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SURE INDEPENDENCE SCREENING IN GENERALIZED LINEAR
MODELS WITH NP-DIMENSIONALITY1

BY JIANQING FAN AND RUI SONG

Princeton University and Colorado State University

Ultrahigh-dimensional variable selection plays an increasingly important
role in contemporary scientific discoveries and statistical research. Among
others, Fan and Lv [J. R. Stat. Soc. Ser. B Stat. Methodol. 70 (2008) 849–911]
propose an independent screening framework by ranking the marginal corre-
lations. They showed that the correlation ranking procedure possesses a sure
independence screening property within the context of the linear model with
Gaussian covariates and responses. In this paper, we propose a more general
version of the independent learning with ranking the maximum marginal like-
lihood estimates or the maximum marginal likelihood itself in generalized lin-
ear models. We show that the proposed methods, with Fan and Lv [J. R. Stat.
Soc. Ser. B Stat. Methodol. 70 (2008) 849–911] as a very special case, also
possess the sure screening property with vanishing false selection rate. The
conditions under which the independence learning possesses a sure screening
is surprisingly simple. This justifies the applicability of such a simple method
in a wide spectrum. We quantify explicitly the extent to which the dimen-
sionality can be reduced by independence screening, which depends on the
interactions of the covariance matrix of covariates and true parameters. Sim-
ulation studies are used to illustrate the utility of the proposed approaches.
In addition, we establish an exponential inequality for the quasi-maximum
likelihood estimator which is useful for high-dimensional statistical learning.

1. Introduction. The ultrahigh-dimensional regression problem is a signifi-
cant feature in many areas of modern scientific research using quantitative mea-
surements such as microarrays, genomics, proteomics, brain images and genetic
data. For example, in studying the associations between phenotypes such as height
and cholesterol level and genotypes, it can involve millions of SNPs; in disease
classification using microarray data, it can use thousands of expression profiles,
and dimensionality grows rapidly when interactions are considered. Such a de-
mand from applications brings a lot of challenge to statistical inference, as the
dimension p can grow much faster than the sample size n such that many mod-
els are not even identifiable. By nonpolynomial dimensionality or simply NP-
dimensionality, we mean logp = O(na) for some a > 0. We will also loosely re-
fer it to as an ultrahigh-dimensionality. The phenomenon of noise accumulation in
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high-dimensional regression has also been observed by statisticians and computer
scientists. See Fan and Lv (2008) and Fan and Fan (2008) for a comprehensive
review and references therein. When dimension p is ultrahigh, it is often assumed
that only a small number of variables among predictors X1, . . . ,Xp contribute to
the response, which leads to the sparsity of the parameter vector β . As a conse-
quence, variable selection plays a prominent role in high-dimensional statistical
modeling.

Many variable selection techniques for various high-dimensional statistical
models have been proposed. Most of them are based on the penalized pseudo-
likelihood approach, such as the bridge regression in Frank and Friedman (1993),
the LASSO in Tibshirani (1996), the SCAD and other folded-concave penalty in
Fan and Li (2001), the Dantzig selector in Candes and Tao (2007) and their re-
lated methods [Zou (2006); Zou and Li (2008)], to name a few. Theoretical studies
of these methods concentrate on the persistency [Greenshtein and Ritov (2004);
van de Geer (2008)], consistency and oracle properties [Fan and Li (2001); Zou
(2006)]. However, in ultrahigh-dimensional statistical learning problems, these
methods may not perform well due to the simultaneous challenges of computa-
tional expediency, statistical accuracy and algorithmic stability [Fan, Samworth
and Wu (2009)].

Fan and Lv (2008) proposed a sure independent screening (SIS) method to se-
lect important variables in ultrahigh-dimensional linear models. Their proposed
two-stage procedure can deal with the aforementioned three challenges better than
other methods. See also Huang, Horowitz and Ma (2008) for a related study based
on a marginal bridge regression. Fan and Lv (2008) showed that the correlation
ranking of features possesses a sure independence screening (SIS) property un-
der certain conditions; that is, with probability very close to 1, the independence
screening technique retains all of the important variables in the model. However,
the SIS procedure in Fan and Lv (2008) only restricts to the ordinary linear models
and their technical arguments depend heavily on the joint normality assumptions
and cannot easily be extended even within the context of a linear model. This lim-
its significantly its use in practice which excludes categorical variables. Huang,
Horowitz and Ma (2008) also investigate the marginal bridge regression in the or-
dinary linear model and their arguments depend also heavily on the explicit expres-
sions of the least-square estimator and bridge regression. This calls for research on
SIS procedures in more general models and under less restrictive assumptions.

In this paper, we consider an independence learning by ranking the maxi-
mum marginal likelihood estimator (MMLE) or maximum marginal likelihood
itself for generalized linear models. That is, we fit p marginal regressions by
maximizing the marginal likelihood with response Y and the marginal covariate
Xi, i = 1, . . . , p (and the intercept) each time. The magnitude of the absolute val-
ues of the MMLE can preserve the nonsparsity information of the joint regres-
sion models, provided that the true values of the marginal likelihood preserve the
nonsparsity of the joint regression models and that the MMLE estimates the true
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values of the marginal likelihood uniformly well. The former holds under a surpris-
ingly simple condition, whereas the latter requires a development of uniform con-
vergence over NP-dimensional marginal likelihoods. Hall, Titterington and Xue
(2009) used a different marginal utility, derived from an empirical likelihood point
of view. Hall and Miller (2009) proposed a generalized correlation ranking, which
allows nonlinear regression. Both papers proposed an interesting bootstrap method
to assess the authority of the selected features.

As the MMLE or maximum likelihood ranking is equivalent to the marginal
correlation ranking in the ordinary linear models, our work can thus be considered
as an important extension of SIS in Fan and Lv (2008), where the joint normality of
the response and covariates is imposed. Moreover, our results improve over those
in Fan and Lv (2008) in at least three aspects. First, we establish a new framework
for having SIS properties, which does not build on the normality assumption even
in the linear model setting. Second, while it is not obvious (and could be hard) to
generalize the proof of Fan and Lv (2008) to more complicated models, in the cur-
rent framework, the SIS procedure can be applied to the generalized linear models
and possibly other models. Third, our results can easily be applied to the gener-
alized correlation ranking [Hall and Miller (2009)] and other rankings based on a
group of marginal variables.

Fitting marginal models to a joint regression is a type of model misspecifica-
tion [White (1982)], since we drop out most covariates from the model fitting.
In this paper, we establish a nonasymptotic tail probability bound for the MMLE
under model misspecifications, which is beyond the traditional asymptotic frame-
work of model misspecification and of interest in its own right. As a practical
screening method, independent screening can miss variables that are marginally
weakly correlated with the response variables, but jointly highly important to the
response variables, and also rank some jointly unimportant variables too high by
using marginal methods. Fan and Lv (2008) and Fan, Samworth and Wu (2009)
develop iteratively conditional screening and selection methods to make the pro-
cedures robust and practical. The former focuses on ordinary linear models and
the latter improves the idea in the former and expands significantly the scope of
applicability, including generalized linear models.

The SIS property can be achieved as long as the surrogate, in this case, the
marginal utility, can preserve the nonsparsity of the true parameter values. With
a similar idea, Fan, Samworth and Wu (2009) proposed a SIS procedure for gen-
eralized linear models, by sorting the maximum likelihood functions, which is a
type of “marginal likelihood ratio” ranking, whereas the MMLE can be viewed as
a Wald type of statistic. The two methods are equivalent in terms of sure screen-
ing properties in our proposed framework. This will be demonstrated in our paper.
The key technical challenge in the maximum marginal likelihood ranking is that
the signal can even be weaker than the noise. We overcome this technical difficulty
by using the invariance property of ranking under monotonic transforms.
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The rest of the paper is organized as follows. In Section 2, we briefly introduce
the setups of the generalized linear models. The SIS procedure is presented in
Section 3. In Section 4, we provide an exponential bound for quasi maximum
likelihood estimator. The SIS properties of the MMLE learning are presented in
Section 5. In Section 6, we formulate the marginal likelihood screening and show
the SIS property. Some simulation results are presented in Section 7. A summary
of our findings and discussions is in Section 8. The detailed proofs are relegated to
Section 9.

