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OPTIMAL POINTWISE APPROXIMATION OF SDEs BASED
ON BROWNIAN MOTION AT DISCRETE POINTS

BY THOMAS MÜLLER-GRONBACH

Otto-von-Guericke-Universität Magdeburg

We study pathwise approximation of scalar stochastic differential equa-
tions at a single point. We provide the exact rate of convergence of the mini-
mal errors that can be achieved by arbitrary numerical methods that are based
(in a measurable way) on a finite number of sequential observations of the
driving Brownian motion. The resulting lower error bounds hold in particu-
lar for all methods that are implementable on a computer and use a random
number generator to simulate the driving Brownian motion at finitely many
points. Our analysis shows that approximation at a single point is strongly
connected to an integration problem for the driving Brownian motion with a
random weight. Exploiting general ideasfrom estimation of weighted inte-
grals of stochastic processes, we introduce an adaptive scheme, which is easy
to implement and performs asymptotically optimally.

1. Introduction. We consider a scalar stochastic differential equation

dX(t) = a
(
t,X(t)

)
dt + σ

(
t,X(t)

)
dW(t), t ∈ [0,1],(1)

with initial valueX(0). HereW denotes a one-dimensional Brownian motion, and
a : [0,1] × R → R andσ : [0,1] × R → R satisfy standard smoothness conditions.

In most cases an explicit solution of (1) will not be available so that an
approximationX̂ must be used. Assume that the driving Brownian motionW

may be evaluated at a finite number of points. Then the following questions are
of interest:

1. Where in the unit interval should these evaluations be made and how should the
resulting data be used in order to obtain the best possible approximation to the
solution?

2. What is the minimal error that can be achieved if at mostN evaluations ofW
are made on the average?

The analysis of these problems clearly needs the specification of an error criterion.
The two main approaches in the literature are:

(i) approximation at a finite number of points, that is,X̂ is compared to the
solutionX at finitely many points in the unit interval,
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(ii) global approximation, that is,X̂ is compared to the solutionX globally on
the unit interval.

First results for global approximation are due to Pardoux and Talay (1985) who
studied almost surely uniform convergence of specific approximations. Faure
(1992) determines an upper bound with an unspecified constant for the average
L∞-error of a Euler scheme with piecewise linear interpolation. Complete answers
(in an asymptotic sense) to the questions 1 and 2 above are given in Hofmann,
Müller-Gronbach and Ritter (2001) for the averageL2-error and Müller-Gronbach
(2002b) for the averageL∞-error. In these papers the exact rate of convergence of
the minimum error is determined and adaptive methods are presented that are easy
to implement and perform asymptotically optimally.

Much less is known for the problem of approximation at a finite number of
points. Here, the majority of results deal only with upper bounds for the error
of specific schemes at the discretization points; see, for example, Kloeden and
Platen (1995) for an overview. Lower bounds for approximation att = 1 were
first presented in Clark and Cameron (1980) who considered an autonomous
equation (1) with constant diffusionσ = 1 and determined the rate of convergence
of the minimal mean squared error that can be obtained by equidistant evaluation of
the driving Brownian motionW . Rümelin (1982) studied autonomous equations
with a nonconstant diffusion coefficient and presented the order of the minimal
error that can be obtained by Runge–Kutta methods based on equidistant
evaluation ofW . The most fargoing result is due to Cambanis and Hu (1996)
who analyzed the mean squared error of the conditional expectation ofX(1)

given observations ofW at points that are regularly generated by some density.
They provided the rate of convergence of the corresponding mean squared error
and determined the optimal density. Clearly, all these results only provide partial
answers to the above questions 1 and 2. For instance, the implementation of a
conditional expectation will be a hard task in general. Furthermore, considerations
are restricted to numerical methods that are based on samplingW at prefixed points
in the unit interval (either equidistant or regularly generated by some density).
Adaptive methods which take into account the particular trajectory of the solution
are not covered. See Remarks 1 and 3 for a discussion.

In the present paper we provide a detailed analysis of approximation att = 1
with respect to the questions 1 and 2. Our results cover all numerical methods that
are based on the initial valueX(0) and finitely many sequential observations

W(τ1), . . . ,W(τν)

of the driving Brownian motionW . Except for measurability conditions, we do
not impose any further restrictions. Thekth evaluation pointτk may depend on
the previous evaluationsX(0),W(τ1), . . . ,W(τk−1) and the total numberν of
observations ofW may be determined by a stopping rule. Finally, the resulting
discrete data may be used in any way to generate an estimator

X̂(1) = φ
(
W(τ1), . . . ,W(τν)

)
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of X(1), the solution att = 1. For example, the adaptive Euler–Maruyama scheme
recently introduced in Lamba, Mattingly and Stuart (2003) is of this type.

The error ofX̂(1) is defined by

ep

(
X̂(1)

) = (
E|X(1) − X̂(1)|p)1/p

,

wherep ∈ [1,∞[, andc(X̂(1)) = E(ν) is the average number of evaluations ofW

used byX̂(1).
Our analysis shows that the problem of pathwise approximation att = 1 is

strongly connected to an integration problem for the driving Brownian motionW

with the random weight

Y(t) = M(t,1) · G(
t,X(t)

)
, t ∈ [0,1],

whereG = σa(0,1) − σ (1,0) − aσ (0,1) − 1/2 · σ 2σ (0,2) involves partial derivatives
of a andσ , and the one-dimensional random fieldM is given by

M(t, s) = exp
(∫ s

t

(
a(0,1) − 1/2 · (

σ (0,1)
)2)(

u,X(u)
)
du

+
∫ s

t
σ (0,1)

(
u,X(u)

)
dW(u)

)
for 0 ≤ t ≤ s ≤ 1. Roughly speaking,M(t, ·) is theL2-derivative of the solution
X with respect to its state at timet ; see Remark 6.

To give a flavor of our results, letp = 2, and consider the minimal error

e∗∗
2 (N) = inf

{
e2

(
X̂(1)

)
: c

(
X̂(1)

) ≤ N
}

that can be achieved by numerical methods using at mostN evaluations of the
driving Brownian motion on the average. By Theorem 1(i),

lim
N→∞N · e∗∗

2 (N) = 1/
√

12·
(
E

(∫ 1

0
|Y(t)|2/3 dt

))3/2

,(2)

which answers question 2 in an asymptotic sense.
For answering question 1 we exploit general ideas from estimation of weighted

integrals of stochastic processes; see, for example, Ritter (2000) and the references
therein. We construct an easy to implement adaptive schemeX̂∗∗

2,n with step-size
roughly proportional to|Ŷn(t)|−2/3, whereŶn is a suitable approximation to the
random weightY. The resulting approximation̂X∗∗

2,n(1) at t = 1 satisfies

lim
n→∞ c

(
X̂∗∗

2,n(1)
) · e2

(
X̂∗∗

2,n(1)
) = 1/

√
12·

(
E

(∫ 1

0
|Y(t)|2/3 dt

))3/2

;(3)

see Theorem 2(i). Consequently, by (2) this method performs asymptotically
optimally for every equation (1) with a nonzero asymptotic constant on the right-
hand side above.
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A natural question is whether the asymptotic constant in (3) can also be achieved
by a numerical method based on a prefixed discretization. The answer turns out to
be negative in general. In fact, consider the minimal error

e2(N) = inf
{
e2

(
E

(
X(1)|W(t1), . . . ,W(tN )

))
: 0 ≤ t1 ≤ · · · ≤ tN ≤ 1

}
that can be obtained if the driving Brownian motionW is evaluated atN prefixed
points in the unit interval. By Theorem 1(iii),

lim
N→∞N · e2(N) = 1/

√
12·

(∫ 1

0

(
E|Y(t)|2)1/3

dt

)3/2

.(4)

Thus the order of convergence is still 1/N but the asymptotic constant in (4)
may be considerably larger than the asymptotic constant in (2); see Example 1.
Somewhat surprisingly, as a by-product of (4), it turns out that in general the
Milstein scheme does not perform asymptotically optimally; see Remark 7.

In Section 2 we state our assumptions on equation (1). We use global Lipschitz
and linear growth conditions on the drift coefficienta, the diffusion coefficientσ
and partial derivatives of these coefficients, as well as a moment condition on the
initial valueX(0).

Best rates of convergence for approximation att = 1 based on point evaluations
of W are stated in Section 3. More specifically, we analyze the minimal errors that
can be achieved ifW is evaluated at:

(a) sequentially chosen pointsτ1, . . . , τν with E(ν) ≤ N ,
(b) sequentially chosen pointsτ1, . . . , τν with ν ≤ N ,
(c) prefixed pointst1, . . . , tN ,
(d) equidistant points 1/N,2/N, . . . ,1.

In Section 4 we introduce a new class of numerical schemes, which leads to
asymptotically optimal approximations for each of the cases (a)–(d) above.

Proofs are postponed to Section 5 and the Appendix.

2. Assumptions. We will use the following Lipschitz and linear growth
conditions on functionsf : [0,1] × R → R.

(L) There exists a constantK > 0 such that

|f (t, x) − f (t, y)| ≤ K · |x − y|
for all t ∈ [0,1] andx, y ∈ R.

(LG) There exists a constantK > 0 such that

|f (t, x)| ≤ K · (1+ |x|)
for all t ∈ [0,1] andx ∈ R.
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(LLG) There exists a constantK > 0 such that

|f (s, x) − f (t, x)| ≤ K · (1+ |x|) · |s − t|
for all s, t ∈ [0,1] andx ∈ R.

Throughout this paper we impose the following regularity conditions on the
drift coefficienta, the diffusion coefficientσ and the initial valueX(0).

(A) (i) Both a andσ satisfy (L) as well as (LLG).
(ii) The partial derivatives

a(1,0), a(0,1), a(0,2), σ (1,0), σ (0,1), σ (0,2)

exist and satisfy (L) as well as (LLG).
(iii) The functionsσ 2a(0,2) andσ 2σ (0,2) satisfy (LG).
(iv) The functionσσ (0,2) satisfies (L).

(B) The initial valueX(0) is independent ofW and satisfiesE|X(0)|16p < ∞.

