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Abstract: We introduce models for the analysis of functional data ob-
served at multiple time points. The dynamic behavior of functional data is
decomposed into a time-dependent population average, baseline (or static)
subject-specific variability, longitudinal (or dynamic) subject-specific vari-
ability, subject-visit-specific variability and measurement error. The model
can be viewed as the functional analog of the classical longitudinal mixed
effects model where random effects are replaced by random processes. Meth-
ods have wide applicability and are computationally feasible for moderate
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and large data sets. Computational feasibility is assured by using principal
component bases for the functional processes. The methodology is moti-
vated by and applied to a diffusion tensor imaging (DTI) study designed to
analyze differences and changes in brain connectivity in healthy volunteers
and multiple sclerosis (MS) patients. An R implementation is provided.

Keywords and phrases: Diffusion tensor imaging, functional data anal-
ysis, Karhunen-Loève expansion, longitudinal data analysis, mixed effects
model.

Received August 2010.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
2 The longitudinal functional model . . . . . . . . . . . . . . . . . . . 1026

2.1 The functional random intercept and random slope model . . . 1026
2.2 The general functional mixed model . . . . . . . . . . . . . . . 1027
2.3 Dimension reduction via longitudinal FPCA . . . . . . . . . . . 1028

3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
3.1 Estimation of the mean . . . . . . . . . . . . . . . . . . . . . . 1030
3.2 Estimation of the covariance operators . . . . . . . . . . . . . . 1030
3.3 Estimation of the eigenfunctions and scores . . . . . . . . . . . 1032
3.4 Decomposition of variance and choice of the number of compo-

nents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

4.1 Simulation design . . . . . . . . . . . . . . . . . . . . . . . . . . 1034
4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 1036
4.3 Computational efficiency . . . . . . . . . . . . . . . . . . . . . . 1039

5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041
5.1 Background and scientific questions . . . . . . . . . . . . . . . . 1041
5.2 Application of LFPCA to the tractography data . . . . . . . . 1042

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047
A Theoretical results and proofs . . . . . . . . . . . . . . . . . . . . . . 1047
B Estimation of the general functional mixed model . . . . . . . . . . . 1050
Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051

1. Introduction

Scientific studies now commonly collect functional or imaging data at multiple
visits over time. In this paper we introduce a class of models and inferential
methods for the analysis of longitudinal data where each repeated observation
is functional.

Our motivating data set comes from a diffusion tensor imaging (DTI) study,
which was designed to analyze cross-sectional and longitudinal differences in
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Fig 1. Top: Sagittal image of the corpus callosum in one of the study subjects, a healthy
33-year-old man, showing the segmentation used [following 46] for construction of the tract
profile. Values denote the bin number at the boundary point from the splenium (back of the
head) to the genu/rostrum (closer to the eyes). Bottom: Two example subjects (both MS
patients) from the tractography data with 5 and 6 complete visits, respectively. Shown are the
fractional anisotropy along the corpus callosum, measured at the 120 sample points. Different
visits for the same subject are indicated by color and overlaid.

brain connectivity in healthy volunteers and multiple sclerosis (MS) patients.
For each of 112 subjects and each visit, we have fractional anisotropy (FA) mea-
surements along the corpus callosum in the brain. Figure 1 shows an image of
the corpus callosum with 7 biological landmarks (denoted 1, 20, 40, 60, 80, 100,
120) used for registration of measurements across subjects. Each visit’s data
for a subject is a finely sampled function across the corpus callosum, with the
argument of the function being the spatial distance along the tract. For illus-
tration, the FA data is displayed for 2 subjects, one with 5 and one with 6
complete visits. Although change over time may be subtle in comparison with
measurement error, accurate quantification of that change is crucial for applica-
tions ranging from powering clinical trials to understanding brain development.
This data structure is not unique to this study. In fact, the tractography data
is an example of many new data sets containing functions or images that are
observed repeatedly over time (longitudinal functional data).
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The common structure of these studies can be understood using an analogy
with classical longitudinal data [8]. Longitudinal data is commonly analyzed
using the very flexible class of linear mixed models [22, 44], which explicitly de-
compose the variation in the data into between- and within- subject variability.
Similarly, we decompose the dynamic behavior of functional data into a time-
dependent population average, baseline (or static) subject-specific variability,
longitudinal (or dynamic) subject-specific variability, subject-visit-specific vari-
ability and measurement error. Technically this is achieved by replacing random
effects with random functional effects.

We propose an estimation procedure that is based on an eigenanalysis and
extends functional principal component analysis (FPCA) to the longitudinal
setting. Computation is very efficient, even for very large data sets. The esti-
mation procedure performed well both in an extensive simulation study and
in the DTI application, where it uncovered subtle but potentially important
subject-specific changes over time in a specific region of the corpus callosum,
the isthmus. The character of these changes could conceivably be used as an
early gauge of disease progression or response to neuroprotective therapies.

Our approach is different from functional mixed models based on the smooth-
ing of fixed and random curves using splines or wavelets [3, 15, 16, 29]. In
contrast to these methods focusing on the estimation of fixed and random
curves, our approach is based on functional principal component analysis. In
addition to the computational advantages of such an approach [compare also
19], we are able to extract the main differences between subjects in their aver-
age profiles and in how their profiles evolve over time. Such a signal extraction,
which is not possible using smoothing methods alone, allows the relation of
subject-specific scores to other variables such as disease status, age or disease
progression. Our approach can be seen as an extension of functional principal
component analysis for multilevel functional data [7]. Our methods apply to
longitudinal data where each observation is functional, and should thus not be
confused with nonparametric methods for the longitudinal profiles of scalar vari-
ables [17, 30, 31, 37, 41, 48, 50, 51]. For good introductions to functional data
analysis in general, please see [10, 34].

The remainder of the paper is organized as follows. Section 2 introduces the
longitudinal functional model and explains how dimension reduction via longi-
tudinal functional principal component analysis (LFPCA) is achieved. Section 3
develops our estimation procedure and provides computational efficiency results.
Section 4 shows the performance of our procedure in an extensive simulation
study. Section 5 provides the application of LFPCA methods to the tractogra-
phy data, while Section 6 concludes with a discussion. Theoretical results and
proofs are given in the appendix. Supplementary material [13] providing an R
function implementing LFPCA, simulation code and additional graphs is avail-
able in the archive that the Electronic Journal of Statistics maintains on Project
Euclid.
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2. The longitudinal functional model

In this section we introduce models for data sets where functional data are
recorded at multiple time points or visits for the same observational unit or
subject. The observed data are {Yij(d), d ∈ D, Tij ,Zij ,V ij}, where Yij(·) is a
random function in L2[0, 1] observed at arguments d in some set D, Tij is the
time of visit j for subject i, and Zij and V ij are vectors of covariates for subject
i = 1, . . . , I at visit j = 1, . . . , Ji, where the number of visits Ji can vary with
the subject, i. We assume that at least some subjects i have at least 3 visits,
that is Ji ≥ 3. The multi-level case when Ji ≤ 2 for all i was fully addressed by
[7] and [6].

2.1. The functional random intercept and random slope model

The data structure in this paper is similar to that of standard longitudinal data,
with the exception that instead of observing scalars, Yij , one observes functions,
Yij(d), over time. We use this analogy to build up intuition and to introduce
the functional equivalent of the standard longitudinal model. For simplicity we
first extend the random intercept and slope model [35]. The functional analog
is

Yij(d) = η(d, Tij) +Xi,0(d) +Xi,1(d)Tij + Uij(d) + εij(d), (2.1)

where η(d, Tij) is a fixed main effect surface, Xi,0(d) is the random functional
intercept for subject i, Xi,1(d) is the random functional slope for subject i, Tij

is the time of visit j for subject i, Uij(d) is the random subject and visit-specific
functional deviation, and εij(d) is random homoscedastic white noise. We make
the following assumptions:

A.1 Xi(d) = {Xi,0(d), Xi,1(d)}, Uij(d) and εij(d) are zero-mean, square-inte-
grable, mutually uncorrelated random processes on [0, 1],

A.2 Xi,0(d) andXi,1(d) have auto-covariance functionsK0(d, d
′) andK1(d, d

′),
respectively, and cross-covariance function K01(d, d

′),
A.3 Uij(d) has covariance function KU (d, d

′), and
A.4 εij(d) is white noise measurement error with variance σ2.

There are several parallels between the scalar random intercept-random slope
model and model (2.1). First, Yij(d) is now a functional observation. Second,
Xi,0(d) and Xi,1(d) replace the scalar random effects bi0 and bi1 as functional
random intercept and random slope, respectively, capturing subject-to-subject
variation. Third, the cross-covariance function K01(d, d

′) replaces the covariance
between bi0 and bi1. Fourth, the subject- and visit-specific deviation now consists
of two parts. Ui,j(d) is a visit-specific functional deviation from the subject-
specific functional trend, capturing visit-to-visit functional variation on the same
subject. εij(d) is additional white noise measurement error, capturing random
uncorrelated variation within each curve. The overall mean trend is allowed to
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be a smooth surface η(d, Tij), which generalizes the linear mean β0+β1Tij often
assumed in the scalar model.

Model (2.1) encompasses several simpler models that can be obtained as
special cases. For example, visits may be of equal number Ji = J per subject
or equally spaced, Tij = j for all i and j. The mean function η(d, Tij) may
be time constant, η(d), additive or linear in T , η(s, Tij) = η1(d) + η2(Tij), or
η(d, Tij) = η0(d) + Tijη1(d). The latter formulation is a direct extension of the
linear population trend typically assumed in the scalar model.

