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We study a model of a corporationhwch has the posisility to choose
various production/business policies with different expected profits and risks.
In the model there are restrictions on the dividend distribution rates as well
as restrictions on the risk the company can undertake. The objective is
to maximize the expected present value of the total dividend distributions.
We outline the corrgponding Hamilton-akcobi—Bellman equation, compute
explicitly the optimal return function and determine the optimal policy. As
a consequence of these results, the way the dividend rate and business
constraints affect the optimal policy is revealed. In particular, we show
that under certain relationships between the constraints and the exogenous
parameters of the random processes that govern the returns, some business
activities might be redundant, that is, under the optimal policy they will never
be used in any scenario.

1. Introduction. In recent years we have seen a lot of new results in the
application of diffusion optimization models to financial mathematics. Together
with portfolio optimization models, dividend distribution and risk control models
have undergone major development.

In typical models of this type (see [2, 3, 8-11, 13, 14, 16]), the liquid assets of
the company are governed by a Brownian motion with constant drift and diffusion
coefficients. The drift term corresponds to the expected (potential) profit per unit
time, while the diffusion term is interpreted as risk. The decrease of risk from
business activities corresponds to a decrease in potential profits. Different business
activities in these models correspond to changing the drift and the diffusion
coefficients of the underlying procesisnultaneously. This sets the scene for an
optimal stochastic control model where the controls affect not only the drift, but
also the diffusion part of the dynamic of the system.
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In this article we study a model with an explicit restriction on risk control and
on the rate at which the dividends are paid out. In addition, the company may have
liability which it has to pay out at a constant rate no matter what the business
planis.

The controls are described by two functionajsand ¢;. The first represents
the degree of business activity which the company assumes. The prgcess
takes on values in the intervéd, 8], 0 < o < 8 < +00. The risk, which in
our model is associated with the diffusion coefficient, and the potential profit,
which is associated with the drift coefficient of the corresponding process, are
both proportional ta:;. The constraints on the valuesafreflect institutional or
statutory restrictions (e.qg., for a public company) that the risk it can assume cannot
exceed a certain level or that its business activities cannot be reduced to zero unless
the company goes bankrupt.

The valuec; of the second control functional shows the rate at which dividends
are paid out at time. The dividends are paid out from the liquid reserve and are
distributed to shareholders. This corresponds;tentering the drift coefficient
of the reserve process with a negative sign. The dividend rate is bounded by a
constantV given a priori.

In our model we also assume the existence of a constant rate liability payment,
such as a mortgage payment on a property or amortization of bonds. The results
of this model can be viewed as an extension of the results of Choulli, Taksar
and Zhou [4]. The presence of dividend rate constraints, however, adds a whole
new dimension to the analysis as well as to the qualitative structure of the results
obtained.

What is the most interesting is the interplay between the constraints and
the exogenous parameters that govern the process of returns. Depending on the
relationship between these parameters, we get several distinct cases of qualitative
behavior of the company under the optimal policy.

This article is structured as follows. In the next section we present a rigorous
mathematical formulation of the problem and state general properties of the
optimal return or thevalue function. We also write the Hamilton—Jacobi—Bellman
(HJB) equation this function must satisfy. In Section 3 we find a bounded smooth
solution to the HJB equation. In Section 4 we construct the optimal policy and
present our main findings in table form. Finally, in Section 5 we describe some
economic interpretation of the results and state conclusions.

2. Mathematical model. We start with a filtered probability space, ¥,
F:, P) and a one-dimensional standard Brownian motign(with Wy = 0) on it,
adapted to the filtratiotf;. We denote byrR" the reserve of the company at time
under a control policyr = (af, ¢f'; t > 0) (to be specified below). The dynamic
of the reserve proces¥" is described by

(2.1) dRT =(anu —38)dt + a0 dW; — cf dt, Ry =x,
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wherepu is the expected profit per unit time (profit rate)js the volatility rate of

the reserve process (in the absence of any risk conéradpresents the amount of
money the company has to pay per unit time (the debt rate) irrespective of what
business activities it chooses andk the initial reserve.

The control in this model is described by a pair 8f-adapted processes
7= (al,c’;t>0). Acontrolmr = (af, c]; t > 0) isadmissible itx <a < g and
0<cf <MVt>0,whereO<a < <+ooandO0< M < +oo are given scalars.

We denote the set of all admissible controls Ay The control component]
represents one of the possible business activities available for the company at
time, and the componemf* corresponds to the dividend payout rate at time

Given a control policyr, the time of bankruptcy is defined as

(2.2) ™ =inf{r > 0: R} =0).

The performance functional associated with each contrelis

b2

(2.3) Jo(m) = E(/Or e Vil dt),

wherey > 0 is an a priori given discount factor (used to calculate the present
value of the future dividends), and the subscsiptenotes the initial state. The
objective is to find

(2.4) v(x) = supJy(m)

TEA

and the optimal policyr* such that
(2.5) Jo (") = v(x).

The exogenous parameters of the problemare, s, «, 8 andy. The aim of this
article is to obtain the optimal return functianand the optimal policexplicitly
in terms of these parameters.

The main tools for solving the problem are the dynamic programming and
HJB equation (see [6, 7 and 17] as well as relevant discussions in [2, 9 and 16]).
We start by stating the following properties of the optimal return function

ProPOSITION2.1. Theoptimal returnfunction v isa concave, nondecreasing
function subject to v(0) =0 and

(2.6) O<wvx) < i Vx>0.
4

PrRooOF The proof of the concavity and the monotonicity as well as the
boundary conditiony(0) = 0, is similar to the one in [4]. To show (2.6), consider

12 o0 M
OSE</ e_y’cfdt)SM/ e Vdt=—. 0
0 0 14
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If the optimal return functiom is twice continuously differentiable, then it must
be a solution to the HIB equation

0= max (26%%V'(0)+(au—8—-o)V'(x)—yV(x)+c)

=U=p,V=t =

7 = T%(%ozazv”(x) +(ap =8V X)) —yVx) + M- V'x)")

V(0) =0,

wherex™ = max(x, 0). This equation is rather standard and its derivation can be
foundin [6, 7, and 17]; see also [9] and [10].

Note that we do not know a priori whether the HJB equation has any
solution other than the optimal return function. However, the following verification
theorem, which says thahy concave solutiofy to the HIB equation (2.7) whose
derivative is finite at 0 majorizes the performance functional for any paticis
sufficient for us to identify optimal policies.