For instance, (A) is satisfied if the partial derivatives

a(i,j ), σ (i,j ), i = 0,1,2, j = 0,1,2,3,

exist and are continuous and bounded.
Note that (A) together with (B) implies that a pathwise unique strong solution of

the equation (1) with initial valueX(0) exists. In particular, the conditions assure
that

E

(
sup

0≤t≤1
|X(t)|16p

)
< ∞(5)

as well as

E|X(s) − X(t)|16p ≤ c · |s − t|8p,(6)

where the constantc > 0 only depends onp and the constants from (A) and (B).

3. Best rates of convergence. We consider arbitrary numerical methods for
pathwise approximation of the solutionX at the pointt = 1 that are based on
a realization of the initial valueX(0) and a finite number of observations of a
trajectory of the driving Brownian motionW at points in the unit interval. The
formal definition of the class of these methods and subclasses of interest is given
in Section 3.1. Section 3.2 contains the analysis of the corresponding minimal
errors.

3.1. General methods for approximation att = 1. A general adaptive approx-
imationX̂(1) of X(1) is defined by three sequences

ψ = (ψn)n∈N, χ = (χn)n∈N, φ = (φn)n∈N,
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of measurable mappings

ψn : R
n →]0,1],

χn : R
n+1 → {STOP,GO},

φn : R
n+1 → R.

The sequenceψ determines the evaluation sites of a trajectoryw of W in the
interval ]0,1]. The total number of evaluations to be made is determined by
the sequenceχ of stopping rules. Finally,φ is used to obtain the real-valued
approximation to the solutionX at t = 1 from the observed data.

To be more precise, the sequential observation of a trajectoryw starts at
the knot ψ1(x), where x denotes the realization of the initial value. After
n steps we have obtained the dataDn(x,w) = (x, y1, . . . , yn), where y1 =
w(ψ1(x)), . . . , yn = w(ψn(x, y1, . . . , yn−1)), and we decide to stop or to further
evaluatew according to the value ofχn(Dn(x,w)). The total number of
observations is thus given byν(x,w) = min{n ∈ N :χn(Dn(x,w)) = STOP}. If
ν(x,w) < ∞, then the whole dataD(x,w) = Dν(x,w)(x,w) are used to construct
the estimateφν(x,w)(D(x,w)) ∈ R.

For obvious reasons we requireν(X(0),W) < ∞ with probability 1. Then the
resulting approximation is given by

X̂(1) = φν(X(0),W)

(
D

(
X(0),W

))
.

As a rough measure for the computational cost ofX̂(1) we use

c
(
X̂(1)

) = E
(
ν
(
X(0),W

))
,

that is, the expected number of evaluations of the driving Brownian motionW .
Clearly, a more realistic measure also involves, for example, a count of the
arithmetical operations needed to computeX̂(1).

Let X∗∗ denote the class of all methods of the above form and put

X∗∗
N = {

X̂(1) ∈ X∗∗ : c
(
X̂(1)

) ≤ N
}
.

Then

e∗∗
p (N) = inf

{
ep

(
X̂(1)

)
: X̂(1) ∈ X∗∗

N

}
is the minimal error that can be obtained by approximations that use at mostN

sequential observations ofW on the average.
The number and the location of the evaluation sites that are used by an

approximationX̂(1) ∈ X∗∗ depend on the respective realizationx of the initial
valueX(0) and the pathw of the driving Brownian motionW . It is natural to ask
whether, in general, the minimal errorse∗∗

p (N) can (asymptotically) be achieved
by methods that use the same evaluation sites for every trajectory ofW . In order
to investigate questions of this type, we introduce the following subclasses ofX∗∗
that are subject to certain restrictions on the choice of evaluation sites.

The subclassX∗ ⊂ X∗∗ consists of all approximations that use the same
number of observations for everyx and w. Formally, this means that the
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mappingsχn are constant andν = min{n ∈ N :χn = STOP}.
Additionally, we consider the subclassX ⊂ X∗ of all approximations that

evaluateW at the same points for everyx and every pathw. Formally, the
mappingsψn and χn are constant so thatν = min{n ∈ N :χn = STOP} and
D(x,w) = (x,w(ψ1), . . . ,w(ψν)). For instance, if the discretization is fixed, then
the corresponding Euler scheme and the Milstein scheme att = 1 belong to the
classX.

Finally, the classXequi⊂ X consists of all approximations that use equidistant
evaluation sites for the driving Brownian motion.

The definition of the respective classesX∗
N , XN , X

equi
N and the corresponding

minimal errorse∗
p(N), ep(N) ande

equi
p (N) is canonical.

We stress that the classX∗∗ contains all commonly studied methods for
approximation att = 1 that are based on function values of the driving Brownian
motion. Formally, the corresponding sequencesψ , χ andφ then depend on the
respective drift coefficienta and diffusion coefficientσ . In the majority of cases,
partial information about the coefficients, for example, finitely many function
values or derivative values, are sufficient to compute the approximationsX̂(1).

In the present paper we present (asymptotically) sharp upper and lower bounds
for the minimal errors defined above. The upper bounds are achieved by methods
that also need only partial information abouta and σ . On the other hand, no
restriction on the available information abouta andσ is present in the definition
of the classX∗∗. Therefore, the lower bounds hold even for strong approximations
that may specifically be tuned to the respective coefficients. As an example,
consider an approximation of the form

X̂(1) = E
(
X(1)|W(t1), . . . ,W(tN)

)
,

which belongs to the classXN and might even not be implementable.

3.2. Analysis of minimal errors. Let mp denote thepth root of the pth
absolute moment of a standard normal variable, that is,

mp =
(∫ ∞

−∞
|y|p/(2π)1/2 · exp(−y2/2) dy

)1/p

.

Recall the weighting processY from Section 1 and define the constants

C∗∗
p = mp ·

(
E

(∫ 1

0
|Y(t)|2/3 dt

)3p/2(p+1))(p+1)/p

,

C∗
p = mp ·

(
E

(∫ 1

0
|Y(t)|2/3 dt

)3p/2)1/p

,

C2 =
(∫ 1

0

(
E|Y(t)|2)1/3

dt

)3/2

,

Cequi
p = mp ·

(
E

(∫ 1

0
|Y(t)|2 dt

)p/2)1/p

.
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THEOREM 1. The minimal errors satisfy:

(i) limN→∞ N · e∗∗
p (N) = C∗∗

p /
√

12,

(ii) lim N→∞ N · e∗
p(N) = C∗

p/
√

12,

(iii) lim N→∞ N · e2(N) = C2/
√

12,
(iv) limN→∞ N · eequi

p (N) = C
equi
p /

√
12.

Clearly, the asymptotic constants vanish altogether iffC
equi
2 = 0. Thus, if

C
equi
2 > 0, then the order of convergence of the minimal errors is 1/N for all of the

above classes. However, note that

C∗∗
p ≤ C∗

p ≤ Cequi
p , C∗∗

2 ≤ C∗
2 ≤ C2 ≤ C

equi
2 ,

with strict inequality in most cases. See Remark 2 for the caseC
equi
2 = 0 and

Remark 4 for a characterization of equality of the asymptotic constants.

EXAMPLE 1. Consider the linear equation

dX(t) = α(t) · X(t) dt + β(t) · X(t) dW(t)

with initial condition X(0) = 1. Clearly, condition (A) is satisfied ifα and β

have Lipschitz continuous derivativesα′ andβ ′, respectively. The corresponding
field M is given by

M(t, s) = exp
(∫ s

t
(α − 1/2 · β2)(u) du +

∫ s

t
β(u) dW(u)

)
,

and we haveX(t) = M(0, t). Moreover, G(t, x) = −β ′(t) · x, so that the
weighting processY satisfiesY(t) = −β ′(t) · M(0, t) · M(t,1) = −β ′(t) · X(1).

Straightforward calculations yield forq ∈ R \ {0},(
E|X(1)|q)1/q = e‖α‖1−1/2·‖β‖2

2 · eq/2·‖β‖2
2.

Thus

C∗∗
p = mp · e‖α‖1−1/2·‖β‖2

2 · ‖β ′‖2/3 · ep/2(p+1)·‖β‖2
2,

C∗
p = mp · e‖α‖1−1/2·‖β‖2

2 · ‖β ′‖2/3 · ep/2·‖β‖2
2,

C2 = C∗
2,

Cequi
p = mp · e‖α‖1−1/2·‖β‖2

2 · ‖β ′‖2 · ep/2·‖β‖2
2.

If α = 0 andβ(t) = b · t with b ∈ R, then

C
equi
2 = C2 = C∗

2 = |b| · eb2/6

and

C∗∗
2 = |b| · e−2b2/9,
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which shows that adapting the number of evaluations ofW to the particular
trajectory of the solutionX is essential in this case. Note that the constantC∗∗

2
is achieved by the adaptive method to be introduced in Section 4.3.1. Thus, if, for
example,b = 5, then, asymptotically, the error of this method is at least 1/258
times smaller than the error of any approximation based on a fixed number of
evaluations ofW .

REMARK 1. Clark and Cameron (1980) consider the autonomous equation

dX(t) = a(X(t)) dt + dW(t), X(0) = x ∈ R,

wherea has bounded derivatives up to order 3. They obtain

lim
N→∞N · (

E
∣∣X(1) − E

(
X(1)|W(1/N), . . . ,W(1)

)∣∣2)1/2

=
(∫ 1

0
E

((
a′(X(t))

)2 · exp
(

2 ·
∫ 1

t
a′(X(s)) ds

))
dt

)1/2/√
12.

Note that the corresponding weighting process is given by

Y(t) = a′(X(t)) · exp
(∫ 1

t
a′(X(s)) ds

)
so that the above result is a consequence of Theorem 1(iv).

More generally, Cambanis and Hu (1996) study autonomous equations

dX(t) = a(X(t)) dt + σ(X(t)) dW(t), X(0) = x ∈ R,

wherea andσ have bounded derivatives up to order 3. They analyze the minimum
error that can be achieved by methods from the classX that are based on so-called
regularly generated discretizations.

To be more precise, leth be a strictly positive density on[0,1] and define the
discretization

0 < t
(h)
1 < · · · < t

(h)
N = 1

by taking thel/N -quantiles corresponding toh, that is,∫ t
(h)
l

0
h(t) dt = l/N, l = 1, . . . ,N.

Consider the optimal approximation in the mean squared sense

X̂
(h)
N (1) = E

(
X(1)

∣∣W (
t
(h)
1

)
, . . . ,W

(
t
(h)
N

))
that is based on the observationsW(t

(h)
1 ), . . . ,W(t

(h)
N ) and put

C(h) =
(∫ 1

0
E|Y(t)|2/h2(t) dt

)1/2

.
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If h has a bounded derivative, then

lim
N→∞N · e2

(
X̂

(h)
N (1)

) = C(h)/
√

12.

