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DYNAMIC IMPORTANCE SAMPLING FOR UNIFORMLY
RECURRENT MARKOV CHAINS

By PauL Dupuist AND HUl WANG?
Brown University

Importance sampling is a variance reduction technique for efficient
estimation of rare-event probabilities by Monte Carlo. In standard importance
sampling schemes, the system is simulated using an a priori fixed change
of measure suggested by a large deviation lower bound analysis. Recent
work, however, has suggested that such schemes do not work well in many
situations. In this paper we consider dynamic importance sampling in the
setting of uniformly recurrent M&ov chains. By “dynamic” we mean that
in the course of a single simulation, the change of measure can depend on
the outcome of the simulation up till that time. Based on a control-theoretic
approach to large deviations, the existence of asymptotically optimal dynamic
schemes is demonstrated in great generality. The implementation of the
dynamic schemes is carried out wittethelp of a limiting Bellman equation.
Numerical examples are presented to contrast the dynamic and standard
schemes.

1. Introduction. Among variance reduction techniques for efficient Monte
Carlo simulation is importance sampling, in which the data is generated using a
probability distribution different from the true underlying distribution. It can be
especially effective when applied to the estimation of expectations that are largely
determined by rare events. To demonstrate the difficulty involved in simulating
rare events by naive Monte Carlo, we consider a simple exampleXLie¢ a
random variable taking values &, and suppose we are interested in estimating
p = P{X e A} for some Borel sett ¢ R“. To this end, a sequence of independent
and identically distributed (i.i.d.) copieXp, X1,... of X are generated. With
I = 1{x,c4}, an unbiased estimate fprbased on the firsk samples is just the
sample meanQg = (Ip+ I1 +---+ Ix_1)/K. The relative error associated with
this estimator is

standard deviationoPx ~ vVp—p? 1

relative error= = .
mean ofQ g p VK
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2 P. DUPUIS AND H. WANG

Sincevp — p?/p — oo as p tends 0, a large sample siZ¢ is required for

the estimatorQx to achieve a reasonable relative error bound. For example,
if p =108, ten billion samples are required to achieve a relative error bound
of 10%.

The basic idea of importance sampling is as follows. Suppose Xhats
distribution#, and consider an alternative sampling distributtarit is required
that & be absolutely continuous with respect#pso that the Radon—Nikodym
derivative f(x) = (d8/dt)(x) exists. Independent and identically distributed
sampleon, X1, ... with distributiont are generated. Form the estimate

_ 1 k=1 _
QK = E kXE) f(Xk)]l{)_(keA}

in lieu of Q. Itis easy to check tha@ x is an unbiased estimate pf with a rate
of convergence determined by

Varl £ (Xo) L gpen] = [, Liven f@0() — p.

The optimization of this quantity over all possibteis inappropriate. Indeed,
taking f (x) = p_l]l{xeA} (i.e.,7 is the conditional distribution aX givenX € A),

the variance becomes 0, but this change of measure requires the knowledge of the
unknown parameter. Instead, one typically seeks to minimize over parameterized
families of alternative sampling distributions.

When the distribution ofX is connected to a large deviations problem,

a standard heuristic is that the change of measure used to prove the large deviation
lower bound should be a good (perhaps nearly optimal) distribution to use for
the purposes of importance sampling. The first result of this type was given by
Siegmund [34]. The basic idea was subsequently investigated in many contexts,
and a small selection of the literally hundreds of papers on the topics is [1-3, 7-9,
11,12,15,17,18, 20, 24, 25, 29, 30, 33]. Necessary and sufficient conditions under
which a prescribed scheme is asymptotically optimal are discussed in [10, 31, 32],
while [21] gives a survey of rare-event simulation.

The validity of the heuristic, however, was challenged in [19]. Counterexamples
were constructed to show that, under some very common settings, the change of
measure suggested by large deviationsdgeadmportance sampling schemes with
very poor properties.

In order to explain these counterexamples, and more importantly, to find
asymptotically optimal importance sampling algorithms in great generality,
[16] introduces a dynamic importance sampling scheme and shows its asymptotic
optimality in the setup of i.i.d. random variables (Cramér's theorem). The key
observation is thatnany changes of measure are suggested by the large deviation
lower bound analysis, and one must consider this larger class if one hopes to
identify importance sampling schemes that work well in general. This leads to
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the development of schemes where the sampling distribution is dynamic (or,

“adaptive”) in the sense that the change of measure in the course of a single
simulation can depend on the outcome of the simulation up till that time. For this

reason, we also call such schernadaptive importance sampling schemes.

The present paper analyzes the estimation of rare-event probabilities associated
with uniformly recurrent Markov chains. More precisely, lgt;, j € No} be a
uniformly recurrent Markov chain taking values in a Polish spd&ceand let
g:8 — R? be a bounded measurable function. Defifye= g(Yo) + g(Y1) +
.-+ g(Y,_1). The probability of interest i®{S,/n € A} for a Borel setA ¢ R?
andn large. An asymptotic optimality result for traditional importance sampling is
available in the one-dimensional cages 1, under the assumption which implies
that the setd is within a half interval that does not contain the expectatiog of
under the invariant distribution [9]. A “dissection” approach was introduced for the
high-dimensional case [9]. This approach was later on applied to Markov additive
sequences [11], and was also implicitly used in [19]. This dissection approach
requires that one appropriately partition the detto a finite number of subsets,
and that a (possibly different) change of measure be applied to efficiently estimate
the probabilityof each individual subseHowever, there is no constructive way to
obtain a suitable partition in general.

In this paper we develop adaptive importance sampling schemes for uniformly
recurrent Markov chains. The existence of asymptotically optimal adaptive
schemes is demonstrated for arbitrary dimensgipmnder very mild conditions
on the setA. It turns out that one must study the asymptotics of a small
noise stochastigame in order to analyze the optimality of importance sampling
schemes. The distinction between the change of measures used in traditional
importance sampling and adaptive importance sampling amounts, in control
terminology, to the difference between “open-loop” and “feedback” controls.
However, open loop controls are usually not optimal in the setting of stochastic
games, except for very special cases. For this reason, the traditional importance
sampling will not be asymptotically optimal in general. Our analysis indicates
that the adaptive scheme also works for estimating functionals (other than
probabilities) largely determined by rare events.

The paper is organized as follows. The setting of the problem is introduced
in Section 2, with a brief description of the large deviations principle for
uniformly recurrent Markov chains. We also give the definition of asymptotic
optimality in this section. In Section 3 we show that adaptive importance
sampling schemes designed to minimize the second moment are asymptotically
optimal. Section 4 discusses an alternative formal PDE approach to the adaptive
scheme, and describes a method for the construction of an asymptotically optimal
adaptive scheme that does not directly depend on the large deviation parameter
Numerical examples are presented in Section 4.3. Certain technical proofs are
deferred to the appendices to ease exposition.
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2. Problem setup and background.

2.1. Problem setup. Let Y = {Y;, j € Npo} be a time-homogeneous Markov
chain taking values in a Polish spaggwith transition probability kernel
p(x,dy) = P{Y;11€dy|Y; =x}.
Let g: 8 — R? be a bounded Borel-measurable function, and define
Sp=8Yo)+g(Y) +---+8(Yn-1).
For an arbitrary Borel set C R4, we wish to estimate
Pn=P{Su/n € A}.

Throughout the paper we will make use of the followingiform recurrency
assumption.

ConDITION 2.1. There exists a probability measurg on &, an integer
mo € N and a pair of strictly positive real numbersb such that

av,(B) < p™ (x, B) < bv,(B)

for all x € 8 and Borel set®. Here p™ denotes the:-step probability transition
kernel.

For example, an irreducible Markov chain with a finite state space is always
uniformly recurrent.

The large deviation principle for a uniformly recurrent Markov chain is well
known. It asserts thdtS, /n} satisfies the large deviation principle with a convex
rate functionL :R?¢ — [0, oo]. The identification ofL is deferred to the next
section. We will impose the following assumption throughout the paper.

CONDITION 2.2. The Borel se# c R satisfies the condition
inf L(B) = inf L(B).
inf L() = inf L(p)
Under Conditions 2.1 and 2.2, we have the large deviations approximation
1 .
nl|_>moo o log P{S,/nc A} = _,3”6]2”/8)'

REMARK 2.1. The uniform recurrency assumption (Condition 2.1) is conve-
nient to work with. Itincludes the important case of irreducible finite state Markov
chains, and generalizes the results in [16] where i.i.d. sequences were considered.
However, this strong recurrency assumption also excludes many important Markov
chains. One difficulty in extending the present results to more general Markov
chains is that the uniform positivity and boundedness of the eigenfunctions (see
Section 2.2) may not be preserved [26, 27]. It is clear that generalization in this
direction will require a much more involved analysis.
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2.2. LDP for a uniformly recurrent Markov chain. In this section we discuss
two different approaches to the identification of the rate functiorThe first
approach suggests a parameterized family of change of measures (see Remark 2.2)
that will be used later on to build importance sampling schemes. The second
approach identifies the rate functidnin terms of relative entropy, and will be
used in the analysis of the asymptotic optimality of adaptive schemes.

