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Test Martingales, Bayes Factors
and p-Values

Glenn Shafer, Alexander Shen, Nikolai Vereshchagin and Vladimir Vovk

Abstract. A nonnegative martingale with initial value equal to one measures
evidence against a probabilistic hypothesis. The inverse of its value at some
stopping time can be interpreted as a Bayes factor. If we exaggerate the ev-
idence by considering the largest value attained so far by such a martingale,
the exaggeration will be limited, and there are systematic ways to eliminate
it. The inverse of the exaggerated value at some stopping time can be in-
terpreted as a p-value. We give a simple characterization of all increasing

functions that eliminate the exaggeration.
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1. INTRODUCTION

Nonnegative martingales with initial value 1, Bayes
factors and p-values can all be regarded as measures of
evidence against a probabilistic hypothesis (i.e., a sim-
ple statistical hypothesis). In this article we review
the well-known relationship between Bayes factors and
nonnegative martingales and the less well-known rela-
tionship between p-values and the suprema of nonneg-
ative martingales. Figure 1 provides a visual frame for
the relationships we discuss.

Consider a random process (X;) that initially has
the value one and is a nonnegative martingale under
a probabilistic hypothesis P (the time ¢ may be dis-
crete or continuous). We call such a martingale a test
martingale. One statistical interpretation of the values
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of a test martingale is that they measure the changing
evidence against P. The value X; is the number of dol-
lars a gambler has at time ¢ if he begins with $1 and
follows a certain strategy for betting at the rates given
by P; the nonnegativity of the martingale means that
this strategy never risks a cumulative loss exceeding
the $1 with which it began. If X, is very large, the
gambler has made a lot of money betting against P,
and this makes P look doubtful. But then X, for some
later time u may be lower and make P look better.

The notion of a test martingale (X;) is related to the
notion of a Bayes factor, which is more familiar to sta-
tisticians. A Bayes factor measures the degree to which
a fixed body of evidence supports P relative to a par-
ticular alternative hypothesis Q; a very small value can
be interpreted as discrediting P. If (X;) is a test martin-
gale, then for any fixed time ¢, 1/ X; is a Bayes factor.
We can also say, more generally, that the value 1/X;
for any stopping time t is a Bayes factor. This is repre-
sented by the downward arrow on the left in Figure 1.

Suppose we exaggerate the evidence against P by
considering not the current value X, but the greatest
value so far:

X7 = sup X;.
S<t

A high X} is not as impressive as a high X;, but how
should we understand the difference? Here are two
complementary answers:

ANSWER 1 (Downward arrow on the right in Fig-
ure 1). Although (X7) is usually not a martingale,
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FIG. 1. The relationship between a Bayes factor and a p-value can be thought of as a snapshot of the dynamic relationship between a
nonnegative martingale (X;) with initial value 1 and the process (X}) that tracks its supremum. The snapshot could be taken at any time,
but in our theorems we consider the final values of the martingale and its supremum process.

the final value X} := sup, X, still has a property as-
sociated with hypothesis testing: for every § € [0, 1],
1/ X%, has probability no more than § of being § or
less. For any ¢, X, because it is less than or equal to
X}, has the same property. In this sense, 1/ X7 and
1/ X} are p-values (perhaps conservative).

ANSWER 2 (Leftward arrow at the top of Figure 1).
As we will show, there are systematic ways of shrink-
ing X/ (calibrating it, as we shall say) to eliminate the
exaggeration. There exist, that is to say, functions f
such that lim,_, f(x) =00 and f(X}) is an unex-
aggerated measure of evidence against P, in as much
as there exists a test martingale (Y;) always satisfying
Y, > f(X]) forall z.

Answer 2 will appeal most to readers familiar with
the algorithmic theory of randomness, where the idea
of treating a martingale as a dynamic measure of evi-
dence is well established (see, e.g., [25], Section 4.5.7).
Answer 1 may be more interesting to readers familiar
with mathematical statistics, where the static notions
of a Bayes factor and a p-value are often compared.

For the sake of conceptual completeness, we note
that Answer 1 has a converse. For any random variable
p that has probability & of being § or less for every
8 €10, 1], there exists a test martingale (X;) such that
p =1/ X} . This converse is represented by the upward
arrow on the right of our figure. It may be of limited
practical interest, because the time scale for (X;) may
be artificial.

Parallel to the fact that we can shrink the running
supremum of a test martingale to obtain an unexagger-
ated test martingale is the fact that we can inflate a p-
value to obtain an unexaggerated Bayes factor. This is
the leftward arrow at the bottom of Figure 1. It was
previously discussed in [41] and [35].

These relationships are probably all known in one
form or another to many people. But they have received
less attention than they deserve, probably because the
full picture emerges only when we bring together ideas
from algorithmic randomness and mathematical statis-
tics. Readers who are not familiar with both fields may
find the historical discussion in Section 2 helpful.

Although our theorems are not deep, we state and
prove them using the full formalism of modern proba-
bility theory. Readers more comfortable with the con-
ventions and notation of mathematical statistics may
want to turn first to Section 8, in which we apply these
results to testing whether a coin is fair.

The theorems depicted in Figure 1 are proven in Sec-
tions 3—7. Section 3 is devoted to mathematical prelim-
inaries; in particular, it introduces the concept of a test
martingale and the wider and, in general, more con-
servative concept of a test supermartingale. Section 4
reviews the relationship between test supermartingales
and Bayes factors, while Section 5 explains the rela-
tionship between the suprema of test supermartingales
and p-values. Section 6 explains how p-values can
be inflated so that they are not exaggerated relative to
Bayes factors, and Section 7 explains how the maximal
value attained so far by a test supermartingale can be
similarly shrunk so that it is not exaggerated relative to
the current value of a test supermartingale.

There are two appendices. Appendix A explains why
test supermartingales are more efficient tools than test
martingales in the case of continuous time. Appendix B
carries out some calculations that are used in Section 8.

2. SOME HISTORY

Jean Ville introduced martingales into probability
theory in his 1939 thesis [39]. Ville considered only
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test martingales and emphasized their betting interpre-
tation. As we have explained, a test martingale under P
is the capital process for a betting strategy that starts
with a unit capital and bets at rates given by P, risking
only the capital with which it begins. Such a strategy is
an obvious way to test P: you refute the quality of P’s
probabilities by making money against them.

As Ville pointed out, the event that a test martin-
gale tends to infinity has probability zero, and for every
event of probability zero, there is a test martingale that
tends to infinity if the event happens. Thus, the clas-
sical idea that a probabilistic theory predicts events to
which it gives probability equal (or nearly equal) to one
can be expressed by saying that it predicts that test mar-
tingales will not become infinite (or very large). Ville’s
idea was popularized after World War Il by Per Martin-
Lof [27, 28] and subsequently developed by Claus-
Peter Schnorr in the 1970s [34] and A. P. Dawid in the
1980s [11]. For details about the role of martingales
in algorithmic randomness from von Mises to Schnorr,
see [8]. For historical perspective on the paradoxical
behavior of martingales when they are not required to
be nonnegative (or at least bounded below), see [9].

Ville’s idea of a martingale was taken up as a tech-
nical tool in probability mathematics by Joseph Doob
in the 1940s [26], and it subsequently became impor-
tant as a technical tool in mathematical statistics, espe-
cially in sequential analysis and time series [21] and in
survival analysis [1]. Mathematical statistics has been
slow, however, to take up the idea of a martingale as
a dynamic measure of evidence. Instead, statisticians
emphasize a static concept of hypothesis testing.

