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THE RIGHT TIME TO SELL A STOCK WHOSE PRICE IS
DRIVEN BY MARKOVIAN NOISE?!

BY ROBERT C. DALANG AND M.-O. HONGLER
Ecole Polytechnique Fédérale de Lausanne

We consider the problem of finding the optimal time to sell a stock,
subject to a fixed sales cost and an exponential discountingoratée as-
sume that the price of the stock fluctuates according to the equation
dY; =Y (udt + o&(t)dt), where (£(t)) is an alternating Markov renewal
process with values ifit 1}, with an exponential renewal time. We determine
the critical value ofp under which the value function is finite. We examine
the validity of the “principle of smooth fit” and use this to give a complete and
essentially explicit solution to the problem, which exhibits a surprisingly rich
structure. The corresponding result when the stock price evolves according to
the Black and Scholes model is obtained as a limit case.

1. Introduction. There are many examples of optimal stopping and optimal
control problems in continuous time that involve diffusion processes and that have
an explicit solution (see, e.g., [1, 16, 21, 22]), but it is rare that the discrete form
of the problem, in which the diffusion is replaced by a random walk, can also be
solved explicitly (an exception is [2]; see also [3], Chapter 10). One reason is that
in the continuous case, it is possible to use the so-called principle of smooth fit,
first studied in detail in [9]; see also [23], [14], Chapters 1 and 6, and [5], as well
as [22], page 636, for a discussion of this principle and its history. In the discrete
case, the problem is much more combinatorial and no such principle is available.

In this paper, we consider a particular optimal stopping problem in an
intermediate situation, in which time is continuous but the driving noise is discrete.
We show that the principle of smooth fit holds in some situations but not in
others, and that the difference between the situations sheds some light on why this
principle should hold in the first place. It turns out that this semidiscrete problem
admits an essentially explicit solution.

The specific problem we consider is when to sell a stock, subject to a fixed sale
costa and an exponential discounting at raten the classical Black and Scholes
model, the stock pric#, is a solution of the stochastic differential equation
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where (B;) is a standard Brownian motion, and and ¢ are constants. The
problem is to find a stopping time which maximizes the expected reward
E(e ™ (Y; —a)). This continuous-timenoblem can be elegantly solved explicitly
(see [18], which was the starting point for this paper).

Here, we consider a semidiscretized form of this problem: The driving noise
d B, is replaced by an alternating renewal proggss), ¢ > 0) with values in{+1},
with an exponential renewal time with meaml1 Equation (1.1) is replaced by

dY; =Y (ndt + (1) dr), Yo=Yy,

which is a (randomdrdinary differential equation. The problem is again to find a
stopping timer which maximizes the expected rewatde ** (Y; — a)), and even

to find thevalue functiorg(z, y, s), which represents the maximal expected reward
if we are at timer, the current stock price ig, £(r) = s and we proceed optimally
from timezr on.

The Markovian noise processt)dt is sometimes called telegrapher’s noi-
se [11] and the proces&;) is known as a piecewise deterministic Markov
process [4] or a random evolution process [20]. This semidiscrete problem is in
a sense “simpler” than the previous one, since it does not appeal to Brownian
motion and stochastic differential equations, so the statement of the problem is
elementary. The procegs:) can be thought of as an up or down trend, which
may be appropriate on certain time scales and in certain applications. Furthermore,
there is a nontrivial covariance betwegf1) and&(r + k), namelye=2", which
is not the case for white noiséB;. Finally, taking an appropriate limit as
A 1 +o0 ando 1 400, we should recover the solution from the Black and Scholes
model [although (1.1) will have to be interpreted in the Stratonovitch sense; see
Remark 12].

It turns out that the structure of the solution to our problem depends heavily
on the relationships between the four paramepeys, o anda. If p is too small,
then it is never optimal to stop and sub(e " (Y; — a)) = +o00. Therefore, the
problem is of interest only for sufficiently large values@fThe critical value is
determined in Theorem 1.

It is well known [7] that the optimal stopping rule can be described via a
“continuation region” and a “stopping region,” and for continuous-time problems,
the principle of smooth fit states that the value funcgoshould be smooth at the
boundary between these two regions. Here, we can establish that the principle of
smooth fit does indeed hold at certain such boundary points (see Proposition 7),
but not necessarily at others. Therefore, the principle of smooth fit at these points
yields necessary conditions on the value function, rather than guesses that need to
be confirmed, as is generally the case.

In developing our solution, we essentially had two choices. The first was to
“guess” the solution, and then establish that the proposed solution is correct. This
is the approach used, for instance, in [16] and [22]. The second choice was to use
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the general theory of optimal stopping, as developed in [7], to establish existence
and basic properties of optimal stopping times. While the first approach is more
elementary, it requires heavy algebraic calculations. Therefore, we preferred the
second approach: The knowledge that an optimal stopping time exists can be
used advantageously to derive conditions that are necessarily satisfied by the value
function and this simplifies the calculations (even though they remain intricate).
In the solution to our problem, the possible sigmef 1« — o plays an important
role. Intuitively, there are two competing features in the problem: the discounting
tends to decrease the effect of the fixed sale agsthich encourages waiting
and selling later, versus the discountirfghe sale price, which encourages selling
immediately. For large values of the sale price, the fixede¢tstcomes negligible.
Whenp < u 4+ o, during an up trend, the stock price increases at a faster rate
thanp, so no matter what the stock price, it is always optimal not to stop as long
as the trend is up. On the other hand, wien 1 + o, the discounting is stronger
than the increase in stock price, even during an up trend, so for large stock prices,
the continuation effect from the fixed sale cost loses out and it becomes optimal to
stop, even during an up trend. These observations are confirmed by our analysis.
It turns out that whep — 1 — o is negative, we obtain an explicit solution given
by algebraic formulas (Theorem 10 for the case wheres < 0 and Theorem 14
whenu — o > 0). Whenp — u — o > 0, the solution is essentially explicit, up to
solving one transcendental equation (see Theorem 13 for the casewhere: 0
and Theorem 16 it — o > 0). Finally, in Remark 12, we show how to recover the
solution to the problem where the stock price is given by (1.1) as the limit, when
A1 00, 0 1 oo ando /+/A — o9, of the solution to our semidiscrete problem.