THEOREM2.2. LetV beaconcave, twice continuously differentiable solution
of (2.7),suchthat V’(0) < +o0. Then, for any policy = = (af, ¢; ¢t > 0),

2.8) V(x) = Ji ().

PROOF Let R be the reserve process given by (2.1). Denote the operator

1 d? d
LY = 02— — 85— —y.
20 a dx? +an )dx v
Then by applying Ito’s formula (see [5], Theorem VIII.27) to the process
e V'V(RT), we get

INT

e VNIV (RT ) =V (x) +f e Voal V'(RT)dW;
0
(2.9)
INT . INT
+ / e VL% V(RY)ds — / e VS V(RY )T ds.
0 0
SinceV is nondecreasing, concave with finite derivative at the origfif(x) is
bounded and the stochastic integral in (2.9) is a square integrable martingale whose
expectation vanishes. In view of the HIB equation (2.7) and the inequaligyM,
we have
(2.10) LS V(RT) < =" (1— V/(RM)™.
Taking expectations of both sides of (2.9), in view of (2.10) we get
E(e77"NDV(R],))

INT

(2.11) .
<V() - E/O eV [V/(RT) 4+ (1— V' (RT)) ds.
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Combining (2.11) with the fact that+ (1 — y)* > 1, we get
INT
(2.12) E(e_y(’M)V(RfM)) + E/O e el ds <V(x).

Note that in view of the boundednessiof,

e VINDV(RY ) <eV'KA+R],) <e V'K(1+|R)

INT

for some constant’. SinceR;" is a diffusion process with uniformly bounded drift
and diffusion coefficient, standard arguments yi€l(R| < x + K¢ for some
constantk1. Therefore,

(2.13) Ee VU’V (RT ) =0

ast — oo. Thus taking the limit in (2.12) as— oo, we arrive at

T
V(x)ZE/O e el ds = Jgp(x). 0

The idea of solving the original optimization problem is first to find a concave,
smooth function to the HIB equation (2.7) and then to construct a control policy
[by solving a stochastic differential equation (SDE); for details see Section 4]
whose performance functional can be shown to coincide with the solution to (2.7).
Then, the above verification theorem establishes the optimality of the constructed
control policy. As a by-product, there is no other concave solution to (2.7) than the
optimal return function.

3. A smooth solution to the HIB equation. In this section, we are looking
for a concave, smooth solution to (2.7). Assume that such a soltitibas been
found. Let

(3.2) xy=inf{x >0:V'(x) <1}.

Then, for 0< x < x1, (2.7) becomes

(3.2) 0= max (30%a?V"(x) + (au — ) V'(x) — y V(x)),
a<a<p

while for x > x1, (2.7) can be rewritten as

33) 0= T%(%GZaZV”(x)Jr(au—a MV () — yV(x) + M).

We start by seeking a smooth solution to (3.3). ObviousW i0) < 1, thenx; =0
and (2.7) is equivalent to (3.3) for all> 0.

ProPOSITION3.1. If Bu <4, then V'(0) < 1.
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PrRoOFE It follows from (2.7) that there exisi € [«, 8] such that
(3.4) 0= 202a2V"(0) + @n — 8)V'(0) + M(1— V' (0))™.

If Bu < &, then each of the first two terms on the right-hand side of (3.4) is non-
positive with the second being strictly negative. Therefdtgl — V/(0))* > 0,
which impliesV’(0) < 1. The same argument goesfift =5 andV”(0) < 0. In

this case, either the first or the second term on the right-hand side of (3.4) is strictly
negative. If Bu = § and V”(0) = 0, then the maximizer of the right-hand side

of (2.7) is equal t@s for all x in a right neighborhood of 0 [recall th&t' (0) > 0].
Substitutingz = g either into (3.2) or into (3.3) and solving the resulting linear or-
dinary differential equation (ODE) with constant coefficients, we get a fundfion
whose second derivative at 0 does not vanish, which is a contradicfion.

REMARK 3.2. When the dividend rates are unrestricted, the cond#tjore §
makes the problem trivial (see [4], Theorem 4.1). This is not the case when the
dividend rates are bounded. Evengj. < §, the second derivative of at O
is strictly negative, which makes the problem nontrivial in contrast to a similar
situation in the case of unrestricted dividends.

Now we analyze the solution to (3.3) under the conditfgn> §. As we see
later, the qualitative nature of this solution depends on wheilier) < o or
a <a(x1) < B ora(xy) > B, where

_ uV')
(3.5) a(x) = o2V () >

To this end, we need the following proposition:

0, X < Xx1.

PrRoOPOSITION3.3. (i) If a(x1) > «, then, for each x > x1,
(3.6) a(x) > a.

(i) Ifa(x1) > B, then, for each x > x1,

(3.7) a(x) = B.

PROOF (i) Suppose there existg > x1 such thati(xg) < . Then there exists
& > 0 such thata(x) < a for eachx with |x — xp| < ¢. Letx’ =supx; <x <
x0:a(x) =a}. Thenx1 < x’ < xg < xg + ¢ anda(x’) = «. Sincea(x) < « for all
x € [x/, xo+ ¢), the functionV satisfies (3.3) with the maximum there attained at
a = a. Therefore,

Vix)= M + K1exp(ii(a)(x —x")) + Kaexp(F—(a)(x — x"))

(3.8)
Vxel[x',xo+¢).
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Here
(=8 — M)+ (zu — 8 — M)2 +2y527?
(3.9) ()= K AL ) teyot
0
e —8—M) -V -8 — M2+ 20272
(310) 7 ()= — & ) (ZZ’;Z et Lo
Z

From (3.8) and (3.5), the equatialix’) = & can be rewritten as

2~
- - U+ aor_(a)
K =—Kor_(¢)———————,
14 (@) 2r (a)u+ozazf+(a)

which establishes a relationship between the const&ntand K». Using this
relationship, we calculate

() = —pV'(x)
o o2V (x)
. - , w4 o %y ()
_ (—M(exp((r+(a) —F (@) (x —x") — ;H—aa—zri_(oe)))
(3.11) x <02<F+(oe) exp((Fy (@) — F_(a))(x — x))
. p4acZF()\\ !
—r-@) U+ aoli_(a) ))

Vxelx', xo+¢).