Takingh = 1 yields Theorem 1(iv) in the casep = 2, since

e2
(
X̂

(1)
N (1)

) = e
equi
2 (N) and C(1) = C

equi
2 .

Taking

h∗(t) = (
E|Y(t)|2)1/3

/∫ 1

0

(
E|Y(s)|2)1/3

ds

yields the minimal constant

C2 = C(h∗) = inf
h

C(h).

Thus, by Theorem 1(iii), the approximation̂X(h∗)
N (1) is asymptotically optimal in

the classX if C2 > 0. However, note that the method̂X(h∗)
N (1) is much harder to

implement than the asymptotically optimal method introduced in Section 4.

REMARK 2. Theorem 1 determines the rates of convergence of the minimal
errors only in the case of nonzero asymptotic constants. Clearly, these constants
vanish altogether iff with probability 1,

G
(
t,X(t)

) = 0 for everyt ∈ [0,1].(7)

For a large class of equations, it turns out that (7) holds iff there exists a measurable
functionf :R × [0,1] × R → R such that, with probability 1,

X(t) = f
(
X(0), t,W(t)

)
for everyt ∈ [0,1].(8)

Obviously, if (8) holds, thenX(1) can be simulated exactly. Thus (8) implies (7)
by Theorem 1.

Clark and Cameron (1980) provide sufficient conditions for the equivalence
of (7) and (8) in the case of autonomous equations. Slightly modifying their
approach, one can also treat general equations. If, additionally to assumption (A),
the conditions

(i) a andσ (1,0) are bounded,
(ii) inf t,x |σ(t, x)| > 0,

are satisfied, then (7) and (8) are equivalent.
The equivalence of (7) and (8) also holds for the linear equation from

Example 1. Note that condition (ii) above must not be satisfied in this case.
However, (7) impliesβ ′ = 0 and therefore

X(t) = exp
(∫ t

0
(α − 1/2 · β2)(u) du + β(t) · W(t)

)
, t ∈ [0,1].
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Finally, assume thata andσ have partial derivatives of any order. Then, by a
general result of Yamato (1979), (8) is equivalent to

G = 0,(6*)

which clearly implies (7).
Note that (6*) implies that the Wagner–Platen scheme only uses function values

of the driving Brownian motion; see Section 4. Thus the order of convergence of
the minimal errorseequi

p (N) is at least 1/N3/2 in this case.

REMARK 3. Rümelin (1982) analyzes a classX of Runge–Kutta methods
based on an equidistant discretization, that is,

X ⊂ Xequi,

with respect to the mean squared error att = 1, that is, p = 2. For this
class Rümelin shows that, under stronger conditions ona and σ , the order of
convergence of the corresponding minimal errors is 1/N iff G 
= 0. Moreover,
if G = 0, then the order is at least 1/N3/2.

REMARK 4. We briefly comment on equality of the asymptotic constants in
the casep = 2. Clearly,C2 = C

equi
2 iff there existsγ ∈ R such that

E(Y(t))2 = γ for all t ∈ [0,1].
Furthermore,C∗

2 = C2 iff there existt0 ∈ [0,1] and a functionγ ∈ C([0,1])
such that, with probability 1,

Y(t) = γ (t) · Y(t0) for all t ∈ [0,1].
Note that the latter condition holds for the linear equation from Example 1 with
γ = −β ′/β ′(1) andt0 = 1.

Finally, by the Markov property ofX, we haveC∗∗
2 = C∗

2 iff there exists a
functionγ ∈ C([0,1]) such that, with probability 1,

Y(t) = γ (t) for all t ∈ [0,1].
In particular, ifa andσ are state independent, thenC∗∗

2 = C∗
2 = C2 = ‖σ ′‖2/3.

REMARK 5. Theorem 1 shows that pathwise approximation at a single point
is strongly connected to weighted integration of a Brownian motion. To be
more precise, letρ : [0,1] → [0,∞[ be continuous, and consider the problem of
estimating the weighted integral

I =
∫ 1

0
ρ(t) · W̃ (t) dt
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of a Brownian motioñW on the basis ofN observations of̃W in the unit interval.
The corresponding minimum mean squared error

ε(N) = inf
{(

E
(
I − E

(
I
∣∣W̃ (t1), . . . , W̃ (tN)

))2)1/2 : 0≤ t1 ≤ · · · ≤ tN ≤ 1
}

satisfies

lim
N→∞N · ε(N) = 1/

√
12· cρ,

where

cρ =
(∫ 1

0
(ρ(t))2/3 dt

)3/2

;

see Ritter (2000) and the references therein.
Taking the weight

ρ(t) = (
E

(
Y2(t)

))1/2
, t ∈ [0,1],

yields the constantC2 in Theorem 1(iii).
Using the random weight|Y|, we obtain the random constantc|Y|, and

C∗∗
2 = (

E
(
c

2/3
|Y|

))3/2
.

As an illustrating example, consider the linear equation with additive noise

dX(t) = a(t) dt + σ(t) dW(t).

Then

X(1) = X(0) +
∫ 1

0
a(t) dt + σ(1) · W(1) −

∫ 1

0
σ ′(t) · W(t) dt.

SinceX(0) andσ(1) · W(1) can be observed, we are basically dealing with the
approximation of the last integral on the right-hand side above. Clearly, in this
case the weighting processY is nonrandom withY = −σ ′.

REMARK 6. Consider, for everyx ∈ R andt ∈ [0,1], the solutionXt,x of the
equation

dXt,x(s) = a
(
s,Xt,x(s)

)
ds + σ

(
s,Xt,x(s)

)
dW(s), t ≤ s ≤ 1,

with initial valueXt,x(t) = x. As a well-known fact, the distribution of the process
Xt,x on C([t,1]) coincides with the conditional distribution of the solutionX(s),
t ≤ s ≤ 1, givenX(t) = x. Due to condition (A), for everys ≥ t , there exists the
L2-derivativeX′

t,x(s) of Xt,x(s) with respect to the initial valuex, that is,

lim
h→0

E
(
1/h · (

Xt,x+h(s) − Xt,x(s)
) − X′

t,x(s)
)2 = 0.
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Moreover, the processX′
t,x is the unique solution of the equation

dX′
t,x(s) = a(0,1)(s,Xt,x(s)

) · X′
t,x(s) ds + σ (0,1)(s,Xt,x(s)

) · X′
t,x(s) dW(s),

t ≤ s ≤ 1,

with initial valueX′
t,x(t) = 1, and is explicitly given by

X′
t,x(s) = exp

(∫ s

t

(
a(0,1) − 1/2 · (

σ (0,1))2)(
u,Xt,x(u)

)
du

+
∫ s

t
σ (0,1)

(
u,Xt,x(u)

)
dW(u)

)
;

see, for example, Friedman (1975) and Karatzas and Shreve (1991). Replacing
Xt,x by the solutionX yields the defining equation for the fieldM.

4. Asymptotically optimal adaptive schemes. Let k ∈ N and consider the
equidistant discretization

tl = l/k, l = 0, . . . , k.(9)

Our adaptive method basically works as follows. First, we evaluate the driving
Brownian motion at a coarse grid (9), and we compute a corresponding truncated
Wagner–Platen scheme as well as a discrete approximation to the weighting
processY. Following the main idea for nonrandom weighted integration, the latter
estimate determines the number and the location of the additional evaluation sites
for the driving Brownian motion. The resulting observations are then used to obtain
a suitable approximation of the difference between the Wagner–Platen scheme and
its truncated version. Finally, we update the truncated Wagner–Platen scheme by
adding this approximation.

For convenience we briefly recall the definition of the Wagner–Platen scheme
X̂WP

k corresponding to the discretization (9). This scheme is defined byX̂WP
k (0) =

X(0) and

X̂WP
k (tl+1) = X̂WP

k (tl) + a
(
tl, X̂

WP
k (tl)

) · (tl+1 − tl)

+ σ
(
tl, X̂

WP
k (tl)

) · (
W(tl+1) − W(tl)

)
+ 1/2 · (

σσ (0,1)
)(

tl , X̂
WP
k (tl)

) · ((
W(tl+1) − W(tl)

)2 − (tl+1 − tl)
)

+ (
σ (1,0) + aσ (0,1) − 1/2 · σ (

σ (0,1)
)2)

× (
tl, X̂

WP
k (tl)

) · (
W(tl+1) − W(tl)

) · (tl+1 − tl)

+ 1/6 · (
σ

(
σ (0,1)

)2 + σ 2σ (0,2)
)(

tl, X̂
WP
k (tl)

) · (
W(tl+1) − W(tl)

)3

+ 1/2 · (
a(1,0) + aa(0,1) + 1/2 · σ 2a(0,2)

)(
tl, X̂

WP
k (tl)

) · (tl+1 − tl)
2

+ G
(
tl, X̂

WP
k (tl)

) ·
∫ tl+1

tl

(
W(s) − W(tl)

)
ds
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for l = 0, . . . , k − 1; see Wagner and Platen (1978). For the definition of this
scheme in the case of a general system of equations, we refer to Kloeden and
Platen (1995).

We stress that in general the Wagner–Platen approximationX̂WP
k (1) at t = 1

does not belong to the classX since function values as well as integrals of the
trajectories of the driving Brownian motion are used.

4.1. The truncated Wagner–Platen schemeX̂WPt
k . Dropping the last summand

in the definition of the scheme above, we obtain a truncated versionX̂WPt
k of

the Wagner–Platen scheme that is based, only on function values of the driving
Brownian motion. Formally,̂XWPt

k is defined bŷXWPt
k (0) = X(0) and

X̂WPt
k (tl+1) = X̂WPt

k (tl) + a
(
tl, X̂

WPt
k (tl)

) · (tl+1 − tl )

+ σ
(
tl, X̂

WPt
k (tl)

) · (
W(tl+1) − W(tl)

)
+ 1/2 · (

σσ (0,1))(tl, X̂WPt
k (tl)

) · ((
W(tl+1) − W(tl)

)2 − (tl+1 − tl)
)

+ (
σ (1,0) + aσ (0,1) − 1/2 · σ (

σ (0,1))2)
× (

tl, X̂
WPt
k (tl)

) · (
W(tl+1) − W(tl)

) · (tl+1 − tl)

+ 1/6 · (
σ

(
σ (0,1)

)2 + σ 2σ (0,2)
)(

tl , X̂
WPt
k (tl)

) · (
W(tl+1) − W(tl)

)3

+ 1/2 · (
a(1,0) + aa(0,1) + 1/2 · σ 2a(0,2)

)(
tl, X̂

WPt
k (tl)

) · (tl+1 − tl)
2

for l = 0, . . . , k − 1.