2. Stating theproblem. Consider a two-state continuous-time Markov chain
(&(¢), t > 0) with state space = {—1, +1}, defined on a complete probability
space($2, ¥, P). Processes such as this are discussed in most textbooks on
stochastic processes [10, 20]. We assume that the infinitesimal parameters of this
Markov chain are given by the matrix

2.1) G:(}A _K/\)

wherei > 0. Forr,s € S, let p,(t) = P(&(t) = s|6(0) = r) and setP(r) =
(prs(t)). Then

— 2\t — 2\t
1{1l+e l—e
P()=3 (1_ 2 1+e—2xz)
Fix positive real numberg ando, let
V(is)=u+so

and consider the proceég, r > 0), which is a solution of the equation

(2.2) % =V(E®)Y;, t>0.



THE RIGHT TIME TO SELL A STOCK 2179

Equivalently,

(2.3) Y, = Yoexp(ut +o /Ot E(u)du).

Let (¥;, t > 0) be the natural filtration of¢ (z)). Clearly,(#;) is also the natural
filtration of (Y;). We complete this filtration and then it is also right-continuous.
The processY;) is not a Markov process with respect to this filtration, whereas the
couple(Y;, £(1)) is a Markov process with state spake x S. We letP,, ;, denote
the conditional probability given thal = yo and&(0) = so, and letE,, s, denote
expectation undepy ;.

As mentioned in the Introduction, we assume thatenotes the price of an
asset at time and we wish to sell this asset at the highest possible price, subject
to a fixed transaction cost> 0 and a discounting rate > 0. That is, the benefit
of a sale at time is given by the reward procesX;) defined by

(2.4) X, =e P'(Y, —a).

PrROBLEM A. Find a stopping time? relative to the filtration #;) such that
(2.5) Eyo.50(Xve) = SUPEyq,50(X7),
where the supremum is over &lF;)-stopping times.

3. Conditionsunder which the value function isfinite. Thevalue function
for Problem Ais

g(yO’ SO) = SupEyo,So(X‘L')'
T

Of course, Problem A is only interesting if this function is finite. The first theorem
identifies the conditions on the parameters of the problem that ensure that this is
indeed the case.

THEOREM1. Givenyg > 0andsg e S, g(yo, so) < o< if
(3.1) p>p—r+vVol+2a2

In fact, condition (3.1) holds if and only if Ey s (SURso X)) < oo, while
p <p—r+~o2+2Zifand only ifsup.g Eyy, 50 (X;) = +00.

PROOF According to [8], Section IIl.4, the infinitesimal generator @f;),
whereZ; = (Y, £(¢)), is the operatort, defined forf : R, x § — R such that
f (-, s) is continuously differentiable for eashe S, by

)
Af(y,s)= V(s)yé(y, $)+Gf(y,s),
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whereGf(y,s) = G —1f(y, —1) + Gs.+1f (v, +1) and theG, , are the infinites-
imal parameters oft (1)) from (2.1).

Itis not difficult to check that the law df; underPy, ,, is absolutely continuous,
with compact support, and we lg{yo, so; ¢, v, s) denote its density of€ (z) = s},
that is, for all Borel setgt,

Pyo,so{Yt EA’S(I):S}:/AP()’OJO, t’ y’s)dy

We use this to give a formula faE, ,,(Y;). Although we could appeal to [13],

we prefer, for convenience of the reader, to give the derivation. The Kolmogorov
forward equation ([12], Chapter 5.1, page 282) states thatyi9rsg) € Ry x S
fixedand allr > 0, (y,s) e Ry x S,

ap ad
(3.2) E(yo, s0:t,y,8) = —5(V(S)yp(yo, 50:1,5,5)) +Gp(yo, 50 1, ¥, 5).
Set
0
F (3o, 50: 2, 8) = Eyg 50 (YeLig(n)=s}) =_/o yp(yo, s0; ¢, y,s)dy.

Multiply both sides of (3.2) by, then integrate ove0, oo[ with respect toy to
find, after an integration by parts and becawse p(yo, so; ¢, y, s) has compact
support, that

af
E(yo, so;t,8) =V (s)f(yo,s0; t,5) + Gf (o, s0; , §).

Substitutes = +1 and suppresgy, so) from the notation to get

d
d_J:(t’ —D=w—-0)f@, =D —af@, =D +2rf(, +1),

Z—J;(L +D)=@m+o)f,+D) +Af @, -1 —Af @, +D).

Thisis a linear system of two differential equations in the unknawnsf (¢, 1),
governed by a matrix with constant coefficients. The eigenvalues of this matrix are

Klzu—k+va2+K2 and Kzzu—k—VU2+k2.
Therefore,
Eyo.50(Yt) = f(yo, s0; £, —=1) + f (o, s0; 1, +1) ~ explk1r) ast — oo
and
Eyq 50 "1Yy) ~ exp((k1 — p)i) ast — oo.

If p<p—2r++o2+22 thenky — p >0, SO SUP. o Eyqy 5(X;) = +o0 if and
only if this inequality holds.

Suppose now that (3.1) holds. To show thgf s, (Sup-q|X;|) < oo, it clearly

suffices to show thak , ;,(SURo M;) < oo, whereM; = e~"'Y;. We distinguish
two cases.
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Case 1. If p>u+ o, thendM; = (u — p + cE@))M, < 0, so the
sample paths ofM;) are nonincreasing and sud; < yo, Py, s,-a.S. Therefore,
Eyq.50(SUR=0 M;) < yo < o0.