Model (2.1) allows the decomposition of the variation in the observed curves
into a) differences in subject’s baseline functions; b) differences in subjects’ av-
erage changes over time; c) visit-specific variation around these average trends;
and d) measurement error. This decomposition is of interest in many applica-
tions. For example, in the tractography application we describe in Section 5,
it is of interest to study both the population cross-sectional and the dynamic
behavior of various measurements along neuronal tracts.

2.2. The general functional mixed model

While model (2.1) is rich enough for our application, it lends itself well to
generalization, which could be useful in other applications. A more general form
of the longitudinal functional model is

Yij(d) = η(d,Zij) + V ′
ijXi(d) + Uij(d) + εij(d), (2.2)

where we assume that

B.1 Xi(d), Uij(d) and εij(d) are zero-mean, square-integrable, mutually un-
correlated random processes on [0, 1],

B.2 Xi(d) is a vector-valued random process with auto-covariance functions
for the p components K11(d, d

′), . . . ,Kpp(d, d
′), and cross-covariance func-

tions K12(d, d
′), . . . ,K1,p(d, d

′), . . . ,Kp−1,p(d, d
′),

B.3 Uij(d) is a random process with covariance function KU (d, d
′), and

B.4 εij(d) is white noise measurement error with variance σ2.

Model (2.1) and its assumptions A.1 to A.4 are obtained as a special case
of (2.2) and B.1 to B.4 by setting p = 2, Zij = Tij and V ij = (1, Tij)

′.
Note that model (2.1) counts the components of X from 0 to 1 rather than
from 1 to 2 to stress the analogy to the scalar random intercept-random slope
model. The functional mixed-effects ANOVA model [7] results if we set p = 1,
Zij = j, V ij = 1, and η(d, Zij) = µ(d) + ηj(d). More generally, Zij and
V ij are vectors of known covariates for subject i at time Tij . η(d,Zij) is the
fixed main effect surface, which can depend parametrically, semi-parametrically
or non-parametrically on the covariates Zij = (Zij,1, . . . , Zij,m). The simplest
parametric form is a linear mean η(d,Zij) = α0 + α1d+ Z ′

ijβ, while the most
complex nonparametric form is a (p+1)-dimensional smooth function η(d,Zij).
Intermediate semi-parametric models such as η(d,Zij) = η1(d, Zij,1) + · · · +
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ηm(d, Zij,m) or η(d,Zij) = η0(d) + Z ′
ijβ could also be useful in particular

applications.
Model (2.2) is the functional analog of the linear mixed model for longitu-

dinal data [22]. It is similar to models used by [15, 29], but we do not assume
Gaussianity and allow for more general fixed effects. The model of [15] also
does not admit correlated random functional effects, as are present in (2.1).
In addition, we follow quite a different modeling approach, using longitudinal
functional principal component analysis instead of smoothing splines or wavelets
for nested curves. This has large computational advantages compared to [29],
especially when the number of random effects is large, see Section 4.3 and [19].
We are at the same time able to extract the main differences between subjects
in how their profiles evolve over time, something not possible in these other
approaches.

For notational simplicity in the remainder of the paper we will focus on model
(2.1). In Appendix B we point out the small technical differences for fitting the
more general model (2.2).

2.3. Dimension reduction via longitudinal FPCA

While models (2.1) and (2.2) are intuitive generalizations of linear mixed effects
models, their computational feasibility is not obvious, especially for large num-
bers of subjects, visits and observations. We here propose an efficient modeling
approach, Longitudinal Functional Principal Component Analysis (LFPCA).
LFPCA is the longitudinal generalization of functional principal component
analysis (FPCA) [34] and multilevel functional principal component analysis
(MFPCA) [7]. The main idea of LFPCA is to extract the main directions of vari-
ation of the X and U processes using an eigen decomposition of their respective
covariance operators on the basis of Mercer’s theorem [27]. The Karhunen-Loève
expansion [20, 26] is then used to obtain parsimonious expansions of X and U .

In the notation of model (2.1), we expand the covariance operator of the
bivariate process Xi(d) = {Xi,0(d), Xi,1(d)} as

KX(d, d′) =

(
K0(d, d

′) K01(d, d
′)

K01(d
′, d) K1(d, d

′)

)
=

∞∑

k=1

λkφ
X
k (d)φX

k (d′)′,

where φX
k (d) = {φ0

k(d), φ
1
k(d)}′ are the ordered eigenfunctions of KX(d, d′) cor-

responding to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0. Similarly, let KU (d, d
′) =

∞∑
k=1

νkφ
U
k (d)φ

U
k (d

′), where φU
k (d) are the ordered eigenfunctions of KU (d, d

′)

corresponding to the eigenvalues ν1 ≥ ν2 ≥ · · · ≥ 0. The eigenfunctions {φU
k ,

k ∈ N} form an orthonormal basis of L2[0, 1] with respect to the usual L2[0, 1]
scalar product. The eigenfunctions {φX

k , k ∈ N} form an orthonormal basis of
L2[0, 1]× L2[0, 1] with respect to the additive scalar product

< (f0, f1), (g0, g1) >=

∫ 1

0

f0(s)g0(s)ds+

∫ 1

0

f1(s)g1(s)ds.
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The function pairs (φ0
k, φ

1
j), (φ

0
k, φ

U
j ) or (φ

1
k, φ

U
j ) are not required to be orthog-

onal in L2[0, 1], nor will (φ0
k, φ

0
j) or (φ

1
k, φ

1
j) be orthogonal in general for k 6= j.

The Karhunen-Loève expansions of the random processes are

Xi(d) =

∞∑

k=1

ξikφ
X
k (d) and Uij(d) =

∞∑

k=1

ζijkφ
U
k (d),

where the principal components scores

ξik =

∫ 1

0

Xi,0(s)φ
0
k(s)ds+

∫ 1

0

Xi,1(s)φ
1
k(s)ds and ζijk =

∫ 1

0

Uij(s)φ
U
k (s)ds

are uncorrelated random variables with mean zero and variances λk and νk,
respectively. Assumption A.1. is ensured by assuming that {ξik, i = 1, . . . , I,
k ∈ N} and {ζijk, j = 1, . . . , Ji, i = 1, . . . , I, k ∈ N} are mutually uncorrelated.
Because working with infinite expansions is impractical, we consider the finite-
dimensional approximations of the X and U processes

Xi(d) =

NX∑

k=1

ξikφ
X
k (d) and Uij(d) =

NU∑

k=1

ζijkφ
U
k (d),

where NX and NU will be estimated, as described in Section 3.4. Conditional
on NX and NU the finite approximation to model (2.1) is

Yij(d) = η(d, Tij) +
NX∑
k=1

ξikV
′
ijφ

X
k (d) +

NU∑
k=1

ζijlφ
U
k (d) + εij(d),

ξik
unc∼ (0, λk), ζijl

unc∼ (0, νl), εij(d)
unc∼ (0, σ2),



(2.3)

V ij = (1, Tij)
′, which is a linear mixed model [see also 7]. Here, xl

unc∼ (0, a)
denotes uncorrelated variables with mean 0 and variance a. We are neither
assuming normality of the processes in (2.1) nor of the scores in (2.3). LFPCA
extends similarly to the more general model (2.2).

3. Estimation

For reasons of simplicity, we focus the presentation on model (2.1), but estima-
tion is done similarly for model (2.2). The minor adjustments for fitting (2.2)
are described in Appendix B. We assume that the mean, covariance operators
and eigenfunctions are smooth. For presentation purposes, we assume that all
functions Yij(d) are measured at a finite number, D, of grid points D ⊂ [0, 1].
However, the method can easily handle missing data, both in terms of visits per
subject or observations per visit. Estimation can be done using a few simple
steps, which will be described in more detail in the following.

Step 1 The fixed effect surface η is estimated using the working independence
model

Yij(d) = η(d, Tij) + ǫij(d).
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Smoothness selection is by REML, which is more robust to neglecting the
correlations in the errors than prediction error methods [21].

Step 2 The autocovariance functions for the random processes Xi = (Xi,0, Xi,1)
and Uij are estimated from the residuals Yij(d)− η̂(d, Tij), using a linear
regression step.

Step 3 The ‘raw’ autocovariance function estimates from step 2 are subjected to

bivariate smoothing, yielding also an estimate for σ2.
Step 4 Eigen decompositions of the smoothed autocovariance functions provide

bases for representing X = (Xi,0, Xi,1) and Uij , which are truncated to
achieve parsimony.

Step 5 Estimated BLUPs then provide estimates for the subject- and visit-specific
scores, which summarize the main differences in the dynamics of functions
over time.

3.1. Estimation of the mean

The fixed effect population mean surface η(d, T ) can be estimated using a bivari-
ate smoother in d and T under a working independence assumption. For discus-
sions of smoothing for correlated data, see [21, 24]. Possibilities for smoothers
include penalized splines [39], smoothing splines [11] and local polynomials [9].
Choice of a smoother and of the smoothing parameter or bandwidth is discussed
extensively in the literature and is not the main focus here. It is our experience
that most reasonable smoothers used judiciously will provide similar results.
For simplicity and efficiency of the implementation for large data sets, we use
penalized spline smoothing with REML estimation of the smoothing parameter.
This choice has also been found to be relatively robust to misspecification of
the error correlation structure in [21].