The first approach is based on a generalized Perron—Frobenius theorem. Fix any
o € RY. Then by [22], the nonnegative kernel

exp{{a, g }p(x,dy)

admits a unique real eigenvalue ¢kf«)} and a unique (up to a multiplicative
constant) eigenfunction(x; «) in the sense that, for everye 4,

(2.2) /e<°"g(”)r(y; a)p(x,dy) = e r(x; ),
4

and with the following propertiedd («) is an analytic, strictly convex function of
o € R4 with H(0) =0, and there exist & ¢, < C, < oo such that

(2.2) Co <1r(x;a) <Cy Vxes.

The paper [22] also shows that the rate function of the large deviation principle for
{S,,/n} is the convex conjugate @i, that is,

(2.3) L(p) = supl(a, p) — H(a)].

acRd
Note that in the special case when the Markov chaisan i.i.d. sequencé] («) is
the logarithm moment generating function ©fY;) andr(x; o) = 1. Therefore,
this result generalizes the classical Cramér’s theorem, at least for bounded i.i.d.
random variables. For the case wh#&nis an irreducible Markov chain with
finite state space, eXf («)} is just the maximal eigenvalue of the irreducible
nonnegative matrix exXpw, g(v))}p(x,dy), andr(-; «) is the associated right
eigenvector.

REMARK 2.2. ltis not difficult to see that, thanks to (2.1), for each R?,

r(y; a)
r(x;a)

exp{{a, g(y)) — H(a)} - - p(x,dy)

defines a probability transition kernel.

Another approach is the weak convergence methodology which utilizes a
stochastic control representation for certain exponential integrals [14]. It first
identifies the large deviations rate function for the empirical measure of the
Markov chain in ther-topology, then uses contraction principle to obtain the rate
function for{S,/n}. We will need the following definitions.
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For an arbitrary Polish spac&, we denote by#(Z) the collection of all
probability measures on spac¢&, 8(Z)). For a pair of probability measures
v, L € P(Z), therelative entropy of ¢ with respect tqu is defined as

d .
/ Iog—ydy, if y <« u,
Z du

00, otherwise.

R(J/Ilu)ﬁl

Given a probability transition kernel(x, dy) on spacez, we defineug € £ (Z),
U®qeP(ZxZ)by

wg(B) = /zq(x, B) u(dx).

(L®q)(D x B) = /D Hd0g(x.dy) = fDq<x, B) u(dx)

for all Borel setsD, B c Z. The collection of all probability transition kernels
on Z is denoted byr (Z).

The weak convergence approach identifies the rate functiof$fgr.} in terms
of relative entropy:

L(B) =inf {R(u ®qlu®p) e PS),
(2.4)
q €T (8),nq =u,f5gdu=ﬂ}-

The validity of the representation (2.4) is implied by the results in [14], Chapters
8 and 9, where the large deviation principle of the empirical measures associated
with Markov chains are studied under weaker assumptions.

For future reference, we summarize the preceding discussion into the following
proposition. The only part that has not been mentioned is the superlinearity of the
rate functionL, which is an easy consequence of (2.3) and the finiteneg$ of
([14], Lemma 6.2.3(c)).

PropPoOsITION2.1. Under Condition 2.1, the sequence {S,,/n} satisfies the
large deviation principle with rate function L, which is given by (2.3) and (2.4).
Moreover, the rate function L is convex, lower-semicontinuous and superlinear in
the sense that

) L
im LB _
N—oo(geR?:|glI=N} |18l

In particular, L has compact level sets.
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2.3. Asymptotic optimality. In this section we definasymptotic optimality for
an importance sampling scheme.
Consider a probability spag€2, &, P) and a family of event$A, } with

1
Jim_log P{A,) = ~y.

for somey > 0. A general formulation of importance sampling for this problem
can be described as follows. In order to estim&gA,}, a generic random
variable Z, is constructed such thaP{A,} = EZ,. Independent replications
(20, z%, ..., ZK-1) of Z, are then generated, and we obtain an estimator by
averaging

The estimator is unbiased, that iE,Q,’f = P{A,}. The rate of convergence
associated with this estimator is determined by the variance of the summands,
or equivalently, their second momeaf(Z,)2]. The smaller the second moment,

the faster the convergence, whence the smaller sampl&sieguired. However,

it follows from Jensen’s inequality that

1 - 1 _
lim sup—=1log E[(Zy)?] < Jim = log(E Z,)? = 2y.

n—oo

The estimatoQX is said to beasymptotically optimal if
1 -
nll_)moo - l0gE[(Z,)"] = 2y.

REMARK 2.3. Since the performance of the estima@f is completely
determined by the second moment of its generic, i.i.d. building bitfckwe will
drop the superscrigt hereafter. Note that doesnot stand for sample size, but for
the large deviation parameter.

3. Statement of themain result. The adaptive importance sampling scheme
we consider dynamically selects the change of measure (or the paramerer
the form suggested by Remark 2.2, according to the sample history. Naturally,
the scheme is closely related to a control problem. Let the comfred {oz'}(-, ),
j=1,...,n—1} be given, where eaat’ : § x RY — R? is a Borel-measurable
function. Then the state dynamics are governed by

j—1
S;.’ﬁZg(Yin), j=0,1,...,n.
i=0
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Here we setty = Yo = yo, and forj > 1, Y]’? is conditionally distributed, given
(Y" i=0,1,...,j — 1}, according to

4
r(y;af)

v (dy) = expl(e, (7)) — H (e} RZND)

p(Yi_g,dy)
with (abusing notation a bity = o} (Y7_y, 57 /n).
An unbiased estimator a?{S,,/n € A} is defined as the average of independent
copies of
: = _ 1Y) ah)
%=1 e e00] L-tef a1+ | 120
j=1 ji=1 A
Our goa_l is to minimize the second moment, hence the variance, of the
summands(, by judiciously choosing the contraf’. Thus, we consider the value
function defined by

V" (yo) = inf E[X?]

n—1
= i(?nf E |:]l{§g/n€A} exp[ Do (=2, g (Y1) + 2H(a’}))}
j=1

n—1,2,yn . n
< T - ST 0‘1)}
2/yn. N :
=1 T (Y?; ozj)
For convenience we writ&” (yg) as V" when no confusion is incurred. We also
consider the log transform

1
W"=—=logV".
n

We have the following result, which asserts the existence of asymptotically optimal
adaptive importance sampling schemes.

THEOREM 3.1. Under Conditions2.1and 2.2,we have
lim W" =2 inf L(B).
n|—>oo W ﬁleA (ﬂ)

The detailed proof is deferred to Appendix A. It is worth pointing out that the
construction of asymptotically optimal or nearly optimal adaptive schemes (i.e.,
selection of the contrat”) is implied by adynamic programming equation (DPE)
appearing in the proof. Since the proof is rather lengthy and technical, it makes
sense to give an outline and some intuitive discussion below, so that readers can
proceed to the construction of the adaptive schemes (Section 4), without having to
delve into the technical details of the proof.
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Outline and intuition of the proof. Thanks to the discussion in Section 2.3, it
suffices to show the lower bound

(3.1) |Imnlan ngQLL(ﬁ).

The proof will utilize the DPE that is satisfied by”. In order to do so,
we first extend the dynamics. Abusing notation a bit, foe R?, y € 4 and
i €{0,1,...,n}, define the dynamics

j-1
on v . i
Sij=nx+ E Yiy, Jj=i,...,n.
=i

Here we sett;; = y, and forj > i +1, ?i’f/. is conditionally distributed, given
{Yie, £=i,...,j— 1}, according to

r(z; o)
I’( i,j— 1o )

where a;‘ = oz’]?()?l.”/._l, Sl.’fj/n). The original control problem corresponds to
x=0,i =0, y = yg. Define analogously

v (dz) = expl{e, () — H(@)} - p(Fl;_y.d2),

V' (x, y;0)
n—1 _
iignfE[ﬂ{an/neA}eXp{ ) (_2<°‘7’g(yi7j)>+2H(a7))}
’ j=i+1

-1 2 n a”
« nl_[ (Y i,j— 1’ )}
re(¥y ;)

Jj=i+1

and its log transform
Wh(x,y;i) =—=logV"(x, y;i).
n
The terminal conditions are

Vi(x,y;n) =14(x), W™ (x, y;n) =00 Lge(x).

Since it is inconvenient to study a problem with an terminal condition, we
instead work with a mollified version of the control problem. LEtR¢Y — R
be an arbitrary bounded and Lipschitz continuous function. SupposeVthat
is defined asV", save that the indicator functlom{sn /neay 1S replaced by
exp{— 2nF( ',/m)}. Similarly define

1
(3.2) WI’,E(x,y;i)i—;logi(x,y;i).
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SinceVy; is the value function of a control problem, one can write down the DPE
for V. Substituting (3.2) in this DPE, one obtains an equatiorifgr, see (A.1).
The proof of the desired inequality (3.1) is based on the analysis of this recursive
equation forwy.

The relative entropy representation for exponential integrals ([14], Proposi-
tion 1.4.2) states that

N —f @) _
(3.3) og [ e/ u(ax) yelynjh)[mwmw / fdy]

for all bounded and Borel measurable functiohsApplying this representation
formula to the equation (A.1) foi, one obtains

Wi(x, y; i)

) 1
= sup inf [/ va‘(x +—g(y),z i+ l)J/(dZ)
aeRd VEP(S) n

(3.4 1
(R OIPo ) + [ g@iran - @)
1 r(z; o)
+;/|Ogr(y;a)y(dz)].