Case 2. If p < u+ o, then we proceed as follows [note first that- 1 +
Vo2 4+ 212 < i+ o, so the conditiorp < 1 + o is compatible with (3.1)]. The
infinitesimal generatos of the Markov procesg; = (M;, £(1)), which applies to
functionsf : R, x § — R, is given by

3 )
ALy, s)=u—p +sa)y£(y, $)+Gf(y,s).

Therefore, the procesy (M, £(¢)), t > 0) is a martingale if

3
B3) (u—p +so)y%(y,S) +Gf(y,5)=0, (y,s) eRy x 8.

Leth(z,s) = f(e®,s), sothath(-, -) satisfies the linear equation
oh
(,u—,o—i—sa)a—z(z,s)+Gh(z,s)=0, (z,s) e R x S.

Substitutes = +1 into this equation to get

i(h(z,—l)):( AMuw—p—o) —k/(u—p—o))_(h(z,—l))
dz \h(z,+1) —A/(p—p+o) A(u—p+o) h(z,+1) )"
Thisis alinear system of two differential equations in the unknaywash (z, +1),

governed by a matrix with constant coefficients, whose eigenvalues are Q,and
where

Q=2xnp - wlo®— (u—p)2~%

Note that because > by (3.1) and since we are in Case 2, it follows tfeat O.
The corresponding eigenvectors are

1 —(u—p)+o
(1) e (T5107)

Therefore, there are constaits andC, such that

h(z,8) = C1+ Cao(s(i — p) + 0)&™®

and so
f(,5)=C1+ Co(s(n — p) +0)y%.

Let us chooseC; =0 and C, = 1. Given O< a < y < b < oo, define
T =inf{t > 0:M; ¢ [a, b]}. The processf(M;,7,&( A T),t > 0) is a bounded
martingale. By (3.1)p > u, so by (2.3) and the law of large numbers,

(3.4) lim M; =0, P, s-a.s.

1—>00
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and thereford” < co Py ;-a.s. By the optional stopping theorem ([6], Chapter 4.7,
(7.4)), we see that
f(v,8)=Eys[f(Mr,&(T))].
Asu—p—o <0andu — p + o > 0, M, cannot reacly for the first time when
&(t) = —1, ora for the first time wher§ (r) = +1, so&(T) = +1 whenT = b and
&(T)=—-1whenT =a. LetT, =inf{r > 0:M; = x}. It follows that
f(y’ §)= f(a’ _1)Py,s{Ta <Tp}+ f(b, +1)Py,s{Tb < Ty},
which implies that
f(y’s) _f(a’_l)

Prally < T = 2 o ~ f @~

Leta | O to find that

S, ) Fs) o
P M, > bt = P, T, = = b
y,s{s';lp t — } y,s{ p < 00} f(b,+1) L—pto
and, thereforeE, (supg M) < oo if and only if Q@ > 1, that is, 2(p — u) >
o2 — (u — p)2, which is equivalent to inequality (3.1) [to see this, isolate the
square root in (3.1), square both sides of the inequality and simplify]. Theorem 1
is proved. O

4. Existence of an optimal stoppingtime. In view of Theorem 1, we restrict
our study to the situation where condition (3.1) holds, that is, for the remainder of
the paper, we make the following assumption.

ASSUMPTIONA. The parameters of the problem satisfy
p>M—X+VG2+k2.

To apply results from the general theory of optimal stopping in continuous time,
we setX ., =0.

THEOREM 2. Under Assumptior, there exists an optimal stopping tiné,
in other words t¢ satisfieq2.5).

PrROOF We apply Theorem 2.41 of [7]. Notice first that> X, is continuous
from [0, oo] to R. Indeed, the only issue is continuity atoo, which follows
from (3.4) if p < u + o and from (2.4) and (2.3) ip > u + o, since in this
last case,

0<e Y, <Yoexp((—p + p + o)1) forall t > 0.

Furthermore(X;) is bounded below by-a, adapted and “of class D” [i.e., the
family (X;, t a stopping time) is uniformly integrable] by Assumption A and
Theorem 1. Therefore, the hypotheses of [7], Théoreme 2.41, are satisfied and the
existence of an optimal stopping time is established.
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5. First propertiesof thevaluefunction. From the general theory of optimal
stopping in continuous time [7], we know that the solution to Problem A uses
Snells envelopeof the reward procesgX;,: > 0), that is, a supermartingale
(Z;,t = 0) such that for ally, s), Py s-a.s,

Zt = €SS SU[E%S(XT |~¢t)7

where the essential supremum is over all stopping titnes. Because the reward
process has the special fotkip = e’ fo(Y;, £(¢)), Where

(5.1) fo(y,s)= fo(y)=y—a  (nodependence oy,
it follows from [7], Théoréme 2.75, that in fact,
Z; = e_ptg(Yt, 5(1)),

whereg(y, s) is the value function, and there is an optimal stopping time of the
form % = inf{r > 0:g(Y;,&(¢)) = fo(Yy)} ([7], Théoreme 2.76). We therefore
examine properties of the functi@y, s) and of{y: g(y,s) =y —a}.

PrRoOPOSITION3. (a)Fors e S, y— g(y,s) is convextherefore continuoys
and nondecreasindrurthermore g(y, s) > max fo(y), 0).

(b) Fors € S, the setly e Ry : g(y,s) =y —a} is an interval[u, +oco[ (which
may be empftyor, in other wordsu; = +o0 may occuy.

PROOF.  (a) We note from (2.3) that the law &f underP, ; is the same as the
law of yY; underPy ; and, therefore,

8(y,s) =SUPE1s(e” " (yYr — a)).
T
For a given stopping time ands € S,
(52) y = El,s(e_pr(yyr - a)) = yEl,s(e_err) - aEl,s(e_pr)

is a nondecreasing and affine function wf Therefore,y — g(y,s), as the
supremum of such functions, is nondecreasing and convex.
Observe that for any> 0,

g, s) > Ey(X;)=Ey (e "Y,—e "a)>—e"a.