A bivariate smoother is appropriate when the collection of observations across
visits and subjects is relatively dense. This need not be the case in general, and
simpler choices might be more sensible. For example, η(d, Tij) = η0(d) + Tijβ
might be more appropriate if the Tij form a sparser collection. In the case of
equally spaced visits, Tij = Tj, [7] used η(d, Tij) = ηj(d). Choices will depend
on the particular application, available data and scientific problem. In most
applications, estimating the mean function is quite easy and, even, routine. Once
a consistent estimator of the mean function is available, data can be centered
as follows Yij(d) − η̂(d, Tij) for all i, j and d. In the following we assume that
the Yij(d) are mean zero.

3.2. Estimation of the covariance operators

A crucial point of our proposed methodology is estimating the covariance op-
erators KX(·, ·) and KU (·, ·). To estimate the covariance functions, we focus on
the cross-products Yij(d)Yik(d

′). Because Yij(d) has zero mean, each product
Yij(d)Yik(d

′) is an estimator of the covariance between the function observed at
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time Tij evaluated at location d, and the function observed at time Tik evalu-
ated at location d′. Every subject thus contributes an estimator each for every
available pair of observations at time Tij evaluated at location d, and at time
Tik evaluated at location d′. Available pairs of observations may vary between
subjects in their (d, d′) and (Tij , Tik) combinations. The method described in
the following can thus easily handle missing data, both in terms of visits per
subject or observations per visit.

Under the assumptions of model (2.1),

E{Yij(d)Yik(d
′)} = Cov{Yij(d), Yik(d

′)} (3.1)

= K0(d, d
′) + TikK01(d, d

′) + TijK01(d
′, d) + TijTikK1(d, d

′)

+[KU (d, d
′) + σ2δdd′ ]δjk,

for all d, d′, i, j and k, where δjk is Kronecker’s delta. Equation (3.1) suggests a
straightforward solution for estimating the covariance operators: regress linearly
the “outcome” Yij(d)Yik(d

′) on the “covariates” (1, Tik, Tij , TikTij , δjk), where
the “parameters” are {K0(d, d

′),K01(d, d
′),K01(d

′, d),K1(d, d
′),KU (d, d

′);
d, d′ ∈ D;σ2}.

While the intuition behind the method is simple, there are two potential pit-
falls that should be carefully avoided. First, σ2 is identifiable only under the
assumption that KU (d, d

′) is a bivariate smooth function in d and d′. Second, in
a straightforward implementation of the linear regression on the basis of (3.1),

there are D2
∑I

i=1 J
2
i observations and 4D2 + 1 variables. In our moderately

sized tract data, this would correspond to 19 million observations and 57, 500
variables. In larger data sets the problem would be even more serious. Thus,
careful implementation is required to ensure computational feasibility. We pro-
pose the following 3-step estimation procedure that avoids these problems.

Step A: {K0(d, d
′),K01(d, d

′),K01(d
′, d),K1(d, d

′),KU (d, d
′)+σ2δdd′} is estimated

for each pair d ≤ d′ ∈ D using least squares estimation based on (3.1).
Symmetry constraints yield K0(d, d

′) = K0(d
′, d), K1(d, d

′) = K1(d
′, d)

and KU (d, d
′) = KU (d

′, d) for d > d′. Denote estimates by K̃0(d, d
′),

K̃01(d, d
′), K̃1(d, d

′) and K̃U (d, d
′).

Step B: Bivariate smoothing in d and d′ over K̃0(d, d
′), K̃01(d, d

′) and K̃1(d, d
′)

yields smooth estimates K̂0(d, d
′), K̂01(d, d

′) and K̂1(d, d
′). Bivariate

smoothing over K̃U (d, d
′), leaving out the diagonal elements as proposed

by [41, 50], also yields estimates K̂U (d, d
′).

Please see Section 3.1 for a discussion of bivariate smoothing.

Step C: σ2 can be estimated as σ̂2= 1
D

D∑
d=1

{K̃U (d, d)− K̂U (d, d)}, if positive, and
as zero otherwise.

Estimation in Step A can be done using efficient matrix-vector computations as
detailed in Theorem 1 in Appendix A. The following is a consequence of that
theorem.
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Corollary 1. The computational effort for estimation of the covariance func-

tions in Step A for the general model (2.2) is of the order O{max(p6, p2D2g)},
where g =

∑
J2
i and p is the dimension of the vector-valued random process

Xi(d) in (2.2).

All proofs can be found in Appendix A. For model (2.1), p = 2 is small.
Note that p2D2 is the order of the number of unknown parameters in the co-
variance functions, and g is the number of observation pairs contributing to the
estimation. The effort thus is linear in both. Our software implementation is so
efficient that the computational effort is dominated by the bivariate smoothing
of the mean and covariance functions; see Section 4.3 for a detailed investigation
of efficiency.

Our procedure does not guarantee that K̂X(·, ·) and K̂U (·, ·) are positive
definite. We correct this problem by trimming the eigenvalue-eigenvector pairs
corresponding to negative eigenvalues, a method that has been found to increase
the L2 accuracy [17] and has been shown to work well in practice [51].

3.3. Estimation of the eigenfunctions and scores

In the previous section we showed how to obtain the estimated covariance matri-

ces K̂0 = {K̂0(d, d
′)}d;d′∈D, K̂01 = {K̂01(d, d

′)}d;d′∈D, K̂1 = {K̂1(d, d
′)}d;d′∈D,

and K̂U = {K̂U (d, d
′)}d;d′∈D. Estimates of the eigenvalues and of the eigenfunc-

tions φX
k (·), k = 1, 2, . . . , D, and φU

k (·), k = 1, 2, . . . , D, at the grid points D
can then be obtained using the spectral decomposition of KX and KU , K̂X =
2D∑
k=1

λ̂kφ̂
X
k {φ̂X

k }′ and K̂U =
D∑

k=1

ν̂kφ̂
U
k {φ̂U

k }′, where φ̂X
k = {(φ̂0

k(d), φ̂
1
k(d)); d ∈ D}

and φ̂U
k = {φ̂U

k (d); d ∈ D}, are orthonormal vectors in R
2D and R

D, respectively.
The estimation of the number of eigenfunctions retained for further analysis,NX

and NU , is described in Section 3.4.
In Section 2.3, equation (2.3), we showed that for fixed NX and NU , model

(2.1) is a linear mixed model. Thus, we can use best linear unbiased prediction
(BLUP) to obtain predictions of the subject- and subject/visit-specific scores,
ξik and ζijk, respectively. BLUP calculation does not require a normality as-
sumption and is a generalization of the conditional expectations used by [50].

For given eigenfunctions, mean function η(d, T ), and variances λk, k = 1, . . . ,
NX , νk, k = 1, . . . , NU , the BLUP for b = (ξ11, . . . , ξ1NX

, . . . , ξI1, . . . , ξINX
,

ζ111, . . . , ζ11NU
, . . . , ζIJI1, . . . , ζIJINU

) in model (2.3) is given in the usual form
by

b̂ = DZ ′(σ2I +ZDZ ′)−1(Y − η), (3.2)

where Z = [ZX |ZU ], ZX = EI ⊗ Φ0 + T ⊗ Φ1, ZU = In ⊗ ΦU ,
EI = (δih)ij=11,...,IJI ;h=1,...,I , T = (Tijδih)ij=11,...,IJI ;h=1,...,I , Φ0 =
{φ0

k(d)}d∈D;k=1,...,NX
,Φ1 = {φ1

k(d)}d∈D;k=1,...,NX
,ΦU = {φU

k (d)}d∈D;k=1,...,NU
,

D = blockdiag(DX ,DU ) = blockdiag{II⊗diag(λ1, . . . , λNX
), In⊗diag(ν1, . . . ,

νNU
)}, Y = {Y11(1), . . . , Y11(D), . . . , Y1J1

(1), . . . , Y1J1
(D), . . . , YIJI

(1), . . . ,
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YIJI
(D)}, and η = {η(1, T11), . . . , η(D,T11), . . . , η(D,T1J1

), . . . , η(1, TIJI
), . . . ,

η(D,TIJI
)}. Here, ⊗ denotes the Kronecker product of matrices, and

(aijh)ij=11,...,IJI ;h=1,...,I denotes a matrix with entries aijh, rows ij, j = 1, . . . , Ji,
i = 1, . . . , I, and columns h = 1, . . . , I.

We can obtain estimated BLUPs (EBLUPs) using the estimated functions

and variances η̂(·, ·), σ̂2, φ̂0
k(·), φ̂1

k(·), λ̂k, k = 1, . . . , NX , and φ̂U
k (·), ν̂k, k =

1, . . . , NU , from Sections 3.1 and 3.2. This does not require fitting the model
(2.3), which greatly increases computational efficiency. While straightforward
implementation of (3.2) requires inverting nD × nD matrices, which would re-
sult in computational effort of the order O(n3D3), we make use of common
matrix rules and of the model structure to obtain a more efficient representa-
tion, as detailed in Theorem 2 in Appendix A. The following result of Theorem
2 confirms the manageable computational effort even for very large data sets.

Corollary 2. Computational effort for calculation of the estimated BLUPs in

(3.2) is of the order O{max(nDf, IN3
X)}, where n =

∑I

i=1 Ji and f = NU +
NXI/n.

The proofs are provided in Appendix A. NX and NU are typically small, and
much smaller than either D or the number of observed curves n. These results
and efficient block matrix manipulation make the models proposed here feasi-
ble even for very large data sets. For example, one of the simulation examples
in Section 4 uses 1, 000 subjects, who were observed at 8 visits and had 200
observations per visit.