2. Generalized linear models. Assume that the random scalar Y is from an
exponential family with the probability density function taking the canonical form

fY (y; θ) = exp{yθ − b(θ) + c(y)}(1)

for some known functions b(·), c(·) and unknown function θ . Here we do not
consider the dispersion parameter as we only model the mean regression. We can
easily introduce a dispersion parameter in (1) and the results continue to hold. The
function θ is usually called the canonical or natural parameter. The mean response
is b′(θ), the first derivative of b(θ) with respect to θ . We consider the problem of
estimating a (p + 1)-vector of parameter β = (β0, β1, . . . , βp) from the following
generalized linear model:

E(Y |X = x) = b′(θ(x)) = g−1

( p∑
j=0

βjxj

)
,(2)

where x = {x0, x1, . . . , xp}T is a (p + 1)-dimensional covariate and x0 = 1 rep-
resents the intercept. If g is the canonical link, that is, g = (b′)−1, then θ(x) =∑p

j=0 βjxj . We focus on the canonical link function in this paper for simplicity of
presentation.

Assume that the observed data {(Xi , Yi), i = 1, . . . , n} are i.i.d. copies of (X, Y ),
where the covariate X = (X0,X1, . . . ,Xp) is a (p+1)-dimensional random vector
and X0 = 1. We allow p to grow with n and denote it as pn whenever needed.

We note that the ordinary linear model Y = XT β + ε with ε ∼ N(0,1) is a
special case of model (2), by taking g(μ) = μ and b(θ) = θ2/2. When the design
matrix X is standardized, the ranking by the magnitude of the marginal correlation
is in fact the same as the ranking by the magnitude of the maximum marginal like-
lihood estimator (MMLE). Next we propose an independence screening method to
GLIM based on the MMLE. We also assume that the covariates are standardized
to have mean zero and standard deviation one

EXj = 0 and EX2
j = 1, j = 1, . . . , pn.
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3. Independence screening with MMLE. Let M� = {1 ≤ j ≤ pn :β�
j �=

0} be the true sparse model with nonsparsity size sn = |M�|, where β� =
(β�

0, β�
1, . . . , β�

pn
) denotes the true value. In this paper, we refer to marginal models

as fitting models with componentwise covariates. The maximum marginal likeli-
hood estimator (MMLE) β̂M

j , for j = 1, . . . , pn, is defined as the minimizer of the
componentwise regression

β̂M
j = (β̂M

j,0, β̂
M
j ) = arg min

β0,βj

Pnl(β0 + βjXj ,Y ),

where l(Y ; θ) = −[θY − b(θ) − log c(Y )] and Pnf (X,Y ) = n−1 ∑n
i=1 f (Xi, Yi)

is the empirical measure. This can be rapidly computed and its implementation
is robust, avoiding numerical instability in NP-dimensional problems. We corre-
spondingly define the population version of the minimizer of the componentwise
regression,

βM
j = (βM

j,0, β
M
j ) = arg min

β0,βj

El(β0 + βjXj ,Y ) for j = 1, . . . , pn,

where E denotes the expectation under the true model.
We select a set of variables

M̂γn = {1 ≤ j ≤ pn : |β̂M
j | ≥ γn},(3)

where γn is a predefined threshold value. Such an independence learning ranks
the importance of features according to their magnitude of marginal regression
coefficients. With an independence learning, we dramatically decrease the dimen-
sion of the parameter space from pn (possibly hundreds of thousands) to a much
smaller number by choosing a large γn, and hence the computation is much more
feasible. Although the interpretations and implications of the marginal models are
biased from the joint model, the nonsparse information about the joint model can
be passed along to the marginal model under a mild condition. Hence it is suitable
for the purpose of variable screening. Next we will show under certain conditions
that the sure screening property holds, that is, the set M� belongs to M̂γn with
probability one asymptotically, for an appropriate choice of γn. To accomplish
this, we need the following technical device.

4. An exponential bound for QMLE. In this section, we obtain an exponen-
tial bound for the quasi-MLE (QMLE), which will be used in the next section.
Since this result holds under very general conditions and is of self-interest, in the
following we make a more general description of the model and its conditions.

Consider data {Xi , Yi}, i = 1, . . . , n, are n i.i.d. samples of (X, Y ) ∈ X × Y for
some space X and Y . A regression model for X and Y is assumed with quasi-
likelihood function −l(XT β, Y ). Here Y and X = (X1, . . . ,Xq)

T represent the
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response and the q-dimensional covariate vector, which may include both discrete
and continuous components and the dimensionality can also depend on n. Let

β0 = arg min
β

El(XT β, Y )

be the population parameter. Assume that β0 is an interior point of a sufficiently
large, compact and convex set B ∈ Rq . The following conditions on the model are
needed:

(A) The Fisher information,

I (β) = E

{[
∂

∂β
l(XT β, Y )

][
∂

∂β
l(XT β, Y )

]T }
,

is finite and positive definite at β = β0. Moreover, ‖I (β)‖B =
supβ∈B,‖x‖=1 ‖I (β)1/2x‖ exists, where ‖ · ‖ is the Euclidean norm.

(B) The function l(xT β, y) satisfies the Lipschitz property with positive constant
kn

|l(xT β, y) − l(xT β ′, y)|In(x, y) ≤ kn|xT β − xT β ′|In(x, y)

for β,β ′ ∈ B, where In(x, y) = I ((x, y) ∈ �n) with

�n = {(x, y) :‖x‖∞ ≤ Kn, |y| ≤ K�
n}

for some sufficiently large positive constants Kn and K�
n , and ‖ · ‖∞ being the

supremum norm. In addition, there exists a sufficiently large constant C such
that with bn = CknV

−1
n (q/n)1/2 and Vn given in condition C

sup
β∈B,‖β−β0‖≤bn

|E[l(XT β, Y ) − l(XT β0, Y )](1 − In(X, Y ))| ≤ o(q/n),

where Vn is the constant given in condition C.
(C) The function l(XT β, Y ) is convex in β , satisfying

E
(
l(XT β, Y ) − l(XT β0, Y )

) ≥ Vn‖β − β0‖2

for all ‖β − β0‖ ≤ bn and some positive constants Vn.

Condition A is analogous to assumption A6(b) of White (1982) and assump-
tion Rs in Fahrmeir and Kaufmann (1985). It ensures the identifiability and the
existence of the QMLE and is satisfied for many examples of generalized linear
models. Conditions A and C are overlapped but not the same.

We now establish an exponential bound for the tail probability of the QMLE

β̂ = arg min
β

Pnl(XT β, Y ).

The idea of the proof is to connect
√

n‖β̂ − β0‖ to the tail of certain empirical
processes and utilize the convexity and Lipschitz continuities.

THEOREM 1. Under conditions A–C, it holds that for any t > 0,

P
(√

n‖β̂ − β0‖ ≥ 16kn(1 + t)/Vn

) ≤ exp(−2t2/K2
n) + nP (�c

n).
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5. Sure screening properties with MMLE. In this section, we introduce a
new framework for establishing the sure screening property with MMLE in the
canonical exponential family (1). We divide into three sections to present our find-
ings.