Lett — 400 to see thafg(y,s) > 0. It is also clear thag(y,s) > E, ;(Xo) =

fo(y), so we conclude that(y, s) > max(fo(y), 0).
(b) Lets; ={y e Ry :g(y,s) =y —al},s € {—1, +1}. Then for anyyg € 4, and
any stopping timer,

E14(e™"" fo(yoYr)) < g(yo.s) = yo —a.
Using (5.1), this is equivalent to
yO(El,s(e_pTYt) - 1) + a(l - El,s(e_pt)) <O0.
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The second term is nonnegative, so this inequality implies Fhatle " Y;) —
1 < 0 and, therefore, it remains satisfied for any yo:

V(E1s(e™"Y) —1)4+a(l— E15(e "")) <O0.
However, this inequality translates back to
El,s(e_prO(yYf)) =y—a.

Take the supremum over stopping timet conclude thag(y, s) <y —a and so
y € 4.

We conclude that ifyg € 8, andy > yg, theny € &, which shows that either
§;, = @ or 4, is a semiinfinite interval, as claimedd

6. The value function in the continuation region. For s € S, let u; be
defined as in Proposition 3. We write. instead ofui1. By Proposition 3(b)
and [7], Théorémes 2.18 and 2.45, it is optimat to stopwhen(Y;, £(¢)) belongs
to thecontinuation region

C=([0,u_[x{=1H U0, ut[ x{+1}),
while the smallest optimal stopping time i€ = inf{r > 0:(Y;, £(¢)) € (Ry X
S)\ €C}. Set
g(t,y, ) =e""g(y,s).

Thenthe procesg (¢, Y;, £(1)), t > 0) is a supermartingale, whilg (t A 12, Y a0,
£(t A 12),t > 0) is a martingale ([7], Théoréme 2.75 and (2.12.2)). This has the
following consequence.

PROPOSITION4. (a)The relationship:— <u holds
(b) The set{y € Ry:g(y,—1) = y — a} is nonempty grin other words
U_ < —+00.

ProOOF (a) We distinguish two cases, according@as o < 0 or not.

Casel. u—o <0.Weshowthat,infacg(-, —1) < g(-, +1), which clearly
impliesu_ <u,. Let t; be the first jump time of&(z)). Then for any stopping
timer,

E1_1(e™"" fo(yY1))
=E1-1(e” " foOY)Lir<ry) + E1—1(Xc|Fry) Liry<1})
= El,—l(e_ptg(yyn +1)]1{t§tl} + e_mlg(erl, +1)]]-{‘L'1<‘[})-

Becauseu — o < 0, f +— yY; is nonincreasing of0, t1] P1,_1-a.S. so this is no
greater than

E1-1(1-g(v, +DLjz<ryy +1- (v, + DLz <)) = g(y, +1).
Thereforeg(y, —1) < g(y, +1).
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CASE 2. u — o > 0. We note that in this case,— Y; is monotone and
increasing, and it suffices to consider the case where< co. Suppose by
contradiction thatt; < u_. Fix y € [u4,u_[, so thatg(y,+1) =y —a and, in
particular, for any > 0,

E11(e "™ (yYey 0 —a)) <y —a.

Let 7~ = (u — o) LIn(u_/y), so thatz_ > 0 and on{ry > t_}, y¥; = u_
P1_q1-as.

Seto; = 11 A t_. Because of the form of the continuation region (given above),
o1=1% P, _1-a.s. and, therefore,

(6.1) g(y,—1) = E1_1(e” ") (yYyn —a)).

Since

Yoo =expl(nto)(tint)) P1 11-a.S.

and the law ofr is exponential with mean/&, both underP; _1 and undery .1,
we see that the right-hand side of (6.1) is bounded above by

E11(e PN (yYo 0 —a)) < gy, +1) =y —a,

becausey > u. . It follows thatg(y, —1) < y — a, and by Proposition 3(a), this
inequality must be an equality. Therefo(g, —1) belongs taR x )\ €, which
contradicts our assumption thatk u_. This proves that_ < u as claimed.

(b) If u_ were equal tot-oo, thenu . = +oo by (a), so the continuation region
would beC =R, x § and, thereforer® = +o0o would be the smallest optimal
stopping time by [7], Théoréme 2.45. However, the reward associated with this
stopping time is 0, which is clearly not optimal(J

The supermartingale and martingale properties mentioned just before Proposi-
tion 4 translate into

(6.2) A%, y,s) <0  forall(z,y,s) eRy xRy x S
and
(6.3) Ag(t,y,s)=0  for(s,y,s) €[0, %[ xC,

wheres is the infinitesimal generator &f, = (z, Y;, £(7)). By [8], Section I11.4,
. B 9
Ag(t,y,s)=e ’”(—pg(y, s) + V(S)yi(y, s)+ Gg(y, s)),
so

0
(6.4) —pg(y,s>+V<s>y£<y,s>+Gg<y,s>=o, (y.5) € C.
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A priori, this equality is only satisfied a.e., but singe> g(y, s) is convex, hence
continuous, the fact that (6.4) is satisfied a.e. implies that it is, in fact, satisfied
everywhere inC [let y, — y with (6.4) satisfied at eacty,, s) € C and takey,
monotone increasing, then decreasing, to conclude that both the left and right
derivative ofg(-, s) agree aty, s)].

Equality (6.4) provides us with a specific form foie.

PrROPOSITIONS. (a)Define

O+ ) EVA2uZ +02(p? + 20p)

(6.5) o

12— 2
and
+o

(6.6) wi:1+§—“k Q.
There are constant§_ andC. suchthatfoO<y <u_,
(6.7) gy, =1 = C_w_y% + Crwyy?,
(6.8) gy, +D) = C_y® +Cy™.

