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Rejoinder

Ian Vernon*, Michael Goldstein' and Richard G. Bower*

We thank the discussants David Poole, Pritam Ranjan, Earl Lawrence, David Hig-
don, and David van Dyk for their commentaries on our paper, and for raising many
interesting points for discussion, ranging from practical questions related to the imple-
mentation of our methodology to fundamental issues of the role and purpose of Bayesian
analysis in science. We respond to each of the discussants as follows.

1 Response to David Poole

Poole agrees that often a fully Bayesian analysis for computer models can be difficult
and that simplifications such as a the Bayes Linear approach described in our paper are
often helpful. He then goes on to discuss another technique known as Bayesian Melding,
whereby prior information regarding both the inputs and outputs of the computer model
function are amalgamated into a single prior over x. He remarks that such an approach
would most likely not be suitable for use on the Galform model due to computational
reasons (as melding normally requires complete knowledge of the function f(z)). We
would state that while it is possible that these computational issues could be resolved
by the appropriate use of emulators within the melding calculation, there are unresolved
issues about the validity of the melding calculations, consideration of which would have
taken us beyond the remit of the study.

Poole then asks “what one loses by doing a Bayes Linear approach?” compared to
a hypothetical fully Bayesian analysis. We respond that (as we discuss toward the end
of section 3.3), if a fully Bayesian approach were feasible, in that we were prepared
to spend the considerable amount of extra time and effort to construct and document
realistic joint priors over the input space, the model discrepancy and all other quantities
of interest, and if such priors contained extra physical information that was defensible
to other cosmology experts in the field, then we would be able to perform a more
detailed fully Bayesian inference which would reflect the additional physical information
contained within the prior specification.

However, an elicitation for such complex objects would present substantial concep-
tual and practical difficulty, and hence we perform a Bayes Linear analysis which may
be viewed as a pragmatic compromise to such an arduous analysis, as it only requires
expert assessments over means and variances. Were we confident enough to obtain
more detailed expert judgements, then we can incorporate these within the Bayes Lin-
ear framework also (by writing down covariances of more complex objects e.g. higher
order quantities (Goldstein and Wooff (2007))). We choose the Bayes Linear method to
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obtain meaningful answers in reasonable time using reasonable effort. See the rejoinder
to Lawrence and Higdon and to van Dyk for further comparisons between the Bayes
Linear and full Bayes approaches.

What we would suggest as unnecessary is the far too common form of Bayesian anal-
ysis whereby priors are chosen that have little physical insight and are mainly of forms
that provide mathematical convenience for the subsequent challenging fully Bayesian
calculations. We have reservations about the value and meaning of such calculations.
Were the ensuing calculations simple and transparent, then such an approach, even so,
could have considerable exploratory value, but current Bayesian technology does not
make this easy.

2 Response to Pritam Ranjan

Ranjan asks about the choices we have made in the history matching process. As
described in this paper and summarised in section 3, the history matching approach
involves emulating appropriate collections of outputs of the computer model, and com-
bining this with observational data in order to eliminate portions of the input parameter
space. Specifically, in this application we chose a subset of 7 outputs of the Galform
computer model to compare to the data. This subset increased from 7 to 11 outputs in
later waves (these are shown as the vertical lines in figures 12 and 13). Ranjan provides
an interesting discussion over this reduction of the data, and asks for a formal technique
to pick a subset of outputs that are sufficient to capture most of the characteristics of
the functional response of the Galform model. There are techniques for this purpose,
and one that we have used in similar applications is Principal Variables (see Cumming
and Wooff (2007); Cumming and Goldstein (2009a)).

However, it should be noted that in the first few waves of our study we do not seek
to identify a fully sufficient set of outputs. We only use a small number of outputs
that a) are straightforward to emulate and b) are informative enough to allow us to cut
out large portions of the input space (see section 4.2). Once the input space has been
reduced, outputs become easier to emulate accurately for reasons discussed in section
3 and demonstrated in section 7: essentially it is because we are ‘zooming in’ on a
locally smooth function. We can then emulate a larger set of outputs to further reduce
the input space. This iterative strategy is a major strength of our approach and results
directly from our aim of removing implausible (or ‘bad’) points as opposed to identifying
‘good’ points. At the end of our analysis we performed a large set of Wave 5 runs to
check if the runs that match our 11 outputs also match the other outputs that were not
considered. These runs are shown in figures 12 and 13 (bottom right panel) and confirm
good matches across all outputs of interest, suggesting that the final set of 11 outputs
was indeed sufficient to an acceptable degree.