5.1. Population aspect. As fitting marginal regressions to a joint regression is
a type of model misspecification, an important question would be: at what level
the model information is preserved. Specifically for screening purposes, we are
interested in the preservation of the nonsparsity from the joint regression to the
marginal regression. This can be summarized into the following two questions.
First, for the sure screening purpose, if a variable Xj is jointly important (β�

j �=
0), will (and under what conditions) it still be marginally important (βM

j �= 0)?
Second, for the model selection consistency purpose, if a variable Xj is jointly
unimportant (β�

j = 0), will it still be marginally unimportant (βM
j = 0)? We aim

to answer these two questions in this section.
The following theorem reveals that the marginal regression parameter is in fact

a measurement of the correlation between the marginal covariate and the mean
response function.

THEOREM 2. For j = 1, . . . , pn, the marginal regression parameters βM
j = 0

if and only if cov(b′(XT β�),Xj ) = 0.

By using the fact that that XT β� = β�
0 + ∑

j∈M�
Xjβ

�
j , we can easily show the

following corollary.

COROLLARY 1. If the partial orthogonality condition holds, that is, {Xj, j /∈
M�} is independent of {Xi, i ∈ M�}, then βM

j = 0, for j /∈ M�.

This partial orthogonality condition is essentially the assumption made in
Huang, Horowitz and Ma (2008) who showed the model selection consistency
in the special case with the ordinary linear model and bridge regression. Note that
cov(b′(XT β�),Xj ) = cov(Y,Xj ). A necessary condition for sure screening is that
the important variables Xj with β�

j �= 0 are correlated with the response, which

usually holds. When they are correlated with the response, by Theorem 2, βM
j �= 0,

for j ∈ M�. In other words, the marginal model pertains to the information about
the important variables in the joint model. This is the theoretical basis for the sure
independence screening. On the other hand, if the partial orthogonality condition
in Corollary 1 holds, then βM

j = 0 for j /∈ M�. In this case, there exists a threshold
γn such that the marginally selected model is model selection consistent

min
j∈M�

|βM
j | ≥ γn, max

j /∈M�

|βM
j | = 0.
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To have a sure screening property based on the sample version (3), we need

min
j∈M�

|βM
j | ≥ O(n−κ)

for some κ < 1/2 so that the marginal signals are stronger than the stochastic noise.
The following theorem shows that this is possible.

THEOREM 3. If | cov(b′(XT β�),Xj )| ≥ c1n
−κ for j ∈ M� and a positive

constant c1 > 0, then there exists a positive constant c2 such that

min
j∈M�

|βM
j | ≥ c2n

−κ ,

provided that b′′(·) is bounded or

EG(a|Xj |)|Xj |I (|Xj | ≥ nη) ≤ dn−κ for some 0 < η < κ,

and some sufficiently small positive constants a and d , where G(|x|) =
sup|u|≤|x| |b′(u)|.

Note that for the normal and Bernoulli distribution, b′′(·) is bounded, whereas
for the Poisson distribution, G(|x|) = exp(|x|) and Theorem 3 requires the tails
of Xj to be light. Under some additional conditions, we will show in the proof of
Theorem 5 that

p∑
j=1

|βM
j |2 = O(‖�β�‖2) = O(λmax(�)),

where � = var(X), and λmax(�) is its maximum eigenvalue. The first equality
requires some efforts to prove, whereas the second equality follows easily from
the assumption

var(XT β�) = β�T �β� = O(1).

The implication of this result is that there cannot be too many variables that have
marginal coefficient |βM

j | that exceeds certain thresholding level. That achieves
the sparsity in final selected model.

When the covariates are jointly normally distributed, the condition of Theorem 3
can be further simplified.

PROPOSITION 1. Suppose that X and Z are jointly normal with mean zero
and standard deviation 1. For a strictly monotonic function f (·), cov(X,Z) = 0 if
and only if cov(X,f (Z)) = 0, provided the latter covariance exists. In addition,

| cov(X,f (Z))| ≥ |ρ| inf|x|≤c|ρ| |g
′(x)|EX2I (|X| ≤ c)

for any c > 0, where ρ = EXZ, g(x) = Ef (x + ε) with ε ∼ N(0,1 − ρ2).
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The above proposition shows that the covariance of X and f (Z) can be bounded
from below by the covariance between X and Z, namely

| cov(X,f (Z))| ≥ d|ρ|, d = inf|x|≤c
|g′(x)|EX2I (|X| ≤ c),

in which d > 0 for a sufficiently small c. The first part of the proposition actually
holds when the conditional density f (z|x) of Z given X is a monotonic likelihood
family [Bickel and Doksum (2001)] when x is regarded as a parameter. By taking
Z = XT β�, a direct application of Theorem 2 is that βM

j = 0 if and only if

cov(XT β�,Xj ) = 0,

provided that X is jointly normal, since b′(·) is an increasing function. Further-
more, if

| cov(XT β�,Xj )| ≥ c0n
−κ , κ < 1/2,(4)

for some positive constant c0, a minimum condition required even for the least-
squares model [Fan and Lv (2008)], then by the second part of Proposition 1, we
have

| cov(b′(XT β�),Xj )| ≥ c1n
−κ

for some constant c1. Therefore, by Theorem 2, there exists a positive constant c2
such that

|βM
j | ≥ c2n

−κ .

In other words, (4) suffices to have marginal signals that are above the maximum
noise level.

5.2. Uniform convergence and sure screening. To establish the SIS property
of MMLE, a key point is to establish the uniform convergence of the MMLEs.
That is, to control the maximum noise level relative to the signal. Next we establish
the uniform convergence rate for the MMLEs and sure screening property of the
method in (3). The former will be useful in controlling the size of the selected set.

Let βj = (βj,0, βj )
T denote the two-dimensional parameter and Xj = (1,Xj )

T .
Due to the concavity of the log-likelihood in GLIM with the canonical link,
El(XT

j βj , Y ) has a unique minimum over βj ∈ B at an interior point βM
j =

(βM
j,0, β

M
j )T , where B = {|βM

j,0| ≤ B, |βM
j | ≤ B} is a square with the width B over

which the marginal likelihood is maximized. The following is an updated version
of conditions A–C for each marginal regression and two additional conditions for
the covariates and the population parameters:

A′. The marginal Fisher information: Ij (βj ) = E{b′′(XT
j βj )Xj XT

j } is finite and

positive definite at βj = βM
j , for j = 1, . . . , pn. Moreover, ‖Ij (βj )‖B is

bounded from above.
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B′. The second derivative of b(θ) is continuous and positive. There exists an ε1 >

0 such that for all j = 1, . . . , pn,

sup
β∈B, ‖β−βM

j ‖≤ε1

|Eb(XT
j β)I (|Xj | > Kn)| ≤ o(n−1).

C′. For all βj ∈ B, we have E(l(XT
j βj , Y ) − l(XT

j βM
j ,Y )) ≥ V ‖βj − βM

j ‖2, for
some positive V , bounded from below uniformly over j = 1, . . . , pn.

D. There exists some positive constants m0, m1, s0, s1 and α, such that for suffi-
ciently large t ,

P(|Xj | > t) ≤ (m1 − s1) exp{−m0t
α} for j = 1, . . . , pn,

and that

E exp
(
b(XT β� + s0) − b(XT β�)

) + E exp
(
b(XT β� − s0) − b(XT β�)

) ≤ s1.

E. The conditions in Theorem 3 hold.

Conditions A′–C′ are satisfied in a lot of examples of generalized linear mod-
els, such as linear regression, logistic regression and Poisson regression. Note that
the second part of condition D ensures the tail of the response variable Y to be
exponentially light, as shown in the following lemma:

LEMMA 1. If condition D holds, for any t > 0,

P(|Y | ≥ m0t
α/s0) ≤ s1 exp(−m0t

α).