3.4. Decomposition of variance and choice of the number of

components

There are several possible ways to choose the numbers of eigenfunctions NX

and NU . Two alternatives that have been used before are leave-one-curve-out
cross validation [38] and an AIC-type criterion [50]. Alternatively, one can make
use of the fact that (2.3) is a linear mixed model, with NX and NU corre-
sponding to the number of random effects. The conditional Akaike information
criterion (cAIC), proposed for the selection of random effects in linear mixed
models [12, 23, 43] could thus be employed. [40] and [6] point out that choosing
the number of eigenfunctions corresponds to step-wise testing for zero variance
components. They propose using a Restricted Likelihood Ratio Test (RLRT)
for this zero variance. The null distribution can be easily approximated using
methods introduced by [14] based on the null distribution derived in [5].

Here we follow a simpler approach based on the proportion of variance ex-
plained. This approach has several advantages: a) popularity; b) simplicity and
interpretability; c) quantification of the contribution of the different processes
to the variability in Yij(d).

To better understand variance partitioning, we give the following result.

Lemma 1. Let Yij(d) ∈ L2[0, 1] be a process that follows model (2.1) with zero

mean, η(d, Tij) ≡ 0. Let Tij be independently distributed as T for all i and j,
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where E(T 2) < ∞, and let Tij be independent of Xi, Uij and εij(d), d ∈ D.

Then, the average variance of Yij(d) can be written as

∫ 1

0

Var{Yij(s)}ds =

∫ 1

0

( ∞∑

k=1

λk

[
{φ0

k(s)}2 + 2E(Tij)φ
0
k(s)φ

1
k(s)

+E(T 2
ij){φ1

k(s)}2
]
+

∞∑

k=1

νk{φU
k (s)}2 + σ2

)
ds.

The proof can be found in Appendix A. Given the usual interpretation of
eigenvalues as variance explained in FPCA, one could be tempted to interpret
λk similarly in the longitudinal context. The variance decomposition that we
just described indicates that in LFPCA, λk can be interpreted as a variance
component only if the time variable is standardized to have zero mean and unit
variance. In this case, the two components of the φX

k eigenfunction, φ0
k and φ1

k,
will be on the same scale. We can then directly discuss λk as the “variance
explained” by the eigenfunction φX

k of KX . Thus, we recommend standardizing
the time variable. The variation in Yij(d) then has the following simple additive
decomposition.

Corollary 3. In the case when E(Tij) = 0 and Var(Tij) = 1, the expression in

Lemma 1 reduces to

∫ 1

0

Var{Yij(s)}ds =
∞∑

k=1

λk +
∞∑

k=1

νk + σ2.

Thus, for standardized Tij , the variation in Yij(d) can be decomposed ad-
ditively into the contributions from the random intercept and random slope
process,

∑∞
k=1 λk, from the visit-specific deviation process,

∑∞
k=1 νk, and from

the additional random noise, σ2. This leads to a simple decision rule for NX and
NU : choose φX

k and φU
k corresponding to λk and νk in decreasing order, until

{
NX∑

k=1

λk +

NU∑

k=1

νk + σ2}/{
∞∑

k=1

λk +

∞∑

k=1

νk + σ2} ≥ L,

where L is a pre-specified proportion of explained variation, such as L = 0.95.∑∞
k=1 λk and

∑∞
k=1 νk provide quantifications of the relative importance of the

X and U processes.

4. Simulations

4.1. Simulation design

To investigate the performance of our estimation procedure, we conduct an
extensive simulation study. The design combines and extends scenarios used
by [7] and [50]. For all settings, we generate 1000 data sets from model (2.3),



S. Greven et al./Longitudinal functional principal component analysis 1035

where NX = NU = 4. We set the mean function to η(d, T ) = 0.5(T/4 − d)2.
The unequally spaced time points Tij are simulated such that the mean for
each subject is zero, and increments Tij − Tij−1 are independent draws from
a uniform distribution on [0, 1]. The time variable is then standardized to
have unit variance. The curves Yij(d) are taken to be observed for d ∈ D =
{(k−0.5)/D, k = 1, . . . , D}, D = 120, as in the tract data. We set the variances
to be λk = νk = 21−k, k = 1, . . . , 4, and σ = 0.05. This choice corresponds to
0.07% of the overall average variance explained by the error variance σ2, higher
than in the tract data (0.02%, please see Table 2).

We consider all possible combinations of the following scenarios:

1. number of subjects (a) I = 50 (b) I = 100 (c) I = 200 and (d) I = 500,
including both smaller and larger numbers than in the tract data,

2. (a) balanced design with Ji = 4 for all i,

(b) unbalanced design with Ji ∈ {1, . . . , 9}, (a multiple of 8, 8, 9, 6, 5,
5, 4, 3, 2 times, respectively), giving 4 observations per subject on
average,

3. (a) normal scores ξik ∼ N (0, λk) and ζijk ∼ N (0, νk) for all i, j and k,

(b) non-normal scores; ξik drawn from a mixture of two normals, with
equal probability from either N (

√
λk/2, λk/2) or from

N (−
√
λk/2, λk/2); ζijk drawn with equal probability from either

N (
√

νk/2, νk/2) or N (−
√
νk/2, νk/2),

4. (a) eigenfunctions φX
k = (φ0

k, φ
1
k) with φ0

k and φ1
k orthogonal and of equal

norm
√
1/2; φU

k are not orthogonal to either φ0
k or φ1

k,

(b) eigenfunctions φX
k = (φ0

k, φ
1
k) with φ0

k and φ1
k non-orthogonal and of

unequal norms
√
3/4 and

√
1/4. φU

k are equal to φ0
j or φ1

j for some
j for all k,

5. (a) estimation does not include bivariate smoothing of the covariance
functions. In this case, smoothing is only used to obtain an estimate
of the diagonal KU (d, d), d ∈ D, and of σ2,

(b) estimation includes bivariate smoothing of the covariance functions.

This gives 64 different combinations overall. The eigenfunctions for setting 4. (a)
are

φ0
1(d) = sin(2πd)

φ0
2(d) = cos(2πd)

φ0
3(d) = sin(4πd)

φ0
4(d) = cos(4πd)

φ1
1(d) = 1/

√
2

φ1
2(d) = sin(6πd)

φ1
3(d) = cos(6πd)

φ1
4(d) = sin(8πd)

φU
1 (d) = 1

φU
2 (d) =

√
3(2d− 1)

φU
3 (d) =

√
5(6d2 − 6d+ 1)

φU
4 (d) =

√
7(20d3 − 30d2 + 12d− 1).

Note that while φ0
k and φ1

k are orthogonal, they are not orthogonal to φU
j for all

k and j 6= 1. The eigenfunctions for setting 4. (b) are
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φ0
1(d) = sin(2πd)

√
2/3

φ0
2(d) = cos(2πd)

√
2/3

φ0
3(d) = sin(4πd)

√
2/3

φ0
4(d) = cos(4πd)

√
2/3

φU
1 (d) =

√
4φ1

1(d)

φU
2 (d) =

√
4/3φ0

1(d)

φU
3 (d) =

√
4/3φ1

2(d)

φU
4 (d) =

√
4/3φ1

3(d).

φ1
1(d) = 1/2

φ1
2(d) =

√
3(2d− 1)/2

φ1
3(d) =

√
5(6d2 − 6d+ 1)/2

φ1
4(d) =

√
7(20d3 − 30d2 + 12d− 1)/2

Note that now φ0
k and φ1

j are non-orthogonal, and φ0
k has a larger norm than φ1

k.

Also, φU
k is equal to one of the φ0

j or φ1
j , j = 1, . . . , 4, for each k, making separa-

tion of the two processes X and U much more difficult. For bivariate smoothing
of the mean and covariance functions, we use tensor product penalized cubic
regression splines with 10 knots per dimension, where the smoothing parame-
ters are estimated using REML estimation, as implemented in the R package
mgcv [47].

To investigate the sensitivity of our results to our choices for η and σ, we
also consider four variations on the balanced design with I = 100 and Ji = 4
for all i (1b and 2a), non-orthogonal φ0

k, φ
1
k and φU

k with unequal weight on
φ1
k and φ0

k (4b), a mixture distribution for the scores ξij and ζijk (3b), and
bivariate smoothing of the covariance functions (5b). For these four settings, we
vary η(d, T ) = (T/4− d/D + 1/2)(T/4 + d/D − 1/2), η(d, T ) = sin(πT/2)d/D,
σ = 0.5 (corresponding to 6.25% of the overall average variance explained by
the error variance σ2) or σ = 1 (21.05%), respectively.

For each of the 1000 replications and for each of the 68 settings, our estimation
procedure from Section 3 with NX = NU = 4 is used to obtain estimates of the
mean function, the covariance functions, the eigenfunctions, the scores, and all
variances.

4.2. Simulation results

We now discuss results for one of the 68 settings in detail, and point out dif-
ferences across settings. The complete simulation results can be found in the
supplementary material.

Figure 2 and Table 1 show the main results of simulations based on a balanced
design with I = 100 and Ji = 4 for all i (1b and 2a), non-orthogonal φ0

k, φ
1
k and

φU
k with unequal weight on φ1

k and φ0
k (4b), a mixture distribution for the scores

ξij and ζijk (3b), and no bivariate smoothing of the covariance functions (5a). A
plot of the true and estimated mean functions can be found in the supplementary
material, illustrating that the mean is well and unbiasedly estimated.