(b) Let
(6.9) b=rA+p—pn—0)t and QL=0+p)(u+0o)""

There is a constant’ such thatforu_ <y <u.,

(6.10) gy, +1) =by—a + Cy®.

Atp

PrROOF (@) Equation (6.4), written foty, s) € [0, u_[ xS, gives

0
6.11)  y(u-— a)%(y, —1) — (4 p)g(y, =D + Ag(y, +1) =0,

9
(6.12)  y(u+ a)%(y, +1) +rg(y, D) — A+ p)g(y,+1) =0.

The same change of variables that was used to solve (3.3) transforms these two
equations into a linear system of differential equations governed by a matrix with
constant coefficients, whose characteristic polynomiglés— o2)~1 multiplied

by
(6.13) p(w) = (u? — oD w? = 2u(h 4 p)w + (0% + 2p1).

The roots of this polynomial are easily seen tofbe and2; given in (6.5), and
the associated eigenvectors are

(7)) e (7):
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wherew. are given in (6.6). This leads to the formulas in (6.7) and (6.8).
(b) Equation (6.4), written foy € [u_, u,] ands = 41, yields the equation

0
6.14)  y(u +a>£<y, 1) — i+ p)g(y. +1) + A(y —a) =0,

becauseg(y, —1) = y — a for thesey. The solution of this first-order linear
differential equation is easily seen to be given by (6.1Q).

REMARK 6. (@) By isolating the square root in (3.1) and squaring, we see
that Assumption A is equivalent to the conditigr{1) > 0, wherep(-) is the
polynomial in (6.13).

(b) Assumption A clearly implies + p — u — o > 0 and, thereforeQ > 1.

7. The principle of smooth fit. Proposition 5 gives the form of the value
function in the continuation region, but the numbersuaf, C+ and C remain
to be determined. In many control problems for diffusions [1, 9, 21, 22], this is
done using the principle of smooth fit. In the presence of piecewise deterministic
processes, it is not a priori clear whether this principle applies, and we will see that
this need not be the case. In this problem, the principle of smooth fit states that

. 0g
im =(y,+1) =1
o Sy (y,£1)
asdfp/dy =1.
PrRoPOSITIONT. (a)If u — o > 0, then the principle of smooth fit is satisfied
byg(,—1) atu_.
(b) If u4+ < 400, then the principle of smooth fit is satisfied &y, +1) atu.,.

PROOF (a) We lety 1 u_ in (6.11). Because(-, +1) is continuous and
gu_,—1) = fo(u_), we find that

9
(7.1) u_(u—o) lim =2(y,=1) — (A + p) folu_) + Ag(u_, +1) =0.
ytu_ dy
Fory>u_, A§(t,y, —1) <0andg(r, y, —1) = e~ fo(y), SO

d
y(p — o)d—];o(y) — A+ p)fo(y) +2rg(y,+1) <O0.

Becausddfo/dy)(y) =1, we lety | u_ to find that

u_(n—o0)—@A+pfolu-)+rgu—_,+1) <0.
Since we have assumed that- o > 0, together with (7.1), this implies

5
(7.2) lim Sy, -1 >1.
ytu- dy
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By Proposition 3(a)g(-, —1) is convex; thereforey — g—i(y, —1) is nondecreas-
ing. Asg(y, —1) = fo(y) for y > u_ and(dfo/dy)(y) = 1, we conclude that the
inequality (7.2) is in fact an equality and (a) is proved.

(b) We lety 1+ uy in (6.14) to see, similar to the above, that

.0
(73)  wput o) Im S0+ = 0ok ) folus) + 2fo(u) =0

Fory > u., use the inequalityb2(z, y, +1) < 0 to get

d
y(pu+ cr)d—?(y) — (A +p) fo(y) + Afo(y) <0.

Since(dfp/dy)(y) =1, we lety | u, to find that

ut (4 0) = (4 p) folus) + Afoluy) =0,

Becauseu + o > 0, together with (7.3), this implies

.9
lim —g(y, +1)>1
ytuy 0y

and equality follows as in (a).[

REMARK 8. The formulas in Theorems 10 and 13 below can be used to check
that whenu — o < 0, the principle of smooth fit inot satisfied byg (-, —1) atu_.

The statements in Proposition 7 can be related to the sample path properties
of the processY;, £(¢)). Indeed, whenw — o > 0, t — Y, is nondecreasing, so
the processY;, £(z)) can enter the stopping regidm_, +oo[ x {—1} through the
boundary point(u_, —1): The principle of smooth fit is satisfied &t_, —1) in
this case. Whem — o < 0, thenr — Y; is decreasing on the evefit(r) = —1},
so the only way to enter the regidm_, +oo[ x{—1} is if ¥; > u_ and &(¢)
changes fromt+1 to —1: In this case(Y;, £(¢)) hasnotencountered the boundary
point (u_, —1) and the principle of smooth fit inot satisfied there. The same
considerations apply &t , +1): The only way for the procesd;, £(¢)) to enter
the stopping regiofu ., +oo[ x{+1} is through the boundary poitt ., +1), and
the principle of smooth fit holds at this point.

These observations parallel those in [19], page 304, which Shiryaev pointed
out to us shortly before the completion of this paper. A nice feature in the
proof of Proposition 7 is that the validitgf the principle of smooth fit at the
boundary points of the stopping region is a fairly direct consequence of the basic
relationships (6.2) and (6.3).
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8. Explicit computation of the value function. We distinguish four cases,
presented below as Theorems 10, 13, 14 and 16, according to the possible
relationships between the various parametersuLebe as in Proposition 3 and
let

Qip, wg, 2,0, Cx and C

be as defined in Proposition 5. Only the five numhers C+ andC remain to
be determined, since the other six numbers are given explicitly in Proposition 5.
We begin with the following relationships.