However, we have(x) < « for x > x’, which after a simple algebraic transforma-
tion of (3.11) is equivalent to exp, (o) — 7—(a))(x — x’)) < 1. This leads to a
contradiction. Therefore (3.6) holds.

(i) By virtue of the assertion (i)a(x) > « for all x > x;. Suppose there
existsx’ > x1 such thata(x’) < B. Then there exists > 0 such thata(x) < B
forall x < x’ +¢. Letx =supx; <x <x’:a(x) = B}. Thenx; < x < x’ and
a(x) = B. In additiona < a(x) < B for all x < x < x’. Substitutingz = a(x) and
V" (x) = —(uV'(x))/(0%a(x)) into (3.3), we get

_ pax)

(3.12) 0 V()= @+ MV (x)—yV(x)+ M.

Differentiating (3.12) and again substituting’(x) = —(uV’(x))/(c%a(x)) into
the resulting equation, we obtain

w2+ 202y

(3.13) a(a'(0) =(a() =)~
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Then integrating (3.13) we get

>0

a(x)—c¢ _ u2+202y
0-0) ity
a(x) —¢ wo?

a(x) —a(x)+ 5|0g<
(3.14) _

Vi <x<x/,
which is a contradiction. Hence (3.7) holds and this completes the proof of the
proposition. [

First suppose that(x1) > 8. In view of Proposition 3.3(i), we deduce that
a(x) > B for eachx > x1. Substitutingz = g8 into (3.3) and solving the resulting
equation, we get

M .
V(x)= i + Kgexpf_(B)(x — x1)) Vx> xy.

Here Kz is a constant which takes on either the valuéyi or 1/(F_(B))
depending, respectively, on whethegitin (3.1) is zero or not. Then straightforward
calculations show thai(x) = —,u/(crzf_(ﬂ)). Thus, the conditior(x1) > B is
equivalent to

2/;(6 + M; -
ue+2yo
Next supposer < a(x1) < . By virtue of Proposition 3.3(i)a(x) > « for all

x > x1. As a result,y < a(x) < B8 in a right neighborhood of1. Substituting
a=a(x)andV”(x) = —(uV'(x))/(c2a(x)) into (3.3), we deduce that(x) satis-

fies (3.12). Then, following the same analysis there, we derive equation (3.13) for
a(x).

(3.15) =

Suppose there exists > x1 such thata(x’) < ¢ [resp.,a(x’) > ¢]. Then
from (3.13) we deduce that(x) < ¢ [resp.,a(x) > ¢] for eachx > x’. Thus, by
integrating (3.13) we derive (3.14) for all > x’, with x replaced byx’. From
(3.12) and (2.6), we see thatx) < w Vx > x1. Therefore, the left-hand
side of (3.14) is bounded. This is a contradiction and we concludeithat= ¢
for eachx > x1. In view of the above results, the conditian< a(x1) < 8 can be
rewritten asx < ¢ < 8. Now, substituting: = ¢ into (3.3) and solving the resulting
equation [noting thak_(¢) = —o2¢/ ], we get

M - o2
Vix)=—+ Kexp(——(x — xl)) Vx> x1,
14 2

where K is a constant which takes on either the value—df or —u/(0%¢)
depending, respectively, on whethgr=0 orx; > 0.
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Finally, suppose that(x1) < «. Then it follows from the above results that
¢ < a. Thereforea(x) < « for all x in a right neighborhood at;. Substituting
a = « into (3.3) and solving the resulting linear differential equation, we get

M
(3.16) V(x)= ? + K1(o) exp(Fy (o) (x — x1)) + K2(a) exp(F—(e) (x — x1)),

whereK1(«) andKz(«) are free constants. K1(«) > 0, then the right-hand side
of (3.16) is unbounded ofx1, co), which contradicts (2.6). IK1(«) < 0, then
the right-hand side of (3.16) becomes negativexftarge enough, which again is
a contradiction. Henc&1(«) = 0. On the other hand, we ha¥®(«) < 0 in view
of V”(0) < 0. Therefore,

M -
V(x)= 7 + Ky exp(F—(a)(x —x1)),

wherekK, is a constant that takes on the value eithe“} or 1/(_(a)) depending
on whetherx1 is zero or not. Combining the above results, we can formulate the
following theorem.

THEOREM 3.4. Let 7_(a), 7—(B) and ¢ be the constants given by
(3.10)and (3.15),respectively. Let x1 be defined by (3.1). Then for x; = 0 (resp.,
for x1 > 0) the following assertions hold.

@) If ¢ > B, then
(3.17) V(o) = % FKpexpi(B)(x —xD), x> a1

is a concave, twice differentiable solution of the HIB equation (3.3) on [x1, 00),
where K5 isequal to —% [resp.,to 1/(F_(B))].

(i) fa <c¢<§p,then,
(3.18) Vx)= % +K exp(;—zlé(x — xl)), X > X1,

is a concave, twice differentiable solution of the HIB equation (3.3) on [x1, c0),

where K isequal to —% [resp., to —u/(02)].

(i) 1f & <, then,
(3.19) Vix)= % + Ky exp(F— (@) (x — x1)), X > X1,

is a concave, twice differentiable solution of the HIB equation (3.3) on [x1, 00),
where K, isa constant equal to —% [resp.,to 1/(F_(@))].
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COROLLARY 3.5. If x; = 0, then the solution to (2.7) subject to (2.6) is
given by

Yo ). ifezp
Vix)= %(1—exp(;—2/éx)), ifa<c<pB, Vx>0,

%(1 —expi_(@)x)),  ifé<a.

Corollary 3.5 shows that the qualitative nature of the solution depends on the
relationship betwee®, o andB. Accordingly, we consider three cases. However,
in contrast to the situation with unbounded dividend rates, each case here will
consist of several subcases, each subcase being associated with a different range
for the value ofM.

REMARK 3.6. If neither —%f_(ﬁ) <1 when é < B nor %(M/(aza)) <1
when o < é < B nor —%F_(oe) < 1 when ¢ < « is satisfied, then the solution
to (2.7) satisfies

V'(0) > 1.

The main purpose of the remaining part is to derive the solution to (3.2) and
then to combine the latter with Theorem 3.4. The solution to (3.2) is based mainly
on the value of:(0). Thus, first of all, we present an analysisag0).