4.2. The discrete approximation̂Yk of the random weightY. Note that the
random fieldM satisfies the stochastic differential equations

dM(t, s) = a(0,1)(s,X(s)
) · M(t, s) ds + σ (0,1)(s,X(s)

) · M(t, s) dW(s),
(10)

t ≤ s ≤ 1,

with initial value

M(t, t) = 1

for everyt ∈ [0,1].
Using the truncated Wagner–Platen estimates, we thus obtain the following

Euler-type approximation to the fieldM. Put

m̂l = (
1+a(0,1)(tl, X̂WPt

k (tl)
) ·(tl+1− tl )+σ (0,1)(tl, X̂WPt

k (tl)
) ·(W(tl+1)−W(tl )

))
and define the schemêMk by

M̂k(tl , tr ) =
{

m̂l · · · m̂r−1, if l + 1 ≤ r ≤ k,

1, if r = l.
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Now, for l = 0, . . . , k − 1, we take

Ŷk(tl) = M̂k(tl+1,1) · G(
tl, X̂

WPt
k (tl)

)
as an approximation toY(tl). Note that, in general, all of the observations
W(t1), . . . ,W(1) are needed to compute the estimateŶk(tl).

EXAMPLE 2. Consider the linear equation with additive noise from Remark 5.
In this case, we have

M̂k(tl, tr ) = M(tl, tr ) = 1

and

Ŷk(tl) = Y(tl) = −σ ′(tl).
For the linear equation from Example 1, we obtain

Ŷk(tl) = −β ′(tl) · X̂WPt
k (tl)

×
k−1∏

r=l+1

(
1+ α(tr ) · (tr+1 − tr ) + β(tr ) · (

W(tr+1) − W(tr)
))

.

4.3. The basic adaptive schemêX
µ
k . Choose measurable functions

fl :Rk → N0

for l = 0, . . . , k − 1. The numbers

µl = fl

(
Ŷk(t0), . . . , Ŷk(tk−1)

)
determine the adaptive equidistant discretizations

τl,r = tl + r
/(

k · (µl + 1)
)
, r = 0, . . . ,µl + 1,

of the subintervals[tl , tl+1].
Next, the totality of observationsW(τl,r ) is used to estimate the difference

X̂WP
k − X̂WPt

k . Put µ = (µ0, . . . ,µk−1), and letW̃µ denote the piecewise linear
interpolation ofW at the sitesτl,r . Define the schemêQµ

k by Q̂
µ
k (0) = 0 and

Q̂
µ
k (tl+1) =

(
1+ a(0,1)

(
tl, X̂

WPt
k (tl)

) · (tl+1 − tl)

+ σ (0,1)
(
tl, X̂

WPt
k (tl)

) · (
W(tl+1) − W(tl)

)) · Q̂µ
k (tl)

+ G
(
tl, X̂

WPt
k (tl)

) ·
∫ tl+1

tl

(
W̃µ(s) − W(tl)

)
ds

for l = 0, . . . , k − 1. Note that

Q̂
µ
k (tl) =

l−1∑
r=0

Ŷk(tr ) ·
∫ tr+1

tr

(
W̃µ(t) − W(tr)

)
dt.(11)



1620 T. MÜLLER-GRONBACH

Finally, the basic schemêXµ
k is defined by

X̂
µ
k (tl) = X̂WPt

k (tl) + Q̂
µ
k (tl), l = 0, . . . , k.

The resulting approximation̂Xµ
k (1) belongs to the classX∗∗ and is determined up

to the parametersk andµ. Clearly, the numberk of the nonadaptive evaluation
points should be small compared to the total number

∑
l µl of the adaptively

chosen points in order to keep track of the random weightY. On the other hand,
k must be large enough to obtain a sufficiently good approximationŶk to Y.
Finally, the numberµl of observations ofW in the interval]tl, tl+1[ should be
chosen according to the respective local size ofY. We present three versions
of X̂

µ
k (1) that are based on this principle.

4.3.1. The schemêX∗∗
p,n with varying number of observations ofW . Choose a

sequencekn ∈ N such that

lim
n→∞ kn/n = lim

n→∞ n/k3/2
n = 0(12)

and put

Ykn
=

(
1

kn

kn−1∑
l=0

∣∣Ŷkn(tl)
∣∣2/3

)3/2

.

Let

µ
(n)
l =


⌊
n ·

(∣∣Ŷkn(tl)
∣∣2/3

/ kn−1∑
r=0

∣∣Ŷkn(tr )
∣∣2/3

)
· (

Ykn

)p/(p+1)

⌋
, if Ykn

> 0,

0, otherwise,

and define

X̂∗∗
p,n = X̂

µ(n)

kn
,

where

µ(n) = (
µ

(n)
0 , . . . ,µ

(n)
kn−1

)
.

Note that the numbersµ(n)
l crucially depend on the error parameterp. If p = 2,

then

µ
(n)
l = ⌊

n/kn · ∣∣Ŷkn(tl)
∣∣2/3⌋

.

If p 
= 2, then all of the approximationŝYkn(tl) have to be computed beforehand
in order to determine the adaptive discretization.

Finally, we mention that the total number of evaluations ofW that are used to
obtain the approximation̂X∗∗

p,n(1) is roughly given byn · Sp/(p+1), where

S =
(∫ 1

0

∣∣Y(t)
∣∣2/3

dt

)3/2
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is the pathwise 2/3-seminorm of the weighting processY. In general, this quantity
depends on the trajectory ofY so that there is no a priori bound on the computation
time available for the user. If all approximations have to be computed in the same
amount of time, the following version̂X∗

n of the basic adaptive scheme can be
used. However, note that a price has to be paid for this property; see Theorem 2.

4.3.2. The schemêX∗
n with fixed number of observations ofW . In contrast

to the schemêX∗∗
p,n, the adaptive discretization used by the schemeX̂∗

n does not
depend on the error parameterp. Let

µ
(n)
l =


⌊
(n − kn) · ∣∣Ŷkn(tl)

∣∣2/3
/ kn−1∑

r=0

∣∣Ŷkn(tr )
∣∣2/3

⌋
, if Ykn

> 0,

�(n − kn)/kn
, otherwise,

and definêX∗
n = X̂

µ(n)

kn
, whereµ(n) is determined byµ(n)

0 , . . . ,µ
(n)
kn−1.

By definition,

n − kn ≤ kn +
kn−1∑
l=0

µ
(n)
l ≤ n

holds for the total number of observations, so that the resulting approximation
X̂∗

n(1) belongs to the classX∗
n.

4.3.3. The schemêXn with prefixed discretization.Replacing the quantities
|Ŷkn(tl)| by (

E|Y(tl)|2)1/2

in the definition of the numbersµ(n)
l in Section 4.3.2, we obtain the schemeX̂n,

which uses the same discretization for every trajectory of the weighting processY.
The resulting approximation̂Xn(1) thus belongs to the classXn. Note that this
method requires the computation of the second moments ofY, which might be a
difficult task in general.

4.4. Error analysis of the adaptive schemes.Now we investigate the asymp-
totic performance of the approximationŝX∗∗

p,n(1), X̂∗
n(1) andX̂n(1). Additionally,

we consider the scheme

X̂equi
n = X̂0

n,

which only uses the observationsW(1/n),W(2/n), . . . ,W(1) of the driving
Brownian motionW . Thus,X̂equi

n (1) ∈ X
equi
n . Note thatX̂equi

n is given by

X̂equi
n (l/n) = X̂WPt

n (l/n) + 1

2n

l−1∑
r=0

Ŷn(tr ) · (
W

(
(r + 1)/n

) − W(r/n)
)
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for l = 0, . . . , n.
Recall the constantsC∗∗

p , C∗
p, C2 andC

equi
p from Section 3.2.

THEOREM 2. The adaptive schemeŝX∗∗
p,n, X̂∗

n, X̂n and the equidistant

schemêXequi
n satisfy:

(i) limn→∞ c(X̂∗∗
p,n(1)) · ep(X̂∗∗

p,n(1)) = 1/
√

12· C∗∗
p ,

(ii) lim n→∞ n · ep(X̂∗
n(1)) = 1/

√
12· C∗

p,

(iii) lim n→∞ n · e2(X̂n(1)) = 1/
√

12 · C2,

(iv) limn→∞ n · ep(X̂
equi
n (1)) = 1/

√
12· Cequi

p .

Combining Theorem 2 with Theorem 1 from Section 3.2, we immediately
obtain

THEOREM 3. AssumeCequi
2 > 0. Then the schemeŝX∗∗

p,n, X̂∗
n and X̂

equi
n are

asymptotically optimal for pathwise approximation att = 1 in the respective
classes of methodsX∗∗, X∗ and Xequi. Moreover, if p = 2, then X̂n is
asymptotically optimal for pathwise approximation att = 1 in the classX.

REMARK 7. We stress that, in general, the asymptotic constantsC2/
√

12 and
C

equi
2 /

√
12 cannot be achieved by the Milstein scheme. As an example, consider

the equation

dX(t) = σ(t) dW(t), X(0) = 0,

with σ ∈ C1([0,1]). For a discretization

0= t0 < · · · < tn = 1,

the corresponding Milstein scheme is given byX̂M
t1,...,tn

(0) = 0 and

X̂M
t1,...,tn

(tl) =
l−1∑
r=0

σ(tr) · (
W(tr+1) − W(tr )

)
, l = 1, . . . , n.

Straightforward calculations yield

(
e2

(
X̂M

t1,...,tn
(1)

))2 = 1
3

n−1∑
l=0

(
σ ′(ξl)

)2 · (tl+1 − tl)
3(13)

with tl ≤ ξl ≤ tl+1, so that

n2 · (
e2

(
X̂M

t1,...,tn
(1)

))2 ≥ 1
3

(
n−1∑
l=0

(
σ ′(ξl)

)2/3 · (tl+1 − tl)

)3
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by the Hölder inequality. Consequently,

lim inf
n→∞ n · inf

0<t1<···<tn=1
e2

(
X̂M

t1,...,tn
(1)

) ≥ 1√
3

·
(∫ 1

0
|σ ′(t)|2/3 dt

)3/2

= C2√
3
.