Let kn = b′(KnB + B) + m0K
α
n /s0. Then condition B holds for exponential

family (1) with K�
n = m0K

α
n /s0. The Lipschitz constant kn is bounded for the lo-

gistic regression, since Y and b′(·) are bounded. The following theorem gives a
uniform convergence result of MMLEs and a sure screening property. Interest-
ingly, the sure screening property does not directly depend on the property of the
covariance matrix of the covariates such as the growth of its operator norm. This
is an advantage over using the full likelihood.

THEOREM 4. Suppose that conditions A′, B′, C′ and D hold.

(i) If n1−2κ/(k2
nK

2
n) → ∞, then for any c3 > 0, there exists a positive constant c4

such that

P
(

max
1≤j≤pn

|β̂M
j − βM

j | ≥ c3n
−κ

)
≤ pn

{
exp

(−c4n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n )

}
.

(ii) If, in addition, condition E holds, then by taking γn = c5n
−κ with c5 ≤ c2/2,

we have

P(M� ⊂ M̂γn) ≥ 1 − sn
{
exp

(−c4n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n )

}
,
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where sn = |M�|, the size of nonsparse elements.

REMARK 1. If we assume that minj∈M∗ | cov(b′(XT β�),Xj )| ≥ c1n
−κ+δ for

any δ > 0, then one can take γn = cn−κ+δ/2 for any c > 0 in Theorem 4. This is
essentially the thresholding used in Fan and Lv (2008).

Note that when b′(·) is bounded as the Bernoulli model, kn is a finite constant.
In this case, by balancing the two terms in the upper bound of Theorem 4(i), the
optimal order of Kn is given by

Kn = n(1−2κ)/(α+2)

and

P
(

max
1≤j≤pn

|β̂M
j − βM

j | ≥ c3n
−κ

)
= O

{
pn exp

(−c4n
(1−2κ)α/(α+2))},

for a positive constant c4. When the covariates Xj are bounded, then kn and Kn

can be taken as finite constants. In this case,

P
(

max
1≤j≤pn

|β̂M
j − βM

j | ≥ c3n
−κ

)
≤ O{pn exp(−c4n

1−2κ)}.
In both aforementioned cases, the tail probability in Theorem 4 is exponentially
small. In other words, we can handle the NP-dimensionality,

logpn = o
(
n(1−2κ)α/(α+2)),

with α = ∞ for the case of bounded covariates.
For the ordinary linear model, kn = B(Kn + 1) + Kα

n /(2s0) and by taking the
optimal order of Kn = n(1−2κ)/A with A = max(α + 4,3α + 2), we have

P
(

max
1≤j≤pn

|β̂M
j − βM

j | > c3n
−κ

)
= O

{
pn exp

(−c4n
(1−2κ)α/A)}

.

When the covariates are normal, α = 2 and our result is weaker than that given in
Fan and Lv (2008) who permits logpn = o(n1−2κ) whereas Theorem 4 can only
handle logpn = o(n(1−2κ)/4). However, we allow nonnormal covariate and other
error distributions.

The above discussion applies to the sure screening property given in Theo-
rem 4(ii). It is only the size of nonsparse elements sn that matters for the purpose
of sure screening, not the dimensionality pn.

5.3. Controlling false selection rates. After applying the variable screening
procedure, the question arrives naturally how large the set M̂γn is. In other words,
has the number of variables been actually reduced by the independence learning?
In this section, we aim to answer this question.

A simple answer to this question is the ideal case in which

cov(b′(XT β�),Xj ) = o(n−κ) for j /∈ M�.
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In this case, under some mild conditions, we can show (see the proof of Theorem 3)
that

max
j /∈M�

|βM
j | = o(n−κ).

This, together with Theorem 4(i) shows that

max
j /∈M�

|β̂M
j | ≤ c3n

−κ for any c3 > 0,

with probability tending to one if the probability in Theorem 4(i) tends to zero.
Hence, by the choice of γn as in Theorem 4(ii), we can achieve model selection
consistency

P(M̂γn = M�) = 1 − o(1).

This kind of condition was indeed implied by the condition in Huang, Horowitz
and Ma (2008) in the special case with ordinary linear model using the bridge
regression who draw a similar conclusion.

We now deal with the more general case. The idea is to bound the size of
the selected set (3) by using the fact var(Y ) is bounded. This usually implies
var(XT β�) = β�T �β� = O(1). We need the following additional conditions:

F. The variance var(XT β�) is bounded from above and below.
G. Either b′′(·) is bounded or XM = (X1, . . . ,Xpn)

T follows an elliptically con-
toured distribution, that is,

XM = �
1/2
1 RU,

and |Eb′(XT β�)(XT β� − β�
0)| is bounded, where U is uniformly distributed

on the unit sphere in p-dimensional Euclidean space, independent of the non-
negative random variable R, and �1 = var(XM).

Note that � = diag(0,�1) in condition G′, since the covariance matrices differ
only in the intercept term. Hence, λmax(�) = λmax(�1). The following result is
about the size of M̂γn .

THEOREM 5. Under conditions A′, B′, C′, D, F and G, we have for any γn =
c5n

−2κ , there exists a c4 such that

P [|M̂γn | ≤ O{n2κλmax(�)}]
≥ 1 − pn

{
exp

(−c4n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n )

}
.

The right-hand side probability has been explained in Section 5.2. From the
proof of Theorem 5, we actually show that the number of selected variables is of or-
der ‖�β�‖2/γ 2

n , which is further bounded by O{n2κλmax(�)} using var(XT β�) =
O(1). Interestingly, while the sure screening property does not depend on the be-
havior of �, the number of selected variables is affected by how correlated the
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covariates are. When n2κλmax(�)/p → 0, the number of selected variables are in-
deed negligible comparing to the original size. In this case, the percent of falsely
discovered variables is of course negligible. In particular, when λmax(�) = O(nτ ),
the size of selected variable is of order O(n2κ+τ ). This is of the same order as in
Fan and Lv (2008) for the multiple regression model with the Gaussian data who
needs additional condition that 2κ + τ < 1. Our result is an extension of Fan and
Lv (2008) even in this very specific case without the condition 2κ + τ < 1. In ad-
dition, our result is more intuitive: the number of selected variables is related to
λmax(�), or, more precisely, ‖�β�‖2 and the thresholding parameter γn.

6. A likelihood ratio screening. In a similar variable screening problem with
generalized linear models, Fan, Samworth and Wu (2009) suggest to screen the
variables by sorting the marginal likelihood. This method can be viewed as a mar-
ginal likelihood ratio screening, as it builds on the increments of the log-likelihood.
In this section we show that the likelihood ratio screening is equivalent to the
MMLE screening in the sense that they both possess the sure screening property
and that the number of selected variables of the two methods are of the same order
of magnitude.

We first formulate the marginal likelihood screening procedure. Let

Lj,n = Pn{l(β̂M
0 , Y ) − l(XT

j β̂M
j ,Y )}, j = 1, . . . , pn,

and Ln = (L1,n, . . . ,Lpn,n)
T , where β̂M

0 = arg minβ0
Pnl(β0, Y ). Correspond-

ingly, let

L�
j = E{l(βM

0 , Y ) − l(XT
j βM

j ,Y )}, j = 1, . . . , pn,

and L� = (L�
1, . . . ,L

�
pn

)T , where βM
0 = arg minβ0

El(β0, Y ). It can be shown that

EY = b′(βM
0 ) and that Y = b′(β̂M

0 ), where Y is the sample average. We sort the
vector Ln in a descent order and select a set of variables

N̂νn = {1 ≤ j ≤ pn :Lj,n ≥ νn},
where νn is a predefined threshold value. Such an independence learning ranks
the importance of features according to their marginal contributions to the magni-
tudes of the likelihood function. The marginal likelihood screening and the MMLE
screening share a common computation procedure as solving pn optimization
problems over a two-dimensional parameter space. Hence the computation is much
more feasible than traditional variable selection methods.