This equation suggests th#ét;. is the lower value of a discrete-time stochastic
game. One of the two players of the game (thplayer) selects the parameter

and is the weaker player. The other player (thelayer) is the stronger player,
and selects the distribution that determines the evolution of the state. The right-
hand side of (3.4) would take a simpler form if we could permute the sup and inf.
However, this is not (in general) possible, since the last term

(3.5) % / log

may not be concave i.

This difficulty is also the main distinction from the setting of Cramér’s theorem
where the Markov chail reduces to an i.i.d. sequence of random variables. The
latter case gives(x; «) = 1 and the unpleasant term (3.5) disappears, whence the
min/max theorem can be applied to convert the DPB/¢finto a DPE associated
with a control problem, which is much simpler to analyze than a game [16].
However, the interchange of sup and inf is not possible with (3.4) as written.

The key idea to overcome this difficulty and to obtain a lower boundifér
is as follows. Fix an integem, and consider a variant of the game where the
a-player is constrained to policies such thanust be constant over time intervals
of length ¥¥m. This new game is even more favorable to thelayer, whence it
will have a smaller lower-value. Lettinggo to infinity, the lower value of the new
game converges to a functi@r};, and we expect

Iinnlior!)f We(x,y; lnk/m]) > Uf (x; k), k=0,1,..., m.

r(z; o)
r(y;oz)y(dZ)
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A bonus of taking the limit is that the troubling terms (3.5), which can be
interpreted as part of the running cost, cancel off, and it is not difficult to guess
thatUy' should satisfy

. 1

UF (x; k) = sup inf [U,’%l(x+—ﬁ;k+1)
acRd BER? m

(3.6)

1
+;@w»umm—Hwﬂ,
with terminal condition
(3.7) UF (x;m) = 2F (x).

In the proof,U} is in fact defined recursively through equations (3.6) and (3.7).
Equation (3.6) is much easier to analyze. Analogously to [16], one can show by
a weak convergence argument that

(3.8) liminf Uy (x,0) = Zﬁinﬂgd{L(ﬂHF(x + B},

which in turn implies

Iinrn)igof Wg(x,y; 0) > Zﬁinﬂgd{L(ﬂ) + F(x + B)}.

Letting x = 0 and the mollifierF tend tooco - 14¢, one arrives at the desired in-
equality (3.1). O

The following result is useful in the identification of an optimal adaptive
importance sampling scheme in Section 4.

COROLLARY 3.2. Fix an arbitrary x € R?, and a bounded Lipschitz con-
tinuous function F:R? — R. Assume Condition 2.1, and define U recursively
by (3.6) with the terminal condition (3.7). Then

lim Ug(x; tm])=2UF(x,t) vVt e[0,1],
m—o0
where
(3.9) Uﬂ%ﬂi;%ﬂﬂ—ﬂum+F@+ﬂ—ﬂmf
€
Proor We will show the equality for = 0. The case with generak [0, 1]

is similar and thus omitted.
Thanks to (3.8), it suffices to prove

limsupUF (x; 0) <2Ufr(x,0) = Zﬁinﬂgd{L(ﬂ) + F(x + B)}.

m—0o0
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Fix an arbitraryg € R“. The recursive definition a7 (3.6) and (2.3) yield

1 1
UF (x; k) < sup [U?(x + Bk 1) + Z(L(ﬂ) + (@, B) — H(Oé))}

acR4
m 1 2
=Up (x +—Bk+ 1) +—L(p).
m m
Repeatedly applying this inequality for=0, 1, ..., m — 1, we arrive at
U (x;0) <UF (x + By m) + 2L(B) = 2F (x + B) + 2L(B).

thanks to (3.7). This completes the proof]
4. Implementation issuesand examples.

4.1. The limit control problem and implementation issues. Theorem 3.1
establishes the existence of asymptotically optimal adaptive sampling schemes.
However, it does not explicitly discuss the construction of such schemes. On the
other hand, the proof of the theorem implies that one approach of construction
would be to solve, numerically if need be, the DPE (3.4) associated Wjth
(W" equalsWj when F = oo - 14¢). However, this approach may not only
require a lot of computation effort, but the resulting adaptive sampling control
(i.e., controla™) will directly depend om. In general, one would prefer schemes
without this dependence.

An alternative approach is to consider the DPE associated with the limit problem
of Uy asm tends to infinity. To this end, we rewrite (3.6) as

0= sup inf [AU? + i(L(ﬂ) + (a, B) — H(oe)):|,
weRd fER! m

where
1
AU ﬁU?(er —ﬁ;k—i—l) — U ).
m

Suppose that asubscript denotes the partial derivative with respect sind that
anx subscript denotes the vector of partials with respegito=1,...,d. Since
Corollary 3.2 (forF bounded and Lipschitz continuous) asserts that

H m . —_ .
mlinOO UF (-xa Lth) - 2UF(-xa t)v

we have formally the approximation

1 1
AU}? %<Zﬂ, (ZUF)x>+ ;(ZUF)I-
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Substituting this back, we have

0= sup inf [(B, RQUF)x) + RUF); + L(B) + (o, B) — H ()]
acRd BER?

= (2UF): + sup inf [L(B) + (¢ + (2UF)x, B) — H(@)].

acRd BER
Representing the infimum in terms of the Legendre transtlrof L gives

0= (2Ur); + SUp[—H (—a — (2Ur),) — H(@)].

acRd
The strict convexity of implies that
(4.1) a*(x,1) = —(Up)x(x,1),
and that
(4.2) 0= (Ur): — H(=(UF)y).

Equation (4.1) identifies, at least formally, an optimal feedback control policy.
However, this observation is not entirely satisfactory sibigedoes not usually
have an explicit solution, and even if there is an exact formuld/feyrthe partial
derivatives may not be defined for all time and spatial points. In order to obtain a
formal characterization af* that is more useful, we observe that, thanks to the
definition (3.9) of Ur and the convexity of., Ur is the value function of the
deterministic control problem

1 .
Ur(x, ) =inf [ [ L@enas+ F(qb(l))],
0} t

where the infimum is over all absolutely continuatisvhich satisfyg () = x. It

is straightforward to see from this control problem that an optimal contral, aj

is the minimizer in (3.9), sag*(x, r), thanks to the convexity af. The standard
dynamic programming argument implies tliat (in a weak sense) satisfies the
DPE

0=(Ur) + ienﬂgd[L(a) +{a, (Up)x)1= Ur): — H(=(Up)x),

which, not surprisingly, is just equation (4.2). The optimal cond(x, ¢) is,
at least formally, the minimizer in the DPE, @ (x,7) and —(Ur).(x,t) are
conjugate. It follows that

a*(x, 1) is conjugate to the minimize#™(x, ¢) in (3.9).

At points where(Ur), (x, t) exists this definition givea™(x,t) = —(Up), (x, t).
At points wherg(Ur), (x, t) does not exist there are multiple minimizigg(x, ¢),
and one should defing*(x, ) through conjugacy in any Borel measurable way.

REMARK 4.1. The original (unmollified) problem correspondgte-co-1 4c.
In this case,
(4.3) B*(x,t) eargmif(l—1)L(B):x +(1—1)B € A},
anda™(x, 1) is its conjugate.
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4.2. Numerical examples. We give two numerical examples in order to
illustrate the asymptotic optimality of the adaptive schemes, in general, and the
pitfalls of the traditional importance sampling schemes. The first example is
concerned with a simple Markov chain with two states, while the second example
studies a discrete time Markov chain embedded in a tandem Jackson network with
finite buffers.

ExAMPLE 4.1. Consider a simple finite-state Markov chainwith state
spaces$ = {1, —1} and probability transition matrix

o=|1 1o =106 e,

for some constanp € (0, 1). Defineg: 8 — R by g(x) =x, andS,, = g(Yp) +
g¥)+--+gYp-1)=Yo+ Y1+ -+ Yy1.

SinceY is an irreducible finite-state Markov chain, the eigenval(i&’ and
eigenfunction(-; @), as defined in (2.1) fax € R, are just the maximal eigenvalue
of the kernele® Q(i, j)] and the corresponding eigenvector, respectively. Simple
algebra gives

pe* + \/pzez‘x +41 - p)
2
which is a convex function witl# (0) = 0, and an eigenvector

)=l )

Therefore, for any giverw € R, the corresponding change of measure is
represented by the probability transition matrix

0 =[e 10 T 0 ]

ri;a)

H(x) =log VYa e R,

(4.4

- 1 0
Let L be the convex conjugate @ . It is not difficult to check thal.(8) = oo if
B <0orpB >1,andthatfoB € (0, 1),

L(B) =supap — H(a)]

|:pea—H(a) (1_ p)e—ZH(a):|

aeR
B, 4l-pp? 1 _1-p 1
=" log—— 2" 4+ “log—=" — Zlog(l—
209p2(1—ﬁ2)+20g1+ﬂ 2og( 12)
with the minimizer
41— p)p?

(4.5) o =a’(f) =5 log 21— p?)
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and

— i —_1 _
L(O)_E%L(ﬁ)_ 510g9(1 - p),
L) =IlmL(B)=—I .

(1) ,3'¢1 B) ogp

FurthermoreL(B) =0ifand only if 8 = H'(0) = p/(2— p).
AssumeYp = 1. We are interested in estimating = P{S,/n € A} for the
Borel set

A = (—00,a]U[b, 00), O<a<H O <b<1
In all the following discussion we take=1/2,a = 1/6,b = 1/2, which implies
(4.6) inf L(B) = L(b) < L(a).
BeA

We will compare the naive Monte Carlo simulation, traditional importance
sampling and adaptive importance sampling schemes below.