Thus, whatever the discretization, the resulting Milstein scheme asymptotically
performs suboptimally with respect to pathwise approximation att = 1.

Similarly, for the equidistant Milstein schemêXM
n we obtain from (13) that

lim
n→∞n · e2

(
X̂M

n (1)
) = 1√

3
·
(∫ 1

0
|σ ′(t)|2 dt

)1/2

= C
equi
2√
3

.

5. Proofs. We introduce an auxiliary schemeX
aux
k corresponding to the

equidistant discretizationtl = l/k, l = 0, . . . , k, and separately analyzeX(1) −
X

aux
k (1) andX

aux
k (1)−X̂(1) for a method̂X(1) ∈ X∗∗. The schemeX

aux
k is defined

by

X
aux
k (tl) = X̂WPt

k (tl) + Qk(tl), l = 0, . . . , k.

Here X̂WPt
k is the truncated Wagner–Platen scheme (see Section 4.1) and the

schemeQk is given byQk(0) = 0 and

Qk(tl+1) =
(
1+ a(0,1)

(
tl, X̂

WPt
k (tl)

) · (tl+1 − tl)

+ σ (0,1)(tl, X̂WPt
k (tl)

) · (
W(tl+1) − W(tl)

)) · Qk(tl)

+ G
(
tl, X̂

WPt
k (tl)

) ·
∫ tl+1

tl

(
W(s) − W(tl)

)
ds

for l = 0, . . . , k − 1. Note that

Qk(tl) =
l−1∑
r=0

Ŷk(tr ) ·
∫ tr+1

tr

(
W(t) − W(tl)

)
dt.(14)

Due to Lemma 12 in the Appendix, we have

E|X(1) − X
aux
k (1)|p = O(k−3p/2).(15)

Thus, asymptoticallyE|Xaux
k (1) − X̂(1)|p will be the dominating term ifk is

chosen suitable as a function ofc(X̂(1)).
We briefly outline the structure of this section. Basic facts on moments of

integrated Brownian bridges are stated in Section 5.1. Section 5.2 contains error
bounds for the discrete approximation̂Yk of the random weightY. The lower
bounds in Theorem 1 are proven in Section 5.3. The matching upper bounds in
Theorem 2 are proven in Section 5.4.

Throughout the following we usec to denote unspecified positive constants
that only depend on the error parameterp and the constants from conditions
(A) and (B) in Section 2.
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5.1. Moments of integrated Brownian bridges.Let B denote a Brownian
bridge on an interval[S,T ] ⊂ [0,1]. Straightforward calculations yield

E

(∫ T

S
B(t) dt

)2

= 1/12· (T − S)3.(16)

Furthermore, if

S = τ0 < · · · < τn = T

andB1, . . . ,Bn are independent Brownian bridges on the intervals[τ0, τ1], . . . ,
[τn−1, τn], respectively, then

E

(
n−1∑
r=0

∫ τr+1

τr

Br(t) dt

)2

≥ 1/12· (T − S)3 · 1/n2(17)

by the Hölder inequality.

5.2. Error bounds for the estimateŝYk . Recall the discrete approximation̂Mk

of the fieldM from Section 4.2.

LEMMA 1. For 0 ≤ l ≤ k − 1, it holds

E|M(tl,1) − M̂k(tl ,1)|2p ≤ c/kp.

PROOF. Note that, by boundedness ofa(0,1) andσ (0,1),

E|M(t1, s1) − M(t2, s2)|q ≤ c · c(q) · (
max(|t1 − t2|, |s1 − s2|))q/2(18)

for all q ≥ 1, 0≤ t1 ≤ s1 ≤ 1, 0≤ t2 ≤ s2 ≤ 1, wherec(q) only depends onq.
Fix l and define the processMk(tl, ·) on [tl ,1] by Mk(tl, tl ) = 1 and

Mk(tl, t) = Mk(tl, tr ) ·
(
1+ a(0,1)(tr , X̂WPt

k (tr )
) · (t − tr )

+ σ (0,1)
(
tr , X̂

WPt
k (tr )

) · (
W(t) − W(tr)

))
for t ∈ [tr , tr+1], r = l, . . . , k − 1. Clearly,Mk(tl, tr ) = M̂k(tl, tr ) for r = l, . . . , k,
and boundedness ofa(0,1) andσ (0,1) implies

E

(
sup

tl≤t≤1

∣∣Mk(tl, t)
∣∣q)

≤ c · c(q)(19)

for everyq ≥ 1, where the constantc(q) only depends onq.
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Let t ∈ [tl ,1]. Due to (10) we have

|M(tl, t) − Mk(tl, t)|2p

≤ c

∫ t

tl

k−1∑
r=l

∣∣a(0,1)
(
s,X(s)

)
M(tl, s)

− a(0,1)
(
tr , X̂

WPt
k (tr )

)
Mk(tl , tr )

∣∣2p1]tr ,tr+1](s) ds

+ c

∣∣∣∣∣
∫ t

tl

k−1∑
r=l

(
σ (0,1)

(
s,X(s)

)
M(tl, s)

− σ (0,1)
(
tr , X̂

WPt
k (tr )

)
Mk(tl , tr )

)
1]tr ,tr+1](s) dW(s)

∣∣∣∣∣
2p

.

PutV (t) = suptl≤s≤t |M(tl, s) − Mk(tl, s)|. By the Burkholder inequality,

E|V (t)|2p ≤ c

∫ t

tl

k−1∑
r=l

E
∣∣a(0,1)

(
s,X(s)

)
M(tl, s)

− a(0,1)(tr , X̂WPt
k (tr )

)
Mk(tl, tr )

∣∣2p1]tr ,tr+1](s) ds

+ c

∫ t

tl

k−1∑
r=l

E
∣∣σ (0,1)

(
s,X(s)

)
M(tl, s)

− σ (0,1)
(
tr , X̂

WPt
k (tr )

)
Mk(tl, tr )

∣∣2p1]tr ,tr+1](s) ds.

Let s ∈ [tr , tr+1]. By (A),∣∣a(0,1)
(
s,X(s)

) · M(tl, s) − a(0,1)
(
tr , X̂

WPt
k (tr )

) · Mk(tl, tr )
∣∣

≤ ∣∣a(0,1)
(
s,X(s)

) · (
M(tl, s) − M(tl, tr )

)∣∣
+ ∣∣(a(0,1)

(
s,X(s)

) − a(0,1)
(
tr ,X(s)

)) · M(tl, tr )
∣∣

+ ∣∣(a(0,1)
(
tr ,X(s)

) − a(0,1)
(
tr ,X(tr )

)) · M(tl, tr )
∣∣

+ ∣∣(a(0,1)
(
tr ,X(tr )

) − a(0,1)
(
tr , X̂

WPt
k (tr )

)) · M(tl, tr )
∣∣

+ ∣∣a(0,1)
(
tr , X̂

WPt
k (tr )

) · (
M(tl, tr ) − Mk(tl , tr )

)∣∣
≤ c · |M(tl, s) − M(tl, tr )|

+ c · ((
1+ |X(s)|) · (s − tr )

+ |X(s) − X(tr )| + |X(tr ) − X̂WPt
k (tr )|) · |M(tl, tr )|

+ c · V (s).
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Observing (5), (6), Lemma 10 and (18), we thus obtain

E
∣∣a(0,1)

(
s,X(s)

) · M(tl, s) − a(0,1)
(
tr , X̂

WPt
k (tr )

) · Mk(tl , tr )
∣∣2p

≤ c · (
E|X(tr)|4p + E|X(s) − X(tr )|4p

+ E|X(tr ) − X̂WPt
k (tr )|4p

)1/2 · (
E|M(tl, tr )|4p

)1/2

+ c · E|V (s)|2p

≤ c/kp + c · E|V (s)|2p,

and the same inequality holds withσ (0,1) in place ofa(0,1).
Consequently, for everyt ∈ [tl ,1],

E|V (t)|2p ≤ c/kp + c ·
∫ t

tl

E|V (s)|2p ds.

Moreover, by (18) and (19),

E

(
sup

tl≤t≤1
|V (t)|2p

)
< ∞.

Thus, Gronwall’s lemma yields

sup
tl≤t≤1

E|V (t)|2p ≤ c/kp,

which completes the proof.�

LEMMA 2. For 0 ≤ l ≤ k − 1, it holds

E|Ŷk(tl) − Y(tl)|p ≤ c/kp/2.

PROOF. Due to (A),∣∣G(
tl, X̂

WPt
k (tl)

) − G
(
tl,X(tl)

)∣∣ ≤ (
1+ |X(tl )|2 + |X̂WPt

k (tl)|2) · |X̂WPt
k (tl) − X(tl)|

and ∣∣G(
tl , X̂

WPt
k (tl)

)∣∣ ≤ c · (
1+ |X̂WP

k (tl)|2).
Hence, by (5), (18), Lemmas 1 and 10,

E|Ŷk(tl) − Y(tl)|p
≤ c · E∣∣(M̂k(tl+1,1) − M(tl,1)

) · G(
tl, X̂

WPt
k (tl)

)∣∣p
+ c · E∣∣(M(tl,1) · (

G
(
tl, X̂

WPt
k (tl)

) − G
(
tl,X(tl)

))∣∣p
≤ c · (

E|M̂k(tl+1,1) − M(tl,1)
∣∣2p)1/2 · (

E
(
1+ |X̂WPt

k (tl)|4p
))1/2

+ c · (
E|M(tl,1)|4p

)1/4 · (
E|X(tl)|4p + E|X̂WPt

k (tl)|4p
)1/2

× (
E|X̂WPt

k (tl) − X(tl)|4p)1/4

≤ c/kp/2,
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which completes the proof.�

Put

R = 1

k

k−1∑
l=0

|Y(tl)|2/3, R̂ = 1

k

k−1∑
l=0

|Ŷk(tl)|2/3.

LEMMA 3. If 1≤ p ≤ 2, then∣∣E(
R̂ 3p/2(p+1)

) − E
(
R3p/2(p+1)

)∣∣ ≤ c/kp/2(p+1).