Most literature on statistical testing remains in the
static and all-or-nothing (reject or accept) framework
established by Jerzy Neyman and Egon Pearson in
1933 [31]. Neyman and Pearson emphasized that when
using an observation y to test P with respect to an al-
ternative hypothesis Q, it is optimal to reject P for
values of y for which the likelihood ratio P(y)/Q(y)
is smallest or, equivalently, for which the reciprocal
likelihood ratio Q(y)/P(y) is largest. [Here P(y) and
QO (y) represent either probabilities assigned to y by the
two hypotheses or, more generally, probability densi-
ties relative to a common reference measure.] If the
observation y is a vector, say, yi, ..., Y, where ¢ con-
tinues to grow, then the reciprocal likelihood ratio
Oty .-y Y1)/ P(y1,...,y) is a discrete-time martin-
gale under P, but mathematical statisticians did not
propose to interpret it directly. In the sequential analy-
sis invented by Abraham Wald and George A. Barnard
in the 1940s, the goal still is to define an all-or-nothing

Neyman—Pearson test satisfying certain optimality
conditions, although the reciprocal likelihood ratio
plays an important role [when testing P against Q,
this goal is attained by a rule that rejects P when
OWts---»y1)/P(V1,...,y:) becomes large enough
and accepts P when Q(y1,...,y:)/P(y1,...,yr) be-
comes small enough].

The increasing importance of Bayesian philosophy
and practice starting in the 1960s has made the likeli-
hood ratio P(y)/Q(y) even more important. This ratio
is now often called the Bayes factor for P against Q,
because by Bayes’s theorem, we obtain the ratio of
P’s posterior probability to Q’s posterior probability
by multiplying the ratio of their prior probabilities by
this factor [20].

The notion of a p-value developed informally in sta-
tistics. From Jacob Bernoulli onward, everyone who
applied probability theory to statistical data agreed
that one should fix a threshold (later called a signif-
icance level) for probabilities, below which a proba-
bility would be small enough to justify the rejection
of a hypothesis. But because different people might
fix this threshold differently, it was natural, in empir-
ical work, to report the smallest threshold for which
the hypothesis would still have been rejected, and
British statisticians (e.g., Karl Pearson in 1900 [32] and
R. A. Fisher in 1925 [16]) sometimes called this bor-
derline probability “the value of P.” Later, this became
“P-value” or “p-value” [3].

After the work of Neyman and Pearson, which em-
phasized the probabilities of error associated with
significance levels chosen in advance, mathematical
statisticians often criticized applied statisticians for
merely reporting p-values, as if a small p-value were
a measure of evidence, speaking for itself without
reference to a particular significance level. This dis-
dain for p-values has been adopted and amplified
by modern Bayesians, who have pointed to cases
where p-values diverge widely from Bayes factors and
hence are very misleading from a Bayesian point of
view [35, 43].

3. MATHEMATICAL PRELIMINARIES

In this section we define martingales, Bayes fac-
tors and p-values. All three notions have two versions:
a narrow version that requires an equality and a wider
version that relaxes this equality to an inequality and is
considered conservative because the goal represented
by the equality in the narrow version may be more
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than attained; the conservative versions are often tech-
nically more useful. The conservative version of a mar-
tingale is a supermartingale. As for Bayes factors and
p-values, their main definitions will be conservative,
but we will also define narrow versions.

Recall that a probability space is a triplet (2, F, P),
where 2 is a set, 7 is a o-algebra on 2 and P is
a probability measure on F. A random variable X is
a real-valued F-measurable function on 2; we allow
random variables to take values +00. We use the nota-
tion E(X) for the integral of X with respect to P and
E(X|G) for the conditional expectation of X given a -
algebra G C F; this notation is used only when X is
integrable [i.e., when E(X™) < oo and E(X ™) < oo;
in particular, P{X = oo} = P{X = —o0} =0]. A ran-
dom process is a family (X;) of random variables X;;
the index ¢ is interpreted as time. We are mainly in-
terested in discrete time (say, t =0, 1,2, ...), but our
results (Theorems 1-4) will also apply to continuous
time (say, ¢ € [0, 00)).

3.1 Martingales and Supermartingales

The time scale for a martingale or supermartingale
is formalized by a filtration. In some cases, it is con-
venient to specify this filtration when introducing the
martingale or supermartingale; in others, it is conve-
nient to specify the martingale or supermartingale and
derive an appropriate filtration from it. So there are two
standard definitions of martingales and supermartin-
gales in a probability space. We will use them both:

(1) (Xy, F:), where ¢ ranges over an ordered set
({0, 1, ...} or [0, 00) in this article), is a supermartin-
gale if (F;) is afiltration (i.e., an indexed set of sub-o -
algebras of F such that F; € F; whenever s < t), (X;)
is a random process adapted with respect to (F;) (i.e.,
each X; is F;-measurable), each X; is integrable, and

E(Xl|fv) =< Xs a.s.

when s < t. A supermartingale is a martingale if, for
allr and s < ¢,

) E(X;|Fs) =X as.

(2) A random process (X;) is a supermartingale
(resp. martingale) if (X, F;) is a supermartingale
(resp. martingale), where F; is the o -algebra generated
by X5, s <t.

For both definitions, the class of supermartingales con-
tains that of martingales.

In the case of continuous time we will always as-
sume that the paths of (X;) are right-continuous al-
most surely (they will then automatically have left lim-
its almost surely; see, e.g., [13], VI.3(2)). We will also
assume that the filtration (F;) in (X,, F;) satisfies the
usual conditions, namely, that each o -algebra F; con-
tains all subsets of all E € F satisfying P(E) =0
(in particular, the probability space is complete) and
that (F;) is right-continuous, in that, at each time ¢,
Fi = Fry = (\y=; Fs. If the original filtration (F;)
does not satisfy the usual conditions (this will often be
the case when F; is the o-algebra generated by Xj,
s <1), we can redefine F as the P-completion F¥ of
F and redefine F; as Fr, ==, Fr, where F} is the
o -algebra generated by F and the sets E € F¥ satisfy-
ing P(E) = 0; (X;, F;) will remain a (super)martingale
by [13], VL3(1).

We are particularly interested in test supermartin-
gales, defined as supermartingales that are nonnegative
(X; = 0 for all ) and satisfy E(Xg) < 1, and test mar-
tingales, defined as martingales that are nonnegative
and satisfy E(X() = 1. Earlier, we defined test mar-
tingales as those having initial value 1; this can be rec-
onciled with the new definition by setting X, :=1 for
t < 0. A well-known fact about test supermartingales,
first proven for discrete time and test martingales by
Ville, is that

2) P(X; >c}<l1/c

for every ¢ > 1 ([39], page 100; [13], VL.1). We will
call this the maximal inequality. This inequality shows
that X, can take the value oo only with probability
zero.

3.2 Bayes Factors

A nonnegative measurable function B: Q2 — [0, o]
is called a Bayes factor for P if [(1/B)dP < 1; we
will usually omit “for P.” A Bayes factor B is said to
be precise if [(1/B)dP =1.

In order to relate this definition to the notion of
Bayes factor discussed informally in Sections 1 and 2,
we note first that whenever Q is a probability mea-
sure on (2, F), the Radon—Nikodym derivative dQ/dP
will satisfy [(dQ/dP)dP < 1, with equality if Q is ab-
solutely continuous with respect to P. Therefore, B =
1/(dQ/dP) will be a Bayes factor for P. The Bayes
factor B will be precise if Q is absolutely continuous
with respect to P; in this case B will be a version of the
Radon-Nikodym derivative dP/dQ.

Conversely, whenever a nonnegative measurable
function B satisfies [(1/B)dP < I, we can construct
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a probability measure Q that has 1/B as its Radon—
Nikodym derivative with respect to P. We first con-
struct a measure Qq by setting Qo(A) := [,(1/B)dP
for all A € F, and then obtain Q by adding to Qo
a measure that puts the missing mass 1 — Qg (€2) (which
can be 0) on a set E (this can be empty or a single
point) to which P assigns probability zero. (If P assigns
positive probability to every element of €2, we can add
a new point to €2.) The function B will be a version
of the Radon—Nikodym derivative dP/dQ if we rede-
fine it by setting B(w) := 0 for w € E [remember that
P(E) =0].