PrROPOSITION3.7. Supposethe assumptions of Remark 3.6 hold. Then:
(i) % <« ifandonlyif a(0) < «. Inthiscase a(0) = (na?)/(2(ua — 8)).
(i) a< % < Bifandonlyif o <a(0) < B. Inthiscasea(0) = 23.

(i) B< % if and only if a(0) > B. Inthiscase a(0) = (,LL,BZ)/(Z(,LL,B —4)).

PROOF In view of the assumption of Remark 3.6, assume thas positive.
Leta € [, B8] be such that

0= max (302a?V"(0) + (ap — 8)V'(0))

a<azp

(3.20) 1 220 _ )
= $02a%V"(0) + (G — H)V'(0).

Comparing (3.20) to (3.5) we obtain

(3.21) a% — 2a(0)a + ga(O) —0.
n
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From (3.21), it follows that:(0) > 2‘3 . Moreover, by deflnltlona(O) €la, Blis

equivalent taz = a(0), which is further equivalent ta(0) = 2 ¢ [a, B]. Thus we
conclude:

® If a(0) < «, then <a(0) < a. Conversely, suppos% <a. lIf a(0) €
[a, B], then by the above resultg0) = 7 < «a, which is a contradiction. Thus
eithera(0) < « or a(0) > B. Supposer(0) > 8. Thena = 8 and by (3.21),
a(0) = (uB2)/2(uB —98)) < B (due to% < a < B). This is again a contradiction.
Hence we haver(0) < «. Thena = «, and in view of (3.21), we get(0) =
(na®)/(2ap —8)).

(i) Supposex < <2 B. Then due to (i) we have(0) > «. Now we proceed
to prove that(0) < <2 _ B. Suppose (0) > £ 25 . Thena(0) > B =a. On the other

hand, in view of (3. 21) we hawg0) = (,u,BZ)/(Z(ﬂu 8)); thus(uB?)/(Bu —
8)) > B, which is equivalent to é > B. This, however, is a contradiction and

thereforea (0) = 2 € [a, B). Conversely, it2(0) € [, B), thena(0) = 2 € [a, B).
(iii) Supposeﬂ <2 Thena(0) = 2 > g, leading toa = B and a(0) =
(up®/2(Bu — 8)) > B. Conversely, ifa(0) > B, thena = B and a(0) =
(uB?/2(uB — 8)) > B, which is equivalent t(%‘s > B. O

3.1. Caseof % < a. Toresolve equation (3.2), we begin our analysis with an
observation that in this case, in view of Proposition 3. (k) < « for all x in
the right neighborhood of 0. We also suppose that) > 8. This assumption is
not a restriction, but gives us the solution of (3.2) that corresponds to the maximal
interval[0, x1). Substituting: = « in (3.2) and solving the resulting second-order
linear ODE, we obtain

(3.22) V(x) = ki(e, B)(exp(ri(a)x) — exp(r—(«)x)),
whereki («, B) is a free constant to be determined and

—(zp —8) + [z — 8)% 4 20272y 1Y/?
I"+(Z) = O'2Z2 s

(3.23)
—(zp = 8) — [(zi — 8)? + 20272y 1Y/2
r_(z) = 55 , z>0.

Due to (3.5) and (3.22),

oy = V@2V VOW)
o? (V" (x))?
_ I (@)r— (@) eXp(ri (@) + - (@)x) (1 (@) — r—(@))?
o2(V"(x))?

>0
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for eachx in the right neighborhood of 0. Therefau¢x) increases and reaches
at the pointy, given by

2
3.24)  xy= = o (r‘(“)(“ +°“’2r‘(“))) -0
ry(a) —r—(a) ry(a)(u+aocry(a))

By virtue of Proposition 3.3(i)¢ < a(x) < B in the right neighborhood of,. In
this case we substitute= a(x) and

—puV'(x)

3.25 Vi) =

(3.25) W=7
into (3.2), differentiating the resulting equation and substituting

—puV'(x)

V) = _H )

(x) o2a(x)

once more, we arrive at

pa'(x)  us  pl+2y0?

2 o2a(x) 202
As a result,
, u?+2yo? c
(3.26) a(x)= 2 ( — a(x))
with
251
(3.27) c= 12,0

Integrating (3.26), we ge6G (a(x)) = ((u? + 2y02)/(uo?)(x — xq) + G(a),
where

(3.28) Gw)=u+clog(u — c).
Therefore,
2 2 2
(3.29) a(x):G_1<M+72ya(x—xa)+G(a))-
no

Thusa(x) is increasing and(xg) = g for

=G - G+

X’B = M2+2y02 ﬁ o Ko
(3.30) 5 5
no Ho“c B—c
S ;- I :
w2+ 2)/0208 @)+ w2+ 2)/02 Og(a — c)

Solving (3.25) we obtain

(3.31) V(x)=V(xy)+ V'(xa) /x eXp(—% /y %) dy, Xo SX < Xg,
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whereV(x,) and V'(x,) are free constants. Choosifttx,) and V’(x,) as the
value and the derivative, respectively, of the right-hand side of (3.22) atve
can ensure that the functidn given by (3.22) and (3.31) is continuous with its
first and second derivatives at the paigt no matter what the choice @f(«, 8)

is. (Note that due to the HIB equation, continuitylofand its first derivative at
xq automatically implies continuity of the second derivative as well.) Next we
simplify (3.31). First, changing variablegu) = 6 we get

/ p( /y du )
Xa a(u)
2 a(x) 0 — I
no c c
= 1 dao, < .
M2+2)/02/a ( +9—C><a—6> Yo =F =P

On the other hand, relationships (3.24) and (3.22) imply

o — 268
Vi) = L2V (x).
Simple algebraic transformations yield
2
o c z—c Zu — 28
3.32 — = - = Vz>0,
(3.32) <u2+2y02)(F 1—r) 2y ©=
wherec is given by (3.27) and
12
3.33 N=——.
(3.33) 212,07
Therefore,
— 28 —c\7 T
(334) V()= V()" (a(x) C) . xg<x<xp
2y a—c

The same arguments as in Proposition 3.3(ii) showdke) > g for eachx > xg.
Thus, substituting = g into (3.2) and solving the resulting ODE, we get

V(x) = ka(B) exp(r+(B) (x — x1)) + k2(B) exp(r—(B) (x — x1)),

Xﬁ§x<x1,

(3.35)

wherek1(B8) andk,(B) are two free constants to be determined. The continuity of
(3.31) atxg, together with simple but tedious algebraic transformation [similar to
those used above to simplify (3.31) to (3.34)] lead to