The naive Monte Carlo simulation will simulate the Markov chain under the
original transition probability kernep. One can also regard this as a special
change of measure with the corresponding= 0. In this case, the estimate is
just the sample mean & i.i.d. replications ofX,, = 15, /,c4). Since the second
moment ofX,, satisfies

. 1 2 . 1
lim ——Ilog E[(X,,)“]= lim ——logp,
n—-oo g n—o00 n
:AQLL(@
= L(b) < 2L(b),

the naive Monte Carlo sampling is not asymptotically optimal.

Thanks to (4.6), the traditional importance sampling will tgke= b, ando*
is then defined by (4.5). The algorithm will generate a Markov cHaiwith
probability transition matrixQ,+ andYp = 1. Let

Sni?O‘i‘""{‘?n—l-
The estimate is the sample meankbi.i.d. replications of

(Yo @)

n—1 5
Xn =1 A e~ YjHH@) | A
{Sn/ne }jl_[:1 ‘/_1:[1 ”(YjQ o)

- - V. K
—a*SytnH (@) | a*Yo—H(a®) r(Yo; o)

=1 = .
r(Y,_1; a%)

{Su/neA)®
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Sincer(-; ™) is clearly bounded from above and bounded away from zero, it is
not difficult to see that
; 1 & 2 ; 1 —2n(a*S, /n—H (o*

Jm_ —~10g E[(X,)*] = lim —~10g E[L5, /¢ qe " >/~ HED],
Simple computation yields thas, /n} satisfies the large deviation principle with
rate functionL(8) = L(B) + H(a*) — «™B. Now one can apply the Varadhan's
theorem ([14], Theorem 1.3.4) (with slight modification) to show

lim 1 log E[(X,)?] = inf [2a*B — 2H (¢*) + L(B)]
n—oo n BeA
= ,siQL[O‘ B—H(@™) + L(B)].

In the configuration of this example, the infimum in the right-hand side is achieved
atg =a, and

lim 1 log E[(X,)?] = ac* — H(a™) + L(a) < 2L(b).
n—oo n

Therefore, the traditional importance sampling scheme is not asymptotically
optimal either.

In Section 3 we argued the existence of asymptotically optimal adaptive
importance sampling schemes in general. The construction of such adaptive
schemes involved the selection of a nearly optimal conifok: {a;’(-, ):j =0,
1,...,n —1}. It was formally suggested in Section 4.1 that a good choice is
to sampIeY;’, conditional on{Yi”,i =0,...,j — 1}, according to the transition
probability matrix Q, as in (4.4) witha being the conjugate a*(x, ¢t) given
in (4.3), wherex = §%/n= (Y§ +--- + Y}_y)/n andt =1 — j/n. In case the
conjugate of8*(x,t) is co or —oo, « is taken as a large positive or negative
number; see Remark 4.3 for more details. The estimate is the sample m&an of
i.i.d. replications of

i n—1 . n—1 r(Y;?_l; o)
X =1y nen X0 2o (—(ef, eV + H@)) ¢ [] —=—0.
] j=1 r( f’o‘j)

The numerical results show that the controls constructed in this way have
asymptotically optimal performance (Table 6).

The numerical results are reported in Tables 1-3nfer 60. The theoretical
value ofp,, is

pn = P{S,/n <a}+ P{S,/n > b}
= 0.83%+ 2.44%=3.27%

See Remark 4.2 for the computation of this theoretical value. For each table, we
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TABLE 1
Naive Monte Carlo scheme

No. 1 No. 2 No. 3 No. 4
Estimatep,, (%) 3.11 3.20 3.23 3.09
Standard error (%) 0.17 0.18 0.18 0.17

95% confidence interval (%) [2.76, 3.46] [2.85,3.55] [2.88,3.58] [2.74, 3.44]

run four simulations each with sample si&e= 10,000.

An interesting observation is that the traditional importance sampling scheme
exhibits seemingly bizarre and inconsistent simulation results (Table 2). Similar
phenomenon also occurs in the setting of Crameér’s theorem, that is, where the
Markov chainY reduces to a sequence of i.i.d. random variables; see [16, 19]. The
explanation is also very similar. Under the alternative sampling distribu@ign
most of the sample mearfs /n will end up near the poinb. However, a few
samples (“rogue” trajectories) have means that fall into the intefvab, a].

Even though the “rogue” trajectories are rare, the Radon—Nikodym derivatives
associated with them are so large that they dominate the variance. In simulation
No. 4, the presence of a single “rogue” trajectory greatly raises the standard
error associated with the estimate. Indeed, the proportion of the contribution to
the second moment from this single “rogue” trajectories is more than 99%. In
simulations No. 1, No. 2 and No. 3, however, there are no “rogue” trajectories, and
the standard error associated with the estimate is deceptively small. The reason
is that the standard error is itself estimated from the sample. Without “rogue”
trajectories, we actually underestimate the standard error. Therefore, we cannot put
much confidence in the standard errors thus obtained or in the “tight” confidence
intervals that follow. Indeed, the confidence intervals from these three simulations
do not contain the true value.

In contrast, the adaptive importance sampling, on the other hand, yields more
accurate estimates and its performance is much more stable. Even though it does
not show great advantage over naive Monte Carlo simulatiom #060, it quickly
does so when gets larger. The numerical results for differar{ivith K = 10,000

TABLE 2
Traditional importance sampling scheme

No. 1 No. 2 No. 3 No. 4
Estimatep,, (%) 2.41 2.48 2.44 16.71
Standard error (%) 0.04 0.04 0.04 14.22

95% confidence interval (%) [2.34,2.48] [2.41,2.56] [2.37,2.51}-11.73, 45.15]
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TABLE 3
Adaptive importance sampling scheme

No. 1 No. 2 No. 3 No. 4
Estimatep,, (%) 3.17 3.21 3.35 3.33
Standard error (%) 0.15 0.13 0.17 0.18

95% confidence interval (%) [2.86,3.47] [2.85,3.47] [3.00,3.69] [2.96, 3.70]

fixed as before) are reported in Tables 4-6.

The naive Monte Carlo does not work well for bigger For n = 120 and
n =180, it yields estimates with large standard errors, andnfes 240, the
simulation yields an estimate 0, that is, no sample mean reaches the target
set A. As for the traditional importance sampling, each simulation gives a very
“tight” confidence interval, due to the absence of “rogue” trajectories. However, as
discussed before, we cannot put much belief into these estimates. Indeed, none of
these confidence intervals cover the true valug,of

On the other hand, the adaptive importance scheme yields much more accurate
estimates. In Table 6, the variabie¢! denotes the sample estimate of the second
momentE[(X,)?]. Observe that as gets larger, the ratio

—(1/m)l0g E[(X,)?] _ —logE[(X,)?] _ —logV"

—(/m)logp, —logp,  —logp"

approaches 2. In other words, the adaptive importance sampling scheme is
approaching optimality.

REMARK 4.2. The theoretical value gf, can be computed as follows. Let
X, be the number of-1’s in a trajectory, that is,

n—1
X, = Z ]l{yj:_l}.
j=0
SinceYp=1 andQ0(-1,1) = 1, we have (< X,, < n/2 with probability one.

TABLE 4
Naive Monte Carlo simulation

n =120 n =180 n = 240
Theoreticalp,, 1.61x 1073 9.66 x 107> 6.35x 1076
Estimatepy, 1.80x 10°3 20.00x 10~ 0
Standard error @2x 103 1414 x 107° NA

95% confidence interval [0.95,2.65] x 1073  [—8.28,48.28] x 10°° NA
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TABLE 5
Traditional importance sampling scheme

n =120 n =180 n = 240

Theoreticalp,, 1.61x 1073 9.66 x 107> 6.35x 106
Estimatep,, 1.40x 1073 8.76 x 107° 6.01x 106
Standard error 02x 1073 0.18 x 10> 0.13x 106

95% confidence interval [1.35,1.45] x 103  [8.41,9.12] x 107> [5.74,6.28] x 106

Clearly,
S, =n —2X,,

whence it suffices to computB(X,, > m) for all nonnegative integera such
that 2n < n. But if we defineT; =inf{j >0:Y; = -1}, thenTy > 1 andT; — 1
is geometrically distributed with parametér — p). Moreover,Yr, = —1, and
Y117, = 1. Now recursively define for > 2, 7; =inf{j > 1+ T; _1:Y; = —1}.
Then{Ty — 1,7 — Ty — 2,T3 — T» — 2,...} is clearly a sequence of i.i.d.
geometrically distributed random variables with paraméter p), and

P(Xp=m)=P(Tn <n)
=P(T,—2m+1<n-—2m+1).
But
Tw—2m+1=(MT-D+(T—-Tr—-2)+ -+ T —Tp-1—2)

is the sum of i.i.d. geometrically distributed random variables, whence has a
negative binomial distribution with parameterand(1 — p). Standard softwares
such as SPLUS contain the cumulative distribution functions of negative binomial
distributions, and can easily yield the desired probabilities.