3.3 p-Values

In order to relate p-values to supermartingales, we
introduce a new concept, that of a p-test. A p-test is
a measurable function p : 2 — [0, 1] such that

3) Plo| p(w) <8} <6
for all § € [0, 1]. We say that p is a precise p-test if
“4) Plo| p(w) <8} =46

forall § € [0, 1].

It is consistent with established usage to call the val-
ues of a p-test p-values, at least if the p-test is pre-
cise. One usually starts from a measurable function
T :Q — R (the test statistic) and sets p(w) := Pl{o’ |
T (') > T (w)}; it is clear that a function p defined in
this way, and any majorant of such a p, will satisfy (3).
If the distribution of T is continuous, p will also sat-
isfy (4). If not, we can treat the ties T (o) = T (w) more
carefully and set

p(w) :=P{o | T(&) > T (w)}
+ &P | T(0) =T (w)},

where & is chosen randomly from the uniform distribu-
tion on [0, 1]; in this way we will always obtain a func-
tion satisfying (4) (where P now refers to the overall
probability encompassing generation of §).

4. SUPERMARTINGALES AND BAYES FACTORS

When (X;, ;) is a test supermartingale, 1/X; is
a Bayes factor for any value of 7. It is also true that
1/ X o0, X being the supermartingale’s limiting value,
is a Bayes factor. Part 1 of the following theorem is
a precise statement of the latter assertion; the former
assertion follows from the fact that we can stop the su-
permartingale at any time ¢.

Part 2 of Theorem 1 states that we can construct a test
martingale whose limiting value is reciprocal to a given

precise Bayes factor. We include this result for mathe-
matical completeness rather than because of its practi-
cal importance; the construction involves arbitrarily in-
troducing a filtration, which need not correspond to any
time scale with practical meaning. In its statement, we
use Foo to denote the o -algebra generated by |, F;.

THEOREM 1. (1) If (X;, F;) is a test supermartin-
gale, then X oo := lim;_ 5 X; exists almost surely and
1/ X is a Bayes factor.

(2) Suppose B is a precise Bayes factor. Then there
is a test martingale (X;) such that B =1/ X a.s.
Moreover, for any filtration (F;) such that B is Foo-
measurable, there is a test martingale (X;, F;) such
that B =1/ X« almost surely.

PrROOF. If (X;, F;) is a test supermartingale, the
limit X, exists almost surely by Doob’s convergence
theorem ([13], VL.6), and the inequality [ X, dP <1
holds by Fatou’s lemma:

onodP:/limian,dPsliminf/X,de 1.
—>00 11—

Now suppose that B is a precise Bayes factor and
(F3) is a filtration (not necessarily satisfying the usual
conditions) such that B is Fs.-measurable; for con-
creteness, we consider the case of continuous time.
Define a test martingale (Xt,]-'tljr) by setting X; :=
E(1/B |}",I:L); versions of conditional expectations can
be chosen in such a way that (X;) is right-continuous:
cf. [13], VI.4. Then X, = 1/B almost surely by
Lévy’s zero—one law ([24], pages 128-130; [30], VL6,
corollary). It remains to notice that (X;, F;) will also
be a test martingale. If (F;) such that B is Feo-
measurable is not given in advance, we can define it
by, for example,

{@,Q},

= { o (B),
where o (B) is the o -algebra generated by B. [

ift <1,
otherwise,

Formally, a stopping time with respect to a filtra-
tion (F;) is a nonnegative random variable 7 taking
values in [0, oo] such that, at each time ¢, the event
{w | T(w) <t} belongs to F;. Let (X;, F;) be a test
supermartingale. Doob’s convergence theorem, which
was used in the proof of Theorem 1, implies that we
can define its value X; at t by the formula X, (w) :=
X+:(w)(w) even when T = oo with positive probability.
The stopped process (X;,F;) := (Xinc, Ft), where
a A b := min(a, b), will also be a test supermartin-
gale ([13], VLI.12). Since X is the final value of the
stopped process, it follows from part 1 of Theorem 1
that 1/ X is a Bayes factor. (This also follows directly
from Doob’s stopping theorem, [30], VI.13.)



MARTINGALES AND P-VALUES 89

5. SUPERMARTINGALES AND p-VALUES

Now we will prove that the inverse of a supremum
of a test supermartingale is a p-test. This is true when
the supremum is taken over [0, ¢] for some time point ¢
or over [0, 7] for any stopping time 7, but the strongest
way of making the point is to consider the supremum
over all time points (i.e., for T := 00).

We will also show how to construct a test martingale
that has the inverse of a given p-test as its supremum.
Because the time scale for this martingale is artificial,
the value of the construction is more mathematical than
directly practical; it will help us prove Theorem 4 in
Section 7. But it may be worthwhile to give an intuitive
explanation of the construction. This is easiest when
the p-test has discrete levels, because then we merely
construct a sequence of bets. Consider a p-test p thatis
equal to 1 with probability 1/2, to 1/2 with probability
1/4, to 1/4 with probability 1/8, etc.:

P(p=2"}=2"""

forn=0,1,.... To see that a function on €2 that takes
these values with these probabilities is a p-test, notice
that when 27" <§ < 2"+l

P{p<8}=P{p<27"}=27"<54.

Suppose that we learn first whether p is 1. Then, if
it is not 1, we learn whether it is 1/2. Then, if it is not
1/2, whether it is 1/4, etc. To create the test martingale
Xo, X1, ..., we start with capital Xo =1 and bet it all
against p being 1. If we lose, X1 = 0 and we stop. If
we win, X1 = 2, and we bet it all against p being 1/2,
etc. Each time we have even chances of doubling our
money or losing it all. If p = 27", then our last bet will
be against p = 27", and the amount we will lose, 2",
will be X% . So 1/ X% = p, as desired.
Here is our formal result:

THEOREM 2. (1) If (X;, F;) is a test supermartin-
gale, 1/ X}, is a p-test.

(2) If p is a precise p-test, there is a test martingale
(X;) such that p =1/ X}%,.

PROOF. The inequality P{1/X?% <&} <4 for test
supermartingales follows from the maximal inequal-
ity (2).

In the opposite direction, let p be a precise p-test.
Set I1 := 1/p; this function takes values in [1, oo].
Define a right-continuous random process (X;), t €
[0, 00), by

1, ifrel0,1),
Xi(w) =11t ifrell, [I(w)),
0, otherwise.

Since X7}, = II, it suffices to check that (X;) is a test
martingale. The time interval where this process is non-
trivial is ¢ > 1; notice that X| = 1 with probability one.
Let? > 1; we then have X; = tIj1~}. Since X, takes
values in the two-element set {0, ¢}, it is integrable. The
o-algebra generated by X; consists of 4 elements (&,
Q, the set TT~1((z, 00]), and its complement), and the
o-algebra F; generated by X;, s < ¢, consists of the
sets [T~ (E) where E is either a Borel subset of [1, ]
or the union of (¢, oo] and a Borel subset of [1, ¢]. To
check (1), where 1 < s < ¢, it suffices to show that

/ X, dp=/ X, dP,
-1(E) -1(E)

that is,

) / Z‘H{n>;} dPI/ S]I{n>s}dP,
n-1(E) n-(E)

where FE is either a Borel subset of [1, s] or the union
of (s, o0] and a Borel subset of [1, s]. If E is a Borel
subset of [1, s], the equality (5) holds, as its two sides
are zero. If E is the union of (s, co] and a Borel subset
of [1, 5], (5) can be rewritten as

/ Z‘]I{[‘[>t}dP=/ S]I{l'l>s}dP’
-1 ((s,00]) -1 ((s,00])

that is, fP{IT > 1} = sP{I1 > s}, thatis, | = 1. [J

6. CALIBRATING p-VALUES

An increasing (not necessarily strictly increasing)
function f:[0, 1] — [0, oo] is called a calibrator if
f(p) is a Bayes factor for any p-test p. This notion
was discussed in [41] and, less explicitly, in [35]. In
this section we will characterize the set of all increas-
ing functions that are calibrators; this result is a slightly
more precise version of Theorem 7 in [41].