Compared with MMLE screening, where the information utilized is only the
magnitudes of the estimators, the marginal likelihood screening incorporates the
whole contributions of the features to the likelihood increments: both the magni-
tudes of the estimators and their associated variation. Under the current condition
(condition C′), the variance of the MMLEs are at a comparable level (through the
magnitude of V , an implication of the convexity of the objective functions), and
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the two screening methods are equivalent. Otherwise, if V depends on n, the mar-
ginal likelihood screening can still preserve the nonsparsity structure, while the
MMLE screening may need some corresponding adjustments, which we will not
discuss in detail as it is beyond the scope of the current paper.

Next we will show that the sure screening property holds under certain condi-
tions. Similarly to the MMLE screening, we first build the theoretical foundation
of the marginal likelihood screening. That is, the marginal likelihood increment
is also a measurement of the correlation between the marginal covariate and the
mean response function.

THEOREM 6. For j = 1, . . . , pn, the marginal likelihood increment L�
j = 0 if

and only if cov(b′(XT β�),Xj ) = 0.

As a direct corollary of Theorem 1, we can easily show the following corollary
for the purpose of model selection consistency.

COROLLARY 2. If the partial orthogonality condition in Corollary 1 holds,
then L�

j = 0, for j /∈ M�.

We can also strengthen the result of minimum signals as follows. On the other
hand, we also show that the total signals cannot be too large. That is, there cannot
be too many signals that exceed certain threshold.

THEOREM 7. Under the conditions in Theorem 3 and the condition C′, we
have

min
j∈M�

|L�
j | ≥ c6n

−2κ

for some positive constant c6, provided that | cov(b′(XT β�),Xj )| ≥ c1n
−κ for j ∈

M�. If, in addition, conditions F and G hold, then

‖L�‖ = O(‖βM‖2) = O(‖�β�‖2) = O(λmax(�)).

The technical challenge is that the stochastic noise ‖Ln −L�‖∞ is usually of the
order of O(n−2κ + n−1/2 logpn), which can be an order of magnitude larger than
the signals given in Theorem 7, unless κ < 1/4. Nevertheless, by a different trick
that utilizes the fact that ranking is invariant under a strict monotonic transform,
we are able to demonstrate the sure screening independence property for κ < 1/2.

THEOREM 8. Suppose that conditions A′, B′, C′ and D, E and F hold. Then,
by taking νn = c7n

−2κ for a sufficiently small c7 > 0, there exists a c8 > 0 such
that

P(M� ⊂ N̂νn) ≥ 1 − sn
{
exp

(−c8n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n )

}
.
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Similarly to the MMLE screening, we can control the size of N̂νn as follows.
For simplicity of the technical argument, we focus only on the case where b′′(·) is
bounded.

THEOREM 9. Under conditions A′, B′, C′, D, F and G, if b′′(·) is bounded,
then we have

P [|N̂νn | ≤ O{n2κλmax(�)}]
≥ 1 − pn

{
exp

(−c8n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n )

}
.

7. Numerical results. In this section, we present several simulation exam-
ples to evaluate the performance of SIS procedure with generalized linear models.
It was demonstrated in Fan and Lv (2008) and Fan, Samworth and Wu (2009) that
independent screening is a fast but crude method of reducing the dimensionality to
a more moderate size. Some methodological extensions include iterative SIS (ISIS)
and multi-stage procedures, such as SIS-SCAD and SIS-LASSO, can be applied
to perform the final variable selection and parameter estimation simultaneously.
Extensive simulations on these procedures were also presented in Fan, Samworth
and Wu (2009). To avoid repetition, in this paper, we focus on the vanilla SIS, and
aim to evaluate the sure screening property and to demonstrate some factors influ-
encing the false selection rate. We vary the sample size from 80 to 600 for different
scenarios to gauge the difficulties of the simulation models. The following three
configurations with p = 2000, 5000 and 40,000 predictor variables are considered
for generating the covariates X = (X1, . . . ,Xp)T :

S1. The covariates are generated according to

Xj = εj + ajε√
1 + a2

j

,(5)

where ε and {εj }[p/3]
j=1 are i.i.d. standard normal random variables,

{εj }[2p/3]
j=[p/3]+1 are i.i.d. and follow a double exponential distributions with lo-

cation parameter zero and scale parameter one and {εj }pj=[2p/3]+1 are i.i.d.
and follow a mixture normal distribution with two components N(−1,1),
N(1,0.5) and equal mixture proportion. The covariates are standardized to be
mean zero and variance one. The constants {aj }qj=1 are the same and chosen
such that the correlation ρ = corr(Xi,Xj ) = 0,0.2,0.4,0.6 and 0.8, among
the first q variables, and aj = 0 for j > q . The parameter q is also related to
the overall correlation in the covariance matrix. We will present the numerical
results with q = 15 for this setting.

S2. The covariates are also generated from (5), except that {aj }qj=1 are i.i.d. nor-
mal random variables with mean a and variance 1 and aj = 0 for j > q . The
value of a is taken such that E corr(Xi,Xj ) = 0,0.2,0.4,0.6 and 0.8, among
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TABLE 1
The median of the 200 empirical maximum eigenvalues, with its robust estimate of SD in the

parenthesis, of the corresponding sample covariance matrices of covariates based 200 simulations
with partial combinations of n = 80,300,600, p = 2000,5000,40,000 and q = 15,50 in the first

two settings (S1 and S2)

ρ

(p,n) Setting 0 0.2 0.4 0.6 0.8

(40,000, 80) S1 (q = 15) 549.9 (1.4) 550.1 (1.4) 550.1 (1.3) 550.1 (1.3) 550.1 (1.4)

(40,000, 80) S2 (q = 50) 550.0 (1.4) 550.1 (1.4) 550.4 (1.5) 552.9 (1.8) 558.5 (2.4)

(40,000, 300) S1 (q = 15) 157.3 (0.4) 157.4 (0.4) 157.4 (0.4) 157.4 (0.3) 157.7 (0.4)

(40,000, 300) S2 (q = 50) 157.4 (0.4) 157.5 (0.4) 160.9 (1.2) 168.2 (1.0) 176.9 (1.0)

(5000, 300) S1 (q = 15) 25.68 (0.2) 25.68 (0.2) 26.18 (0.2) 27.99 (0.4) 30.28 (0.4)

(5000, 300) S1 (q = 50) 25.69 (0.1) 29.06 (0.5) 37.98 (0.7) 47.49 (0.7) 57.17 (0.5)

(2000, 600) S1 (q = 15) 7.92 (0.07) 8.32 (0.15) 10.5 (0.3) 13.09 (0.3) 15.79 (0.2)

(2000, 600) S1 (q = 50) 7.93 (0.07) 14.62 (0.40) 23.95 (0.7) 33.90 (0.6) 43.56 (0.5)

(2000, 600) S2 (q = 50) 7.93 (0.07) 14.62 (0.40) 23.95 (0.7) 33.90 (0.6) 43.56 (0.5)

the first q variables. The simulation results to be presented for this setting use
q = 50.

S3. Let {Xj }p−50
j=1 be i.i.d. standard normal random variables and

Xk =
s∑

j=1

Xj(−1)j+1/5 + √
25 − s/5εk, k = p − 49, . . . , p,

where {εk}pk=p−49 are standard normally distributed.