REMARK 4.3. If 8*(x,t) > 1, then its conjugate i&*(x, ) = +o0, in the

TABLE 6
Adaptive importance sampling scheme: asymptotic optimality

n=120 n =180 n =240

Theoreticalp,, 161x 1073 9.66 x 107> 6.35x 10~
Estimatep, 1.56x 103 9.73x 107° 6.29x 106
Standard error 04x10°3 0.15x 107> 0.07x 1076

95% confidence interval [1.49, 1.63] x 103 [9.44,10.02] x 10°% [6.15,6.43] x 106
(—logV™)/(—log pn) 1.72 1.87 1.93
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sense that
LB (x,n) =Suflap”(x,0) = H(e)]l = _lim_[ep*(x.1) = H(@)]

The corresponding change of measure (at least formally) is

a——+00

0y = lim Qa:[i 8]

Similarly, if g*(x,#) < 0, then its conjugate isx*(x,7) = —oo, with the
corresponding change of measure

0= lim_0u=|] o

However, neither of these two probability transition kernels is suitable for the
purpose of importance sampling, since the probability measure induced by the
original probability transition kerne) is not absolutely continuous with respect
to the probability measure induced B o, or 0 _ .

To overcome this difficulty, we just take to be a large positive or negative
number whenever*(x, t) = +o0o ora*(x, t) = —oo. In our numerical simulation,
« is taken to be 5 ix*(x, 1) = 400 and -5 if a*(x,t) = —oo. The probability
transition kernels correspondingdo= +5 are

Ove— 0.9999 00001 0= 0.0047 09953
H=1 o | - 1 o |

which are very close t@ 1.

ExXAMPLE 4.2. Consider a two-node tandem Jackson network with arrival
rate A and consecutive service ratgs, 2. We assume the queueing system is
stable, that isp < min{u1, w2}, and, without loss of generality,+ 11 + w2 = 1.

The sizes of the first buffer and the second buffer are denotefl1bgnd Bo,
respectively. Both buffer sizes are assumed to be finite.

We will work with the embedded discrete-time Markov chain= {Y; =
(Yl.l, Yl.z) :i=0,1,...}, representing the queue lengths of the nodes at the epochs
of transitions in the network. The chainh is irreducible and with finite state
spaced = {(y1,y2):y; =0,1,..., B;; i = 1,2}, whence uniformly recurrent. It
is assumed throughout this example that the initial stalg is (0, 0).

We are interested in estimating a class of probabilities associated with buffer
overflow. More precisely, define= (g1, g2) : § — {0, 1} by

21(y) = 1y,=By)> 82(y) = 1{y,=8,)

for everyy = (y1, y2) € 8, and letS,, = g(Yo) + g(Y1) + --- + g(¥;,—1). We wish
to estimatep, = P{S,/n € A} for some Borel seA of form

A ={(x1,x2) 1 x1 > €1 Or x2 > g2} C R,
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TABLE 7
Traditional importance sampling scheme

No. 1 No. 2 No. 3 No. 4
Estimatep, (x105) 2.14 2.37 2.29 9.20
Standard error10~°) 0.11 0.15 0.14 6.85

95% confidence intervalx(lO*5) [1.92,2.36] [2.07,2.67] [2.01,2.57] —{4.50, 22.90]

where 0< ¢1, ¢2 < 1. Note that the set is nonconvex.

The construction of the traditional and adaptive importance sampling schemes
are very similar to Example 4.1. However, here the func#bnR2 — R and its
conjugatel : R? — R* do not admit closed-form expressions, and are computed
numerically.

Analogously to Example 4.1, if we leB* be the minimizer that attains
inf{L(B): B € A} and letX,, denote the traditional importance sampling estimate,
then we have

4.7) lim —1 log E[(X,)?] = inf [*B — H(e*) + L(B)],
n—-oo g BeA

where o™ is the conjugate ofg*. It is not difficult to see that the traditional
importance sampling scheme is asymptotically optimal if and onf§*ifs also
a minimizer to the right-hand side of (4.7). However, this is oftetithe case, due
to the nonconvexity of set; see [16] for more discussion on this issue.

The simulation results for the traditional and adaptive schemes are reported in
Tables 7 and 8. For comparison, the theoretical valug,ofs also obtained via
recursively computing the conditional distribution g€Y;) + g¢(Yxr1) +--- +
g(Y,—1) given Yy, for eachk =n — 1,n — 2,...,0. Unlike Example 4.1, we
choose not to report the results from naive Monte Carlo simulation (which is not
asymptotically optimal). Actually, the naive Monte Carlo simulation, often giving
an estimate 0 or an estimate with intolerably large standard error, is far inferior to
either of the importance sampling schemes.

We chooseB; = B> = 6, andi = 0.2, u; = u2 = 0.4. The state spacé
consists of(B1 + 1)(By + 1) = 49 states. Set = 50 ande; = 0.3, g2 = 0.4.

TABLE 8
Adaptive importance sampling scheme

No. 1 No. 2 No. 3 No. 4
Estimatep,, (x10~5) 3.96 3.93 4.18 4.16
Standard error{10~°) 0.17 0.15 0.30 0.16

95% confidence intervab(10~°) [3.62, 4.30] [3.63,4.23] [3.58,4.78] [3.84, 4.48]
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TABLE 9
Traditional importance sampling scheme

n =50 n =280 n=110
Theoreticalp,, 5.15x 1079 3.47 x 10712 1.83x 10715
Estimatep;, 0.83x 1079 0.81x 10712 0.53x 10715
Standard error 03x 1079 0.02x 10712 0.01x 10715

95% confidence interval [0.77,0.89] x 102 [0.77,0.85] x 10712 [0.51,0.55] x 10~15

Analogously to Example 4.1, one can check that the traditional importance
sampling is not asymptotically optimal. Indeed, the infimunigf) over setA is
attained ap™ ~ (0.02, 0.4), while the minimizer for the right-hand side of (4.7) is
B~ (0.3,0.01).

Each table consists of four simulation runs each with samplefg§ize10,000.

The theoretical value is,, = 4.10 x 107°.

The explanation for the behavior of traditional importance sampling (Table 8)
is quite similar to that of Example 4.1—most of the sample means will end up
near pointg*, while a few “rogue” trajectories will have means near pgint
Even though these “rogue” trajectories are rare, they carry huge Radon—Nikodym
derivatives. Without the presence of “rogue” trajectories (simulations No. 1, No. 2
and No. 3), we have tight confidence intervals that we cannot put much faith in.
With the presence of “rogue” trajectories (simulations No. 4), we get an estimate
with very large standard error. On the contrast, the performance of adaptive
schemes is much more stable and much better.

Similar phenomenon is also observed for various sets of parameters. We just
list some numerical results in Tables 9 and 10 for the same setup, except the
arrival rate and service rates are now w1, u2) = (0.1, 0.4, 0.5). The sample
size K = 10,000 is fixed as before. The erratic behavior of traditional schemes
is more conspicuous. The asymptotic optimality of adaptive schemes is also clear
from these numerical results.

TABLE 10
Adaptive importance sampling scheme: asymptotic optimality

n =50 n =280 n=110
Theoreticalp,, 5.15x 1079 3.47 x 10712 1.83x 10715
Estimatep,, 482x 1079 3.36 x 10712 176 x 10715
Standard error a8x 1079 0.11x 10712 0.07x 10715

95% confidence interval [4.46,5.18] x 1079 [3.14,3.58] x 10712 [1.62 1.90] x 108
(—logV™)/(—log pn) 1.86 1.91 1.92
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APPENDIX A
PROOF OFTHEOREM 3.1. Proposition 2.1 and Condition 2.2 imply that

nl|_>moo— log P{S,/ne€ A} = AQLL(/S)'
Thanks to the discussion in Section 2.3, it suffices to show the lower bound (3.1),
or

|Imnlan ngQLL(ﬁ).

To this end, we extend the dynamics as in Section 3, and consider a mollified
version of the original control problem. In other words, EtRY — R be
an arbitrary bounded and Lipschitz continuous function, and defif\eW;
correspondingly; see the discussion from (3.1) to (3.2).

Since V. is the value function of a control problem, it satisfies the Bellman
equation [4]

Vi(x, y; i)
= inf 2a.g()+2H@) &) (y’a)V ( + g(Z) zZ; l+l>
OZGRd r (Zv )
plag@)-H@ TED
r(y;a)
— inf —le.g@))+H (@) r(y’a)VF( + g(y) z; z+1)p(y,dz)
OZGRd r(zv )

together with termlnal condition
Vi(x, y;n) =exp(—2nF (x)}.
It follows from (3.2) that

1
We(x,y;i)=—— IOg inf —le.g@)+H (@)
acRd
(A.2) .
r(y; @) e—nWﬁ(x+1/ng(Y),z;i+1)p(y’ dz)
r(z; o)
and thatWi (x, y; n) = 2F (x).
The discussion in Section 3 now prompts the following definition. Fixing an
arbitrarym € N, for 0 <k <m — 1, define recursively

1

UF (x; k) = sup inf [U?<x+—ﬁ;k+1)
wcRd BER? m

(A.2)

1
+—(L(B) + (. B) — H(Ot))],
m
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given the terminal condition
(A.3) UF (x;m) = 2F (x) VxeRY

See Section 3 for the interpretation @f; andU}; as lower values of games. The
key observation is the following lemma, whose proof is deferred to Appendix C.

LEMMA A.1. For an arbitrary sequence x” — x € R¢, we have

n—oo

liminf im; Wg(x",y; Ink/m]) > Uy (x; k), k=0,1,...,m.
ye

Assume Lemma A.1 holds for the moment. All that remains to show is the
inequality

(A.4) liminf UF (x; 0) = Zﬁinlgd{L(ﬁ) + F(x + B)}.