We say that a calibrator f dominates a calibrator g
if f(x) <g(x) forall x € [0, 1]. We say that f strictly
dominates g if f dominates g and f(x) < g(x) for
some x € [0, 1]. A calibrator is admissible if it is not
strictly dominated by any other calibrator.

THEOREM 3. (1) An increasing function f:[0,
1] = [0, oo] is a calibrator if and only if
I dx
(6) <1
0o f(x)

(2) Any calibrator is dominated by an admissible
calibrator.

(3) A calibrator is admissible if and only if it is left-
continuous and

()

1 dx

o fx)

1.
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PROOF. Part 1 is proven in [41] (Theorem 7), but
we will give another argument, perhaps more intu-
itive. The condition “only if” is obvious: every cali-
brator must satisfy (6) in order to transform the “ex-
emplary” p-test p(w) = w on the probability space
([0, 1], F, P), where F is the Borel o -algebra on [0, 1]
and P is the uniform probability measure on F, into
a Bayes factor. To check “if,” suppose (6) holds and
take any p-test p. The expectation E(1/f(p)) depends
on p only via the values P{p < ¢}, ¢ € [0, 1], and this
dependence is monotonic: if a p-test p; is stochasti-
cally smaller than another p-test p; in the sense that
P{p1 <c} = P{py < c} for all ¢, then E(1/f(p1)) >
E(1/f(p2)). This can be seen, for example, from the
well-known formula E(§) = fOOO P{¢ > c}dc, where &
is a nonnegative random variable:

E(1/f () = [ TP f(p1) > ) de

> /0 TP/ f(p2) > ¢ de = E(1/7 (p2).

The condition (6) means that the inequality E(1/
f(p)) <1 holds for our exemplary p-test p; since p
is stochastically smaller than any other p-test, this in-
equality holds for any p-test.

Part 3 follows from part 1, and part 2 follows from
parts 1 and 3. [J

Equation (7) gives a recipe for producing admissi-
ble calibrators f: take any left-continuous decreasing
function g:[0, 1] — [0, oo] such that fol gx)dx =1
and set f(x):=1/g(x), x € [0, 1]. We see in this way,
for example, that

(8) fx)=x"%/a

is an admissible calibrator for every « € (0, 1); if we
are primarily interested in the behavior of f(x) as
x — 0, we should take a small value of «. This class of
calibrators was found independently in [41] and [35].

The calibrators (8) shrink to O significantly slower
than x as x — 0. But there are evidently calibra-
tors that shrink as fast as x 1n1+°‘(1/x), or xIn(1/x) -
In'*e In(1/x), etc., where « is a positive constant. For
example,

a (14 a) % In't¥(1/x)
ifx <e 17

oo, otherwise,

® f)=

is an admissible calibrator for any o > 0.

7. CALIBRATING THE RUNNING SUPREMA OF
TEST SUPERMARTINGALES

Let us call an increasing function f:[1,00) —
[0, c0) a martingale calibrator if it satisfies the fol-
lowing property:

For any probability space (€2, F, P) and any
test supermartingale (X;, ;) in this proba-
bility space there exists a test supermartin-
gale (Y;, F;) such that ¥; > f(X7) for all ¢
almost surely.

There are at least 32 equivalent definitions of a mar-
tingale calibrator: we can independently replace each
of the two entries of “supermartingale” in the defin-
ition by “martingale,” we can independently replace
(X, Fr) by (X;) and (Y, F;) by (Y;), and we can
optionally allow 7 to take value oco. The equivalence
will be demonstrated in the proof of Theorem 4. Our
convention is that f(00) :=limy_, oo f (x) (but remem-
ber that X = oo only with probability zero, even for
= 00).

As in the case of calibrators, we say that a martingale
calibrator f is admissible if there is no other martingale
calibrator g such that g(x) > f(x) forall x € [1, 00) (g
dominates f) and g(x) > f(x) for some x € [1, 00).

THEOREM 4. (1) An increasing function f:[1,
o) — [0, 00) is a martingale calibrator if and only

if
1

(10) / f(1/x)dx < 1.
0

(2) Any martingale calibrator is dominated by an ad-
missible martingale calibrator.

(3) A martingale calibrator is admissible if and only
if it is right-continuous and

1
(11) /0 f(1/x)dx =1.

PROOF. We start from the statement “if”” of part 1.
Suppose an increasing function f:[1, 0c0) — [0, c0)
satisfies (10) and (X;, F;) is a test supermartingale.
By Theorem 3, g(x) :=1/f(1/x), x € [0, 1], is a cal-
ibrator, and by Theorem 2, 1/X7%_ is a p-test. There-
fore, g(1/X%) = 1/f(X},) is a Bayes factor, that is,
E(f(X%)) < 1. Similarly to the proof of Theorem 1,
we set ¥; := E(f(X},)|F;), obtaining a nonnegative
martingale (Y;, F;) satisfying Yoo = f(X%)) a.s. We
have E(Yy) < 1; the case E(Yy) = O is trivial, and so
we assume E(Yy) > 0. Since

Y =E(f (X7 =2 E(f (X)IF) = f(X])  as.
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(the case t = oo was considered separately) and we can
make (Y;, F;) a test martingale by dividing each Y; by
E(Yp) € (0, 1], the statement “if”” in part 1 of the theo-
rem is proven. Notice that our argument shows that f
is a martingale calibrator in any of the 32 senses; this
uses the fact that (Y;) is a test (super)martingale when-
ever (Y;, Fy) is a test (super)martingale.

Let us now check that any martingale calibrator (in
any of the senses) satisfies (10). By any of our defini-
tions of a martingale calibrator, we have [ f(X;)dP <
1 for all test martingales (X;) and all # < oo. It is easy
to see that in Theorem 2, part 2, we can replace X7,
with, say, X7 /20 by replacing the test martingale (X;)
whose existence it asserts with

X { Xtans, ift <m/2,
"7 | X0,  otherwise.

Applying this modification of Theorem 2, part 2, to the
precise p-test p(w) := w on [0, 1] equipped with the
uniform probability measure, we obtain

1
1= [ roGmdb= [ fa/pdp= [ fajodr.

This completes the proof of part 1.
Part 3 is now obvious, and part 2 follows from parts 1
and 3. O

As in the case of calibrators, we have a recipe for
producing admissible martingale calibrators f pro-
vided by (11): take any left-continuous decreasing
function g:[0, 1] — [0, co) satisfying fol gx)dx =1
and set f(y) :=g(/y), y € [1,00). In this way we
obtain the class of admissible martingale calibrators

(12) f)=ay'™ ae(,1),
analogous to (8) and the class
Y : 14+a
1 ——  ify>
)= el +e) Inltey’ By=e"" a>0,
0, otherwise,

analogous to (9).

In the case of discrete time, Theorem 4 has been
greatly generalized by Dawid et al. ([12], Theorem 1).
The generalization, which required new proof tech-
niques, makes it possible to apply the result in new
fields, such as mathematical finance ([12], Section 4).

In this article we have considered only tests of sim-
ple statistical hypotheses. We can use similar ideas for
testing composite hypotheses, that is, sets of proba-
bility measures. One possibility is to measure the ev-
idence against the composite hypothesis by the cur-
rent value of a random process that is a test su-
permartingale under all probability measures in the

composite hypothesis; we will call such processes
simultaneous test supermartingales. For example, there
are nontrivial processes that are test supermartingales
under all exchangeable probability measures simulta-
neously ([42], Section 7.1). Will martingale calibrators
achieve their goal for simultaneous test supermartin-
gales? The method of proof of Theorem 4 does not
work in this situation: in general, it will produce a dif-
ferent test supermartingale for each probability mea-
sure. The advantage of the method used in [12] is that
it will produce one process, thus demonstrating that
for each martingale calibrator f and each simultane-
ous test supermartingale X, there exists a simultane-
ous test supermartingale Y; such that Y; > f(X}) for
all ¢ (the method of [12] works pathwise and makes the
qualification “almost surely” superfluous).