Ranjan proposes an alternative approach that involves emulating and minimising a
function g(z): a global measure that depends on all outputs, which would equal zero
if there were an exact match to the data. While this approach may work in some
applications, it does have the following disadvantages compared to our method.
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Active Inputs: In our approach we initially emulate individual outputs that mainly
depend only on a small set of active inputs (e.g. in Wave 1 each output was emulated
using sets containing only 5 active inputs) thus greatly simplifying the emulation and
analysis. This benefit has been exploited in several applications (see Craig et al. (1997);
Cumming and Goldstein (2009a,b)) where the union of active inputs may be large, but
the number used for any particular output is small. In contrast, despite g(x) giving
scalar output, it will usually depend on all inputs to the function f(z) and hence will
be a very complex, high dimensional function. It is usually far easier to emulate a few
low dimensional functions than one high dimensional one.

Capturing Physical Dependencies: Emulating individual outputs has a further
significant advantage. As discussed in section 3.4, we prefer to build more structure into
the mean function or regression part of the emulator for several reasons. Perhaps the
most important is that the individual outputs of many physical models, and of Galform
in particular, exhibit strong and physically interpretable monotonicities with respect to
the inputs, which are naturally expressed through the mean function, resulting in more
accurate emulation. The g(z) function would have no such monotonicities, being most
likely a complex surface with many local minima, and such emulation advantages would
be lost.

Physical Interpretation: There is also the question of the physical interpretation
of the emulators that our approach allows: the results of emulation of individual outputs
can be checked against expert knowledge and can often help the scientist further under-
stand the behaviour of the model. This again would be lost if we were to analyse only
g(x). Our method also allows a more nuanced approach to assessing model adequacy,
which we take full advantage of, as we discuss in the response to van Dyk.

Ranjan then suggests recasting our implausibility approach in terms of an expected
improvement (EI) criterion. We do fear that the form of an EI algorithm may miss
some of the more appealing aspects of our approach, namely that we do not attempt
to emulate accurately over the whole input space, only to emulate certain outputs
sufficiently accurately to be able to discard large regions of input space. Also, we never
express criteria for acceptable inputs (until the Wave 5 runs at the end of the analysis)
and only work in terms of non-implausible (i.e. not currently ruled out) inputs. It is
unclear if one could devise an EI criterion that incorporates these attributes.

At each wave the current non-implausible volume of input space was checked for
connectedness. Ranjan rightly asks whether each of these volumes are also convex in
structure. This is an interesting point and we intend to investigate this possibility in
future work, as our history matching method could easily produce highly non-convex
regions of input space after each wave for certain applications. As concerns Galform,
the majority of projections of the non-implausible regions into 2, 3 and 4 dimensional
subspaces suggested a convex (or almost convex) shape. The major part of each of our
emulators is based on polynomials that can be fitted over non-convex regions (although
one has to be careful of the usual traps of fitting over a non-orthogonal design). The
Gaussian process part of our emulators have shorter correlation length parameters (as
the regression terms take up the global behaviour), and hence we only need to worry
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about more localised non-convexity, compared to say using a full Gaussian process emu-
lator with simple mean function. These considerations combined with healthy amounts
of diagnostics to test each of the emulator’s performances (200 diagnostic runs were
done at each wave), would suggest that non-convexity is not a significant problem here.

Ranjan’s suggested solution, at each wave to use all previous runs from all previous
waves to construct an emulator over the whole original input volume, does address the
non-convex problem, but for an unacceptable cost. This loses one of the fundamental
motivations for our approach which is that it is generally easier to emulate the function
over smaller volumes. This is discussed in section 3 and demonstrated in section 7 and
is mainly due to the polynomial terms becoming better approximations to the smooth
function f(x), and the higher density of points allowing the Gaussian process terms to
become more accurate.