Indeed, suppose (A.4) is true. Fix an arbitrajye N, and defineF;(y) =
j(d(y,A) A1), which is bounded and Lipschitz continuous. Sincg(y) <
exp{—2nF;(y)}, we have

liminf W" > liminf W (0, yo; 0)
n—oo n—oo J
H H m .
= I;nnygj UF/ ©0)
> 2 inf [L(B) + F;(B)].
BeR4

Exactly as in [14], pages 10 and 11, a compactness argument shows that

lim inf {L(B)+F;i(B)}= inf L(B),
BeRd BeA

j—oo

and we complete the proof.
Now we show inequality (A.4). The idea is to represgiitas the value function
of a control problem with the help of the min/max theorem. To this end, define

C= {9 e P(RY) :/L(ﬂ)@(dﬂ) < oo}

and rewrite (A.2) as

. 1
UF (x; k) = sup inf [/ Uy (x + Bkt 1)0(dﬁ)

aeRd €
+ %( [ Leoas)+ o [ poap) - )|

We make the following useful observation, whose proofis deferred to Appendix C.
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LEMMA A.2. U (- k) is bounded and Lipschitz continuous for every k.
Indeed,

U (x: k)| <2||Flleo VxeRY k=0,1,...,m

and Uy (+; k) is Lipschitz continuous with Lipschitz constant 2L , where L - isthe
Lipschitz constant for the mollifier F.

The next lemma is a version of min/max theorem, whose proof is almost
identical to [16], Lemma 2.2, and thus omitted.

LEMMA A.3. For any bounded and lower semicontinuous function f : R? —
R, we have

sup int [/f(ﬁ)d9+/L(ﬁ)d9+< /ﬂd0> H(a)i|

aeRd?

= inf Sup[/f(ﬂ)d9+/L(ﬂ)d9+< /ﬁd9> H(a)]

C weRrd

Thanks to Lemmas A.2 and A.3, we obtain

. 1
UF (x; k) = inf sup[/U?(x + Zﬂ;k+1)9(a’ﬁ)

0€C yeRrd

(A5) + %( [ Lewids)+ o [ o) - )]
= 9122 U Uy (x + %ﬂ; k+ 1)9(dﬂ)

+%(/L(ﬁ)Q(dﬁ)+L</ﬁ9(dﬂ)))]

This last display implies thal/;’ has an interpretation as the minimal cost of a
stochastic control problem. To simplify the notation, we state the control problem
only for the casek = 0. The control problem will be defined on a probability
(Q, F, P), andE, will denote that the initial condition of the state process.is

An admissible control is a sequen{agi, j=0,1,...,m—1}, with eachv;” being

a stochastic kernel oR¢ given R¢. Given an admissible control sequence, the
state dynamics are defined §§ = mx and

J+1 - Sm + Ym
where

P{Y[" edy|Y]",0<i < j}=P{Y}" edy|S7 /m} =17 (dy|S} /m).



26 P. DUPUIS AND H. WANG

We then define the value function
m— 1
T 0)= {Irznf}Ex[ = [ rompan+i( [yran)] +2F<S'"/m>}
Vi j=
where the infimum is taken over all contro{s ’"} and resulting controlled

processe$S’" /m} that start atc at time 0. Since also satisfies the DPE (A.5)
(4], Chapter 8) and terminal conditia; (x; m) = U}’ (x; m) = 2F (x), we obtain
by induction that/}" (x; k) = o' (x; k) for all x € R? andk € {0, ..., m}.

Define a stochastic kernel* onRR? given[0, 1] by

m [ Vi@, ifrelj/m,(j+1)/m),j=0,1...,m—2,
vidylt) =1 o,
Vm_l(d)’), re [(m - 1)/m’ 1]
Let A denote Lebesgue measure. Then the definitiar'é#l y|¢) and the convexity
of L imply that

~ 1
UF(x;0)={|gnf}Ex|:/() /]RdL(y)v (dyl|t) dt
+Z ( L yv’”(dy>)+2F<S"’/m>}

> inf E, |:/ / L(y)v"(dy|r)dt

v
m l
+L<Z L <dy>>+2F< /m)}

= inf Ex[/ L(y)v™(dy x dt)
{v_'/-"} RY x[0,1]

+ L(/ y(dy x dt)) + 2F(S’fn1/m)},
R4 x[0,1]

wherev” (dy x dt) = v™(dy|t) dt. A straightforward weak convergence approach
will be adopted to derive the desired inequality (A.4). Since the proof is essentially
the same as [14], Theorem 5.3.5, we only give a sketch.

For eache > 0, there exist a sequence of contrlg’, m € N} such that, for
everym, we have

UPM(x;0)+e> Ex[/ L(y)dv™ +L</ ydvm) +2F(S;:;/m)]
R4 x[0,1] R4 %[0,1]
Furthermore, sincé is nonnegative and is bounded, we have

SupE, LOy)W™(dy x dt) < oo.
meN R4 x[0,1]
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However, since functiorl. is superlinear (Proposition 2.1), it is not difficult to
check thafv™} is uniformly integrable in the sense that

lim SupEy lyllv™(dy x dt) =0.
C=0meN — Jy:lyI>C}x[0.1]

It follows from that proof of [14], Proposition 5.3.2, thgv™} is indeed
tight. Therefore, we can extract a weakly convergent sub-subsequence, still
denoted by{v™}, such that™ = v for some stochastic kernelwhose second
marginal is Lebesgue measure ([14], Lemma 5.3.4). We utilize the Skorokhod
representation [6], which allows us to assume (when calculating the limits of
the integrals) that the convergence is actually w.p.1. It follows from the uniform
integrability of{v} and the proof of [14], Proposition 5.3.5, that

f ' (dy x dt) 5> / yu(dy x dt)
R4 %[0,1] R4 %[0,1]
and

S’Zf/m—[;Zix—l— yv(dy x dt).
R4 x[0,1]

Furthermore, it follows from the lower-semicontinuity and nonnegativityLof
([14], Lemma A.3.12) that, with probability one,

limin LW (dy x di >/
AL S Gy xdn = |
Thanks to convexity ol. and Jensen'’s inequality, we have

/ L(y)v(dy x dt) > L(/ yv(dy x dt)).
R4 x[0,1] R4 x[0,1]

By Fatou’s lemma and the lower-semicontinuityof28], we have

L(y)v(dy x dt).
1]

x [0,

liminf U} (x;0) +¢ = E, [2L</R yu(dy x dt)) + 2F(Z)].

dx[0,1]
It is now trivial that the right-hand side of the last inequality is bounded below by

2 inf [L(B) + F(x + B)].
BeRd
Sincee > 0 is arbitrary, (A.4) follows readily, which completes the proof.
APPENDIX B

A large deviation upper bound. In this section we study a uniform
large deviation principle upper bound, which is essential for proving the key
Lemma A.1. We present a proof based on the weak convergence approach [14].
Alternatively, one can adapt the methodology in [13].

The following two lemmas will be useful:
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LEmMmA B.1. Suppose 4§ is a Polish space and £(8) is the space of
probability measureson 4§ endowed with the weak convergencetopol ogy. Consider
a sequence of randomvariables ., : (2", ", P") — £ (48). In other words, {u"}
is a sequence of random probability measures. Then {u*} istight if and only if the
sequence {E"u"} istight. Here E" u" € £ (8) isdefined by

(E"u")(A)i/m 1w (@)(A) P"(dw)
for every Borel set A in P (8).
PROOF See [23], Theorem 6.1, Chapter 1]

LEMMA B.2. Suppose 4§ is a Polish space, {u"} c £(8), and p(-,-) a
probability transition kernel. If 4" — w in the t-topology for some u € £(38),
then

W'e®p—>pnep
in the z-topology. Here 1« ® p denotes the probability measureon § x 4§ given by
W p)(B) = [ ndnp(x.dy)
for everyBorel set B C § x 4.

ProoE It suffices to show that
[ s @opedn ~ [ feonu@npe.dy)

for every bounded, measurable functign Sinceu” — u in the t-topology, it
remains to show that

Lf(x,y)p(x,dy)

is a bounded and measurable function (oseMhe boundedness is trivial, and the
measurability follows from Fubini’s theorem; compare [5], Exercise 18.20.

PROPOSITIONB.3. Suppose Y = {Y;, j € N} is a Markov chain that takes
values in a Polish space 4. Let p denote the probability transition kernel of Y,
and assume Condition 2.1 holds. Suppose g: 48 — R is a bounded measurable
function, and define H and L asin (2.1)+2.3). Thenfor any fixed o € R?, bounded
and continuous function f :R¢ — R, and sequence x” — x € R?, we have

S 1 n-l
liminf }lyr;];—; IogEy|:exp{—<oe, ;g(Y/)>}

n—1
X exp[—nf(x" + % Zg(Yj)) H > Iy (x),

Jj=0
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where
Ir(x) = irf;f[f(x + B) + L(B) + (a, B)].
PROOF Let
1 n—1 1 n—1
V' (x,y) = - logE, |:exp{—<a, Z g(Y,-)>} exp{ —nf (x + . Z g(Yj)> ”
j=0 j=0
1 n—1 1 n—1
E— Iog/exp{—<a, Z g(yj)>} exp{ —nf(x + - Z g(yj)> } dn;’.
" j=0 " j=0
Heren;? is the joint distribution of( Yo, Y1, ..., ¥Y,—1), Or

7y (dyo, dy1, - .., dyn) = 8,(dyo) p(yo, dy1) p(y1, dy2) - - - p(yu—1, dyn)-

Clearlyv" is bounded, thanks to the boundednesg ahd f. It suffices to show
that for every sequenc€ — x and{y"} C 4,

H 1 n n n
(B.1) |Inrn)lé10fv ",y = 1p(x).