If p ≥ 2, then∣∣(E(
R̂ 3p/2(p+1)

))2(p+1)/3p − (
E

(
R3p/2(p+1)

))2(p+1)/3p∣∣ ≤ c/k1/3.

Furthermore, ∣∣(E(R̂ 3p/2)
)2/3p − (

E(R3p/2)
)2/3p∣∣ ≤ c/k1/3.

PROOF. Clearly,

|R̂ − R| ≤ 1

k

k−1∑
l=0

|Ŷk(tl) − Y(tl)|2/3.

Assume 1≤ p ≤ 2. Then 3p/2(p + 1) ≤ 1 and we obtain

E
∣∣R̂ 3p/2(p+1) − R3p/2(p+1)

∣∣ ≤ E|R̂ − R|3p/2(p+1)

≤ E

(
1

k

k−1∑
l=0

|Ŷk(tl) − Y(tl)|2/3

)3p/2(p+1)

≤
(

1

k

k−1∑
l=0

E|Ŷk(tl) − Y(tl)|2/3

)3p/2(p+1)

≤ c/kp/2(p+1)

by Lemma 2, which proves the first inequality.
Next, letp ≥ 2. Then 3p/2(p + 1) ≥ 1. By Lemma 2,∣∣(E(

R̂ 3p/2(p+1)))2(p+1)/3p − (
E

(
R3p/2(p+1)))2(p+1)/3p∣∣

≤ (
E|R̂ − R|3p/2(p+1)

)2(p+1)/3p

≤ 1

k

k−1∑
l=0

(
E|Ŷk(tl) − Y(tl)|p/(p+1)

)2(p+1)/3p

≤ c/k1/3,

which shows the second inequality. The third inequality is established in the same
way. �
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5.3. Proof of the lower bounds in Theorem1. Consider an arbitrary sequence
of methodŝXN(1) ∈ X∗∗

N . Take a sequence of positive integerskN that satisfies

lim
N→∞N/k

3/2
N = lim

N→∞kN/N = 0(20)

and assume without loss of generality thatX̂N(1) uses in particular the evaluation
sites

tl = l/kN , l = 0, . . . , kN .

Let d
(N)
l denote the number of evaluation points that are used byX̂N(1) in the

interval]tl, tl+1[ and put

AN =
(

kN−1∑
l=0

(
Y(tl)

/(
d

(N)
l + 1

))2
)p/2

.

LEMMA 4.

lim inf
N→∞ N · ep

(
X̂N (1)

) ≥ mp/121/2 · lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/p

.

PROOF. By (15),

ep

(
X̂N(1)

) ≥ (
E

∣∣Xaux
kN

(1) − X̂N (1)
∣∣p)1/p − c/k

3/2
N .(21)

Let AN denote theσ -algebra that is generated by the data used byX̂N(1) and put
Z = W − E(W |AN) as well as

V = X̂N (1) − X̂WPt
kN

(1) −
kN−1∑
l=0

ŶkN
(tl) ·

∫ tl+1

tl

(
E

(
W(t)|AN

) − W(tl)
)
dt.

By definition ofX
aux
kN

and (14), we have

X
aux
kN

(1) − X̂N(1) =
kN−1∑
l=0

ŶkN
(tl) ·

∫ tl+1

tl

Z(t) dt − V.

Note thatV and the numbersd(N)
l areAN -measurable. Conditioned onAN , the

evaluation sites used bŷXN(1) are fixed and the processZ consists of independent
Brownian bridges corresponding to the respective subintervals. Hence, by (17),

E
(∣∣Xaux

kN
(1) − X̂N (1)

∣∣p∣∣AN

)
≥ E

(∣∣∣∣∣
kN−1∑
l=0

ŶkN
(tl) ·

∫ tl+1

tl

Z(t) dt

∣∣∣∣∣
p∣∣∣∣AN

)

= mp
p ·

(
E

(∣∣∣∣∣
kN−1∑
l=0

ŶkN
(tl) ·

∫ tl+1

tl

Z(t) dt

∣∣∣∣∣
2∣∣∣∣AN

))p/2

(22)
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= m
p
p ·

(
kN−1∑
l=0

(
ŶkN

(tl)
)2 · E

((∫ tl+1

tl

Z(t) dt

)2∣∣∣∣AN

))p/2

≥ mp
p ·

(
kN−1∑
l=0

(
ŶkN

(tl)
)2 · (

12k3
N · (

d
(N)
l + 1

)2)−1
)p/2

= m
p
p/12p/2 · 1/k

3p/2
N ·

(
kN−1∑
l=0

(
ŶkN

(tl)/
(
d

(N)
l + 1

))2
)p/2

.

Combine (21) with (22) to obtain

lim inf
N→∞ N · ep

(
X̂N(1)

)
≥ mp√

12
· lim inf

N→∞ N/k
3/2
N ·

(
E

(
kN−1∑
l=0

(
ŶkN

(tl)/
(
d

(N)
l + 1

))2
)p/2)1/p

.

Let q = max(2,p). Lemma 2 implies∣∣∣∣∣
(
E

(
kN−1∑
l=0

(
ŶkN

(tl)
/(

d
(N)
l + 1

))2
)p/2)1/p

− (
E(AN)

)1/p

∣∣∣∣∣
≤

(
E

(
kN−1∑
l=0

∣∣ŶkN
(tl) − Y(tl)

∣∣2)p/2)1/p

≤
(
E

(
kN−1∑
l=0

∣∣ŶkN
(tl) − Y(tl)

∣∣2)q/2)1/q

≤
(

kN−1∑
l=0

(
E

∣∣ŶkN
(tl) − Y(tl)

∣∣q)2/q

)1/q

≤ c.

Thus, by (20),

lim inf
N→∞ N/k

3/2
N ·

(
E

(
kN−1∑
l=0

(
ŶkN

(tl)
/(

d
(N)
l + 1

))2
)p/2)1/p

≥ lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/p

,

which completes the proof.�

Now, we analyze the classesX∗∗, X∗, Xequi and the classX in the casep = 2.



1630 T. MÜLLER-GRONBACH

LEMMA 5.

(i) If X̂N (1) ∈ X∗∗
N for everyN , then

lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/p ≥ C∗∗

p /mp.

(ii) If X̂N (1) ∈ X∗
N for everyN , then

lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/p ≥ C∗

p/mp.

(iii) If p = 2 andX̂N (1) ∈ XN for everyN , then

lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/2 ≥ C2.

(iv) If X̂N (1) ∈ X
equi
N for everyN , then

lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/p ≥ Cequi

p /mp.

PROOF. By definition ofX∗∗
N and the Hölder inequality,

Np/(p+1) · (
E(AN)

)1/(p+1)

≥
(
E

kN−1∑
l=0

(
d

(N)
l + 1

))p/(p+1)

· (
E(AN)

)1/(p+1)

≥ E

((
kN−1∑
l=0

(
d

(N)
l + 1

))p/(p+1)

· A1/(p+1)
N

)

= E

((
kN−1∑
l=0

(
d

(N)
l + 1

))2/3

·
(

kN−1∑
l=0

(
Y(tl)

/(
d

(N)
l + 1

))2
)1/3)3p/(2(p+1))

≥ E

(
kN−1∑
l=0

∣∣Y(tl)
∣∣2/3

)3p/(2(p+1))

.

Hence (i) follows from

lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/p

≥ lim inf
N→∞

(
E

(
1

kN

kN−1∑
l=0

|Y(tl)|2/3

)3p/(2(p+1)))(p+1)/p

≥
(
E

(
lim inf
N→∞

1

kN

kN−1∑
l=0

|Y(tl)|2/3

)3p/(2(p+1)))(p+1)/p

= C∗∗
p /mp.
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By definition ofX∗
N ,

Np · E(AN) ≥ E

((
kN−1∑
l=0

(
d

(N)
l + 1

))2

·
(

kN−1∑
l=0

(
Y(tl)

/(
d

(N)
l + 1

))2
))p/2

≥ E

(
kN−1∑
l=0

|Y(tl)|2/3

)3p/2

,

so that

lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/p

≥ lim inf
N→∞

(
E

(
1

kN

kN−1∑
l=0

|Y(tl)|2/3

)3p/2)1/p

≥
(
E

(
lim inf
N→∞

1

kN

kN−1∑
l=0

|Y(tl)|2/3

)3p/2)1/p

= C∗
p/mp,

which proves (ii).
Next, assumep = 2. By definition ofXN , the numbersd(N)

l are deterministic.
Thus

N2 · E(AN) ≥
(

kN−1∑
l=0

(
d

(N)
l + 1

))2

·
(

kN−1∑
l=0

E
(
Y(tl)

)2/(
d

(N)
l + 1

)2
)

≥
(

kN−1∑
l=0

(
E

(
Y(tl)

)2)1/3
)3

.

It follows that

lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/2 ≥ lim inf

N→∞

(
1

kN

kN−1∑
l=0

(
E

(
Y(tl)

)2)1/3
)3/2

= C2,

which shows (iii).
Finally, by definition ofXequi

N , the numbersd(N)
l are deterministic with

d
(N)
0 = · · · = d

(N)
kN−1.

Hence,

N · (
E(AN)

)1/p ≥ kN

(
E

(
kN−1∑
l=0

(
Y(tl)

)2
)p/2)1/p

.
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Consequently,

lim inf
N→∞ N/k

3/2
N · (

E(AN)
)1/p ≥ lim inf

N→∞

(
E

(
1

kN

kN−1∑
l=0

(
Y(tl)

)2
)p/2)1/p

≥
(
E

(
lim inf
N→∞

1

kN

kN−1∑
l=0

(
Y(tl)

)2
)p/2)1/p

= Cequi
p /mp,

which completes the proof.�

Combine Lemma 4 with Lemma 5 to obtain the lower bounds in Theorem 1.
Clearly, these lower bounds yield the lower bounds from Theorem 2.

5.4. Proof of the upper bounds in Theorem2. Let k ∈ N and consider a basic
schemêXµ

k ; see Section 4.3. Put

Bk =
(

k−1∑
l=0

(
Ŷk(tl)/(µl + 1)

)2
)p/2

.

LEMMA 6.

ep

(
X̂

µ
k (1)

) ≤ mp/121/2 · 1/k3/2 · (
E(Bk)

)1/p + c/k3/2.