Table 1 summarizes the median of the empirical maximum eigenvalues of the
covariance matrix and its robust estimate of the standard deviation (RSD) based
200 simulations in the first two settings (S1 and S2) with partial combinations
of sample size n = 80,300,600, p = 2000,5000,40,000 and q = 15,50. RSD is
the interquantile range (IQR) divided by 1.34. The empirical maximum eigenval-
ues are always larger than their population version, depending on the realizations
of the design matrix. The empirical minimum eigenvalue is always zero, and the
empirical condition numbers for the sample covariance matrix are infinite, since
p > n. Generally, the empirical maximum eigenvalues increase as the correlation
parameters ρ, q , the numbers of covariates p increase, and/or the sample sizes n

decrease.
With these three settings, we aim to illustrate the behaviors of the two SIS pro-

cedures under different correlation structures. For each simulation and each model,
we apply the two SIS procedures, the marginal MLE and the marginal likelihood
ratio methods, to screen variables. The minimum model size (MMS) required for
each method to have a sure screening, that is, to contain the true model M�, is
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used as a measure of the effectiveness of a screening method. This avoids the
issues of choosing the thresholding parameter. To gauge the difficulty of the prob-
lem, we also include the LASSO and the SCAD as references for comparison
when p = 2000 and 5000. The smaller p is used due to the computation burden of
the LASSO and the SCAD. In addition, as demonstrated in our simulation results,
they do not perform well when p is large. Our initial intension is to demonstrate
that the simple SIS does not perform much worse than the far more complicated
procedures like the LASSO and the SCAD. To our surprise, the SIS can even out-
perform those more complicated methods in terms of variable screening. Again,
we record the MMS for the LASSO and the SCAD for each simulation and each
model, which does not depend on the choice of regularization parameters. When
the LASSO or the SCAD cannot recover the true model even with the smallest
regularization parameter, we average the model size with the smallest regulariza-
tion parameter and p. These interpolated MMS’ are presented with italic font in
Tables 3–5 and 9 to distinguish from the real MMS. Results for logistic regressions
and linear regressions are presented in the following two subsections.

7.1. Logistic regressions. The generated data (XT
1 , Y1), . . . , (XT

n , Yn) are n

i.i.d. copies of a pair (XT , Y ), in which the conditional distribution of the re-
sponse Y given X = x is binomial distribution with probability of success p(x) =
exp(xT β�)/[1 + exp(xT β�)]. We vary the size of the nonsparse set of coefficients
as s = 3,6,12,15 and 24. For each simulation, we evaluate each method by sum-
marizing the median minimum model size (MMMS) of the selected models as well
as its associated RSD, which is the associated interquartile range (IQR) divided by
1.34. The results, based on 200 simulations for each scenario are recorded in the
second and third panel of Table 2 and the second panel of Tables 3–5. Specifically,
Table 2 records the MMMS and the associated RSD for SIS under the first two set-
tings when p = 40,000, while Tables 3–5 record these results for SIS, the LASSO
and the SCAD when p = 2000 and 5000 under Settings 1, 2 and 3, respectively.
The true parameters are also recorded in each corresponding table.

To demonstrate the difficulty of our simulated models, we depict the distribu-
tion, among 200 simulations, of the minimum |t |-statistics of s estimated regres-
sion coefficients in the oracle model in which the statistician does not know that
all variables are statistically significant. This shows the difficulty in recovering all
significant variables even in the oracle model with the minimum model size s. The
distribution was computed for each setting and scenario but only a few selected
settings are shown presented in Figure 1. In fact, the distributions under Setting 1
are very similar to those under Setting 2 when the same q value is taken. It can be
seen that the magnitude of the minimum |t |-statistics is reasonably small and get-
ting smaller as the correlation within covariates (measured by ρ and q) increases,
sometimes achieving three decimals. Given such small signal-to-noise ratio in the
oracle models, the difficulty of our simulation models is a self-evident even if the
signals seem not that small.
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TABLE 2
The MMMS and the associated RSD (in the parenthesis) of the simulated examples for logistic

regressions in the first two settings (S1 and S2) when p = 40,000

ρ n SIS-MLR SIS-MMLE n SIS-MLR SIS-MMLE

Setting 1, q = 15
s = 3, β� = (1,1.3,1)T s = 6, β� = (1,1,3,1, . . .)T

0 300 87.5 (381) 89 (375) 300 47 (164) 50 (170)

0.2 200 3 (0) 3 (0) 300 6 (0) 6 (0)

0.4 200 3 (0) 3 (0) 300 7 (1) 7 (1)

0.6 200 3 (1) 3 (1) 300 8 (1) 8 (2)

0.8 200 4 (1) 4 (1) 300 9 (3) 9 (3)

s = 12, β� = (1,1.3, . . .)T s = 15, β� = (1,1.3, . . .)T

0 500 297 (589) 302.5 (597) 600 350 (607) 359.5 (612)

0.2 300 13 (1) 13 (1) 300 15 (0) 15 (0)

0.4 300 14 (1) 14 (1) 300 15 (0) 15 (0)

0.6 300 14 (1) 14 (1) 300 15 (0) 15 (0)

0.8 300 14 (1) 14 (1) 300 15 (0) 15 (0)

Setting 2, q = 50
s = 3, β� = (1,1.3,1)T s = 6, β� = (1,1.3,1, . . .)T

0 300 84.5 (376) 88.5 (383) 500 6 (1) 6 (1)

0.2 300 3 (0) 3 (0) 500 6 (0) 6 (0)

0.4 300 3 (0) 3 (0) 500 6 (1) 6 (1)

0.6 300 3 (1) 3 (1) 500 8.5 (4) 9 (5)

0.8 300 5 (4) 5 (4) 500 13.5 (8) 14 (8)

s = 12, β� = (1,1.3, . . .)T s = 15, β� = (1,1.3, . . .)T

0 600 77 (114) 78.5 (118) 800 46 (82) 47 (83)

0.2 500 18 (7) 18 (7) 500 26 (6) 26 (6)

0.4 500 25 (8) 25 (10) 500 34 (7) 33 (8)

0.6 500 32 (9) 31 (8) 500 39 (7) 38 (7)

0.8 500 36 (8) 35 (9) 500 40 (6) 42 (7)

The MMMS and RSD with fixed correlation (S1) and random correlation (S2)
are comparable under the same q . As the correlation increases and/or the nonsparse
set size increases, the MMMS and the associated RSD usually increase for all
SIS, the LASSO and the SCAD. Among all the designed scenarios of Settings 1
and 2, SIS performs well, while the LASSO and the SCAD occasionally fail under
very high correlations and relatively large nonsparse set size (s = 12, 15 and 24).
Interestingly, correlation within covariates can sometimes help SIS reduce the false
selection rate, as it can increase the marginal signals. It is notable that the LASSO
and the SCAD usually cannot select the important variables in the third setting,
due to the violation of the irrepresentable condition for s = 6,12 and 24, while
SIS perform reasonably well.
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TABLE 3
The MMMS and the associated RSD (in the parenthesis) of the simulated examples for logistic
regressions in Setting 1 (S1) when p = 5000 and q = 15. The values with italic font indicate
that the LASSO or the SCAD cannot recover the true model even with smallest regularization

parameter and are estimated

ρ n SIS-MLR SIS-MMLE LASSO SCAD

s = 3, β� = (1,1.3,1)T

0 300 3 (0) 3 (0) 3 (1) 3 (1)

0.2 300 3 (0) 3 (0) 3 (0) 3 (0)

0.4 300 3 (0) 3 (0) 3 (0) 3 (0)

0.6 300 3 (0) 3 (0) 3 (0) 3 (1)

0.8 300 3 (1) 3 (1) 4 (1) 4 (1)

s = 6, β� = (1,1.3,1,1.3,1,1.3)T

0 200 8 (6) 9 (7) 7 (1) 7 (1)

0.2 200 18 (38) 20 (39) 9 (4) 9 (2)