For an arbitrarye > 0, the relative entropy representation of exponential
integrals (3.3) ([14], Proposition 1.4.2) yields the existence of a probability
measure.” on $"+1 such that

vt ) ez SR ) + <a, / - Zg(yj)du”>
j=0
(B.2) L1
+ / f(xn +=> g(y‘,-)) du.
"0
In particular, it is not hard to see that

1
(B.3) sup—R(u" |7 ) < oo.
neNn

We can facto” as in [14], Theorems A.5.4 and A.5.6:
w'(dyo,dy1, ..., dyn) = no(dyo) w1 (dyilyo) - - - thy (dYnlyn—1, yn—2, - - Y0)-

Now consider a probability spadg?, #, P), on which we define a stochastic
process given by

P(Y§ edy) = ng(dyo),
P(Y!, edy|lV)'i=01,....j)=p" 1(@y|¥'.i=01,.... )
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for j=0,1,...,n — 1. To ease exposition, let

g (dy) =l 4 dylY]i=0,1,..., ),
which is a random probability measure én Also define a random probability
measure orf x § by

n—1

1 _
Y (dx xdy) =3 8y (dx) x i 4(dy).
j=0

whose marginals are
1 n—1 ~ 1 n—1
M1==) 8 =L",  M2==) i
n<— i n -
j=0 Jj=0
Thanks to the chain rule [14], Theorem B.2.1, we have

1 1 " I’l—l ~
(B.4) ;R(u”lln;?n) = ;E|:R(M8”8y”) + DR 4 Ollp(Yy, -))}.
j=0
However,
1n—1 N
— > R} Olp(Y], )
j=0
1t 3
= > R(ju(dy) x i} 1(d2) |85 (dy) x p(Y}, d2))
j:O J J
n—1

1
= =3 R0y (dy) x i}, 1(d2) 83 (dy) © p(y. d2))
j=0

1 n—1 _
= R(; 23{/}:@)’) X Mr;+1(d2)
j=0

1 Vl—l
= " 85u(dy) ® p(y.dz)
n ]ZO J

=R(Y"IL" ® p),

where the inequality follows from the convexity of relative entragy||-). Thanks
to (B.2), and observing that

1}1—1 - N
[ ¥ sopan =E [gal",
j=0

n—1

/f<X"+%j§)g(yj)> du"=Ef(X”+/gdi”),
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we arrive at
V' (x", Y + & 2E[R(y"III:"®p)+<a,/gdi">+f(x"+/gdl:”)].

It suffices to showy "} is tight. Indeed, if this is true, the same argument as in [14],
Theorem 8.2.8, allows us to extract a weak convergent subsequentec®, @f'),
still indexed by, such that

(", L") = (v, L)

for some stochastic kernglon § x § and some stochastic kernelon $, and a
(random) transition probability functiop such that

y(dy x dz) = L(dy) ®q(y, dz)
and
(B.5) Lg=L
hold almost surely. In particular, we have
(yM2= (y)2=Lq=L.

Note (B.5) says that is indeed the invariant measure for the transition probability
functiong. Also observe that

SUPER(Y"|L" ® p) < oo.
neN

This implies the existence of a subsequence, still indexed kbuch that
L"— L, (yMo— L
in the t-topology; see the proof of [14], Lemma 9.3.3. Therefore,

/gdi"—)/gdi

almost surely. Furthermore, thanks to Lemma BIZ, ® p — L ® p in
the r-topology (hence, in the weak-topology) almost surely. The lower semi-
continuity of R(-||-) implies

. . n ~n =
liminf R(y"IL" ® p) = R(y L ® p).
It follows readily from Fatou’s lemma that

liminf v" (x", y") + ¢
n—oo

> E[R(anZ@p) +<a,fgd’3>+f<x */g"iﬂ
E[mi@qni ® p) +<m/8di>+f<”/gdi>]

> inf [R(u®ql|u®p)+<a,/gdu>+f<X+/gdu«)}-
{ug=p}
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Recalling (2.4) and letting — O, we obtain

iminf o' (c". ") = IfIL(B) + {er. B) + f (x + B,

which is the desired inequality (B.1).
It remains to show the tightness gf"}. All we need is the tightness of the two
marginals{(y")1} and{(y™)2}. However, it is not difficult to observe that

-1 -1
E(y™ _Ei = Y fs, = 1Y i
Y IW=EL"= ") Edp=-) u",
nj:O J nj:O

whereu™/ denotes thgth marginal of the probability.” and, similarly,

-1 -1
E” n _}n E—n _}n n,j+1
(y')2= Z Hit1= ZM .
niTh (s

Letting || - |lv denote the total variation metric, we have
(N ] 1 n,0 n,n 2
(B.6) IE(y™)1— E(y )2||v=;||/i Teu ||v§;-

If we can show{(y™),} is tight, then Lemma B.1 impliegE ()5} is tight, which

in turns yields the tightness ¢ (y")1}, thanks to (B.6). Applying Lemma B.1

once again, we have the tightness{@f")1}. Therefore, it is sufficient to show

that{(y™)»} is tight. The proof will distinguish two casemy = 1 andmg > 1.
Suppose thatng = 1. Note that the nonnegativity of relative entropy, (B.3)

and (B.4) imply

n—1
53552 ;R(ﬁ§+l<->||p<i’a ) < .
It follows from the assumption of uniform recurrency
avp() < p(y,-) <bvp()  Vyed,
that

R} aOIP(F], ) = eR(@} 4 1]lvp)

for some constant > 0. It is now easy to derive from the convexity of relative
entropy that

n—1

~ -1 _
SUPER((y™")2llvp) < SUPE= " R(i1'} 4lvp) < oo,
neN neN N =0 ’
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which further implies the tightness ¢fy")2} sinceR(-||v,) is a tightness function
on £ (4). Note that

. 1=t
E(yMa= 3wt
n =0

is also tight, thanks to Lemma B.1.

The general case withg > 1 is slightly more complicated. We will give a
proof with mg = 2, and observe that the proof farp > 2 is essentially the same
and thus omitted. Without loss of generality, we sh@y")>:n evenj to be tight.
The tightness fof(y")2:n odd} is similar.

To ease notation, let" = n;’ andn ¢ be the marginal distribution of” over
even coordinates; that is,

7" (dyo, dy2, . .., dyu—2,dyy) = 8y(dyo) p® (yo, dy2) - - - PP (yn—2, dyn).
One can similarly defing™:¢, or

W (dyo, dy2, ..., dy,) = pidyo)wy “ (dy2lyo) - - -ty (dyn|yn—2, - - ., ¥2, Y0).

Thanks to the chain rule ([14], Theorem B.2.1) and nonnegativity of the relative
entropy, we have

R(u™llm™) < R(u" 7",

and, thus, SL;p%R(u”’enrr"’e) < 00. With the same proof as for the casg =1,
we have that

o (n/2)-1

“ Z Mn,e,j—i—l

n i=0
is tight; hereu¢/ is the jth marginal ofw”¢; that is,
W (dyg) = w8, ..., 8,dy2j, 8, ..., 8).
One can similarly defingu™? as the marginal distribution of.” over odd

coordinates, and the same argument can be carried over to prove the tightness
of

o (n/2)-1 ,
“ Z Mn,o,]—l—l.
noi0o
However, observe that
Mn,e,j _ Mn,Zj’ Mn,o,j — Mn,Zj-‘rl'
We have
1/ ®/2-1 - o (1/2)-1 - 1= . -
S D A =D DI i) EED DTSty 0O
n . n i 2].:0

This implies the tightness ¢ ("), : n ever}, which is equivalent to the tightness
of {(y™)2:n even}, thanks to Lemma B.1.[J
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APPENDIX C
Proofsof LemmasA.l1 and A.2.

PROOF OFLEMMA A.2. ThatU¥ (-; k) is Lipschitz continuous with Lipschitz
constant 2 ¢ follows trivially by induction and the terminal condition (A.3).

As for the boundedness &fy (-; k), we first show it is bounded from below.
SinceH (0) = 0 andL is nonnegative, definition (A.2) gives

m i m 1 1
Ugx; k)= inf |Ug(x+—pB;k+1)+—L(B)
BeRd m m
. 1
> inf Uf(x+—Bk+1
BeRd m

= inf Ul k+1)

zeRd

for everyx. It follows that, for every,

inf UZ(x;k)> inf UF(x;k+1)>---> inf Ul(x;m)> =2||F|lco.
o, F (x5 k) o, F( ) Ly F( ) | Flloo

It remains to show thal/}? is bounded from above. L¢ be a subdifferential of
the convex functiorf? ata = 0. Then

L(B) = supl{e, B) — H(@)] =0

acRd
and the supremum is achievedwat 0. By definition (A.2) again, we have
m m 1 1 )
UM(x;k) < sup [Up x4+ =Bk + 1)+ =((a, B) — H(@))
acRd m m
m 1~
=UF<x+—ﬂ;k+l)
m
< supUyp(z;k+1)
zeR4

for everyx. It follows that, for every,

SUPUY (x;k) < supUp (x;k+1) < --- < supUp (x;m) < 2|| F || .

xeRd xeRd xeR4

This completes the proof.(]

PROOF OF LEMMA A.l. The proof is by induction. Fok = m, we have
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|nk/m| = n. By definition,
liminf inf Wi(x", y; n) =liminf inf 2F (x") = liminf 2F (x"),
n—0oo yed n—00 yed n—oo

and Lemma A.1 follows trivially from the continuity df .
Assume now the claim holds fér+ 1. Leté(n) = |n(k + 1)/m]| — |nk/m].