8. EXAMPLES

Although our results are very general, we can illus-
trate them using the simple problem of testing whether
a coin is fair. Formally, suppose we observe a se-
quence of independent identically distributed binary
random variables xi,x»,..., each taking values in
the set {0, 1}; the probability 6 € [0, 1] of x; =1 is
unknown. Let Py be the probability distribution of
X1,X2,...; it is a probability measure on {0, 1}°°. In
most of this section, our null hypothesis is that § =
1/2.

We consider both Bayesian testing of 8 = 1/2, where
the output is a posterior distribution, and non-Bayesian
testing, where the output is a p-value. We call the ap-
proach that produces p-values the sampling-theory ap-
proach rather than the frequentist approach, because it
does not require us to interpret all probabilities as fre-
quencies; instead, we can merely interpret the p-values
using Cournot’s principle ([36], Section 2). We have
borrowed the term “sampling-theory” from D. R. Cox
and A. P. Dempster [10, 14], without necessarily using
it in exactly the same way as either of them do.

We consider two tests of § = 1/2, corresponding to
two different alternative hypotheses:

(1) First, we test 6 = 1/2 against 6 = 3/4. This is
unrealistic on its face; it is hard to imagine accept-
ing a model that contains only these two simple hy-
potheses. But some of what we learn from this test will
carry over to sensible and widely used tests of a simple
against a composite hypothesis.

(2) Second, we test & = 1/2 against the composite
hypothesis 6 # 1/2. In the spirit of Bayesian statis-
tics and following Laplace ([22]; see also [38], Sec-
tion 870, and [37]), we represent this composite hy-
pothesis by the uniform distribution on [0, 1], the range
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of possible values for 6. (In general, the composite hy-
potheses of this section will be composite only in the
sense of Bayesian statistics; from the point of view of
the sampling-theory approach, these are still simple hy-
potheses.)

For each test, we give an example of calibration of the
running supremum of the likelihood ratio. In the case
of the composite alternative hypothesis, we also dis-
cuss the implications of using the inverse of the run-
ning supremum of the likelihood ratio as a p-value.

To round out the picture, we also discuss Bayesian
testing of the composite hypothesis 6 < 1/2 against the
composite hypothesis 6 > 1/2, representing the former
by the uniform distribution on [0, 1/2] and the latter by
the uniform distribution on (1/2, 1]. Then, to conclude,
we discuss the relevance of the calibration of running
suprema to Bayesian philosophy.

Because the idea of tracking the supremum of a mar-
tingale is related to the idea of waiting until it reaches
a high value, our discussion is related to a long-
standing debate about “sampling to reach a foregone
conclusion,” that is, continuing to sample in search of
evidence against a hypothesis and stopping only when
some conventional p-value finally dips below a con-
ventional level such as 5%. This debate goes back at
least to the work of Francis Anscombe in 1954 [4]. In
1961, Peter Armitage described situations where even
a Bayesian can sample to a foregone conclusion ([6];
[7], Section 5.1.4). Yet in 1963 [15], Ward Edwards
and his co-authors insisted that this is not a problem:

“The likelihood principle emphasized in Bayesian sta-
tistics implies, among other things, that the rules gov-
erning when data collection stops are irrelevant to data
interpretation. It is entirely appropriate to collect data
until a point has been proven or disproven, or until the
data collector runs out of time, money, or patience.”
For further information on this debate, see [43]. We
will not attempt to analyze it thoroughly, but our ex-
amples may be considered a contribution to it.

8.1 Testing # = 1/2 Against a Simple Alternative

To test our null hypothesis & = 1/2 against the alter-
native hypothesis 6 = 3/4, we use the likelihood ratio

_ P3jalxr, .. xp)

Pijp(xy, ..., )
_ Grakaah 3k
N (1/2)t S
where k; is the number of 1s in xi,...,x; [and
Po(x1, ..., x;)1s the probability under Py that the first ¢
observations are xp, ..., x;; such informal notation was
already used in Section 2]. The sequence of successive

values of this likelihood ratio is a test martingale (X;).
According to (12), the function

(14) f():=0.1y%?

is a martingale calibrator. So there exists a test martin-
gale (¥;) such that

(15) Y, > max 0.1x%°.

n=l1,..., t

X;:
(13)

15

10
|
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-15
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FIG. 2. The red line is a realization over 10,000 trials of the likelihood ratio for testing 6 = 1/2 against 8 = 3/4. The horizontal axis
gives the number of observations so far. The vertical axis is logarithmic and is labeled by powers of 10. The likelihood ratio varies wildly, up
10 1015 and down to 10™15. Were the sequence continued indefinitely, it would be unbounded in both directions.
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Figure 2 shows an example in which the martin-
gale calibrator (14) preserves a reasonable amount of
the evidence against 6 = 1/2. To construct this figure,
we generated a sequence x1, ..., x10,000 of Os and 1s,
choosing each x; independently with the probability 0
for x;, = 1 always equal to In2/1n3 ~ 0.63. Then we
formed the lines in the figure as follows:

e The red line is traced by the sequence of numbers
X; = 3k /2" If our null hypothesis # = 1/2 were
true, these numbers would be a realization of a test
martingale, but this hypothesis is false (as is our al-
ternative hypothesis 6 = 3/4).

e The upper dotted line is the running supremum of
the X;:

3kn
X} = max
n=1,...,t 2"

= (best evidence so far against 0 = 1/2),.

e The lower dotted line, which we will call F;, shrinks
this best evidence using our martingale calibrator:
F,=0.1(X%9.

e The blue line, which we will call Y;, is a test mar-
tingale under the null hypothesis that satisfies (15):
Y, > F,.

According to the proof of Theorem 4, E(0.1(X f;o)o'9|
]—})/E(O.I(Xgo)o'g), where the expected values are
with respect to P2, is a test martingale that satisfies
(15). Because these expected values may be difficult
to compute, we have used in its stead in the role of Y;
a more easily computed test martingale that is shown
in [12] to satisfy (15).

Here are the final values of the processes shown in
Figure 2:

X10,000 = 2.2, X7o.000=73x 10",

F10,000=1.9 x 1013, Y10.000 =2.2 x 1013,

The test martingale Y; legitimately and correctly re-
jects the null hypothesis at time 10,000 on the basis
of X;’s high earlier values, even though the Bayes fac-
tor X 10,000 is not high. The Bayes factor Y10 0oo gives
overwhelming evidence against the null hypothesis,
even though it is more than two orders of magnitude
smaller than Xf, 90-

As the reader will have noticed, the test martingale
X;’s overwhelming values against § = 1/2 in Figure 2
are followed, around ¢ = 7,000, by overwhelming val-
ues (order of magnitude 10~!%) against 6 = 3/4. Had
we been testing 6 = 3/4 against 6 = 1/2, we would
have found that it can also be rejected very strongly

even after calibration. The fact that (X;) and (1/X;)
both have times when they are very large is not acci-
dental when we sample from Py;2/1,3. Under this mea-
sure, the conditional expected value of the increment
In X; —In X;_1, given the first + — 1 observations, is

2 3+<1 1nz>1 L,
n3 2 m3) "2

So In X; is a martingale under Pj,2/1n3. The condi-
tional variance of its increment is

In2/, 3\? In2 1\? 3

—(ln—) +(1——)(ln—) =In2In—.