Figure 2 shows the true and estimated eigenfunctions φX
k = (φ0

k, φ
1
k) and

φU
k , k = 1, . . . , 4. Results for φ0

k, φ
1
k and φU

k are displayed in the left, middle
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Fig 2. True and estimated eigenfunctions φX
k

= (φ0

k
, φ1

k
) and φU

k
, k = 1, . . . , 4. The left

column gives results for the part φ0

k
corresponding to the random functional intercept Xi,0,

the middle column for the part φ1

k
corresponding to the random functional slope Xi,1, and

the right column for the component φU
k

corresponding to the visit-specific functional deviation
Uij. Shown are the true function (thick black line), the mean of the estimated functions over
1000 simulations (dashed red line), the pointwise 5th and 95th percentiles of the estimated
functions (blue), and the estimated functions from the first 50 simulations (grey). Simulations
were based on model (2.3) with NX = NU = 4, a balanced design with I = 100 and Ji = 4 for
all i, non-orthogonal φ0

k
, φ1

k
and φU

k
with unequal weight on φ1

k
and φ0

k
, a mixture distribution

for the scores ξij and ζijk, and no bivariate smoothing of the covariance functions.
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Table 1

True and estimated subject-specific and visit-specific scores ξik and ζijk. Given are

summary statistics of the scaled differences (ξ̂ik − ξik)/
√
λk (top) and (ζ̂ijk − ζijk)/

√
νk

(bottom), k = 1, . . . , 4. Simulations were based on model (2.3) with NX = NU = 4, a
balanced design with I = 100 and Ji = 4 for all i, non-orthogonal φ0

k
, φ1

k
and φU

k
with

unequal weight on φ1

k
and φ0

k
, a mixture distribution for the scores ξij and ζijk, and no

bivariate smoothing of the covariance functions.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum
-2.39 -0.31 0.00 0.00 0.30 2.56
-2.52 -0.24 0.00 0.00 0.23 3.13
-3.42 -0.31 0.00 0.00 0.31 3.39
-4.17 -0.20 0.00 0.00 0.20 4.58
-2.80 -0.18 0.00 0.00 0.18 3.11
-3.68 -0.39 0.00 0.00 0.39 4.26
-2.77 -0.30 0.01 0.01 0.31 2.54
-3.38 -0.34 0.00 0.00 0.34 4.16

and right panels, respectively. Shown are the true function (thick black line),
the mean of the estimated functions over 1000 simulations (dashed red line),
the pointwise 5th and 95th percentiles of the estimated functions (blue), and
the estimated functions from the first 100 simulations (grey). Note that the
covariance functions, and thus the eigenfunctions, are not smoothed in this
setting.

For all functions, the mean of the estimated functions is very close to the
true function, and the variability around it is small. It can be noted that the
φU
k are slightly better estimated. This is due to the fact that estimation of the

covariance function KU (d, d
′) is based on n =

∑
Ji visits, while estimation of

the covariance function KX(d, d′) is based on only I subjects, with I = n/4 in
this setting. In this case, φ0

k has a larger norm than φ1
k, making estimation of this

component easier. This is noticeable in a smaller variance for φ0
k. Nevertheless,

estimation of the φ1
k is also remarkably good. Overall, estimation of all functions

is very good, even though: a) φ0
k and φ1

k are not mutually orthogonal; and b)
each φU

k is actually identical to either φ0
j or φ1

j for some j. Our estimation
procedure effectively separates the X and U processes, even in the most difficult
of circumstances and with a moderate sample size.

Table 1 provides results for the scores ξik and ζijk, k = 1, . . . , 4. Shown are
summary statistics for the scaled differences between estimated and true scores,
(ξ̂ik − ξik)/

√
λk and (ζ̂ijk − ζijk)/

√
νk, k = 1, . . . , 4. The table illustrates that

the majority of estimates lies close to the true scores, relative to the standard
deviation of the score in question, even if the distribution of the estimates is
more heavy tailed than in a normal distribution. This might be expected from
the fact that the principal components φX

k and φU
k in model (2.3) are estimated

and not observed.
Further figures in the supplementary material show results for the estimation

of the variances, σ2, λk and νk, k = 1, . . . , 4. The ν̂k are centered at the true
values νk, with about 70% within 10% and more than 95% within 20% of the
true value. The λ̂k show a slight downward bias and somewhat larger varia-
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tion, reflecting the smaller effective sample size for estimation of these variance
components. σ2 is estimated almost as well as the νk.

Overall, the estimation procedure performed very well in a wide range of sce-
narios. Across simulations, we found the following similarities and differences.
First, results improve for an increasing number of subjects I. As expected, a
larger I decreases the variability of the estimated eigenfunctions, mean func-
tion, scores and variances. The slight downward bias in the λ̂k disappears with
increasing I. Second, a balanced design (2a) improves results compared to an
unbalanced design (2b) with the same number of subjects and visits. A balanced
design leads to a) decreased variability in the estimated mean η̂(d, T ), as we es-
timate the mean under a working independence assumption before estimating
the complex covariance structure b) decreased variability in the estimated eigen-

functions φ̂X
K and decreased variability and small sample bias in the variances

λ̂k, k = 1, . . . , NX . This is similarly due to the fact that we estimate the covari-
ance functions using least squares under a working independence assumption.
Estimation of the φU

k is not much affected by how balanced the design is, al-

though there is some indication that small estimates λ̂k are compensated for by
a slight increase in the ν̂k. Third, results for normal scores (3a) and non-normal
scores (3b) where virtually identical. This is expected, as BLUPs do not rely
on a normality assumption and are thus robust to departures from normality.
Still, it is reassuring to see this confirmed in practice. Forth, non-orthogonality
of φ0

k and φ1
k (4b) does not affect results compared to orthogonality (4a). Even

though in (4b), each φU
k is equal to either φ0

j or φ1
j for some j, estimation of the

φU
k is equally good in both cases. The only consistent difference between the two

designs is, that as in (4b) φ0
k has a larger part in the norm of φX

k , estimation
of φ0

k improves somewhat, while estimation of φ1
k deteriorates slightly. Fifth,

results excluding (5a) and including (5b) bivariate smoothing of the covariance
functions were very similar, with the smooth version more effective at filter-
ing out the measurement errors εij(d) and obtaining smooth eigenfunctions φX

k

and φU
k .

Our sensitivity analyses indicate that results are not very sensitive to the
choice of the mean function, with all three considered mean functions esti-
mated well and unbiasedly. Large error variances increase the variability of
all estimates. When signal-to-noise ratios become small due to very large er-
ror variances and small variances λk or νk, this leads to some underestimation
of the magnitude (but not shape) of the eigenfunctions. This is due to the
unbiasedness of estimation for the covariance functions, which are quadratic
in the eigenfunctions, and the attenuation resulting from large variances in
|E(X)| =

√
E(X2)−Var(X) <

√
E(X2).

4.3. Computational efficiency

To investigate computation time we considered different combinations of number
of subjects I ∈ {25, 50, 100, 200, 500, 1000}, number of observations per subject
J ∈ {4, 8}, and number of sample points per curve D ∈ {50, 100, 200, 500}. All
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Fig 3. Computation time for LFPCA for a simulated data set with the given number of
subjects I and number of observations per subject J, and with D sample points per curve.
Specifics of how computation time was measured are given in Section 4.3.

other parameters were chosen as for the simulations described in Section 4.1,
settings combination 2(a), 3(a), 4(a), 5(a).

Figure 3 provides the computation times. System times were (for practi-
cal reasons) measured on three different cluster nodes running 64-bit Red Hat
Linux, with 2.3/ 2.6/3.0 GHz AMD Opteron Processors and 32 GB random
access memory. Figures 3 a) and c) for J = 4 and J = 8 display computation
time versus the number of subjects I, stratified by D. For example, computation
time for I = 100 subjects with J = 4 visits and D = 100 points per curve was
just 1.4 minutes, while computation for I = 1, 000, J = 8 and D = 200 took 72
minutes. Figures 3 b) and d) display computation times versus sample points
per curve, D, stratified by I. As suggested by Corollaries 1 and 2, computation
time is roughly linear in I and between linear and quadratic in D. A linear
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regression of the log computation time log(C) on log(I), log(J) and log(D)

yields ̂log(C) = −7.12 + 0.93 log(I) + 1.38 log(D) + 0.82 log(J). The coefficient
for log(D) is indeed between 1 and 2, as expected from Corollaries 1 and 2. The
coefficients for log(I) and log(J) are close to 1, but somewhat lower, reflecting
that there are some parts of the estimation procedure not depending on I and J.
The adjusted R2 for the model is a high 0.98, indicating that good estimates of
computation time on comparable machines can be obtained from this regression
equation also for parameter combinations not considered here. Note, however,
that for very large I and, especially, D, memory might be more of a concern
than computational efficiency. In that case, one can replace our efficient matrix
computations by less efficient methods that optimize memory usage.

5. Application

In this section, we use LFPCA to decompose the variability in the tractography
data. We first provide the scientific background.

5.1. Background and scientific questions

Multiple sclerosis (MS) is a disorder of the central nervous system (CNS) [e.g. 4].
MS causes typical abnormalities on magnetic resonance imaging (MRI) scans
of the brain and spinal cord, and consequently MRI has become the primary
diagnostic tool for MS. MRI scanning is increasingly used to monitor disease
progression and response to therapy and has become an important surrogate
outcome measure in clinical trials.