_ AT
(3.36) V/(xy) = v/(x,g)(ﬁ C) .
a—c
Let ¢ be given by(3.15) and
2514 w2+ 202y
3.37 M,=(z— 0.
( ) z (Z ,LL2 n 202y> 2IL,L s z>

Thenc¢ > B (resp..c = B ) is equivalent taVf > Mg (resp.,M = Mg). This is the
first subcase we consider.
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3.1.1. Caseof M > Mg. Our assumptions imply that in this caséx1) > 8,
which is equivalent tox; > xg. Combining (3.22), (3.34) and (3.35) and
Theorem 3.4(i) we can write a general form of the solution to (2.7) and (2.6),

K1(e, B)(exp(r4(a)x) — expr—(«)x)), 0<x < xgq,
_ T
V,(xa)pca(x) 25 (a(x) c) ’ Yo < x <5,
2y a—c
(3.38) V(x) =1 K1(B) exp(r;(B)(x — x1))
+ K2(B) exp(r—(B) (x — x1)), Xg <Xx <Xy,
%4- ! exp(F—(B)(x — x1)) x=x
y B v =

where ry(a), r—(a), r+(B) and r_(B), x, and xg are given by (3.23),
(3.24) and (3.30), respectively, ad (8), K2(8), K1(«, 8) andx; are unknown
constants to be determined. Continuity of the first and the second derivatives at
x1 results in

Vi(x1) =1, V" (x1) =F_(B).
This gives us two equations,
1=Ki1(B)r+(B) + K2(B)r—(B),
F_(B) = K1(B)r2 (B) + K2B)r2 (B).

whose solutions are

F_(B) —r_(B)
K = )

3.39) )= BB =B
Koy — B =T )

B (B —r-(B)
PutA =xg — x1. As before, using the principle of smooth fit:at, we get
A 1
Xg—X1= =
po (r(B) —r—(B))
<o g(_ (r+(B) = F-(B) (1 + ﬂozr_(ﬂ)))
F-(B) —r—(B)(u+ Ba?ri(B)))

The expression on the right-hand side(8#40) is negative due té > 8. In view
of (3.40) and (3.39) we can derive a simplified expressionforg):
ry(B) —r—(B)
n+po?ri(B)

(3.40)

V'(xg) = Boexplr_(B)A)



1824 T. CHOULLI, M. TAKSAR AND X. Y. ZHOU

The continuity of V/ at x, yields V'(xy) = Ki(a, B) (ro(a) expirs(a)xy) —
r_(a) exp(r—(a)xy)). Combining this equality with (3.36), we get

V/(xg) (B =) /(@ — )
74 (o) expry (o) xy) — r— (o) expir—(a)xy)

(3.41) Ki(a, B) =

THEOREM 3.8. Let a(x) be a function given by (3.29)and let r (@), r—(a),

r+(B), r—(B), xa, xp, ¢, ', 7—(B), K1(B), K2(B), K1(ar, ) and x1 be given by
(3.23), (3.24), (3.30), (3.27), (3.33), (3.10), (3.39), (3.419 (3.40),respectively.
If % <a and M > Mg, then V given by (3.38)is a concave, twice differentiable

solution of the HIB equation (2.7), subject to (2.6).

PROOF From the way we constructdd, it is a twice continuously differen-
tiable solution to the HIB equation (3.2). What remains to show is the concauvity.
From (3.38), we deduce that

V" (x) = ki (e, B)(r3 (@) explry(@)x) — r2 (@) explr—(a)x)) > 0
VO<x < xgy,
due tor_(«) < 0 < k1(c, B). Hence on this interval’” is increasing and
V/(x) < V" (xa) = ka(a, B) (rF (@) explrs (@) xa) — r2 (@) exp(r—(a)xq)) <O,

due to(r—(@))/(r+(@)) = exp((r4(a) — r—(a))xqy) and|r_(e)| > ri(a).
Forx, <x <xg, V'(x) = (—uV'(x))/(0%a(x)) < 0. Forxg <x < xi,

V" (x) = k1 (B)r3(B) exp(r+ (B) (x — x1)) + k2(B)r3 (B) exp(r—(B) (x — x1)) > O,

sincekz(B) andr_(B) are of the same sign. Thug”(x) < V”(x1) <0 Vxg <

x < x1. Finally, V”(x) < 0 Vx > x;. This establishes the concavity &f Since

V/(x) > 1forx <x1 andV’(x) <1 for x > x1, it is clear thatV satisfies (2.7).
O

3.1.2. Case of My, <M < Mg. Expression (3.37) shows th@t> ¢ > « if
and only if Mg > M > M,. From (3.29) we see that the conditigh> ¢ > o
is equivalent tog > a(x1) > «. In view of Theorem 3. 4a(x) <a(xy) < B for
all x > 0. This also impliesV’(x1) = 1. As a resultk = —o2¢/u. Taking into
account (3.22), (3.34) and (3.18), we can write the expressioVi fas

K1(a, B)(exp(r+(a)x) — exp(r—(«)x)), 0<x <xq,

na(x) —28 fa(x) —c\ T
V/ o =< )
vy =1 T <28/,u—c> fa =t =4
M o% u
———exp(— 2~(x—X1)), X Z X1.
Yy o?¢



DIVIDEND RATE AND BUSINESS CONSTRAINTS 1825

Fora(x) given by (3.29), the root of the equatiexix1) = ¢ can be written as
o2 /5 udu

X1

=2 2
+ 20 28/ U —C
(3.42) . v
no2(é —28/w) wo? c—c
=" 2 2 2 Iog( )
we—+ 20y wé+ 204y 25/u—c
The continuity ofV’ atx; leads toV/(xy) = (55=<—)'. Consequently,

28/ u—c

((€—0)/@25/u—c)"

(343 K B = e i @) xe) — (@) X (@)

THEOREM 3.9. Let a(x) bea function given by (3.29)and let r4 (@), r— (o),
Ki(a, B), x4, x1, ¢, I and ¢ begiven by (3.23), (3.43), (3.24), (3.42), (3.27), (3.33)

and (3.15), respectively. If 2 < o and M, < M < Mg, then
K1(a, B)(exp(r+(a)x) — exp(r—(a)x)), 0<x <xq,

na(x) —28 fa(x) —c\ '
(3.44) V(x)= 2y < i—c ) ’

