, for every fixed > 0,

6.79)  P(E[l(Gx,)] = &) < Cle, w) exp(dn l0g(Ba) — #‘;62)

The right-hand side converges to zero for every fixed O if n/,B,f diverges
to infinity faster thand, log(B,) or if dnﬂ,flog(ﬂ,,)n—l — 0. Convergence in
probability follows from (6.4) by induction. Convergence in(P) is shown by
evaluating

(6.80) E[E[l (Gx,)]] <& + / E[l:(Gs,)] > 1) dt.
using the estimate (6.79). Conditions (5.3) and (5.5) imply
ZIP [:(G3e,)] =€)
&
(6.81) <C(e, w)Zexp(d log(B,) — 699882>

n=1

— C(e, w) Z 51/ (109(m)BF) (/6998 ~d, BT 109(B) /1) _ g
n=1
Almost sure convergence follows from the Borel-Cantelli lemnia.

PROOF OF THEOREM 5.3. Integrating (6.76) ovet shows that, for any
K > &2/32
pu— n b

E[ElL G)]] = /0 P(E[l (G30)] > €) de

o0 ne
(682) <K + Knv/K exp(—w) de

<k + Kn'"1699832 exp(—

nk )
699832 )
Setting

2
log(6998K g%n") > 38% ,
n

699832
(6.83) K= &%
n

leads to the upper bound
699832 + log(6998K 82) LY log(n)

n n

(6.84) E[E[L(gs0)]] <
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Corollary 6.2 implies that
Elllgse. — ;3]

52.16“’“( max inf ||h—qs||§+E[ max E[ls(éﬂ)]}>.
s=t,...,t+w+1heiH; s=t,...,t+w+1

But

E[ max E[ls(@ﬂ)]}i(w-l-z) max  E[E[@G)l].
s=t,....,t+w+1 s=t,....,t+w+1

Apply (6.84) to complete the proof.[]

PROOF OFCOROLLARY 5.4. Estimate (6.76) implies

N ne ne

By straightforward calculations, the right-hand side is smaller thdor all n
satisfying

(6.86) n> 1399682ma><(% |og<§>, vIog(%)).

The sample complexity bound (5.16) follows from Corollary 6.2 and (6.85), (6.86)
with € = ¢/(32(w + 2)16%). O

6.4. Proof of Corollary 5.5. Because;; € WX(Loo(1, 1)), Jackson-type esti-
mates imply that, for every > k, there exists a polynomial, € %,

(6.87) 1pr = qlloo.rx < Crr 7  llgelloo k1.2

The constantC; only depends or, but not onr or ¢;. See, for instance, [18],
Theorem 6.2, Chapter 7. Consequently,

(688) ||pr||oo,l,k <lpr— qr”oo,l,x + ”qr”oo,l,k =< 2||%||oo,k,],k

for r sufficiently large. We therefore may restrict the minimization to the convex,
uniformly bounded set of function#,, ; as defined in (5.17). The VC-dimension
of #,., is bounded by:/"+20  Theorem 5.3 applies. Becau&e is localized

to I, the approximation error in (5.13) is bounded by

6.89) inf llp—ali=< inf lIp—allZ ;< Cin @ lig ook 1.
PEHy 1 PEH s
Inserting v&#, ;) < n™/+20 into (5.13) shows that the sample error is of the
order
O(Iog(n)n_Zk/(Zk+m)).

The extension tqu, with bounded density with respect to Lebesgue measure is
proved identically.
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6.5. Proof of Proposition 5.2 Note that
(6.90) |max(a, x) —maxa, y)| < |x — y|.
The representation of the continuation value in terms of the transition functions
gives
lgr — ap.cllp = I E[MaX fi+1, gr+1) — Max(Tp fr+1, g+ Xell p
< NE[fi41— Tg frsalXelllp + 1 Elgr+1 — gp.e+11 Xl p
< [(fra1 = B L=l , + g1 — Gpe+all p-
If feL,(X),then|(fi+1— B)lis. >pllp — 0 for B — oco. We first recall that
for a nonnegative random varialfeandr > 1,
o0
(6.91) E[Y'] =r/ YIP(Y > y)dy.
0
Then (5.7) follows from
o0
|(frrr = BV Lisa=l = '”/0 WP ((frrr = B 40-p) > ) du
o 1
= r/ﬁ (=B P (fi1 > u)du

o
< r/ wtP(fF ) > uP)du
p

r _ _
<——E[ff 8P <0),
p—r
where we have used Markov’s inequality to get to the last line.
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