Diffusion tensor imaging (DTI), in contrast to conventional MRI techniques,
is able to resolve individual functional tracts within the CNS white matter, the
primary target of MS. DTI is sensitive to diffusion anisotropy, which, in the
brain and spinal cord, corresponds to the tendency of water to diffuse along
axonal tracts [1]. A focus on one or several tracts with specific functional corre-
lates can then help in understanding the neuroanatomical basis of disability in
MS. Quantitative measures derived from DTI data include fractional anisotropy
(FA), measuring the degree of anisotropy between 0 and 1 [2]. FA can be de-
creased in MS due to lesions, loss of myelin and axon damage [42, 45].

Measurement of tract-specific MRI indices has traditionally worked with av-
erages along tracts, ignoring the spatial variation of those indices within tracts
[25, 32, 36]. However, that spatial variation can be considerable. The extent to
which accounting for this spatial variation can improve detection of abnormality,
correlation with disability, or sensitivity to change across time, remains uncer-
tain. The last of these is particularly relevant for monitoring individual patients
in the clinic and for the design and powering of clinical trials of new drugs.

We are interested in using the full spatial information to gain a better under-
standing of differences between subjects both with respect to their mean tract
profiles over time (static behavior) and to the changes in those tract profiles
over time (dynamic behavior). Our data set includes measurements for 84 MS
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patients and 28 controls with 1 to 8 complete visits, giving 308 visits overall.
At each visit, we have measurements of FA and the diffusivities along several
tracts in the brain, which were reconstructed using the tract finding algorithm
of [28]. We will focus here on the corpus callosum, a tract connecting the two
hemispheres of the brain. The 120 sample points - from the splenium (back of
the head) to the genu/rostrum (closer to the eyes) - were chosen equidistantly
between certain landmarks on the tract used for registration of curves between
subjects [33]. The corpus callosum and its segmentation are illustrated in Fig-
ure 1 (top). Figure 1 (bottom) shows example profiles from two MS patients,
illustrating the variability of profiles between subjects and within subjects over
time. Visual examination of these tract profiles reveals variation within subjects
across both space and time but no clear and consistent trend over time.

5.2. Application of LFPCA to the tractography data

As changes in MRI hardware over the five years of the study caused some
variation in the measured MRI indices, we use a preprocessing step to remove
differences due to variation in scanning technique. For each of the five scanning
epochs, we estimate a mean profile for cases alone, using one visit per subject.
This avoids confounding of disease status with epoch due to uneven distribution
of cases and controls among epochs, and confounding by disease progression. We
then subtract the difference of the epoch mean profile to the overall mean profile
from all functional observations.

We obtain a decomposition of the variance using LFPCA. The time vari-
able is centered by subject and standardized. For bivariate smoothing of the
mean and covariance functions, we use tensor product penalized cubic regres-
sion splines with 30 knots per dimension, with smoothing parameters estimated
using REML. A graph of the mean function η(d, T ) is given in the supplementary
material. The mean profile is roughly constant over time, with some variation
near areas of high curvature.

For a pre-specified level L = 90% of explained average variance∫ 1

0
Var{Yij(s)}ds, LFPCA givesNX = NU = 6 principal components φX

k and φU
k

for the X and U processes. The decomposition of the average variance is given
in Table 2. 38% of the variation is explained by the first principal component for
X, φX

1 , another 23% by the first principal component for U , φU
1 . Overall, the first

six components φX
k , k = 1, . . . , 6, explain 55% of the average variance, indicating

that the X process captures most of the variation in the data. Within X, most
of the variation is explained by the random functional intercept Xi,0, but the
variance due to the subject-specific random slope is still large compared to the
measurement error. Note also that the study period is much shorter than the dis-
ease duration for some of the patients, such that Xi,1 might still be of large prac-
tical relevance over many years. Within-curve measurement error is negligible
due to a smoothing step during profile construction, explaining only 0.02%. Es-
timated variances were λ̂k = 0.316, 0.060, 0.030, 0.021, 0.015, 0.010, k = 1, . . . , 6,
ν̂k = 0.189, 0.045, 0.025, 0.017, 0.012, 0.011, k = 1, . . . , 6, and σ̂2 = 0.0002.
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Table 2

Average variance
∫
1

0
Var{Yij(s)}ds explained by the different model components in percent.

To obtain the variance explained by φ0

k
and φ1

k
, the corresponding λk is multiplied by∫

(φ0

k
(s))2ds and

∫
(φ1

k
(s))2ds, respectively. The cumulative variance explained for row k is

the sum of the row entries up to and including row k. The last row gives the cumulative
variance explained for the respective column.

k φ0

k
φ1

k
φU
k

σ2 cumulative
1 37.97 0.21 22.81 0.02 61.01
2 6.76 0.55 5.41 73.73
3 3.33 0.32 2.96 80.34
4 2.11 0.43 2.07 84.95
5 1.50 0.28 1.51 88.24
6 0.98 0.19 1.32 90.73

52.65 1.98 36.08 0.02 90.73

Figure 4 shows the first three estimated principal components for the random
intercept and slope process X. The left column gives estimates for the φ0

k,
corresponding to the random functional intercept Xi,0. Depicted are estimates
for the overall mean η(d) (solid line), and for η(d) ± 2

√
λkφ

0
k, k = 1, 2, 3 (+

and -, respectively). The middle column gives the corresponding results for the
random functional slopeXi,1. The right column shows boxplots for the estimates
of the scores ξik corresponding to (φ0

k, φ
1
k), k = 1, 2, 3, by case/control group.

Estimated scores for the two example patients with tract profiles shown in Figure
1 are indicated by A and B, respectively.

Positive loadings ξ̂i1 > 0 on the first component correspond to a lower mean
function with a particularly deep FA dip in the isthmus (around 20), but only
to small changes of profiles over time. For example, patient A with a much lower
dip than B loads positively on this component, while B’s loading is roughly zero.
The second component is a mean contrast, with positive scores corresponding
to a lower dip around 20 and a higher plateau around 60. The corresponding
change over time is similar, if smaller in magnitude, and could explain how the
differences in mean profiles evolved over time. The large positive score ξ̂i2 in
patient A corresponds to the large contrast between low dip and high plateau in
this patient, which is very unpronounced in patient B (roughly zero score). The
third component shows a shift of the location of the dip, which might reflect
differences in anatomy that affect the tractography. This goes hand in hand
with a slight further shifting and deepening (for negative scores) of the dip
over time. For example, patient A, in contrast to patient B, exhibits more of a
deepening of the dip and a shift to the left, with corresponding negative score
ξ̂i3. As mentioned above, these consistent changes over time are not immediately
apparent from an examination of the tract profiles in Figure 1 but are clearly
revealed by loadings on the principal components derived from the LFPCA
analysis. In future work, we plan to examine whether these changes can portend
disease course.

Figure 5 shows the corresponding results for the visit-specific functional de-
viation U . φ̂U

1 is similar in shape to φ̂0
1. Patient A at visit 8, for example, shows

a lower profile than would be expected from the average evolution in this pa-
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Fig 5. The first three estimated principal components for the visit-specific deviation process
U . The left column gives results for the principal components φU

k
, depicting estimates for the

overall mean η(d) (solid line), and for η(d) ± 2
√
νkφ

U
k
, k = 1, 2, 3 (+ and -, respectively).

The right column shows boxplots for the estimates of the scores ζik corresponding to φU
k
,

k = 1, 2, 3, by case/control group. Estimated scores for example visits of the two patients with
tract profiles shown in Figure 1 are indicated by A (visit 8) and B (visit 2), respectively.

tient over time, and consequently has a positive score ζ̂ij1, with the converse

being true for patient B at visit 2. Components φ̂U
2 and φ̂U

3 seem to pick up
variation at the ends of the tract as well as visit-to-visit shifts of the location
of the dip, which might be due to measurement error. Note that the U process
captures both measurement error and true biological fluctuations, which are
impossible to separate without additional subject-matter insight. Filtering out
these processes allows us to study the systematic trends modeled by X.
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Our model allows straightforward inclusion of additional covariates such as
case/control status, disease severity, medication or age in the mean function
η. In this study, however, we were interested in how the main variations in
tract profiles and their changes over time differed by case/control group, i.e. in
the covariance part of the model. When fixed effect group specific means are
the target of inference, our approach could be used to improve the confidence
band estimators on the group-specific mean difference. For example, the group-
specific means could be estimated first under independence, then the covariances
can be estimated using LFPCA, and then estimates of the group-specific mean
differences can be further improved using the estimated covariance structure.
The process can even be iterated until convergence.

Focusing on the covariances, we find a statistically significant difference in
the distribution of the estimated scores ξ̂i1 between MS patients and controls
(p=0.0056 in a Mann-Whitney-Wilcoxon test; also in a linear regression adjust-
ing for age and sex). The patient group in particular seems to have a higher
mean and a heavier right tail. This could be an indication of a mixture in this
group of patients who are more or less affected by MS along this particular tract.
Potential loading-based clustering into patient subgroups will be of interest in
future work. Interestingly, FA for this component is not decreased uniformly
along the tract, but only posterior to the genu (ca. 1-100), with the decrease
being especially pronounced in the area of the isthmus (ca. 20). Our results
thus identify the region of the corpus callosum (the isthmus) where MS seems
to take its greatest toll and also define the ways in which that portion of the
tract changes from one year to the next. In future work, we plan to examine
whether these changes can portend disease course. This result could not have
been obtained by using the average FA instead of our functional approach.