M o p(
y ol o

l;(x—m)), x> x1

C

is a concave, twice differentiable solution of the HIB equation (2.7) subject
to (2.6).

xOl §x<x11

PROOF The proof of this theorem follows the same lines as that of Theo-
rem3.8. O

Now suppose thadl < M,. Thena(x) < a(x1) < « for eachx > 0 [since
a(x) is increasing orf0, x1) and is constant fox > x1; see Theorem 3.4]. If

V/(0) > 1, thenx; > 0 andV'(x1) = 1. As a resultK, = 1/(7_(«)). In view of
(3.22) and (3.19), the functioW is given by

ke, B)(exp(ri(a)x) — exp(r—(a)x)), 0<x <uxy,
(3.45) V(x)= M
y ()
The smoothness df requires
Vix1—) =1, V' (x1—) =F_(a),
which translates into
ki(a, B)(r+(a) explrs(o)x1) — r—(a) expr—(a)x1)) =1,

ka(a, B)(r2 (@) exp(ro(a)x1) — r? (@) explr—(e)x1)) = - ().

exp(F— (@) (x —x1)), X > x1.

(3.46)
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Excludingk1(«, 8), we get an equation fory:
_r—@)r—(@) —F-(@))

3.47 exp(ro(a) —r_(a))x1) = — .
(547 A+ )= @@ — @)
This equation has a positive solution if and only if
2.2
acocy
3.48 M>M =—" .
(3.48) > Mo@) =5
This proves the following statement.
PROPOSITION3.10. If 2 <« then
2,2
. acocy
V'(0)>1 ffM> ——.
) > I > 2apn—9)
Let M, be given by (3.37) and
2 2
z°0cy 1)
Mo(z) = ————, 7> —.
2(zp —8) %

A simple analysis shows thgt(z) = Mo(z) — M, is a decreasing function efand

f(%) = 0. Similarly, we claim thaM(z) is decreasing fot < % and increasing

forz > % Thus, we derive the inequalities

25 28
(3.49) M0<—) < Mo(a) < My < Mg if — <a,
n "
26 . 28
(3.50) My < Mo(a) < Mo<—) < Mg ifa<— <8,
I I

(3.51) M, < Mg < Mo(g) <Mo(B) < Mo(e) if B< Q.
5 5

Since the qualitative behavior of the solution to (3.2) [resp., to (3.3)] depends on
the value ofa(0) [resp., ofa(x1)], in accordance with (3.49) we distinguish and
study the remaining subcases in the following sections.

3.1.3. Caseof Mp(a) < M < M,. Thisisthe case when (3.47) has a positive
solutionxy given by

(3.52) R

o (r—(a)(r—(a)—F_(a)))

r(a)(ry(a) —7_(a)) /)

THEOREM 3.11. Let ry(a), r—(a), 7/—(x) and x; be given by (3.23),
(3.10)and (3.52),respectively, and let k1 («, B) be determined by (3.46).1f % <a

and Mo() < M < My, then V given by (3.45)is a concave, twice continuously
differentiable solution of (2.7)subject to (2.6).

PrROOF The proof of this theorem follows from that of Theorem 3.9
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3.1.4. Case of M < Mp(x). By virtue of Proposition 3.10, this assumption
results inV’(0) < 1. As a consequenceay = 0. As shown in Theorem 3.4,
this leads toa(x) = a(0) for eachx > 0. Since M, > Mp(«), we can apply
Corollary 3.5 to deduce(0) < «.

THEOREM 3.12. Let 7_(a) be a constant given by (3.10). If % <« and
M < Mp(a), then

(3.53) V(x)= %(1 — exp(F—(@)x)), x>0,

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).
PrROOF See Corollary 3.5. [
3.2. Caseof a < % < B. Inthis section, we investigate the second main case

of @ < a(0) < B. As in the preceding section, if we assunie1) > 8, then (3.2)
admits the solution

vy )~ 28<a(x) —C )_F, 0<x <xp,
(3.54) V(x)= 2y \PB/u=c
K1(B) exp(r(B)(x — x1))
+ K2(B) exp(r—(B) (x — x1)), xg <X < X1.
Here

po?

8= W[G(ﬂ)‘(;(%)]

2

o 28 28uc —c

:%('B__)+ 2 . 2log< 4 )
ue+2yo 7 uc+2yo 25/u—c

and the function(x) is defined by

24+ 2y0? 26 26
(3.56) ax) = G‘l(Hizyax + G(—)) e [—, oo),
o N N

(3.55)

wheregG is given by (3.28).
As before, the solution to (2.7) is derived by combining (3.54) and (3.3), by
distinguishing subcases as follows.

3.2.1.Caseof M > Mg. As in Section 3.1.1, consider the casexgf> xg.
This case is characterized By > Mg, which is also equivalent t6 > 8. As a
result, we getV’(x1) = 1. This leads toIE,g =1/(F_-(B)) [see Theorem 3.4(i)].
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Then using (3.54) and Theorem 3.4(/),can be represented in the form
na(x) — 26 < a(x) —c )_F

2y 25/u—c)
K1(B) expl(r+(B) (x — x1))

+ K2(B) exp(r—(B)(x — x1)), xXg <X < X1,
M1
y r-(B)

where a(x), K1(8), K2(8) and x; are given by (3.56), (3.39) and .49),
respectively. LetA = xg — x1 be given by (3.30). Continuity of atxg yields

V(0 = (Mgzi/ 25 (z(slj,zj c)r)

x (K1(B) expl(r(B)A) + K2(B) expl(r—(B)A)).

V'(0) 0<x <xg,

(357) V(x)=

exp(F—(B)(x —x1)), X > X1,

(3.58)

THEOREM 3.13. Let V/(0), a(x), ¢, T, K1(B), K2(B), x1 and ¢ be given by
(3.58), (3.56), (3.27), (3.33), (3.39), (3.480d (3.15),respectively. If o < % <B
and M > Mg, then V(x) given by (3.57) is a concave, twice continuously
differentiable solution of (2.7)subject to (2.6).