In3\ 2 In3 2 2
By the law of the iterated logarithm,

. In X,
lim sup =1
t—oo +/2In2In(3/2)tInln¢

and

. . 1n X[
liminf =
t—o00 /2In2In(3/2)t InInt

almost surely. This means that as ¢ tends to oo, In X;
oscillates between approximately £0.75+/¢Inln¢; in
particular,

(16) limsupX;=o00 and IliminfX,=0
t—00 =00

almost surely. This guarantees that we will eventually
obtain overwhelming evidence against whichever of
the hypotheses & = 1/2 and 6 = 3/4 that we want to re-
ject. This may be called sampling to a foregone conclu-
sion, but the foregone conclusion will be correct, since
both § = 1/2 and 6 = 3/4 are wrong.

In order to obtain (16), we chose x1, ..., X19,000 from
a probability distribution, Pin2/1n3, that lies midway
between Pj,; and P34 in the sense that it tends to
produce sequences that are as atypical with respect
to the one measure as to the other. Had we chosen
a sequence Xxi,...,Xx10,000 less atypical with respect
to P34 than with respect to P; /2, then we might have
been able to sample to the foregone conclusion of re-
jecting 8 = 1/2, but not to the foregone conclusion of
rejecting 6 = 3/4.

8.2 Testing § = 1/2 Against a Composite
Alternative

Retaining & = 1/2 as our null hypothesis, we now
take as our alternative hypothesis the probability distri-
bution Q obtained by averaging Py with respect to the
uniform distribution for 6.
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FI1G. 3. A realization over 10,000 trials of the likelihood ratio for testing 6 = 1/2 against the probability distribution Q obtained by
averaging Pg with respect to the uniform distribution for 6. The vertical axis is again logarithmic. As in Figure 2, the oscillations would be

unbounded if trials continued indefinitely.

After we observe x1, ..., x;, the likelihood ratio for

testing P/, against Q is

¥, .- Q... x)
l-——
Piyp(xt, ..., xp)

C fo A=) kAo kN — k)12
- (1/2)" o+ D!

Figure 3 shows an example of this process and of the
application of the same martingale calibrator, (14), that
we used in Figure 2. In this case, we generate the Os
and 1s in the sequence xi, ..., X10,000 independently
but with a probability for x; = 1 that slowly converges
to 1/2: 1 +1./Int/z. As we show in Appendix B, (16)
again holds almost surely; if you wait long enough,
you will have enough evidence to reject legitimately
whichever of the two false hypotheses (independently
and identically distributed with 6 = 1/2, or indepen-
dently and identically distributed with 6 £ 1/2) you
want.

Here are the final values of the processes shown in
Figure 3:

(17)

X10,000, = 3.5,
F10,000, = 159,

10,000 = 3599,
YlO,OOO = 166.

In this case, the evidence against 8 = 1/2 is very sub-
stantial but not overwhelming.

8.3 p-Values for Testing § =1/2

By Theorem 2, 1/X7%_ is a p-test whenever (X;) is
a test martingale. Applying this to the test martingale

(17) for testing Pj /> against O, we see that
. 1
SUP| < <00 (ke ! (2 — k) 127 /(2 + 1))

(t+ 1)!
= 1 —_—
1<t<00 k! (t — k)12

is a p-test for testing 6 = 1/2 against 6 # 1/2. Figure 4
shows that it is only moderately conservative.

Any function of the observations that is bounded be-
low by a p-test is also a p-test. So for any rule N
for selecting a positive integer N (xi, x2,...) based
on knowledge of some or all of the observations
X1, X2, ..., the function

p(x1,x2,...):
(18)

(N + D!
19 , X2, ... 1=
(19)  ry(x1,x2,...) Tl (N — k)12
is a p-test. It does not matter whether N qualifies as
a stopping rule [i.e., whether x, ..., x, always deter-
mine whether N (x1, x2,...) <n].
For each positive integer n, let

!
(20) Pn = &
kpl(n — ky)12"

We can paraphrase the preceding paragraph by saying
that p, is a p-value (i.e., the value of a p-test) no mat-
ter what rule is used to select n. In particular, it is a p-
value even if it was selected because it was the small-
est number in the sequence pi, p2,..., Pus---» Dts
where ¢ is an integer much larger than n.

We must nevertheless be cautious if we do not know
the rule N—if the experimenter who does the sampling
reports to us p, and perhaps some other information
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FIG. 4. On the left we graph P{p < 8} as a function of §, where p is the function defined in (18). On the right, we magnify the lower left

corner of this graph.

but not the rule N. We can consider the reported value
of p, alegitimate p-value whenever we know that the
experimenter would have told us p,, for some n, even if
we do not know what rule N he followed to choose n
and even if he did not follow any clear rule. But we
should not think of p, as a p-value if it is possible that
the experimenter would not have reported anything at
all had he not found an n with a p, to his liking. We
are performing a p-test only if we learn the result no
matter what it is.

Continuing to sample in search of evidence against
6 = 1/2 and stopping only when the p-value finally
reaches 5% can be considered legitimate if instead of
using conventional p-tests for fixed sample sizes we
use the p-test (19) with N defined by
_@FDt 0_05},
ky!(n — k,)12"
But we must bear in mind that N (x1, x3, ...) may take
the value oo. If the experimenter stops only when the
p-value dips down to the 5% level, he has a chance of
at least 95%, under the null hypothesis, of never stop-
ping. So it will be legitimate to interpret a reported p,
of 0.05 or less as a p-value (the observed value of a p-
test) only if we were somehow also guaranteed to hear
about the failure to stop.

N(x1,x2,...):= inf{n ‘

8.4 Comparison with a Standard p-Test

If the number n of observations is known in advance,
a standard sampling-theory procedure for testing the
hypothesis 6 = 1/2 is to reject it if |k, — n/2| > ¢, s,
where ¢, 5 is chosen so that Py 2{|k, —n/2| > ¢, s} i

equal (or less than but as close as possible) to a chosen
significance level §. To see how this compares with the
p-value p, given by (20), let us compare the conditions
for nonrejection:

e If we use the standard procedure, the condition for
not rejecting 8 = 1/2 at level § is

21 lkn —n/2| <cps.

e If we use the p-value p,, the condition for not re-
jecting & = 1/2 at level 6 is p, > 8, or

(n+1)!
_— >
lop (11 — koy) 127

In both cases, &, satisfies the condition with probability
at least 1 — § under the null hypothesis, and, hence,
the condition defines a level 1 — § prediction interval
for k,. Because condition (21) requires the value of n
to be known in advance and condition (22) does not,
we can expect the prediction interval defined by (22) to
be wider than the one determined by (22). How much
wider?

Figure 5 answers this question for the case where § =
0.01 and 100 < n < 10,000. It shows, for each value of
n in this range, the ratio

(22)

width of the 99% prediction interval given by (22)

width of the 99% prediction interval given by (21)’
(23)
that is, the factor by which not knowing » in advance

widens the prediction interval. The factor is less than 2
over the whole range but increases steadily with n.
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FI1G. 5. The ratio (23) as n ranges from 100 to 10,000. This is the factor by which not knowing n in advance widens the 99% prediction
interval for ky,. Asymptotically, the ratio tends to infinity with n as c~/Inn for some positive constant c.

As n increases further, the factor by which the stan-
dard interval is multiplied increases without limit, but
very slowly. To verify this, we first rewrite (22) as

11 1

24) |k, —n/2] < (1 4+oay)/n Elng + Zlnn,
where o, is a sequence such that o, — 0 as n —
oo. [For some «;, of order o(1) the inequality (24) is
stronger than p, > §, whereas for others it is weaker;
see Appendix B for details of calculations.] Then, us-
ing the Berry—Esseen theorem and letting z. stand for
the upper e-quantile of the standard Gaussian distribu-
tion, we rewrite (21) as

1

< 528/2+an Vn,

ey — =

(25) >

where o, is a sequence such that |a, | < Qr)~1/2p=1/2

for all n. (See [17].) As § — O,

Za/z~‘/21n ,/21n—

So the main asymptotic difference between (24) and
(25) is the presence of the term % Inn in (24).