LEMMA 9. (a)The growth of the functiop — g(y, +1) asy — oo is linear.
(b) Suppose < u +o.Thenuy =+oo0 andC =0.

(c) Suppose > u+o.Thenb <1,C >0andu < oco.

(d) Supposer —o <0.ThenQ2y <0< Q_andC, =0.

(e) Supposgr —o >0.Then0 < Q_ < Qy andw; <0< w_.

PROOF (a) In the regionu_, +oo[ x{—1}, A% < 0 by (6.2) or, equivalently,

—p(y—a)+y(u—o0)+1rg(y,+1) —A(y —a) <0.
This inequality can be written

Atpto—nu At p

Thereforeg(y, +1) grows at most linearly whep — +oc.
(b) Setf(z,y,s)=e""" fo(y) (no dependence ar). Observe that for large,

ALy, +1) =e " (=pfo(y) + (n+0)y)
=e "((—p+p+o)y+ap)
> 0,

because we have assumed thak pu + o. Assume thatu, < oco. Then for
y>uy >u_, f(t,y,£1) = §(r, v, £1), so Af(t,y, +1) = AZ(t, y,+1) <0
by (6.2). This contradiction shows that = +oc.

On the other hand? > 1 by Remark 6(b). Therefore, (6.10) and (a) imply that
C=0.

(c) Note that in this cas&; = 0 is not possible, becauge> u + o implies
thatb in (6.9) satisfie$ < 1, so it is not possible to have —ar(h+p) 1> y—a
forall y > 0. ThereforeC > 0. Becaus& > 1 by Remark 6(b), we conclude from
part (a) and (6.10) that, < co.

(d) Recall that2, are the roots of the polynomigh(-) in (6.13). When
uw — o < 0, the product of the roots is negative asd, < Q_ by (6.5),
so Q4+ <0< Q_. From the fact thatg(-,s) is continuous andg(0,s) = 0O,
(6.7) and (6.8) imply tha€; = 0.
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(e) Becauseu — o > 0, the sum and product of the roots @f(-) in
(6.13) are positive, and2_ < Q4 by (6.5), so O< Q_ < Q4. From (6.6),
this immediately implies thato, — w_ < 0. To get the more precise result
in the statement of the lemma, use (6.6) to check that< 0 < w_ is
equivalent toQ2_ < (A + p)/(n + o) < 24, and this follows from the fact that
p((A+p)/(n+0))=—212(<0), as is easily checked

THEOREM 10. Under Assumptiod, assume that

p<pu+oc and pu—o <O.

Thenthe value functiog(-, 1) (see sketchin Figurg), expressed by the formulas
in Proposition5, is characterized by’ = C =0, u4 = +o00 and

U_—a |:1—()\/()»+,0))60—1|
—_— u_=a .

w_u?_’ 1_ba)_

(8.1) C_=

PrROOF By Lemma 9(b)uy = 400 andC = 0. By Lemma 9(d),C; = 0.
The two remaining unknowns, namely andu _, are determined by matching the
value ofg(u_, —1), as expressedin (6.7), with. —a and matching (u_, +1), as
expressedin (6.8), with(u_, +1) as expressed in (6.10). This yields, respectively,
the relationships

and
A
(8.2) C_u =bu_—a :
htp

Solving the above set of equations 6. andu_ gives the expressions in the
statement of the theorem[]

REMARK 11. The numbewy can be written

2
(8.3) wiz—L[(k+p)i/o\+p)2+/\2<“—2—1)}
AMp —o) o

and this clearly implies thav_ > 0, becaus@. — o < 0. Therefore, (8.1) implies
u_>aandC_ > 0, as expected.

REMARK 12 (The white noise limit). Fixg > 0 and seb = oo/, SO that
the processY;) satisfies

(8.4) dY; =Y (ndt + oovVAE() dt), Yo=y.
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gy, +1)

7
Fic. 1. The functiong (-, 1) under the hypotheses of Theorét The box indicates the absence
of smooth fit

Observe that the covariance ¢f.&(r) andv/A&(t + h) is re=2", and we easily
check that the noise sourcgir£(r) converges to Gaussian white noise when
A — 4o00. In addition, the solution(Y;) of (8.4) converges weakly [24] to the
diffusion process that satisfies

(8.5) dZ: =Z;(udt +oodWy), Zo = yo,

where the stochastic differential equation (SDE) has to be interpreted in the
Stratonovich sense. When the stock price is governed by this diffusion equation,
the solution to the optimal stopping problem is well known. If we rewrite
the SDE (8.5) as the 1t SDE

dZ; = Z,((n 4 0&/2) dt + oo dW;),
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then we can use the formulas from [18], Example 10.16, to get the continuation
region[0, ] and the value functiog(y):

Q y1™0
Q-1 u—a, fory > u,
with
Qo — —1 A+ VP +2pof
= 5 ]
%0

The quantitiex21 (1) andw+()) related to (8.4) are obtained by replacign
(6.5) and (6.6) withsgv/2, which gives

O+ )i £ VAZU2 + Ao2(p% + 20p)
Qu(t) = P 0 5o P

uz—kag
+ o \/X
wr() =1+ f - “Toszim.

Therefore,

Iim Q_(1) = and lIim or(A) =1.
A—>+00

A— 400

Furthermorey _ in (8.1) can be written in the form

A+p—u—ooﬁ[ Q_(\) ]
A+ p Q_ () —11
which converges, as — 400, to u as given in (8.6). The general theory of

[15]and [17] predicts that lig, 400 g(v, £1) = g(y), but we can also easily check
this from (8.1) and the formulas of Proposition 5.

u_(A)=a

THEOREM 13. Assume that
p>u+o and u—o <0.