6. Discussion

We have introduced methods for functional data that is observed at multiple
time points for the same subject. Our methods can be viewed as extending
longitudinal mixed effects models by replacing the random effects with random
processes. Models are designed to decompose the longitudinal functional data
into a time-dependent population average, baseline (or static) subject-specific
variability, longitudinal (or dynamic) subject-specific variability, subject/visit-
specific variability and measurement error. We propose an estimation procedure
based on an eigen expansion that is highly computationally efficient and per-
forms well in a wide range of simulations and in our application.

Our work is different from functional data methodology applied to the anal-
ysis of longitudinally observed scalar data [41, among others], but builds on
methods from both functional and longitudinal data analysis [8, 34]. While the
considered model shares similarities with models used by [15, 29], we do not
assume Gaussianity and our approach is based on functional principal compo-
nent analysis. In addition to computational advantages (compare Section 4.3
and [19]), this allows the extraction of the main differences between subjects
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in the dynamics of their profiles over time, something of interest in many ap-
plications including our tractography study. Also, our work is different from
methods for the 3-D analysis of subject-specific DTI studies [see for example
18]. It takes a functional data approach to tract data, as has recently been done
for non-longitudinal DTI tractography data in [52].

Our approach can serve as a stepping-stone for further developments in the
field of longitudinally observed functional data, and lends itself well to exten-
sions. As our estimation procedure performs best when the number of time
points per subject is balanced, it might be interesting to investigate further
improvements, such as via iterations between mean and covariance estimation.
Using an iterative approach, [49] find improvements to the integrated mean
squared errors that are most pronounced for sparse functional data, where the
number of sample points per curve is small. We will pursue such an approach
in the future, in particular if dealing with sparse longitudinal functional data.
While the functional random intercept-random slope model was sufficient for
our application, it would also be interesting to apply our general model in more
complex settings. And as our methods extract the main modes of variation in
longitudinal functional data, including differences in mean curves and changes
in curves over time, the associated scores could be of interest for further use in
regression or classification.
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Appendix A: Theoretical results and proofs

Theorem 1. Estimates of the covariance functions in Step A can be expressed

as β̂1 = (X ′
1X1)

−1X ′
1c1 and β̂2 = (X ′

2X2)
−1X ′

2c2. Here, β1 is the 5×{D(D−
1)/2} matrix with column {K0(d, d

′),K01(d, d
′),K01(d

′, d),K1(d, d
′),KU (d, d

′)}
corresponding to d < d′ ∈ D, and β2 is the 4 × D matrix with column

{K0(d, d),K01(d, d),K1(d, d
′),KU (d, d) + σ2} corresponding to d ∈ D. X1 is

the (
∑I

i=1 J
2
i )× 5 matrix with rows (1, Tik, Tij , TijTik, δjk), j, k = 1, . . . , Ji, i =

1, . . . , I, and X2 is the {∑I

i=1 Ji(Ji + 1)/2} × 4 matrix with rows (1, Tik +

Tij , TijTik, δjk), j ≤ k = 1, . . . , Ji, i = 1, . . . , I. c1 is the (
∑I

i=1 J
2
i ) × {D(D −

1)}/2) matrix with column (Yij(d)Yik(d
′), j, k = 1, . . . , Ji, i = 1, . . . , I) corre-

sponding to d < d′ ∈ D, and c2 the {∑I

i=1 Ji(Ji+1)/2}×D matrix with column

(Yij(d)Yik(d), j ≤ k = 1, . . . , Ji, i = 1, . . . , I) corresponding to d ∈ D.

Proof. Consider least squares estimation of (K0(d, d
′),K01(d, d

′),K01(d
′, d),

K1(d, d
′),KU (d, d

′) + σ2δdd′ ; d ≤ d′ ∈ D) on the basis of (3.1). First, note that
the design matrix in the corresponding linear regression is block diagonal, with
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blocks corresponding to (d, d′), d < d′, containing entries (1, Tik, Tij, TijTik, δjk)
in the row corresponding to Yij(d)Yik(d

′), and blocks corresponding to (d, d) con-
taining entries (1, Tik+Tij, TijTik, δjk) in the row corresponding to Yij(d)Yik(d).
Second, note that the blocks are identical for all pairs (d, d′), d < d′, respec-

tively all pairs (d, d). Least squares estimates thus can be expressed as β̂1 =

(X ′
1X1)

−1X ′
1c1 and β̂2 = (X ′

2X2)
−1X ′

2c2, where X
′
1X1 and X ′

2X2 are 5×5
and 4× 4 matrices, respectively.

Proof of Corollary 1. From Theorem 1 and the analogous argument for the gen-
eral model, only (p2+1)×(p2+1) matrices need to be inverted. Matrix inversion
thus is of order O(p6). Matrix multiplication is of order O(p2D2g), giving overall
computational effort of order O(max(p6, p2D2g)).

Theorem 2. The estimated BLUPs in (3.2) can be expressed as

b̂ =

(
INXI −BC′

0 INUn

)(
B 0

0 R

)(
INXI 0

−CB INUn

)
Z ′(Y − η),

with C = EI ⊗ φU ′
φ0 + T ⊗ φU ′

φ1, R = In ⊗ diag(νk/(νk + σ2)) +GFG′,

G = EI ⊗diag(νk/(νk +σ2))φU ′
φ0+T ⊗diag(νk/(νk +σ2))φU ′

φ1, and where

B and F are block-diagonal with blocks

Bi = [JiΦ
0′Φ0 + Ti•(Φ

0′Φ1 +Φ1′Φ0) + T 2
i•Φ

1′Φ1

+diag(σ2/λ1, . . . , σ
2/λNX

)]−1,

F i = [JiΦ
0′LΦ0 + Ti•(Φ

0′LΦ1 +Φ1′LΦ0) + T 2
i•Φ

1′LΦ1

+diag(σ2/λ1, . . . , σ
2/λNX

)]−1,

i = 1, . . . , I, denoting Ti• =
∑Ji

j=1 Tij, T 2
i• =

∑Ji

j=1 T
2
ij, and L = ID−

ΦU diag(νk/(νk + σ2))ΦU ′
. Here, diag(ak) denotes a diagonal matrix with en-

tries ak, k = 1, . . . , NU , and we suppress for simplicity hat notation that indi-

cates estimated quantities.

Proof. For simplicity, we suppress hat notation that indicates estimated quan-
tities in the computation of the EBLUPs. Using the Woodbury formula, we
obtain

b̂ = (Z ′Z + σ2D−1)−1Z ′(Y − η).

Using the Schur complement S, write

(Z ′Z + σ2D−1)−1 =

(
Z ′

XZX + σ2D−1
X Z ′

XZU

Z ′
UZX Z ′

UZU + σ2D−1
U

)−1

=

(
INXI −A−1Z ′

XZU

0 INUn

)(
A−1 0

0 S−1

)(
INXI 0

−Z′
UZXA−1 INUn

)
,

where A = Z ′
XZX + σ2D−1

X and S = (Z ′
UZU + σ2D−1

U )−Z ′
UZXA−1Z ′

XZU .
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Using properties of the Kronecker product, we have

A = diag(J1, . . . , JI)⊗Φ0′Φ0 + diag(T1•, . . . , TI•)⊗ (Φ0′Φ1 +Φ1′Φ0)

+ diag(T 2
1•, . . . , T

2
I•)⊗Φ1′Φ1 + II ⊗ diag(σ2/λ1, . . . , σ

2/λNX
).

Thus, A is a block-diagonal matrix with I blocks Ai of size NX × NX , and
B = A−1 can be computed as a block-diagonal matrix with the ith block of
size NX ×NX of the form

Bi = [JiΦ
0′Φ0 + Ti•(Φ

0′Φ1 +Φ1′Φ0) + T 2
i•Φ

1′Φ1

+diag(σ2/λ1, . . . , σ
2/λNX

)]−1.

Analogously,

(Z ′
UZU + σ2D−1

U )−1 = (In ⊗ΦU ′
ΦU + In ⊗ diag(σ2/ν1, . . . , σ

2/νNU
))−1

= In ⊗ diag(ν1/(ν1 + σ2), . . . , νNU
/(νNU

+ σ2))

can be computed explicitly, as the columns of ΦU are orthonormal by construc-
tion. And finally, using the Woodbury formula again, the Schur complement S
can be inverted as

R = S−1 = (Z ′
UZU + σ2D−1

U )−1 + (Z ′
UZU + σ2D−1

U )−1Z ′
UZX ×

[A−Z ′
XZU (Z

′
UZU + σ2D−1

U )−1 ×
Z ′

UZX ]−1Z ′
XZU (Z

′
UZU + σ2D−1

U )−1

= In ⊗ diag(νk/(νk + σ2)) +GFG′,

where

C = Z ′
UZX = EI ⊗ φU ′

φ0 + T ⊗ φU ′
φ1,

G = (Z ′
UZU + σ2D−1

U )−1C

= EI ⊗ diag(νk/(νk + σ2))φU ′
φ0 + T ⊗ diag(νk/(νk + σ2))φU ′

φ1,

and

H = Z ′
XZU (Z

′
UZU + σ2D−1

U )−1Z ′
UZX

= (EI
′ ⊗Φ0′ΦU + T ′ ⊗Φ1′ΦU )×

(In ⊗ diag(νk/(νk + σ2))(EI ⊗ΦU ′
Φ0 + T ⊗ΦU ′

Φ1)

= diag(Ji)⊗Φ0′ΦU diag(νk/(νk + σ2))ΦU ′
Φ0

+diag(Ti•)⊗Φ0′ΦU diag(νk/(νk + σ2))ΦU ′
Φ1

+diag(Ti•)⊗Φ1′ΦU diag(νk/(νk + σ2))ΦU ′
Φ0

+diag(T 2
i•)⊗Φ1′ΦU diag(νk/(νk + σ2))ΦU ′

Φ1

is again block-diagonal with NX×NX blocks, as is A, such that F = [A−H]−1

can be computed by inverting each block

Ai −H i = [JiΦ
0′LΦ0 + Ti•(Φ

0′LΦ1 +Φ1′LΦ0) + T 2
i•Φ

1′LΦ1

+diag(σ2/λ1, . . . , σ
2/λNX

)],
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with L = ID −ΦU diag(νk/(νk + σ2))ΦU ′
, separately.