As to the query raised concerning the practical methodology for constructing the
individual emulators, we strongly believe that use of both active variables and a de-
tailed mean function is advantageous in the majority of computer model applications.
However, there is flexibility over the choice of techniques used. As we had a reasonably
large number of Galform runs, it was felt that traditional model selection techniques
were adequate for our purposes. If we had a substantially smaller set of runs then
we would have to employ a more careful and formal Bayesian style approach for such
selection.

In response to the question about the principles behind our design choices, in order
to construct, for example, the Wave 2 design, we decided that computational resources
would allow the evaluation of approximately 1400 to 1450 runs. We used a latin hy-
percube of size 9500 and rejected all the points that did not satisfy our implausibility
cutoffs. We chose this size of design as we knew (from experimenting with our emula-
tors and implausibility measures to determine the approximate volume remaining after
wave 1) that the number of runs that survive should lie in the range 1400 to 1450.
Similar rules were used for subsequent waves.

This leads us to the total number of runs used in this analysis. As this was an
application at the cutting edge of investigations into Galaxy formation, we felt it wise
to use the substantial computer time available to evaluate as many runs as was feasible
(1000+) for each wave. That is, the relatively large number of runs used is a reflection
of the computer resources available and the importance of the project. It is clear that
we could have performed this analysis with fewer runs, but it was thought best to err on
the side of caution. Exactly how many evaluations would have been required to achieve
the same goal is an interesting question, and leads to the obvious design issue of how
to proportion a fixed quota of runs between various future waves. We intend to look at
this important topic in future work.

3 Response to Earl Lawrence and David Higdon

Lawrence and Higdon (LH) requested our Wave 2 data, which was composed of 1414 runs
that were restricted to the non-implausible region defined by the Wave 1 implausibility
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cutoffs (given by equation (22)). We are pleased that they were able to apply their
methodology as described in Higdon et al. (2008) to this data set, and that they have
produced some interesting, if provisional, results in time for this discussion.

It seems that the fully Bayesian approach is more “aggressive” in reducing input
space than the Bayes linear version, but it would at this stage appear to be too ag-
gressive. Comparison with figure 11 which shows a marginal plot of the set of Wave 5
runs, coloured by implausibility, shows several acceptable (green) runs that are clearly
outside of the hpd region given by LH’s analysis (see for example the Viotdisk : Qhots
the aool  Qhot, the e ! : Dyield and the Viotdisk @ Qreneat Projections). That is to say,
some of the acceptable runs which are of interest to the cosmologists (the corresponding
luminosity functions of which are shown in the bottom-right panel of figures 12 and 13)
could be excluded by this analysis.

Lawrence and Higdon urge caution in making direct comparisons between the two
approaches based on the marginal posterior densities given in figure 1 of their discussion
paper, as the two cases are not equivalent. For example a major difference is that the
posterior as calculated by LH used the model discrepancy @ conditioned on a fixed
value of the parameters a, b and ¢ (see equation (20)). The implausibility approach
explored the full ranges of the parameters a, b and ¢ as specified by the expert and
given by equation (21), by only discarding an input x as implausible if it failed the
implausibility cutoffs for all values of a, b and ¢. Incorporating the uncertainty on the
parameters a, b and ¢ into LH’s approach could possibly lead to a more diffuse posterior
and make a comparison between the approaches easier (and may go someway toward
solving the Wave 5 run problem outlined above). As LH state, the differences in the
emulation approaches used will also muddy this comparison.

A general problem is that is it not at all obvious that the posterior shown in LH’s
figure 1 (which was generated using the Wave 2 runs) still respects the Wave 1 con-
straints that make the analysis meaningful. That is to say, are there parts of LH’s
posterior that give significant probability to inputs that were previously ruled out by
the Wave 1 constraint? LH’s assessment can only be based on an extrapolation from
a subspace covered by the wave 2 runs whereas the wave 1 elimination was based on
function evaluations more local to that region. There is no guarantee that this issue is
avoided simply because the 2-dimension marginals of LH’s figure 1 are seen to be within
the 2-dimensional projected non-implausible region of figure 10, say.