0.4 200 51 (77) 64.5 (76) 20 (10) 16.5 (6)

0.6 300 77.5 (139) 77.5 (132) 20 (13) 19 (9)

0.8 400 306.5 (347) 313 (336) 86 (40) 70.5 (35)

s = 12, β� = (1,1.3, . . .)T

0 300 297.5 (359) 300 (361) 72.5 (3704) 12 (0)

0.2 300 13 (1) 13 (1) 12 (1) 12 (0)

0.4 300 14 (1) 14 (1) 14 (1861) 13 (1865)

0.6 300 14 (1) 14 (1) 2552 (85) 12 (3721)

0.8 300 14 (1) 14 (1) 2556 (10) 12 (3722)

s = 15, β� = (3,4, . . .)T

0 300 479 (622) 482 (615) 69.5 (68) 15 (0)

0.2 300 15 (0) 15 (0) 16 (13) 15 (0)

0.4 300 15 (0) 15 (0) 38 (3719) 15 (3720)

0.6 300 15 (0) 15 (0) 2555 (87) 15 (1472)

0.8 300 15 (0) 15 (0) 2552 (8) 15 (1322)

7.2. Linear models. The generated data (XT
1 , Y1), . . . , (XT

n , Yn) are n i.i.d.
copies of a pair (XT , Y ), in which the response Y follows a linear model with
Y = XT β� + ε, where the random error ε is standard normally distributed. The
covariates are generated in the same manner as the logistic regression settings. We
take the same true coefficients and correlation structures for part of the scenarios
(p = 40,000) as the logistic regression examples, while vary the true coefficients
for other scenarios, to gauge the difficulty of the problem. The sample size for
each scenario is correspondingly decreased to reflect the fact that the linear model
is more informative. The results are recorded in Tables 6–9, respectively. The trend
of the MMMS and the associated RSD of SIS, the LASSO and the SCAD vary-
ing with the correlation and/or the nonsparse set size are similar to these in the
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TABLE 4
The MMMS and the associated RSD (in the parenthesis) of the simulated examples for logistic

regressions in Setting 2 (S2) when p = 2000 and q = 50. The values with italic font
have the same meaning as Table 2

ρ n SIS-MLR SIS-MMLE LASSO SCAD

s = 3, β� = (3,4,3)T

0 200 3 (0) 3 (0) 3 (0) 3 (0)

0.2 200 3 (0) 3 (0) 3 (0) 3 (0)

0.4 200 3 (0) 3 (0) 3 (0) 3 (1)

0.6 200 3 (1) 3 (1) 3 (1) 3 (1)

0.8 200 5 (5) 5.5 (5) 6 (4) 6 (4)

s = 6, β� = (3,−3,3,−3,3,−3)T

0 200 8 (6) 9 (7) 7 (1) 7 (1)

0.2 200 18 (38) 20 (39) 9 (4) 9 (2)

0.4 200 51 (77) 64.5 (76) 20 (10) 16.5 (6)

0.6 300 77.5 (139) 77.5 (132) 20 (13) 19 (9)

0.8 400 306.5 (347) 313 (336) 86 (40) 70.5 (35)

s = 12, β� = (3,4, . . .)T

0 600 13 (6) 13 (7) 12 (0) 12 (0)

0.2 600 19 (6) 19 (6) 13 (1) 13 (2)

0.4 600 32 (10) 30 (10) 18 (3) 17 (4)

0.6 600 38 (9) 38 (10) 22 (3) 22 (4)

0.8 600 38 (7) 39 (8) 1071 (6) 1042 (34)

s = 24, β� = (3,4, . . .)T

0 600 180 (240) 182 (238) 35 (9) 31 (10)

0.2 600 45 (4) 45 (4) 35 (27) 32 (24)

0.4 600 46 (3) 47 (2) 1099 (17) 1093 (1456)

0.6 600 48 (2) 48 (2) 1078 (5) 1065 (23)

0.8 600 48 (1) 48 (1) 1072 (4) 1067 (13)

TABLE 5
The MMMS and the associated RSD (in the parenthesis) of the simulated examples for logistic

regressions in Setting 3 (S3) when p = 2000 and n = 600. The values with italic font have the same
meaning as Table 2. M-λmax and its RSD have the same meaning as Table 1

s M-λmax(RSD) SIS-MLR SIS-MMLE LASSO SCAD

3 8.47 (0.17) 3 (0) 3 (0) 3 (1) 3 (0)

6 10.36 (0.26) 56 (0) 56 (0) 1227 (7) 1142 (64)

12 14.69 (0.39) 63 (6) 63 (6) 1148 (8) 1093 (59)

24 23.70 (0.14) 214.5 (93) 208.5 (82) 1120 (5) 1087 (24)
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FIG. 1. The boxplots of the minimum |t |-statistics in the oracle models among 200 simulations
for the first setting (S1) with logistic regression examples with β� = (3,4, . . .)T when s = 12,24,
q = 15,50, n = 600 and p = 2000. The triplets under each plot represent the corresponding values
of (s, q, ρ), respectively.

logistic regression examples, but their magnitudes are usually smaller in the linear
regression examples, as the model is more informative. Overall, the SIS does a
very reasonable job in screening irrelevant variables and sometimes outperforms
the LASSO and the SCAD.
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TABLE 6
The MMMS and the associated RSD (in the parenthesis) of the simulated examples in the first two

settings (S1 and S2) for linear regressions when p = 40,000

ρ n SIS-MLR SIS-MMLE n SIS-MLR SIS-MMLE

Setting 1, q = 15
s = 3, β� = (1,1.3,1)T s = 6, β� = (1,1,3,1, . . .)T

0 80 12 (18) 12 (18) 150 42 (157) 42 (157)

0.2 80 3 (0) 3 (0) 150 6 (0) 6 (0)

0.4 80 3 (0) 3 (0) 150 6.5 (1) 6.5 (1)

0.6 80 3 (0) 3 (0) 150 6 (1) 6 (1)

0.8 80 3 (0) 3 (0) 150 7 (1) 7 (1)

s = 12, β� = (1,1.3, . . .)T s = 15, β� = (1,1.3, . . .)T

0 300 143 (282) 143 (282) 400 135.5 (167) 135.5 (167)

0.2 200 13 (1) 13 (1) 200 15 (0) 15 (0)

0.4 200 13 (1) 13 (1) 200 15 (0) 15 (0)

0.6 200 13 (1) 13 (1) 200 15 (0) 15 (0)

0.8 200 13 (1) 13 (1) 200 15 (0) 15 (0)

Setting 2, q = 50
s = 3, β� = (1,1.3,1)T s = 6, β� = (1,1.3,1, . . .)T

0 100 3 (2) 3 (2) 200 7.5 (7) 7.5 (7)

0.2 100 3 (0) 3 (0) 200 6 (1) 6 (1)

0.4 100 3 (0) 3 (0) 200 7 (1) 7 (1)

0.6 100 3 (0) 3 (0) 200 7 (2) 7 (2)

0.8 100 3 (1) 3 (1) 200 8 (4) 8 (4)

s = 12, β� = (1,1.3, . . .)T s = 15, β� = (1,1.3, . . .)T

0 400 22 (27) 22 (27) 500 35 (52) 35 (52)

0.2 300 16 (5) 16 (5) 300 24 (7) 24 (7)

0.4 300 19 (8) 19 (8) 300 30 (10) 30 (10)

0.6 300 25 (8) 25 (8) 300 33.5 (7) 33.5 (7)

0.8 300 24 (7) 24 (7) 300 35 (8) 35 (8)