The ratio (23) tends to infinity with n as c+/Inn for
a positive constant ¢ (namely, for ¢ = 1/z5/2, where
8 = 0.01 is the chosen significance level). However, the
expression on the right-hand side of (24) results from
using the uniform probability measure on 6 to average
the probability measures Py. Averaging with respect to
a different probability measure would give something

different, but it is clear from the law of the iterated log-
arithm that the best we can get is a prediction interval
whose ratio with the standard interval will grow like
VInlnn instead of +/Inn. In fact, the method we just
used to obtain (24) was used by Ville, with a more care-
fully chosen probability measure on 6, to prove the up-
per half of the law of the iterated logarithm ([39], Sec-
tion V.3), and Ville’s argument was rediscovered and
simplified using the algorithmic theory of randomness
in [40], Theorem 1.

8.5 Testing a Composite Hypothesis Against a
Composite Hypothesis

When Peter Armitage pointed out that even Bayes-
ians can sample to a foregone conclusion, he used as
an example the Gaussian model with known variance
and unknown mean [6]. We can adapt Armitage’s idea
to coin tossing by comparing two composite hypothe-
ses: the null hypothesis 6 < 1/2, represented by the
uniform probability measure on [0, 1/2], and the alter-
native hypothesis 8 > 1/2, represented by the uniform
probability measure on (1/2, 1]. (These hypotheses are
natural in the context of paired comparison: see, e.g.,
[23], Section 3.1.) The test martingale is

2 S 0% (1 —0)~* do
2 36k (1 — 0y —k do

_ PBi1 =k}
P{B; 11 >k +1}

where B, is the binomial random variable with para-
meters n and 1/2; see Appendix B for details. If the

(26)
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FIG. 6. A realization over 10,000 trials of the likelihood ratio for testing the probability distribution obtained by averaging Py with respect
to the uniform probability measure on [0, 1/2] against the probability distribution obtained by averaging Py with respect to the uniform
probability measure on (1/2, 1]. As in the previous figures, the vertical axis is logarithmic, and the red line would be unbounded in both

directions if observations continued indefinitely.

sequence X1, X2, ... turns out to be typical of 6 = 1/2,
then by the law of the iterated logarithm, (k; —¢/2)//t
will almost surely have oo as its upper limit and —oo
as its lower limit; therefore, (16) will hold again. This
confirms Armitage’s intuition that arbitrarily strong
evidence on both sides will emerge if we wait long
enough, but the oscillation depends on increasingly ex-
treme reversals of a random walk, and the lifetime of
the universe may not be long enough for us to see any
of them [v/InIn(5 x 10%3) < 2].

Figure 6 depicts one example, for which the final val-
ues are

X10,000 = 3.7,
Fio,000 =15.5,

XT0,000 =272,
Y10.000 =17.9.

In this realization, the first 10,000 observations provide
modest evidence against § < 1/2 and none against 6 >
1/2. Figures 2 and 3 are reasonably typical for their
setups, but in this setup it is unusual for the first 10,000
observations to show even as much evidence against
one of the hypotheses as we see in Figure 6.

8.6 A Puzzle for Bayesians

From a Bayesian point of view, it may seem puzzling
that we should want to shrink a likelihood ratio in order
to avoid exaggerating the evidence against a null hy-
pothesis. Observations affect Bayesian posterior odds
only through the likelihood ratio, and we know that the
likelihood ratio is not affected by the sampling plan. So

why should we adjust it to take the sampling plan into
account?

Suppose we assign equal prior probabilities of 1/2
each to the two hypotheses 6 = 1/2 and 6 = 3/4 in our
first coin-tossing example. Then if we stop at time ¢,
the likelihood ratio X; given by (13) is identical with
the posterior odds in favor of 6 = 3 /4. If we write post,
for the posterior probability measure at time ¢, then

__post {6 =3/4} 1—post, {6 =1/2}
a post, {6 =1/2} N post, {6 = 1/2}

and

27 t.{0=1/2} = .

(27) post, { /2} X, +1

This is our posterior probability given the evidence
X1, ..., X; no matter why we decided to stop at time ¢.

If we “calibrate” X; and plug the calibrated value in-
stead of the actual value into (27), we will get the pos-
terior probability wrong.

It may help us escape from our puzzlement to ac-
knowledge that if the model is wrong, then the observa-
tions may oscillate between providing overwhelming
evidence against § = 1/2 and providing overwhelm-
ing evidence against 8 = 3/4, as in Figure 2. Only if
we insist on retaining the model in spite of this very
anomalous phenomenon will (27) continue to be our
posterior probability for 6 = 1/2 at time ¢, and it is
this stubbornness that opens the door to sampling to
whichever foregone conclusion we want, 8 = 1/2 or
0 =3/4.
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The same issues arise when we test 6 = 1/2 against
the composite hypothesis 6 # 1/2. A natural Bayesian
method for doing this is to put half our probability
on § = 1/2 and distribute the other half uniformly
on [0, 1] (which is a special case of a widely recom-
mended procedure described in, e.g., [7], page 391).
This makes the likelihood ratio X; given by (17) the
posterior odds against & = 1/2. As we have seen, if
the observations xp, x2, ... turn out to be typical for
the distribution in which they are independent with the
probability for x, = 1 equal to 1 + 1/In7/z, then if
you wait long enough, you can observe values of X; as
small or as large as you like, and thus obtain a posterior
probability for & = 1/2 as large or as small as you like.

Of course, it will not always happen that the ac-
tual observations are so equidistant from a simple null
hypothesis and the probability distribution represent-
ing its negation that the likelihood ratio will oscillate
wildly and you can sample to whichever side you want.
More often, the likelihood ratio and hence the poste-
rior probability will settle on one side or the other. But
in the spirit of George Box’s maxim that all models
are wrong, we can interpret this not as confirmation of
the side favored but only as confirmation that the other
side should be rejected. The rejection will be legitimate
from the Bayesian point of view, regardless of why we
stopped sampling. It will also be legitimate from the
sampling-theory point of view.

On this argument, it is legitimate to collect data un-
til a point has been disproven but not legitimate to in-
terpret this data as proof of an alternative hypothesis
within the model. Only when we really know the model
is correct can we prove one of its hypotheses by reject-
ing the others.

APPENDIX A: INADEQUACY OF TEST
MARTINGALES IN CONTINUOUS TIME

In this appendix we will mainly discuss the case of
continuous time; we will see that in this case the notion
of a test martingale is not fully adequate for the purpose
of hypothesis testing (Proposition 2). Fix a filtration
(F;) satisfying the usual conditions; in this appendix
we will only consider supermartingales (X;, F;), and
we will abbreviate (X;, F;) to (X;), orevento X; or X.

In discrete time, there is no difference between using
test martingales and test supermartingales for hypoth-
esis testing: every test martingale is a test supermartin-
gale, and every test supermartingale is dominated by
a test martingale (according to Doob’s decomposi-
tion theorem, [30], VIIL.1); therefore, using test super-

martingales only allows discarding evidence as com-
pared to test martingales. In continuous time, the dif-
ference between test martingales and test supermartin-
gales is essential, as we will see below (Proposition 2).
For hypothesis testing we need “local martingales,”
a modification of the notion of martingales introduced
by It6 and Watanabe [18] and nowadays used perhaps
even more often than martingales themselves in con-
tinuous time. This is the principal reason why in this
article we use test supermartingales so often starting
from Section 3.

We will say that a random process (X;) is a local
member of a class C of random processes (such as mar-
tingales or supermartingales) if there exists a sequence
11 < 19 < --- of stopping times (called a localizing
sequence) such that 7, — oo a.s. and each stopped
process X;" = X; .., belongs to the class C. (A popu-
lar alternative definition requires that each X; ¢, Iiz,~0)
should belong to C.) A standard argument (see, e.g.,
[13], VI.29) shows that there is no difference between
test supermartingales and local test supermartingales:

PROPOSITION 1.  Every local test supermartingale
(Xy) is a test supermartingale.