LH then go on to describe their impressive work on the Coyote Universe (Heitmann
et al. (2009)), where, as they state, the main computational effort went into finding
suitably smooth representations of the power law (see LH’s figure 4), while retaining
the vital physical features (known as the baryonic acoustic oscillations), important for
understanding structure formation. They use PCA to capture the behaviour of all
outputs of the computer model. PCA is widely used in the computer model literature,
and has many obvious benefits. However, it has some disadvantages too. Often the most
important principal components will depend on all of the active inputs to the computer
model and hence emulating them may be difficult. This should be compared with the
Principal Variables approach discussed in the response to Ranjan above, where each



702 Rejoinder

principal variable may only depend on a small subset of the active inputs. Principal
variables have similar properties to principal components in their ability to largely
reconstruct the entire output set.

Although our approach differs from LH’s due to the use of Bayes linear methods
as opposed to a more fully Bayesian treatment, another fundamental difference is that
between history matching and calibration. LH are performing calibration and hence
assume there exists a single input (the “best input” x*, as defined in section 3), and
subsequently try to calculate the posterior distribution for the single point . In the
history matching approach we ask the more general question: which inputs = are not
obviously inconsistent with the notion of 7?7 It is not surprising that these approaches
give different but related answers. In particular the statement that there is a unique
best input may often sharpen the credible intervals, as compared to a Bayes linear or
even fully Bayesian history match. We discuss this difference in more detail in the
response to van Dyk below.

We highlight the above differences between their approach and that of our own to
emphasize the many subtleties involved in such computer model analysis. We would
recommend to anyone attempting a fully Bayesian calibration of such a complex com-
puter model, to consider preceding it by a history match. (Our understanding is that
this is why LH asked for the wave 2 runs rather than those of wave 1). A history match
should be performed to identify if there are any acceptable matches and their location in
input space (which is often of great interest to the modeller), and then a fully Bayesian
calibration should be performed only over the restricted input region defined by the
history match. Performing an MCMC algorithm whilst respecting various complex con-
straints as provided by the history match may present some interesting challenges: see
our concerns about this above and in the response to van Dyk.

This combined process is equivalent to cutting out the often large regions of input
space that would have extremely low posterior probability, before proceeding with the
Bayesian analysis, and should result in a highly accurate approximation to the posterior
distribution. We intend to explore this, powerful strategy, in future work.

4 Response to David van Dyk

We thank David van Dyk for his comments, and for the opportunity to expand further on
some aspects of our work. His comments raise interesting questions about the meaning,
the potential and the limitations of Bayesian investigations within fundamental science.
We deal with his points in turn.

The first point raised is a query about quality of fit in figure 14. This figure (which
shows new types of outputs not considered in this work) is included purely to show the
next stage of the matching process. As we have now identified the region of input space
consistent with both the bj and K luminosity function observed data, we are now free
to move around this region, exploring the effect on the new outputs shown in figure
14. In this way, we view history matching as an ongoing process, notably simpler than
attempting to incorporate all data constraints simultaneously.
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Van Dyk proceeds to give a description of history matching in terms of “standard
statistical methodology” using the log-likelihood L(6|Y). While there are similarities
between this description and our methods, van Dyk seriously oversimplifies some crucial
features.

0 does not exist: Most importantly, we do not assume that there exists a single
“true” input 6 (or best input z1), as even though the inputs to the Galform model
are related to real physical quantities, they are not themselves physical. Van Dyk’s
summary assumes that 6 exists as a true but unknown quantity. However, the actual
situation is that @ is largely a model construct and that as the Galform model evolves
over future generations, the interpretation of the various elements of 6 will change, with
some even ceasing to exist. As mentioned in the response to Lawrence and Higdon, not
assuming the existence of 6 changes the questions that one might ask. We ask only if
there are any values of the inputs x that are not inconsistent with the concept of such a
best input 6. We feel that it is essential to establish the answer to this question, before
considering whether a calibration is appropriate.

Implausibility Measure is not a log-likelihood: Even ignoring this issue, the
log-likelihood that van Dyk writes down is not comparable to the problem we analyse as
he has ignored the 6 dependance of o;, which comes from the use of emulators and is of
great importance in this context. That is to say, a more appropriate comparison would
be if Y; ~ N(1;(0),02(0)), where p;(0) and o;(#) both depend on 6. In this case the log-
likelihood is now, ignoring constants, L(0Y") = —1 log |S(6)|—Y_"", (Yi—wui(0))?/202(6),
where in this simple illustration the matrix ¥() = diag0?,..,02. Thus L(]Y’) contains
an additional —% log |X(0)| term which does not feature in our implausibility measures,
as this term comes directly from the full distributional assumption of normality, which
we do not make.