(Note that Assumptio’ is necessarily satisfied in this cas@hen the value
function g(-, 1) (see the sketch in Figurg), expressed by the formulas in
Proposition5, is characterized by

u_ —a

Q_
w_Uu_

(8.7) C.=0 and C_=

whereu _ is the smallest solution of the transcendent equation

Co_ o .
B l—ba)_u__a’

u_



THE RIGHT TIME TO SELL A STOCK 2193

9y, +1)

P

Fic. 2. Thefunctiong(-, £1) under the hypotheses of Theoré The boxresp arrow) indicates
the absencéresp presencgof smooth fit

b and 2 are given in(6.9),a denotes the expression on the second right-hand side
of (8.1),

(8.8) c=17b

= and u;=a
ng_l

p—p—o

PROOFE By Lemma 9(d),C+ = 0. By Lemma 9(c)u+ < oco. The continuity
of g(-, —1) atu_ and ofg(-, +1) atu_ andu give, respectively,

(8.9) C.o_u’" =u_—a,

A
(8.10) C_u"=bu_—a — + Cu
and

A
8.11 buy —a
(8.11) AT
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By Proposition 7(b), there is a smooth fitgf-, +1) atu... Accordingly,
(8.12) b+CQut=1.

The last equation furnishes the formula 16y which, when plugged into (8.11),
gives after some simplification the formula for .

From (8.9), we obtain directly the expression tor given in (8.7). Plugging
the formulas forC_ andC into (8.10) yields

Co_ o
1-bw_

(8.13) Y(u_)=a>a, whereV (1) =u — ,
with a as in the statement of the theorem.
We check that the equatiafi(z) = a has, in fact, two solutions and that is
the smaller of the two. Observe that
Co_ Q-1 o 5
—_——U .
1—bw_

From Remark 6(b)2 > 1, andu, > 0 by (8.8) and the hypothesjis> u + o.
Sinceb < 1 by Lemma 9(c), we observe from (8.8) tlat- 0. By (8.3),w_ > 0.
Therefore, the numerator in (8.14) is positive. A direct calculation using the
formula forw_ in (6.6) shows that

(8.14) (1) =

uto
A

Becausep(1) > 0 by Remark 6(a) an; < 0 < Q_ by Lemma 9(d), it follows
that, in fact,2_ > 1 and, therefore, the denominator in (8.14) is positive.

The above shows thab”(«) < 0, soW is strictly concave. From (8.13) and
the fact that® > 1, it follows that ¥(0) = 0, W(u) < u for all ¥ > 0 and
lim,_ 100 V(1) = —o0. This implies that the equatiow () = a has zero, one
or two solutions. Sinca_ is a solution, one of the last two occurs. No solution
can be less tham, sincea > a.

To check that there are exactly two solutions of the equatiay) = a and that
u_ is the smaller of the two, we observe from (8.13) that

1-bow_ =

b(Q_ —1).

8.15 Wuy) =uy — —Cu.
( ) (M+) uy l—ba)_ CM+
By (8.11),
P
Cuﬁ:(l—b)u+—ak+p.

ReplaceCuf in (8.15) by the right-hand side above, to find, after simplification,
that

V(uy) =

<u+(1 —w_)+w_a

1 )
1-bw_ rA+p)
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Therefore, W («4) > a, since this inequality is now equivalent#o (1 — w_) >
a(l — w_), which holds sincei; > a by (8.8), andw_ < 1 as we now show.
Indeed, by (6.6)w_ < 1 is equivalenttp — (u + 0)2_ < 0, which, by (6.5), is
in turn equivalent to

(WO~ p) — V22 + 02(p% + 20p) ).

p <
n—o

Multiply both sides byu — o, changing the direction of the inequality since
u — o < 0, isolate the square root, then square both sides and simplify to see
that this inequality reduces te? > u2, which is satisfied by hypothesis.

The inequality¥ (u+) > a and the properties of mentioned above imply that
one of the solutions of the equatiol(u) = a is larger thanu, and the other,
which is smaller tham . is thereforex_. [

THEOREM 14. Under AssumptioA assume that
p<u+oc and pu—o >0.

Then the value functiog(-, +1) (see the sketch in Figurg), expressed by the
formulas in Propositiorb, is characterized by =0, u4 = +o0,

—u-(2-—-1) —aQ_ o u_(y—1)—aQy

8.16) C,=u_ . C_=u_ ,
(8.16) €+ 0 (Q- — Q) 0_(Qp — Q)
N

8.17) u_=a—,
( ) u aD
where

AL
(8.18) New Q-0 Q — 2 q. _q)

Atp
and

Aw40_
(819) D=0~ —0_(Q-—1) — — " (@, - Q).
Adp—pn—o

PrROOF By Lemma 9(b)u, = +oo andC = 0. The continuity ofg(-, —1)
andg(-, +1) atu_ give, respectively,
(8.20) C_ow_u™ +C+a)+u?+ =u_—a,

A
A+p’

whereb is defined in (6.9), and smooth fit @f(-, —1) at u_, which occurs by
Proposition 7(a), gives the third equation

(8.22) C_w_Q_u?1

(8.21) C_u v+ =bu_—a

-1

+ C+6()+Q+M¥+ =1.
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g9(y, +1)
g9(y, —1)
4
— y
7

FiG. 3. The functionsg(-, £1) under the hypotheses of Theordm. The arrow indicates the
presence of smooth fit

Multiply (8.22) by u_, then use (8.20) and (8.22) to expréss andC. in terms
of u_, which yields the formulas in (8.16). Plug these into (8.21), which becomes
a linear equation im_ and gives (8.17)—(8.19).1

REMARK 15. We note tha_ defined in (8.17) is such that. > a. Indeed,
(8.17) can be written

; _wﬁ_ax+w+—w—+nﬂk+m
- D x+n/t+p—pn—o)

with
Xx=w1(Qr—1D—w_(R2_—-1 and n= I rwiw_(2_ — Q).
We first check thaD < 0. This is equivalent to verifying
x<-n/(A+p—pn—o).
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In the definition ofy, of n and, on the right-hand side, substitute from (6.6) to
see that this is equivalent to
Atp—(+0)Q2 ) Qs —D—(A+p—(n+0)Q_)(Q2_—-1)
Vw_wp (Qy — Q)
< .
Adp—pn—o
With a few algebraic manipulation® — ©2_, which is positive by Lemma 9(e),
can be factored out on the right-hand side, leading to

Vo_w,
A+p—p—o
Now plug into the right-hand side formulas (6.6) ter and simplify to get
—1+ Q+ + Q_ < Q_Q+.