PROOF. Let 71, 12,... be a localizing sequence,
so that 7, — 00 as n — 00 a.s. and each X™, n =
1,2,..., is a test supermartingale. By Fatou’s lemma
for conditional expectations, we have, for 0 <s <,

E(X,|F;) =E( lim X["|F)
< liminfE(X/"|Fy)
n—oQ

<liminf X" = X; a.s.
n—oo

In particular, E(X;) <1. [0

An adapted process (A;) is called increasing if Ag =
0 a.s. and its every path is right-continuous and in-
creasing (as usual, not necessarily strictly increasing).
According to the Doob—Meyer decomposition theo-
rem ([13], Theorem VII.12), every test supermartingale
(Xy) can be represented as the difference X; = Y; — A;
of alocal test martingale (¥;) and an increasing process
(Ay). Therefore, for the purpose of hypothesis testing
in continuous time, local test martingales are as power-
ful as test supermartingales: every local test martingale
is a test supermartingale, and every test supermartin-
gale is dominated by a local test martingale.

In discrete time there is no difference between local
test martingales and test martingales ([13], (VI.31.1)).
In continuous time, however, the difference is essential.
Suppose the filtration (F;) admits a standard Brownian
motion (W;, F;) in R3. A well-known example ([19];
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see also [30], VI.21, and [13], V1.26) of a local martin-
gale which is not a martingale is L; := 1/||W; + ¢||,
where e is a vector in R3 such that |le|| = 1 [e.g.,
e=(1,0,0)]; L; being a local martingale can be de-
duced from 1/|| - | (the Newtonian kernel) being a har-
monic function on R3 \ {0}. The random process (L;) is
a local test martingale such that sup, E(L,z) < 00; nev-
ertheless, it fails to be a martingale. See, for example,
[29] (Example 1.140) for detailed calculations.

The local martingale L; := 1/||W; + e|| provides an
example of a test supermartingale which cannot be re-
placed, for the purpose of hypothesis testing, by a test
martingale. According to another version of the Doob—
Meyer decomposition theorem ([30], VIL.31), a super-
martingale (X;) can be represented as the difference
X; =Y; — A, of a martingale (Y;) and an increasing
process (A;) if and only if (X;) belongs to the class
(DL). The latter is defined as follows: a supermartin-
gale is said to be in (DL) if, for any a > 0, the system
of random variables X;, where t ranges over the stop-
ping times satisfying t < a, is uniformly integrable.
It is known that (L;), despite being uniformly inte-
grable (as a collection of random variables L;), does
not belong to the class (DL) ([30], VI.21 and the note
in VI.19). Therefore, (L;) cannot be represented as the
difference L; = Y; — A; of a martingale (Y¥;) and an in-
creasing process (A;). Test martingales cannot replace
local test martingales in hypothesis testing also in the
stronger sense of the following proposition.

PROPOSITION 2. Let 6 > 0. It is not true that for
every local test martingale (X;) there exists a test mar-
tingale (Yy) such that Y; > 6 X, a.s. forall t.

PROOF. Let X; :=L; =1/||W; + e||, and suppose
there is a test martingale (Y;) such that ¥; > §X; a.s.
for all ¢. Let ¢ > 0 be arbitrarily small. Since (Y;) is in
(DL) ([30], VI.19(a)), for any a > 0 we can find C > 0
such that

supf Y dP < &4,
T J{¥;=C}

7 ranging over the stopping times satisfying 7 < a.
Since

sup/ X desup/ (Yz/86)dP < e,
T J{X:=C/s} T J{¥;=C}

(X;) is also in (DL), which we know to be false. [

APPENDIX B: DETAILS OF CALCULATIONS

In this appendix we will give details of some calcula-
tions omitted in Section 8. They will be based on Stir-
ling’s formula n! = +/ 2nn(n/e)”eA", where A, = o0(1)
asn — o0o.

B.1 Oscillating Evidence when Testing Against a
Composite Alternative

First we establish (16) for X; defined by (17). Sup-
pose we have made ¢ observations and observed k := k;
Is so far. We start from finding bounds on k that are
implied by the law of the iterated logarithm. Using the
simplest version of Euler’s summation formula (as in
[5], Theorem 1), we can find its expected value as

t
E<k>=z<%+i 1“—”)

n=1 n

| Inn +1 1< 1

B )

2 4,12222 nlnn 4,12::2 nlnn
1 rt/Inu+1

=—+—/( )d +0(Wt

Y AWarr ARl

t 1

=§—{—§vtlnt—|—0(«/2)

Its variance is

ar() Xt: 1+1 Inn\/{1 1 [Inn
A = —+ = — z—
—\2 4\ ' n J\2 4\ n

Therefore, Kolmogorov’s law of the iterated logarithm
gives

k= (/2@ + Vil _

li d
08) ey J(/2)inn: an
.. k—1/2)(t +tnt)
liminf =—1 as.

1—00 J(1/2)tInlnt
Using the definition (17) and applying Stirling’s for-
mula, we obtain

k'(r —k)!
InX; = tln2+lnT —In(t + 1)

| k(t—k)
=tIn2—tHk/t) +1n,/27 .

=t(In2 — H(k/1)) — %lnt +0(@1)

2t<k 1>2 L t+0()
= ——=] —=In a.s.,
t 2 2

where H(p) := —plnp—(1—p)In(1-p), p€[0, 1],
is the entropy function; the last equality in (29) uses
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In2— H(p)=2(p—1/2*+ O(lp — 1/2P) as p —
1/2. Combining (29) with (28), we further obtain

lnX[

limsup ———=1 and
(30) t—>oop +2IntInint
.. In X,
liminf ———=—-1 a.s.

i~ /2Inslnlns
B.2 Prediction Interval
Now we show that (22) can be rewritten as (24). For

brevity, we write k for k,. Similarly to (29), we can
rewrite (22) as

n2— Hk/n) + l1n,/2nM
n n

n A+ An—k — An
n

1) 1 In(1/8
——In(n+1) < ndl/ ).
n n

Since In2 — H(p) ~2(p — 1/2)> (p — 1/2), we have
k/n =1/2 4 o(1) for k satisfying (31), as n — oo.
Combining this with (31), we further obtain

2
-
n 2

In(1/8) —In/n+1In(n+ 1) + B,
n 9

for some o, = o(1) and B, = O(1), which can be
rewritten as (24) for a different sequence o, = o(1).

B.3 Calculations for Armitage’s Example

Finally, we deduce (26). Using a well-known ex-
pression ([2], 6.6.4) for the regularized beta function
I,(a,b) = B(p;a,b)/B(a, b) and writing k for k;, we
obtain

X, =(Btk+1,1—k+1)
— B(1/2:k+1,t —k+1))
/B(1/2:k+1,t —k+1)

(32) B { _1
11/2(k+ 1,t—k—+1)
_ 1 1
(B =kt 1)
P{B,; 1 <k}

T PBizk+ 1)

As a final remark, let us compare the sizes of oscil-
lation of the log likelihood ratio In X; that we have ob-
tained in Section 8 and in this appendix for our exam-
ples of the three kinds of Bayesian hypothesis testing.

When testing a simple null hypothesis against a sim-
ple alternative, In X; oscillated between approximately
+0.754/tInlnt (as noticed in Section 8.1). When test-
ing a simple null hypothesis against a composite al-
ternative, In X; oscillated between £=+/2In¢Inln¢ [see
(30)]. And finally, when testing a composite null hy-
pothesis against a composite alternative, we can deduce
from (32) that

In X, .. InX,
=1 and liminf =—1 a.s.
t—oo Inlnt

lim sup
t—oo Inlnt
(details omitted); therefore, In X, oscillates between
+Inlnz. Roughly, the size of oscillations of In X; goes
down from /7 to +/In7 to Inlnz. Of course, these sizes
are only examples, but they illustrate a general ten-
dency.
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