PROOF  The proof results from combining (3.54) and Theorem 3.4(iL).
To classify the remaining cases, suppase< Mg. Let V/(0) > 1. In this case,

x1 defined by (3.1) is positive. Therefore, using (3.54) and Theorem 3.4(ii), we can
represenV as

na(x) — 25(a(x) —c)_r’

vV'(0
© 2y 25/u—c

0<x <ux,

(3.59) V(x)=

0% 0% 7
vap+ZE - len(- L) wza
% % o“c
wherea(x) andc¢ are given by (3.56) and (3.15), respectively. As a consequence,
we get
(3.60) a(xy) =c.

Continuity of V/(x) at x = x; [see (3.26) for the expression of the derivatives
of a(x)] along with (3.60) results in

(3.61) V/(0) = (2;/;2 C)F.
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Substituting(3.61), (3.60) and (3.37) into (3.59), we obtain
M 0%

(3.62) Vi) = = -2
14 124

The unknown constany is the root of (3.60). Recalling (3.56), we see that (3.60)
admits a positive solution if and only if

_ 25202y

26
(3.63) M> Mo<—) ==
0 n

PROPOSITION3.14. Supposex < 2 < B. Then

2
V'(0)>1 iff M > Mo<£)

In view of this proposition, we distinguish the remaining subcases as follows.
3.2.2. Caseof Mo(%) <M < Mpg. Substituting (3.56) into (3.60), we obtain

. pwz /‘ udu
- wP+ 202y Jaspuu—c

no2(é — 28/ 1) o2 ( c—c )
= log .
w2+ 202y w2+ 202y 25/u—c

X1

(3.64)

THEOREM 3.15. Leta(x), ¢, I', ¢ and x1 be given by (3.56), (3.27), (3.33),
(3.15)and (3.64),respectively. If « < 2 < g and Mo(2) < M < My, then

_9 —ce\ 7T
;w();) 5(“(36) C) , 0<x<xy,
(3.65) V)= y2~ o
M o“c 1%
- eX%_ 2~(-x - XJ_)), X = X1,
y o g“c

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).
PrROOFE  The proof of this theorem follows from that of (3.54)]

3.2.3.Case of M < Mo(%). Note that in this casey’(0) < 1 due to
Proposition 3.14. From (3.50), it follows tha{0) = ¢ < 8.

THEOREM 3.16. Suppose « < % <band M < Mo(%). Let ¢ and 7_ (o) be
given by (3.15)and (3.10),respectively.
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(i) Ifa < % and « < &, then

(3.66) Vix) = %(1 - exp(—aizgx)), x>0,

is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).
(i) fa= % or ¢ < a, then

M

—(

(3.67) Vix)= S 1—expf_()x)), x>0,

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).
PROOF See Corollary 3.5. 0

3.3. Case of % < B < % We now investigate the final main cas§,<

B < 2. SupposeV’(0) > 1. Thenx; defined by (3.1) is positive. In view of
Proposition 3.7(iii) and position 3.3(i),a(x) > g for all x > 0. Therefore,
using (3.62) and Theorem 3.4(#, can be represented as

K (exp(r+(B)x) — exp(r—(B)x)). 0<x <uxi,

3.68 Vix) =
(3.68) ) M + exp(F—(B)(x — x1)), X = X1.

y (B
The principle of smooth fit foV at x4 yields

V'(x1-) = K (r+(B) exp(r+ (B)x1) — r—(B) explr—(B)x1)) = 1,

(3.69)
V" (x1—) =F_(B).
Thus
(3.70) expl(r+ (B) — r—(B))x1) = r—(B)(r—(B) —r—(B))

(B (B) —F-(B)’
which admits a positive solutiar iff
0’2,82]/
3.71 M > M =
( ) > Mo(B) 21— )

PROPOSITION3.17. 1f £ < g <2 then
VIO >1 iff M > MoQB).

PrROOF The proof of this proposition follows from the calculations in this and
the previous sections.[J

In view of Proposition 3.17, we need to treat only two subcases, namely,
M > My(B) andM < My(B), to complete our analysis.
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3.3.1. Case of M > Mp(B). In this case, (3.70) has a positive solutien
given by

(3.72) x1

_ 1 ,og(r_ BB — 7 (ﬂ))).
r+(B) —r—(B) r+(B)(r+(B) —r—(B))
THEOREM 3.18. Let x1, r1.(B8), and r_(B) and 7_(B) be given by (3.72),

(3.23)and (3.10), respectively, and let K be a constant determined from (3.69).
If % < B < % and M > Mo(B), then V given by (3.68) is a concave, twice

continuously differentiable solution of (2.7) subject to (2.6).

PrROOF By differentiating the expression (3.68), we obtain

VO (x) =K (r3(B) explr(B)x) — r2(B) exp(r—(B)x)) > O, 0<x < xi.

As aresult,V”(x) < V”(x1) =0 andV’(x) > V/(x1) = 1. This proves thaV is
concave. [

3.3.2. Case of M < Mpy(B). In this case, in view of Proposition 3.17,
V’(0) < 1. Thereforex; defined by (3.1) equals zero.

THEOREM3.19. Supposethat either g < % or % <B< % and M < Mo(B).
Let7_(B), 7_(«a) and ¢ be given by (3.10)and (3.15),respectively.

(i) 1f M > Mg, then

(3.73) V(x) =

%(1 _expF_(B)x)), x>0,

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).
(i) If My <M < Mg, then

V(x):%<l—exp<—%x)), x>0,
Y o4c

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).
(iiiy If M < M,, then

M
V(x) = —(1—expf_(o)x)), x>0,
14
is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).

PROOFE In the case ofg < % the inequality V/(0) < 1 holds due to
Proposition 3.17. Then by applying Corollary 3.5, the desired result follows.
On the other hand, if% < B =< % and M < My(B), then V/(0) < 1 (see
Proposition 3.1). Thus, in view of (3.51), Corollary 3.5 can be applied again to
obtain the results. [J
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4. Optimal policies. In this section we construct the optimal control policies
based on the solutions to the HIB equations obtained in the previous section. The
derivation of the results of this section is simpler than the corresponding one in [4],
in view of the fact that no Skorohod problem has to be involved in this case.

Supposé/ is a concave solution to the HIB equation (2.7). Define

a*(x) = arg L’ng)é(%azan”(x) + (au — 8 V' (x)
(4.1) a=a= Lo
—yVx)+M(1-V'(x))")
and
M*(x)= M1 >y,

where x1 is defined by (3.1). The function*(x) is the optimal feedback risk
control function, while the functiod/*(x) represents the optimal dividend rate
payments when the level of the reserve is

THEOREM 4.1. Let R/, t > 0, be a solution to the stochastic differential
equation

dR* =[a*(R* ) — 8 — M*(RH)]dt + a*(R*)o dW,,

4.2

Rj =x.
Thenfor n* = (af, ¢f; t = 0) = (@™ (R}), M*(R}); t > 0), we have
(4.3) () =V (x) Vx>0.