Also, Ietnf be the probability measure afi 1 defined by
) (dyo, dy1, ..., dy;) =8y (dyo) p(yo, dy1) p(y1,dy2) - -- p(yj—1, dy;)
for everyy € § and everyj € N.
For an arbritrary € R?, let
. 1 1
U2tk = inf [U (+ 2pik+ 1) 4 o (L08) + o ) — HE@) |
It follows from the definition thaU (x; k) = sup, Ung(x; k). Therefore, all we
need to show is that, for evesye R? and any sequenod — x,

liminf im; Wg(x",y; Ink/m]) > U} p(x; k).
ye ’

n—-oo vy

However, for an arbitrary fixed € R?, the dynamic programming principle
implies that

Wi (x, y; Lnk/m])

1 £(n) () (i1 @)
> —"log [ exp{ —(a, D)+ L) H 1 ===
~log [ p{ <a jglg<y>> ) <a>} J]‘[:1 o
1€(n)—l
XeXp{—”W?<x+; > 8, yemy:
Jj=0
Ln(k+1)/m)J)}dn§(")
=110 /ex %) Ve H r(yo; @)
=09 - Ot,j:lg(yl) + () H () G @)

1€(n)—l
xexp{—nW?;(x-i-; Z g(yj)ayé(n)Q

j=0

Ln(k+1)/m)J)}dn§<").
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Sinceg is bounded and(-; «) is both bounded from above and bounded away
from zero by (2.2), it suffices to show

(C1) iminf inf 7", y; 0) = Uglp(x: 1),
where
vk (x, y; 0)
1 L(n)—1
= ——log / exp{—<a, > g(yl->>+£<n)H<a>}
j=0

£(n)—1
X exp{ —nWi (x +- > 8. yeu: Ln(k + 1)/mj)} dm ™.
j=0

We claim that inequality (C.1) is a direct consequence of

(C.2) lim inf y";]; VR, y;0) = UL p(x; k),

where
2n)—1

1
v (x, y; 0) ﬁ—glog/eXp{—<a, Z g(yi)>+€(n)H(a)}
j=0

1€(n)—l
X exp{ —nUf (x + . Z g(yj)ik+ 1) } dnf(n).

j=0
Indeed, sincé(n) < n, one can always find a compact getc R? such that

()1

x > g eK V(o y1. ... Yem)s YneN,
j=0

thanks to the boundedness gfand the assumption” — x. It is also not hard
to show by contradiction from the induction hypothesis and the continuity;bf
(Lemma A.2) that, for any > 0, there exist®V (¢) € N such that for alk € K and
n> N(e),

inf Wi (x, y; lnGk+1)/m]) = UF (x;k+1) = —e.
ye
We arrive at
liminf inf % (x", y; 0) > liminf inf v%(x", y; 0) —
In—>IOO )IJG/SUF(X » Y )_ In—>IOO )IJG/SUF(X » Y ) &

for everye > 0. It follows that (C.1) is implied by (C.2).
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It remains to show (C.2), which is an easy consequence of the uniform large
deviation bound Proposition B.3, Lemma A.2, boundednegs ahd that

’@—E — 0.

n m

This completes the proof.[]

Acknowledgments. We are indebted to Associate Editor and the referee for
their careful reading of the first version and many helpful suggestions. In particular,
Example 4.2 is inspired by the comments from Associate Editor.

REFERENCES

[1] AsSMUSSEN S. (1985). Conjugate processes arglgimulation of ruin probabilitySochastic
Process. Appl. 20 213-229.
[2] ASMUSSEN S. (1989). Risk theory in a Markovian environme8tand. Actuar. J. 89 69—100.
[3] ASMUSSEN S., RUBINSTEIN, R. and WANG, C. L. (1994). Regenerative rare event simulation
via likelihood ratios.J. Appl. Probab. 31 797-815.
[4] BERTSEKAS D. and $1REVE, S. (1978) Stochastic Optimal Control: The Discrete Time Case.
Academic Press, San Diego, CA.
[5] BILLINGSLEY, P. (1995)Probability and Measure, 3rd ed. Wiley, New York.
[6] BREIMAN, L. (1968).Probability Theory. Addison—Wesley, Reading, MA.
[7] BuckLEW,J. A. (1990)Large Deviations Techniques in Decision, Smulation and Estimation.
Wiley, New York.
[8] BUCKLEW,J. A.(1998). The blind simulation problem and regenerative procd§4&is Trans.
Inform. Theory 44 2877-2891.
[9] BuUcCKLEW, J. A, NeY, P. and 3powsKy, J. S. (1990). Monte Carlo simulation and large
deviations theory for uniformly recurrent Markov chaidsAppl. Probab. 27 44-59.
[10] CHEN, J., Ly, D., SADOWSKY, J. S. and X0, K. (1993). On importance sampling in digital
communications. Part |I: FundamentalBEE J. Selected Areas in Comm. 11 289-307.
[11] CoLLAMORE, J. F. (2002). Importance sampling beiques for the multidimensional ruin
problem for general Markov additive sequences of random vechors.Appl. Probab.
12 382-421.
[12] COTTREL, M., FORT, J. C. and M\LGOUYNES, G. (1983). Large deviations and rare events in
the study of stochastic algorithm&EE Trans. Automat. Control AC-28 907-920.
[13] DE AcosTA A. (1990). Large deviations for empirical measures of Markov chdirgheoret.
Probab. 3 395-431.
[14] Dupuls, P. and ELIS, R. S. (1997)A Weak Convergence Approach to the Theory of Large
Deviations. Wiley, New York.
[15] Dupuls, P. and KUSHNER H. J. (1987). Stochastic systems with small noise, analysis and
simulation; a phase locked loop exam@AM J. Appl. Math. 47 643-661.
[16] Dupuls, P. and WANG, H. (2005). Importance sampling, large deviations, and differential
gamesAnn. Probab. To appear.
[17] GLASSERMAN, P. (2004).Monte Carlo Methods in Financial Engineering. Springer, New
York.
[18] GLASSERMAN, P. and Kou, S. (1995). Analysis of an importance sampling estimator for
tandem queue®CM Trans. Modeling Comp. Smulation 4 22—-42.
[19] GLASSERMAN, P. and WANG, Y. (1997). Counter examples in importance sampling for large
deviations probabilitiesAnn. Appl. Probab. 7 731-746.



38 P. DUPUIS AND H. WANG

[20] GLYNN, P. W. (1995). Large deviations for the infinite server queue in heavy trei&.Vol.
Math. Appl. 71 387-394.

[21] HEIDELBERGER P. (1995). Fast simulation of rare evelih queueing and fiability models.
ACM Trans. Modeling Comp. Smulation 4 43-85.

[22] IscoEI., NEY, P. and NUMMELIN, E. (1985). Large deviations of uniformly recurrent Markov
additive processe#adv. in Appl. Math. 6 373-412.

[23] KUSHNER H. J. (1990).Weak Convergence Methods and Singularly Perturbed Sochastic
Control and Filtering Problems. Birkh&user, Boston.

[24] LEHTONEN, T. and NvHRINEN, H. (1992). Simulating levelcrossing pobabilities by
importance samplingAdv. in Appl. Probab. 24 858—-874.

[25] LEHTONEN, T. and NYHRINEN, H. (1992). On asymptotically efficient simulating of ruin
probabilities in a Markovian environmer8cand. Actuar. J. 1 60—75.

[26] NEY, P. and NUMMELIN, E. (1987). Markov additive processes I: Eigenvalue properties and
limit theorems Ann. Probab. 15 561-592.

[27] NEY, P. and NUMMELIN, E. (1987). Markov additive processes Il: Large deviatiofn.
Probab. 15 593-609.

[28] ROCKAFELLAR, R. T. (1970).Convex Analysis. Princeton Univ. Press.

[29] SaDowsKy, J. S. (1991). Large deviations and efficient simulation of excessive backlogs in a
G1/G/m queuel EEE Trans. Automat. Control 36 1383—1394.

[30] SaDowskKy, J. S. (1993). On the optimality and sil#tly of exponential twisting in Monte
Carlo estimationlEEE Trans. Inform. Theory 39 119-128.

[31] Sabpowsky, J. S. (1996). On Monte Carlestimation of large deations pobalilities. Ann.
Appl. Probab. 6 399-422.

[32] sapowsKy, J. S.and BCKLEW, J. A. (1990). On large deviations theory and asymptotically
efficient Monte Carlo estimatiohEEE Trans. Inform. Theory 36 579-588.

[33] SHAHSBUDDIN, P. (1994). Importance sampling for the simulation of highly reliable Markov-
ian systemsManagement Sci. 40 333-352.

[34] SIEGMUND, D. (1976). Importance sampling in the Monte Carlo study of sequential fests.
Satist. 4 673-684.

DIVISION OF APPLIEDMATHEMATICS

BROWN UNIVERSITY

PROVIDENCE, RHODE ISLAND 02912

USA

E-MAIL : dupuis@dam.brown.edu
huiwang@cfm.brown.edu