Proof of Corollary 2. From Theorem 2, only matrices of size NX × NX need
to be inverted to compute the EBLUPs, giving computational effort of order
O(IN3

X). Usage of the block structure for all matrices reduces computation for
the matrix multiplications. For example, multiplication of the (nNU + INX)×
nD and nD × 1 matrices Z ′ and (Y − η), usually an O(nD(nNU + INX))
operation, here reduces to I multiplications of NX ×D with D× 1 matrices and
n multiplications of NU ×D with D× 1 matrices. Similarly bookkeeping for the
other operations leads to the overall effort of order O(nD(NU +NXI/n)).

Proof of Lemma 1 and Corollary 3. Iterated expectations give us

Var{Yij(s)} = E{Var[Yij(s)|Tij ]}+Var{E[Yij(s)|Tij ]}.

As E{Yij(s)|Tij} = 0,

1∫

0

Var{Yij(s)}ds =

1∫

0

E{
∞∑

k=1

λk[φ
0
k(s) + Tijφ

1
k(s)]

2 +

∞∑

k=1

νk(φ
U
k (s))

2 + σ2}ds

=

1∫

0

∞∑

k=1

λk[(φ
0
k(s))

2 + 2E(Tij)φ
0
k(s)φ

1
k(s) + E(T 2

ij)(φ
1
k(s))

2]

+

∞∑

k=1

νk(φ
U
k (s))

2 + σ2ds.

Now consider the case where E(Tij) = 0 and Var(Tij) = 1. In this case, we have

1∫

0

Var{Yij(s)}ds =
∞∑

k=1

λk

1∫

0

(φ0
k(s))

2 + (φ1
k(s))

2ds+

∞∑

k=1

νk

1∫

0

(φU
k (s))

2ds+ σ2

=
∞∑

k=1

λk +
∞∑

k=1

νk + σ2

due to the orthonormality of the eigenfunctions.

Appendix B: Estimation of the general functional mixed model

Estimation for model (2.2) proceeds in the same way as for model (2.1). In this
section, we briefly point out the necessary minor adjustments. An estimate of the
mean function η(d,Zij) can again be obtained under a working independence
assumption and under the specified model. For example, under the specification
η(d,Zij) = η1(d, Zij,1) + · · ·+ ηm(d, Zij,m), bivariate smoothing in an additive
model can be used.
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In the estimation of the covariance functions, equation (3.1) now becomes

E{Yij(d)Yik(d
′)} = V ′

ijKX(d, d′)V ij + [KU (d, d
′) + σ2δdd′ ]δjk

=

p∑

l=1

p∑

m=1

VijlVijmKlm(d, d′) + [KU (d, d
′) + σ2δdd′ ]δjk,

where V ij = (Vij1, . . . , Vijp), and the three step estimation procedure for the
covariance functions extends straightforwardly. The size of the matrix to be
inverted during step 1 increases from 5× 5 to (p2 + 1)× (p2 + 1).

Similarly, estimation of the eigenfunctions using the spectral decomposition,
and estimation of the scores using best linear unbiased prediction, proceeds
completely analogously, keeping in mind that {φX

k (·) = (φ1
k(·), . . . , φp

k(·)), k =
1, 2, . . .} now form an orthonormal basis for the (L2[0, 1])p.

Choice of NX and NU can again proceed using the proportion of variance
explained. Standardization of variables in V ij is recommended. Note, however,
an additional complication in the higher-dimensional case. If some of the covari-
ates in V ij are correlated, corresponding additional terms will appear in the
expansion of

∫
Var{Yij(d)}. The eigenvalues λk might then somewhat over- or

underrepresent the relative importance of the corresponding component φX
k in

explaining the variation in Yij(d). If strong correlations are a concern, additional
measures, such as the use of orthogonal polynomials in the case of polynomial
V ij , should be taken.

Supplementary Material

Supplementary materials to “Longitudinal functional principal com-

ponent analysis” by S. Greven, C. Crainiceanu, B. Caffo and D. Reich

(doi: 10.1214/10-EJS575SUPP).

References

[1] Basser, P.,Mattiello, J. and LeBihan, D. (1994). MR diffusion tensor
spectroscopy and imaging. Biophysical Journal 66 259–267.

[2] Basser, P. J. and Pierpaoli, C. (1996). Microstructural and physio-
logical features of tissues elucidated by quantitative-diffusion-tensor MRI.
Journal of Magnetic Resonance, Series B 111 209–219.

[3] Brumback, B. A. and Rice, J. A. (1998). Smoothing spline models for
the analysis of nested and crossed samples of curves. Journal of the Amer-

ican Statistical Association 961–976. MR1649194
[4] Calabresi, P. A. (2008). Multiple sclerosis and demyelinating conditions

of the central nervous system. In Cecil Medicine 23rd ed. (L. Goldman and
D. A. Ausiello, eds.) Saunders Elsevier.

[5] Crainiceanu, C. andRuppert, D. (2004). Likelihood ratio tests in linear
mixed models with one variance component. Journal of the Royal Statistical
Society, Series B 66 165-185. MR2035765

http://dx.doi.org/10.1214/10-EJS575SUPP
http://www.ams.org/mathscinet-getitem?mr=MR1649194
http://www.ams.org/mathscinet-getitem?mr=MR2035765


S. Greven et al./Longitudinal functional principal component analysis 1052

[6] Crainiceanu, C. M., Staicu, A. M. and Di, C. Z. (2009). General-
ized Multilevel Functional Regression. Journal of the American Statistical

Association 104 1550–1561.
[7] Di, C. Z., Crainiceanu, C. M., Caffo, B. S. and Punjabi, N. M.

(2008). Multilevel functional principal component analysis. Annals of Ap-

plied Statistics 3 458-488.
[8] Diggle, P.,Heagerty, P., Liang, K. Y. and Zeger, S. (2002).Analysis

of longitudinal data. Oxford University Press, USA. MR2049007
[9] Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its appli-

cations. CRC Press. MR1383587
[10] Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analy-

sis: theory and practice. Springer Verlag. MR2229687
[11] Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression

and Generalized Linear Models: a Roughness Penalty Approach. Chapman
& Hall Ltd. MR1270012

[12] Greven, S. andKneib, T. (2010). On the Behaviour of Marginal and Con-
ditional Akaike Information Criteria in Linear Mixed Models. Biometrika

to appear.
[13] Greven, S., Crainiceanu, C., Caffo, B. and Reich D. (2010). Sup-

plement to “Longitudinal functional principal component analysis.” DOI:
10.1214/10-EJS575SUPP

[14] Greven, S., Crainiceanu, C. M., Küchenhoff, H. and Peters, A.
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[20] Karhunen, K. (1947). Über Lineare Methoden in der Wahrscheinlichkeit-

srechnung. Annales Academiae Scientiarum Fennicae 37 1-79. MR0023013
[21] Krivobokova, T. and Kauermann, G. (2007). A note on penalized

spline smoothing with correlated errors. Journal of the American Statis-

tical Association 102 1328–1337. MR2412553
[22] Laird, N. and Ware, J. H. (1982). Random-effects models for longitudi-

nal data. Biometrics 38 963-974.

http://www.ams.org/mathscinet-getitem?mr=MR2049007
http://www.ams.org/mathscinet-getitem?mr=MR1383587
http://www.ams.org/mathscinet-getitem?mr=MR2229687
http://www.ams.org/mathscinet-getitem?mr=MR1270012
http://dx.doi.org/10.1214/10-EJS575SUPP
http://www.ams.org/mathscinet-getitem?mr=MR1891050
http://www.ams.org/mathscinet-getitem?mr=MR2037869
http://www.ams.org/mathscinet-getitem?mr=MR2523900
http://www.ams.org/mathscinet-getitem?mr=MR2407709
http://www.ams.org/mathscinet-getitem?mr=MR0023013
http://www.ams.org/mathscinet-getitem?mr=MR2412553


S. Greven et al./Longitudinal functional principal component analysis 1053

[23] Liang, H., Wu, H. and Zou, G. (2008). A note on conditional AIC for
linear mixed-effects models. Biometrika 95 773–778.

[24] Lin, X. and Carroll, R. J. (2000). Nonparametric Function Estimation
for Clustered Data When the Predictor Is Measured Without/With Error.
Journal of the American Statistical Association 95 520-534. MR1803170

[25] Lin, F., Yu, C., Jiang, T., Li, K., Li, X., Qin, W., Sun, H. and
Chan, P. (2006). Quantitative analysis along the pyramidal tract by
length-normalized parameterization based on diffusion tensor tractography:
application to patients with relapsing neuromyelitis optica. NeuroImage 33

154–160.
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