In summary our approach is both mathematically distinct and different in funda-
mental interpretation from the interpretation van Dyk suggests, and from most of the
approaches used in the literature. As discussed below, much of the computer model
terminology is used to highlight these essential differences.

In the section entitled “Employing the Common Statistical Framework for
Computer Modelling”, it is remarked that “(the authors) aim to find the values of
the parameter that result in the best fit to the data”. We in fact aim for the opposite: to
find the input parameters x that are clearly not good fits to the considered data, given
current knowledge of the computer simulator f(z). We then discard these inputs, leaving
a hopefully non-empty set of input parameters that are deemed non-implausible. As we
perform more runs of the computer model, or bring into consideration more outputs,
this set will decrease in size. At no point are we trying to find the “best” set of input
parameters, just those that give acceptable matches.

This essential difference between discarding ‘bad’ inputs and searching for ‘good’
inputs is critical, coming directly from the lack of a best input assumption, and is the
reason for the power of our sequential approach. It is far easier to emulate a small
set of outputs of the function in order to determine that large parts of the input space
are implausible (and continue this process iteratively), than it is to attempt to identify
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the “best fits” which would require emulation of all outputs, use of all observed data
and careful modelling of every part of the problem. Even if we are searching for good
matches, it is a sensible way to simplify massively the calculations by first eliminating
bad matches.

Often the different terminology in use in the computer model literature has arisen due
to the subtly different problems presented in this area. For example, history match-
ing, the process of iteratively discarding implausible inputs as outlined above, is not
equivalent to ‘model checking’ which refers to confirming all aspect of the stochastic
formulation. History matching is a process applied to the computer model (i.e. the
function f(x)) itself. The term ‘calibration’ is a statistical term widely used in inverse
regression problems, of which the calibration of a computer model through use of an
emulator can be viewed as a direct generalisation.

As discussed above, an implausibility measure is not the same as the likelihood. The
former is only informative regarding unacceptable (i.e. implausible) inputs and says
nothing about possible good inputs (a low implausible value I(z) should be interpreted
as “z is not ruled out yet”): it is deliberately not normed. The likelihood comes from
carefully modelling all aspects of the data (a sometimes arduous task in computer model
problems), and is informative regarding both ‘good’ and ‘bad’ inputs. The likelihood
in computer model applications is unfortunately often non-robust. We are somewhat
surprised as to van Dyk’s comments regarding the use of the term “inputs”. We use
the term in the mathematical sense to refer to the inputs x to the Galform function
f(z), and initially introduce them in the earlier sections as “input parameters” to avoid
confusion (see for example the abstract, section 1, section 2 and specifically table 1).
Thus they are distinguished from the other parameters in the problem e.g. those used
in fitting the emulators: f3;;, 0;, w; and 6;.

This is not just a case of different terminology, but rather a case of labelling the
specific types of problems faced in a computer model analysis that are often quite
different from those encountered in other statistical applications. Indeed, it is possible
to go further and remark that (as van Dyk does point out), statisticians can learn from
some of the ideas presented in the computer model literature. Specifically, the reasoning
leading to the clear and upfront acknowledgement that the computer model is not a
perfect representation of reality could also be applied to any statistical model too (as is
discussed in Goldstein (2010)). As van Dyk remarks, such computer models are often
embedded within large statistical models to enable analysis of complex systems. Care
must be taken in such situations not to oversimplify: the danger is that the computer
model is treated as reality, and no model discrepancy is used.

Van Dyk next argues that the multivariate implausibility measure I(z) given by
equation (16) should be considered superior to Ips(z) (and implicitly Tops(2) and Isps(x))
which are the first, second and third highest univariate implausibilities corresponding to
each individual output, respectively, and given by equations (13), (14) and (15). Again,
as we are not attempting to identify likely values of the parameters, we would argue that
the choice between univariate and multivariate measures is highly problem dependent,
and that in many cases one can pay too high a price for using the multivariate measure
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I(x) too early. This measure is very sensitive to possible failings of the emulators (it
generally requires the construction of an accurate multivariate emulator, which is often
difficult). Tt also requires a full multivariate model discrepancy specification which can
be both hard to elicit and to document (see for example equations (20) and (21) and the
accompanying discussions). For these reasons, we recommend using the conceptually
simpler, easier to elicit, and more robust measures Isp(z) and Isp (z) to reduce the
input parameter space in the initial waves. Then, as we have done in the current work,
I(x) can be brought in for use at a later wave, when emulation is easier. It would of
course be interesting, if possible, to track the changes in I(z) as one progresses from
wave 1 onward.