PROOF. Due to (15), we have

ep

(
X̂

µ
k (1)

) ≤ (
E|Xaux

k (1) − X̂
µ
k (1)|p)1/p + c/k3/2.(23)

By (11) and (14),

X
aux
k (1) − X̂

µ
k (1) = Qk(1) − Q̂k(1)

=
k−1∑
l=0

Ŷk(tl) ·
∫ tl+1

tl

(
W(t) − W̃µ(t)

)
dt.

Let B denote theσ -algebra that is generated byX(0),W(t1), . . . ,W(1), and recall
that the adaptive discretization determined byµ consists of theB-measurable
points

τl,r = tl + r
/(

k · (µl + 1)
)
, r = 0, . . . ,µl + 1.

Conditioned onB, the discretization is fixed and the processW − W̃µ consists
of independent Brownian bridges corresponding to the respective subintervals.
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Using (16), we thus obtain

E
(|Xaux

k (1) − X̂
µ
k (1)|p|B)

(24)

= m
p
p/12p/2 · 1/k3p/2 ·

(
k−1∑
l=0

(
Ŷk(tl)/(µl + 1)

)2
)p/2

.

Combine (23) with (24) to obtain the desired result.�

Now we turn to the specific schemeŝX∗∗
p,n, X̂∗

n, X̂n andX̂
equi
n .

LEMMA 7. The schemêX∗∗
p,n satisfies

lim sup
n→∞

(
c
(
X̂∗∗

p,n(1)
))/

n ≤ E

(∫ 1

0
|Y(t)|2/3 dt

)3p/2(p+1)

and

lim sup
n→∞

n · ep

(
X̂∗∗

p,n(1)
) ≤ mp/121/2 ·

(
E

(∫ 1

0
|Y(t)|2/3 dt

)3p/2(p+1)
)1/p

.

PROOF. By definition,

c
(
X̂∗∗

p,n(1)
) ≤ kn + n · E

(
1

kn

kn−1∑
l=0

|Ŷk(tl)|2/3

)3p/2(p+1)

.

Observe (12) and use Lemma 3 to get

lim sup
n→∞

(
c
(
X̂∗∗

p,n(1)
))/

n ≤ lim sup
n→∞

E

(
1

kn

kn−1∑
l=0

|Ŷk(tl)|2/3

)3p/2(p+1)

≤ E

(
lim sup
n→∞

1

kn

kn−1∑
l=0

|Y(tl)|2/3

)3p/2(p+1)

= E

(∫ 1

0
|Y(t)|2/3 dt

)3p/2(p+1)

,

which proves the first inequality.
Next, observe that, for the schemêX∗∗

p,n,

kn−1∑
l=0

(
Ŷk(tl)

/(
µ

(n)
l + 1

))2 ≤ n2 · k3p/(p+1)
n ·

(
kn−1∑
l=0

|Ŷk(tl)|2/3

)3/(p+1)

.
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Hence,

1/k3p/2
n · Bkn ≤ 1/np ·

(
1

kn

kn−1∑
l=0

|Ŷk(tl)|2/3

)3p/2(p+1)

.

Using Lemmas 6 and 3, we thus conclude that

lim sup
n→∞

n · ep

(
X̂∗∗

p,n(1)
) ≤ mp/121/2· lim sup

n→∞

(
E

(
1

kn

kn−1∑
l=0

|Y(tl)|2/3

)3p/2(p+1))1/p

≤ mp/121/2 ·
(
E

(∫ 1

0
|Y(t)|2/3dt

)3p/2(p+1))1/p

,

which completes the proof.�

Clearly, Lemma 7 implies the upper bound in Theorem 2(i).

LEMMA 8. The schemeŝX∗
n andX̂n satisfy

lim sup
n→∞

n · ep

(
X̂∗

n(1)
) ≤ C∗

p/
√

12

and

lim sup
n→∞

n · e2
(
X̂n(1)

) ≤ C2/
√

12.

PROOF. By definition ofX̂∗
n(1),

kn−1∑
l=0

(
Ŷk(tl)

/(
µ

(n)
l + 1

))2 ≤ 1/(n − kn)
2 ·

(
kn−1∑
l=0

|Ŷk(tl)|2/3

)3

.

Thus,

1/k3p/2
n · Bkn ≤ 1/(n − kn)

p ·
(

kn−1∑
l=0

|Ŷk(tl)|2/3

)3p/2

.

Use Lemmas 6 and 3 to obtain

lim sup
n→∞

n · ep

(
X̂∗

n(1)
) ≤ mp/121/2 · lim sup

n→∞

(
E

(
1

kn

kn−1∑
l=0

|Y(tl)|2/3

)3p/2)1/p

≤ mp/121/2 ·
(
E

(∫ 1

0
|Y(t)|2/3 dt

)3p/2)1/p

,

which establishes the first inequality.
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By definition ofX̂n, the numbersµ(n)
l are deterministic with

kn−1∑
l=0

E|Y(tl)|2/(
µ

(n)
l + 1

)2 ≤ 1/(n − kn)
2 ·

(
kn−1∑
l=0

(
E|Y(tl)|2)1/3

)3

.

Furthermore, Lemma 2 implies(
kn−1∑
l=0

E|Ŷk(tl)|2
(µ

(n)
l + 1)2

)1/2

≤
(

kn−1∑
l=0

E|Y(tl)|2
(µ

(n)
l + 1)2

)1/2

+ c.

Hence, by Lemma 6,

n · e2
(
X̂n(1)

) ≤ mp/121/2 · n/(n − kn) ·
(

1

kn

kn−1∑
l=0

(
E|Y(tl)|2)1/3

)3

+ c · n/k3/2
n .

Observing (12), we get

lim sup
n→∞

n · e2
(
X̂n(1)

) ≤ mp/121/2 · lim sup
n→∞

(
1

kn

kn−1∑
l=0

(
E|Y(tl)|2)1/3

)3/2

= mp/121/2 ·
(∫ 1

0

(
E|Y(t)|2)1/3

)3/2

,

which completes the proof.�

Lemma 8 yields the upper bounds in Theorem 2(ii), (iii). It remains to establish
the upper bound in Theorem 2(iv).

LEMMA 9. The schemêXequi
n satisfies

lim sup
n→∞

n · ep

(
X̂equi

n (1)
) ≤ Cequi

p /
√

12.

PROOF. Lemma 6 yields

ep

(
X̂equi

n (1)
) ≤ mp/121/2 · 1/n3/2 ·

(
E

(
n−1∑
l=0

|Ŷn(tl)|2
)p/2)1/p

+ c/n3/2.

Hence, by Lemma 2,

n · ep

(
X̂equi

n (1)
) ≤ mp/121/2 ·

(
E

(
1

n

n−1∑
l=0

|Y(l/n)|2
)p/2)1/p

+ c/n1/2.
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We conclude

lim sup
n→∞

n · ep

(
X̂equi

n (1)
)

≤ mp/121/2 · lim sup
n→∞

(
E

(
1

n

n−1∑
l=0

|Y(l/n)|2
)p/2)1/p

≤ mp/121/2 ·
(
E

(∫ 1

0
|Y(t)|2 dt

)p/2)1/p

,

which completes the proof.�

The upper bounds from Theorem 2 imply the upper bounds from Theorem 1.

APPENDIX

The goal of this appendix is to establish the error bound (15) for the auxiliary
schemeX

aux
k from Section 5. Throughout, we fix a discretization

0 = t0 < · · · < tk = 1,

and we put

�l = tl+1 − tl, �max= max
l=0,...,k−1

�l.

Moreover, we useFt to denote theσ -algebra that is generated byX(0) andW(s),
0 ≤ s ≤ t . Finally, we put

|||Y |||q = (E|Y |q)1/q

for a random variableY andq ≥ 1.
We start with error bounds on continuous versions of the Wagner–Platen

scheme and its truncated version. Define processesXWPt andXWP by XWPt(0) =
XWP(0) = X(0),

XWPt(t) = XWPt(tl) + a
(
tl,X

WPt(tl)
) · (t − tl) + σ

(
tl,X

WPt(tl)
) · (

W(t) − W(tl)
)

+ 1/2 · (
σσ (0,1)

)(
tl,X

WPt(tl)
) · ((

W(t) − W(tl)
)2 − (t − tl)

)
+ (

σ (1,0) + aσ (0,1) − 1/2 · σ (
σ (0,1)

)2)
× (

tl,X
WPt(tl)

) · (
W(t) − W(tl)

) · (t − tl)

+ 1/6 · (
σ

(
σ (0,1)

)2 + σ 2σ (0,2)
)(

tl ,X
WPt(tl)

) · (
W(t) − W(tl)

)3

+ 1/2 · (
a(1,0) + aa(0,1) + 1/2 · σ 2a(0,2)

)(
tl,X

WPt(tl)
) · (t − tl)

2
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and

XWP(t) = XWP(tl) + a
(
tl,X

WP(tl)
) · (t − tl ) + σ

(
tl ,X

WP(tl)
) · (

W(t) − W(tl)
)

+ 1/2 · (
σσ (0,1))(tl ,XWP(tl)

) · ((
W(t) − W(tl)

)2 − (t − tl)
)

+ (
σ (1,0) + aσ (0,1) − 1/2 · σ (

σ (0,1))2)
× (

tl,X
WP(tl)

) · (
W(t) − W(tl)

) · (t − tl )

+ 1/6 · (
σ

(
σ (0,1)

)2 + σ 2σ (0,2)
)(

tl,X
WP(tl)

) · (
W(t) − W(tl)

)3

+ 1/2 · (
a(1,0) + aa(0,1) + 1/2 · σ 2a(0,2)

)(
tl,X

WP(tl)
) · (t − tl )

2

+ G
(
tl,X

WP(tl)
) ·

∫ t

tl

(
W(s) − W(tl)

)
ds

for t ∈ [tl , tl+1], l = 0, . . . , k − 1.

LEMMA 10. The processesXWPt andXWP satisfy:

(i) sup
t∈[0,1]

E|XWPt(t)|16p ≤ c,

(ii) sup
t∈[0,1]

E|XWP(t)|16p ≤ c,

as well as
(iii) sup

t∈[0,1]
E|X(t) − XWPt(t)|4p ≤ c · �4p

max,

(iv) sup
t∈[0,1]

E|X(t) − XWP(t)|4p ≤ c · �6p
max.