PROOF  For simplicity assume that the initial positiarn< x;. In this case the
processRk; as a solution to (4.2) is continuous. In view of (4.1) and (2.7),

(4.4) LY RIV(RY) — M*(RHV'(RY) + M*(R}) =0

[sinceM (1 — V'(x))™ = M*(x)(1— V'(x))], where the operatak® is defined in

the proof of Theorem 2.2. Repeating the arguments of the proof of Theorem 2.2
and applying (4.4), we see that (we writdnstead oft”™ below, since there will

be no confusion)

INT
(4.5) E(e7"DOV(RY )=V (x) — E/ e Vickds.
0
Taking the limit as — oo, and applying (2.13), we obtain the desired resulil.
Combining Theorems 2.2 and 4.1, we get the following result immediately.

COROLLARY 4.2. Thefunction V presented in Section 3 isthe optimal return
function and 7z * is the optimal policy.

All the results we obtained are summarized in Tables 1 and 2 for easy reference.



TABLE 1

The case of % <a

Risk Risk §

x1 isthefirst point at

ever ever which the possible
Range for M Xa xg a*(x) attained attained X1 maximal risk isattained
M > Mg Positive Positive (i) « for x € [0, x] Yes Yes Positive; No
and and (ii) Increases from see
finite; finite; ato g onlxy,xgl; (3.40)
see see see (3.29)
(3.24) (3.30) (iii) B forx > xg
My <M<Mg Positive ) (i) « for x € [0, x¢] Yes ‘No Positive; Yes
M=Mp and (ii) Increases fromx Yes see
inite- 2u(8+M)
finite; = (3.42)
see on{xa, x1];
(3.24) see (3.29)
(i) 2u(8+M)
M2+2)’02
forx > xq
Mo(a) <M < My S © o Yes No Positive; No
see
(3.52)
M < Mp(@) oo oo o Yes No 0 Yes

SINIVHLSNOOD SSANISNd ANV 31vd AN3dAIAId

€€81



TABLE 2

Risk o Risk B x1 isthefirst point at
ever ever which the possible
Range for M Xa xg a*(x) attained attained X1 maximal risk isattained
ﬂmm%da5%<ﬁ
M > Mg 0 Positive (i) Increases from Yes if Yes Positive; No
and Etoﬂ on|[0, xz]; = 2. see
m , xg1; =5
finite; see (3.56); no if (3.40)
see (ii) pforx > xg o> %
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5. Economicinterpretation and conclusions. The optimal policies obtained
in the previous sections have clear economic meaning and are very easy to
implement. Let us now elaborate.

The risk control policy is characterized by two critical reserve levelsindxg.
The values of these two levels are further determined by four parameters: the
minimum risk allowed ¢), the maximum risk allowedf), the ratio between
the debt rate and profit rateg—l, and the maximum dividend rate allowegl(}.

Specifically, there are three different cases to consider.
The first case is when the company has very little debt compared to the potential
profit (so that% < «). In this case, if the maximum dividend radé is large

enough (/ > Mg), then both critical reserve levels, andxg, are positive and
finite. In other words, the company will minimize business activity (i.e., take the
minimum risk @) when the reserve is below leve),, then gradually increase
business activity when the reserve is betwagnand xg, and then maximize
business activity (i.e., take the maximum rigkwhen the reserve reaches or goes
beyond levelxg. This policy is the same as that obtained in [4] for the case of
unbounded dividend rate. Next, if the maximum dividend rdtés at a medium
level (M, < M < Mpg), thenx, remains positive and finite whileg becomes
infinite. This implies that the company will become less aggressive; in particular, it
will never take the maximum risk, due to a more restrictive dividend payout upper
bound. Finally, ifM is so small that < M, then bothx, andxg turn out to be
infinite, meaning that business activities will be carried out at the minimum level
or those business activities are redundant.

The second case is when the company has a higher debt—profit ratio (so that
o < % < B). In this casey,, = 0. This means that no matter how small the reserve
is the company will never take the minimum risk; rather it will start with a bit
higher risk level and gradually increase it. On the other hand, whether it will ever
increase to the maximum possible risk (i.e., whethgs finite or infinite) depends
on the value of the maximum possible dividend ragein the same way as in the
first case discussed above. Therefore, in the second case the company overall has to
be a bit more aggressive than in the first case. This can be explained by the fact that
when the debt rate is high, one needs to gamble on higher potential profits to get
out of the “bankruptcy zone” as fast as possible, even at the expense of assuming
higher risk.

The company becomes even more aggressive in the third case when the debt—
profit ratio is even higher (precisely Whé&1< B < %). In this case, when the
maximum dividend raté/ is large enough¥ > Mg), the maximum allowable
risk B is taken throughout, while the two critical levels andxg are both zero.

On the other hand, wheM is small enough so tha < M,,, business activities
are carried out at the minimum lewelthroughout.

On the other hand, the optimal dividend policy is always of a threshold type here
the threshold isc; (which is positive or zero). Namely, the dividend distribution
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takes place only when the reserve exceeds the critical lgy@h which case the
dividend payout rate i31.

It is interesting to note that in the case of unbounded dividend rate, the
maximum business activity is always takasgfore dividend distributions ever take
place; see [4]. However, in the present case of bounded dividend rate, the company
may need to pay dividendefore the maximum risk leveB is ever taken; refer to
Tables 1 and 2 for details. This represents a striking difference between the cases of
unbounded and bounded dividend rate. The economic reason for such behavior is
the following. When there is a significant constraint on the dividend rate, there may
be no necessity to pursue business aggressively because the accumulated liquid
assets cannot be paid out as dividends fast enough anyway.

In conclusion, we point out an intricate interplay between the restriction on
the dividend distribution rate and that on the risk control of a financial company.
The sheer number of qualitatively different optimal policies, which appears due
to different possible relationships between exogenous parameters, shows the
multiplicity of different economic envenments which a financial company faces
depending on the size of the debt, on the constraint on the dividend rate, and on
the size of available business activity.
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