In the section “What does it mean to be a Bayesian” van Dyk gives some
interesting views about the Bayesian paradigm, many of which we agree with. Having
said this, the statement “the Bayes Linear approach is based on Bayes Theorem” is
misleading: as is discussed at the end of section 3.3, the Bayes Linear approach is a
generalisation of Bayes Theorem, based on taking expectation rather than probability
as the natural primitive for the subjectivist theory (see De Finetti (1974) and Goldstein
(2006) for more details). We would agree that one of the major benefits of a Bayesian
analysis is that “it is a principled analysis that fully accounts for the complexities of the
underlying distributions and avoids the old and often unrealistic Gaussian assumptions”,
but only provided serious effort is put into capturing the beliefs of the expert, and
into creating a realistic statistical model, so that the underlying distributions used
have actual physical meaning, as opposed to being based on arbitrary assumptions or
mathematical simplicity. Our perspective is that often this level of detailed elicitation
is infeasible, in which case we would rather make a simpler specification based on means
and variances and proceed with a tractable Bayes Linear analysis, than make arbitrary
assumptions as to the forms of several distributions and try to proceed with an often
difficult and (in the case of computer models) highly non-robust Bayesian analysis.

We now turn to the discussion of expert judgement within our analysis. First it
should be noted that the judgements asserting that the quantities in equations (1)
and (2) are uncorrelated actually represented the assessments made by the expert af-
ter extensive discussion and consideration. We also note that similar assumptions are
standard throughout the field of computer models and used in countless papers (e.g
Kennedy and O’Hagan (2001)), often with a much stronger assumption of full indepen-
dence. It is possible to consider the structural beliefs about model discrepancy even
more carefully (as is discussed in Goldstein and Rougier (2009)), but we considered the
current assessment adequate for the purposes of this study.

The most significant area of our analysis which involves expert judgement is that of
the model discrepancy ¢,,q which represents the difference between the model output and
reality itself. This was broken down into three contributions, two of which were assessed
using further computer model runs, while the third component ® 5 came directly from
Richard Bower’s expert judgements. In a Bayesian analysis of any form, it is impossible
to address the issue of model discrepancy meaningfully without using expert judgements
of this kind. Crucially, in this project we had the benefit of prolonged contact with the
expert resulting from regular monthly meetings for over two years. The judgements
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themselves were formed from many considerations of the possible deficiencies of the
model (missing physics, approximate models of certain processes, inaccurate dark matter
simulations) only some of which we were able to discuss in the paper due to length
restrictions. The judgements were made by an expert fully versed in the meaning and
impact of ®g. In this work, the model discrepancy should be understood in terms of the
expert’s tolerance for what would be classified as an acceptable run, and therefore the
model discrepancy is no longer an uncertain quantity to be estimated using standard
statistical methods.

The assessment as to whether the Galform model is an adequate model of Galaxy
Formation can only come from expert judgement. Van Dyk is clearly concerned that
“the expert assessments determine the final outcome”. This misunderstanding arises
due to the belief that the Galform model can be deemed acceptable by some abstract
notion of ‘right” or ‘wrong’. This is an assertion that is disconnected from the way in
which scientists view models of this complexity. Scientists are always concerned both
with incremental and paradigmatic improvements to their model. If, for example, we
found no acceptable runs, we would increase the tolerance as represented by the model
discrepancy, to determine how large it would have to be to obtain some ‘acceptable’
runs. This would be informative for the scientists as it would give some measure of how
inadequate the model is, and show the impact of the missing (or incorrect) physics in
the current model formulation. Such measures are crucial in helping scientists to assess
whether incremental modifications will be adequate to deal with the observed discrep-
ancy between the model output and physical observations. Note that, our approach
explicitly incorporates a sensitivity analysis as relates to the expert assessment of ®g.
As can be seen in equations (20) and (21) the Var(®g) is parameterised by three pa-
rameters a, b and c that the expert was unwilling to assign specific values. Therefore we
explored the impact on our implausibility measures of varying the parameters a, b and
¢ over ranges agreed by the expert and given by equation (21). We only discarded an
input  as implausible if it failed the implausibility cutoffs for every value of a, b and ¢ in
the given ranges. We also performed sensitivity analysis on the choice of implausibility
cutoffs imposed using various sets of diagnostic runs. A benefit of our approach is that
such sensitivity analysis can be relatively straightforward.