See Kloeden and Platen (1995) for a proof of (ii) and (iv) under much stronger
assumptions ona andσ than stated in (A) in Section 2. For a proof of Lemma 10
under condition (A), we refer to Müller-Gronbach (2002b).

Next, define the processQ by Q(0) = 0 and

Q(t) =
(
1+ a(0,1)(tl,XWPt(tl)

) · (t − tl )

+ σ (0,1)
(
tl,X

WPt(tl)
) · (

W(t) − W(tl)
)) · Q(tl)

+ G
(
tl,X

WPt(tl)
) ·

∫ t

tl

(
W(s) − W(tl)

)
ds

for t ∈ [tl , tl+1]. Note thatQ(tl) = Qk(tl) for an equidistant discretization (9).

LEMMA 11. The processQ satisfies

sup
t∈[0,1]

E|Q(t)|4p ≤ c · �8p
max
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and

sup
t∈[tl ,tl+1]

E|Q(t) − Q(tl)|4p ≤ c · �6p
max.

PROOF. Fix t ∈ [tl , tl+1] and let

U = (
1+ a(0,1)

(
tl,X

WPt(tl)
) · (t − tl)

) · Q(tl), V = Q(t) − U.

Putq = �2p� and note that 4p ≤ 2q ≤ 8p. Let r ∈ {1, . . . ,2q}. Observing (A), we
have

E
(|V |r |Ftl

) ≤ c · |Q(tl)|r · (t − tl)
r/2 + c · (

1+ |XWPt(tl)|r ) · (t − tl)
3r/2(25)

as well as

|U |r ≤ (
1+ c · (t − tl )

) · |Q(tl)|r .
Moreover, ifr is odd, then

E
(
V r |Ftl

) = 0.

Hence,

E
(
(Q(t))2q

∣∣Ftl

) = U2q +
2q∑

r=1

(
2q

r

)
· U2q−r · E(

V r |Ftl

)
≤ (

1+ c · (t − tl )
) · |Q(tl)|2q

+ c ·
q∑

r=1

(
2q

2r

)
· |Q(tl)|2q−2r · (

1+ |XWPt(tl)|2r
) · (t − tl)

3r .

Use Lemma 10(i) to obtain

|||Q(t)|||2q
2q ≤ (

1+ c · (t − tl)
) · |||Q(tl )|||2q

2q + c ·
q∑

r=1

(
2q

2r

)
· |||Q(tl )|||2q−2r

2q · (t − tl )
3r

≤ (
1+ c · (t − tl)

) · |||Q(tl )|||2q
2q + c · (t − tl) · (|||Q(tl )|||2q + (t − tl)

)2q

≤ (
1+ c · (t − tl)

) · |||Q(tl )|||2q
2q + c · (t − tl)

2q+1,

so that the first inequality follows from Gronwall’s lemma.
Due to (25) and Lemma 10(i),

E|V |2q ≤ c · E|Q(tl)|2q · (t − tl)
q + c · (t − tl)

3q.

Thus, by (A) and the first inequality,

E|Q(t) − Q(tl)|2q ≤ c · (t − tl)
2q · E|Q(tl)|2q + c · E|V |2q ≤ c · �3q

max,

which proves the second inequality.�

Finally, we consider the process

Xaux= XWPt + Q.
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LEMMA 12. The processXaux satisfies

sup
t∈[0,1]

E|X(t) − Xaux(t)|p ≤ c · �3p/2
max .

Note that Xaux(tl) = X
aux
k (tl) for an equidistant discretization (9). Conse-

quently, Lemma 12 immediately implies (15).

PROOF OFLEMMA 12. In view of Lemma 10(iv), it is enough to show

sup
t∈[0,1]

E|XWP(t) − Xaux(t)|p ≤ c · �3p/2
max .(26)

Let

g1 = 1/2σσ (0,1),

g2 = σ (1,0) + aσ (0,1) − 1/2σ
(
σ (0,1)

)2
,

g3 = 1/6
(
σ

(
σ (0,1))2 + σ 2σ (0,2)),

g4 = 1/2
(
a(1,0) + aa(0,1) + 1/2σ 2a(0,2)),

g5 = G.

Fix t ∈ [tl, tl+1] and put

A = a
(
tl,X

WP(tl)
) − a

(
tl,X

WPt(tl)
)

− a(0,1)
(
tl,X

WPt(tl)
) · (

XWP(tl) − XWPt(tl)
)
,

B = σ
(
tl,X

WP(tl)
) − σ

(
tl,X

WPt(tl)
)

− σ (0,1)(tl,XWPt(tl)
) · (

XWP(tl) − XWPt(tl)
)

as well as

U = (
XWP(tl) − Xaux(tl)

) · (
1+ a(0,1)

(
tl,X

WPt(tl)
) · (t − tl)

)
and

V = A · (t − tl)

+ (
σ (0,1)(tl,XWPt(tl)

) · (
XWP(tl) − Xaux(tl)

) + B
) · (

W(t) − W(tl)
)

+ (
g1

(
tl,X

WP(tl)
) − g1

(
tl ,X

WPt(tl)
)) · ((

W(t) − W(tl)
)2 − (t − tl )

)
+ (

g2
(
tl,X

WP(tl)
) − g2

(
tl ,X

WPt(tl)
)) · (

W(t) − W(tl)
) · (t − tl)

+ (
g3

(
tl,X

WP(tl)
) − g3

(
tl ,X

WPt(tl)
)) · (

W(t) − W(tl)
)3

+ (
g4

(
tl,X

WP(tl)
) − g4

(
tl ,X

WPt(tl)
)) · (t − tl )

2

+ (
g5

(
tl,X

WP(tl)
) − g5

(
tl ,X

WPt(tl)
)) ·

∫ t

tl

(
W(s) − W(tl)

)
ds.
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By definition,

XWP(t) − Xaux(t) = U + V.

Due to (A), we have∣∣gn

(
tl,X

WP(tl)
) − gn

(
tl,X

WPt(tl)
)∣∣

≤ c · (
1+ |XWPt(tl)|2) · |XWP(tl) − XWPt(tl)|

for n = 1, . . . ,5, and

|A| ≤ c · |XWP(tl) − XWPt(tl)|2, |B| ≤ c · |XWP(tl) − XWPt(tl)|2.
Putq = �p/2� and note thatp ≤ 2q ≤ 2p. For r = 1, . . . ,2q, we obtain

|U |r ≤ (
1+ c · (t − tl)

) · |XWP(tl) − Xaux(tl)|r
as well as

E
(|V |r ∣∣Ftl

) ≤ c · |XWP(tl) − Xaux(tl)|r · (t − tl )
r/2

+ c · |XWP(tl) − XWPt(tl)|2r · (t − tl)
r/2

+ c · (
1+ |XWPt(tl)|2r

) · |XWP(tl) − XWPt(tl)|r · (t − tl)
r .

Moreover,∣∣E(
V |Ftl

)∣∣ = ∣∣A · (t − tl ) + (
g4

(
tl,X

WP(tl)
) − g4

(
tl,X

WPt(tl)
)) · (t − tl )

2∣∣
≤ c · |XWP(tl) − XWPt(tl)|2 · (t − tl)

+ c · (
1+ |XWP(tl)|2) · |XWP(tl) − XWPt(tl)| · (t − tl)

2.

Hence,

E
(|XWP(tl) − Xaux(tl)|2q

∣∣Ftl

)
=

2q∑
r=0

(
2q

r

)
· U2q−r · E(

V r
∣∣Ftl

)
≤ (

1+ c · (t − tl )
) · |XWP(tl) − Xaux(tl)|2q

+ c ·
2q∑
r=2

(
2q

r

)
· |XWP(tl) − Xaux(tl)|2q · (t − tl)

r/2

+ c · 2q · |U |2q−1 · (
1+ |XWP(tl)|2) · |XWP(tl) − XWPt(tl)| · (t − tl )

2

+ c ·
2q∑
r=2

(
2q

r

)
· |U |2q−r · (

1+ |XWP(tl)|2r
)

× |XWP(tl) − XWPt(tl)|r · (t − tl)
r



POINTWISE APPROXIMATION OF SDEs 1641

+ c ·
2q∑

r=1

(
2q

r

)
· |U |2q−r · |XWP(tl) − XWPt(tl)|2r · (t − tl )

r/2

≤ (
1+ c · (t − tl)

) · |XWP(tl) − Xaux(tl)|2q

+ c ·
2q∑

r=1

(
2q

r

)
· |U |2q−r · (

1+ |XWP(tl)|2r
)

× |XWP(tl) − XWPt(tl)|r · (t − tl)
1+r/2

+ c ·
2q∑

r=1

(
2q

r

)
· |U |2q−r · |XWP(tl) − XWPt(tl)|2r · (t − tl )

max(1,r/2).

By Lemma 10, we get

E
(|U |2q−r · (

1+ |XWP(tl)|2r ) · |XWP(tl) − XWPt(tl)|r)
≤ |||U |||2q−r

2q · (
E

((
1+ |XWP(tl)|4q

) · |XWP(tl) − XWPt(tl)|2q
))r/(2q)

≤ |||U |||2q−r
2q · (

1+ |||XWP(tl)|||2r
8q

) · |||XWP(tl) − XWPt(tl)|||r4q

≤ c · |||XWP(tl) − Xaux(tl)|||2q−r
2q · �r

max

and similarly

E
(|U |2q−r · |XWP(tl) − XWPt(tl)|2r )

≤ |||U |||2q−r
2q · |||XWP(tl) − XWPt(tl)|||2r

4q

≤ c · |||XWP(tl) − Xaux(tl)|||2q−r
2q · �2r

max.

Thus,

|||XWP(t) − Xaux(t)|||2q
2q

≤ (
1+ c · (t − tl)

) · |||XWP(tl) − Xaux(tl)|||2q
2q

+ c · (t − tl ) ·
2q∑
r=1

(
2q

r

)
|||XWP(tl) − Xaux(tl)|||2q−r

2q · �3r/2
max

≤ (
1+ c · (t − tl)

) · |||XWP(tl) − Xaux(tl)|||2q
2q

+ c · (t − tl ) · (|||XWP(tl) − Xaux(tl)|||2q + �3/2
max

)2q

≤ (
1+ c · (t − tl)

) · |||XWP(tl) − Xaux(tl)|||2q
2q + c · (t − tl ) · �3q

max.

Now apply Gronwall’s lemma to complete the proof.�
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