A p+uto—(u+o) Qs +Q) <

Use the fact thaf2. are the roots op(-) in (6.13) to see that this is equivalent to
p—u+k>vf+o%

which holds by Assumption A. Henc®, < 0 is established.

We now check thalV < 0. By Lemma 9(e)ws — w_ < 0. Therefore, the facts
thatD <0and(A +p — u — o)1 > (A + p)~ L immediately implyN < 0.

It follows that the inequality:— > a is equivalent taV < D, which becomes

o —o_<gl+p—p—0)"t=G+p"
(notice that the factor in brackets:s0) and, using (6.6),

u+o
A

SinceQ_ — Q4 <0 andwiw_ < 0 by Lemma 9(e), this inequality does indeed
hold, sou_ > a as claimed.

(Q- — Q1) S horo_ (- — Q[ +p—pn—0) =0+ p) 71l

THEOREM 16. Assume that
p>pu+o and pu—o>0.

(Note that Assumptio’ is necessarily satisfied in this cas@hen the value
function g(-, £1) (see the sketch in Figurd), expressed by the formulas in
Proposition5, is characterized by

_Q+M_(Q_ —1)—09_ C _M_Qiu_(52+—l)—a9+
- 0 (Q-—Qy) T w_ (R4 —Q-)
1-b P

C=——+—, Uy =a——,
Quit p—pm—o

C+:M

(8.23)
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o

FIG. 4. The functionsg(-, £1) under the hypotheses of Theord. The arrows indicate the
presence of smooth fit

whereb and2 are given in(6.9)andu _ is the smallest solution of the transcendent
equation

N
24 du)=a—
(8.24) ) =a—.
with N and D defined in(8.18)and (8.19),and ® () is defined by
(8.25) D (u) et Cw+w_(§2+ — Q_)uQ.

D

PROOF By Lemma 9(c)u+ < oco. The continuity ofg(-, —1) and g(-, +1)
atu_ give, respectively,
(8.26) C_o_u™ + C+w+u?+ =u_—a,

+ Cuf,

Q_ Q A
8.27 C_u"+Cyiut=bu_—a
(8.27) + PR
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continuity ofg(-, +1) atu, gives

(8.28) buy —a +Cu$=u+—a

A
A+p
and Proposition 7 implies two additial equations: one for the smooth fit
of g(-,—1) atu_,

(8.29) C_o_Q u* 4 Cho Qu™ =1,
and one for the smooth fit gf(-, +1) atu,
(8.30) b+CQuit=1

Observe that equations (8.26) and (8.29) are, respectively, identical to (8.20)
and (8.22), which give the formulas far, and C_ as in (8.16). Equations
(8.28) and (8.30) are, respectively, identical to (8.11) and (8.12), and this gives
the formulas forC andu as in (8.8). Plug the formulas farL andC into (8.27)
to see that:_ solves the equation

) = a>
u)=a—,
D

whereN andD are as in (8.18) and (8.19), addu) is as in (8.25).

We show that (8.24) has two solutions, the smaller of whigh.isSinceb < 1
by Lemma 9(c), we observe from (8.23) th@t> 0. Since2; — Q_ > 0 and
w+w— <0 by Lemma 9(e)D < 0 as was observed in Remark 15 &ad- 1 by
Remark 6(b), we see thdt(0) =0, lim,_ 1 oo ®(u) = —oc and®” (u) < O for all
u > 0, so®(-) is strictly concave. Therefore, (8.24) has zero, one or two solutions.
Sinceu_ is a solution, one of the last two cases occurs.

To show that the equatioh(#) = a N/ D has exactly two solutions, we proceed
as in the last part of the proof of Theorem 13: We show thé&i,) > aN/D,
which completes the proof.

From (8.25),
_(Qy —Q_
(8.31) Puy)=us — 01+ D+ )Cu_gz.
By (8.28),
Q
Cul = (1—b)u+—ak+p.
ReplaceCu_‘E in (8.31) by the right-hand side above to see that
u a ol
duy) = %(D —wio_(2y —Q)(A—b) + SO0 (24 = Q_)m.

Therefore, the inequalityd(uy) > aN/D is equivalent, after using (8.18)
and (8.19) and simplifying, to

(8.32) (uy —a)(w+Q4 —w_Q_ —wr0_ (24 — Q) + (- —wy)us <0.
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Use (6.6) to see that
QL —Q_
03 Qp —w_Q_=A+p— (u+0)( Qs+ Q—))f
and

uto

w_ —wy = (4 —Qo),

S0 (8.32) is equivalent to
(s —a)(h+p — (U +0)( Q4 + Q) — Aorw_) + (1 +0)ug <0.

Plug in the formula for . in (8.23) and use the fact th&t, are the roots op(w)
in (6.13) to see that this becomes

21 (A
©33)  Guro(rep- LD

Using (6.6) and (6.5), we check that

- kw+w_) +(u+o)p <0.

m+o
wiw_ = — y
n—0o

s0 (8.33) is equivalent to

A+p)(n—0)=2ut+p)+A(p+0)+p(u—0) <0,

which reduces to—2po < 0. This proves that®(u,) > aN/D, and the
properties of® mentioned above imply that one of the solutions of the equation
®(wm)=aN/D is larger thanu and the other, which is smaller than,, is
thereforeu_. [
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