Van Dyk states “in my view even a Bayesian analysis must work hard to minimise
its assumptions and must be absolutely upfront about the impact of its subjective as-
sessments on the final analysis.” We could not agree with this statement more, provided
we are clear about the distinction between assumptions which are by necessity some-
what arbitrary, and subjective assessments, which reflect the careful and knowledgeable
assertions of experts. Rather than making several unjustifiable distributional assump-
tions (which are necessarily somewhat arbitrary and correspond to an infinite number of
probabilistic assertions) whose impact on the posterior is in many cases extremely hard
to assess, there often are advantages in using a Bayes linear style approach involving
only a relatively small number of first and second order quantities, where subjective
assessments on quantities such as the model discrepancy enter clearly, and the effects
of which are easy to demonstrate. Having said all this, we would be interested to see
a full elicitation as applied to Galform, followed by a Bayesian inference in which each
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distributional statement is robustly defended.

In the section entitled “If it looks like a Duck...” the implausibility measures are
again equated to the Gaussian log-likelihood, which as discussed above, is an inappro-
priate comparison. For example, if we had judged Gaussian distributional assumptions
to be appropriate, we would have used much tighter credible volumes and cutoffs as we
would not have had to appeal to Pukelsheim’s 30 rule (the very powerful result that
for any unimodal, continuous distribution more than 95% of its probability lies within
+30) and instead used a more familiar 20 rule (as incidentally it appears LH have done).
Such differences are always present when comparing a Bayes Linear approach to a full
Gaussian specification in any example.

Van Dyk then asks directly about the differences between the two approaches in
this application: they are substantial as we now describe. A fully Gaussian Bayesian
analysis would attempt to construct a likelihood based on all available data points
and an assertion of a unique true value for 8. It would further depend on constructing
multivariate emulators to represent jointly every single output of the computer model for
which there is data, even if some of these outputs are very difficult to emulate accurately
over the whole input space. The modelling assumptions and emulator construction that
would go into building this multimodal likelihood would need to be highly accurate,
otherwise it would result in any inference being extremely non-robust. The approach
we describe in this work avoids both the assertion of the unique true value of the
parameters and much of the difficulty in the modelling and analysis. We deal with
implausibility measures that are far more robust being functions of small numbers of
outputs (outputs which are chosen for their ease of emulation). At each wave we do not
need to model any highly multimodal likelihood: all we need to do is draw a conservative
contour around the low implausibility input points. As demonstrated in section 7, at
each wave the emulators improve in accuracy and we can consider more output data
constraints when necessary. Note that as we introduce the constraints from the data
sequentially, even a large number of constraints is often straightforward to incorporate,
unlike for an MCMC algorithm for which it may be problematic.

In “The scientific objective” van Dyk asks some questions about the goal of
this analysis. The appropriateness of the analysis depends upon the context of the
scientific question. If we are looking at well defined physical quantities (location, age,
metal content) then often estimating these quantities would be the appropriate choice
of analysis. However the Galform input parameters are more abstract, and only make
sense in terms of the model and its applicability. In this case we are trying to assess
whether Galform can shed light onto the physical world, or at least contribute to that
large question. An approach where we perform a Bayesian calibration for the best
input %, may become appropriate when the model has been shown to be sufficiently
accurate for all intended purposes. Provided that the history match has revealed the
model does appear to be sufficiently accurate, the discussant’s suggestions in the section
“The Final Analysis” may be helpful for achieving such a Bayesian calibration. As a
general principal, carrying out a history match as a first stage in the Bayesian calibration
exercise will usually be very useful in greatly restricting the volume of parameter space
that needs to be explored by the MCMC algorithm.
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