8. Concluding remarks. In this paper, we propose two independent screen-
ing methods by ranking the maximum marginal likelihood estimators and the max-
imum marginal likelihood in generalized linear models. With Fan and Lv (2008)
as a special case, the proposed method is shown to possess the sure independence
screening property. The success of the marginal screening generates the idea that
any surrogates screening, besides the marginal utility screening introduced in this
paper, as long as which can preserve the nonsparsity structure of the true model and
is feasible in computation, can be a good option for population variable screening.
It also paves the way for the sample variable screening, as long as the surrogate sig-
nals are uniformly distinguishable from the stochastic noise. Along this line, many
statistics, such as R square statistics, marginal pseudo likelihood (least square es-
timation, for example), can be a potential basis for the independence learning.
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TABLE 7
The MMMS and the RSD (in the parenthesis) of the simulated examples for linear regressions in

Setting 1 (S1) when p = 5000 and q = 15

ρ n SIS-MLR SIS-MMLE LASSO SCAD

s = 3, β� = (0.5,0.67,0.5)T

0 100 12 (40) 12 (40) 3 (1) 3 (1)

0.2 100 3 (1) 3 (1) 3 (0) 3 (0)

0.4 100 3 (0) 3 (0) 3 (0) 3 (0)

0.6 100 3 (1) 3 (1) 5 (7) 5 (5)

0.8 100 4 (2) 4 (2) 4 (1) 4 (1)

s = 6, β� = (0.5,0.67,0.5,0.67,0.5,0.67)T

0 100 210.5 (422) 210.5 (422) 33.5 (651) 25 (22)

0.2 100 7 (2) 7 (2) 6 (1) 6 (1)

0.4 100 7 (2) 7 (2) 6 (1) 6 (1)

0.6 100 8 (2) 8 (2) 7 (1) 7 (1)

0.8 100 9 (3) 9 (3) 7 (2) 8 (1)

s = 12, β� = (0.5,0.67, . . .)T

0 300 49 (76) 49 (76) 12 (1) 12 (0)

0.2 100 14 (2) 14 (2) 12 (1) 12 (1)

0.4 100 14 (1) 14 (1) 12 (1) 12 (1)

0.6 100 14 (1) 14 (1) 13 (1) 13 (1)

0.8 100 14 (1) 14 (1) 13 (1) 13 (1)

s = 15, β� = (0.5,0.67, . . .)T

0 300 199 (251) 199 (251) 17 (2) 15 (0)

0.2 100 17 (5) 17 (5) 15 (1) 15 (0)

0.4 100 15 (0) 15 (0) 15 (0) 15 (0)

0.6 100 15 (0) 15 (0) 15 (0) 15 (0)

0.8 100 15 (0) 15 (0) 15 (0) 15 (1)

Meanwhile the proposed properties of sure screening and vanishing false selection
rate will be good criteria for evaluating ultrahigh-dimensional variable selection
methods.

As our current results only hold when the log-likelihood function is concave in
the regression parameters, the proposed procedure does not cover all generalized
linear models, such as some noncanonical link cases. This leaves space for future
research.

Unlike Fan and Lv (2008), the main idea of our technical proofs is broadly
applicable. We conjecture that our results should hold when the conditional dis-
tribution of the outcome Y given the covariates X depends only on XT β� and is
arbitrary and unknown otherwise. Therefore, besides GLIM, the SIS method can
be applied to a rich class of general regression models, including transformation
models [Box and Cox (1964); Bickel and Doksum (1981)], censored regression
models [Cox (1972); Kosorok, Lee and Fine (2004); Zeng and Lin (2007)] and
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TABLE 8
The MMMS and the RSD (in the parenthesis) of the simulated examples for linear regressions in

Setting 2 (S2) when p = 2000 and q = 50

ρ n SIS-MLR SIS-MMLE LASSO SCAD

s = 3, β� = (0.6,0.8,0.6)T

0 100 5 (14) 6 (16) 4 (4) 4 (2)

0.2 100 3 (1) 3 (1) 3 (0) 3 (0)

0.4 100 3 (1) 4 (1) 3 (1) 3 (1)

0.6 100 5 (3) 7 (5) 4 (1) 4 (1)

0.8 100 7 (7) 14 (12) 5 (57) 7 (4)

s = 6, β� = (3,−3,3,−3,3,−3)T

0 100 15 (43) 18 (47) 6 (0) 6 (1)

0.2 100 42 (116) 47 (99) 7 (1) 7 (1)

0.4 100 143 (207) 129 (226) 12 (4) 12 (5)

0.6 200 47 (93) 49 (110) 7 (1) 7 (1)

0.8 200 360 (470) 376.5 (486) 54 (32) 51 (25)

s = 12, β� = (0.6,0.8, . . .)T

0 200 151 (212) 140 (207) 15 (4) 15 (4)

0.2 100 37.5 (10) 36 (12) 16 (3) 16 (4)

0.4 100 39 (7) 40.5 (8) 18 (3) 17 (2)

0.6 100 41 (7) 42 (6) 19 (3) 18 (3)

0.8 100 44 (5) 46 (6) 23 (1478) 24 (50)

s = 24, β� = (3,4, . . .)T

0 400 229 (283) 227 (279) 24 (0) 25 (0)

0.2 100 61 (43) 67 (46) 30 (2) 30 (2)

0.4 100 48 (2) 47 (2) 31 (2) 30 (1)

0.6 100 48 (2) 49 (2) 32 (2) 32 (3)

0.8 100 49 (2) 49 (1) 32 (2) 32 (2)

projection pursuit regression [Friedman and Stuetzle (1981)]. These are also inter-
esting future research topics.

TABLE 9
The MMMS and the associated RSD (in the parenthesis) of the simulated examples for linear

regressions in Setting 3 (S3), where p = 2000 and n = 600. The values with italic font have the
same meaning as Table 2. M-λmax and its RSD have the same meaning as Table 1

s M-λmax(RSD) SIS-MLR SIS-MMLE LASSO SCAD

3 8.47 (0.17) 3 (0) 3 (0) 3 (0) 3 (0)

6 10.36 (0.26) 56 (0) 56 (0) 47 (4) 45 (3)

12 14.69 (0.39) 62 (0) 62 (0) 1610 (10) 1304 (2)

24 23.70 (0.14) 81 (19) 81 (23) 1637 (14) 1303 (1)
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Another important extension is to generalize the concept of marginal regression
to the marginal group regression, where the number of covariates m in each mar-
ginal regression is greater or equal to one. This leads to a new procedure called
grouped variables screening. It is expected to improve the situation when the vari-
ables are highly correlated and jointly important, but marginally the correlation
between each individual variable and the response is weak. The current theoreti-
cal studies for the componentwise marginal regression can be directly extended to
group variable screening, with appropriate conditions and adjustments. This leads
to another interesting topic of future research.

In practice, how to choose the tuning parameter γn is an interesting and impor-
tant problem. As discussed in Fan and Lv (2008), for the first stage of the iterative
SIS procedure, our preference is to select sufficiently many features, such that
|Mγn | = n or n/ log(n). The FDR-based methods in multiple comparison can also
possibly employed. In the second or final stage, Bayes information type of crite-
rion can be applied. In practice, some data-driven methods may also be welcome
for choosing the tuning parameter γn. This is an interesting future research topic
and is beyond the scope of the current paper.

9. Proofs. To establish Theorem 1, the following symmetrization theorem in
van der Vaart and Wellner (1996), contraction theorem in Ledoux and Talagrand
(1991) and concentration theorem in Massart (2000) will be needed. We reproduce
them here for the sake of readability.

LEMMA 2 [Symmetrization, Lemma 2.3.1, van der Vaart and Wellner (1996)].
Let Z1, . . . ,Zn be independent random variables with values in Z and F is a class
of real valued functions on Z . Then

E
{

sup
f ∈F

|(Pn − P)f (Z)|
}

≤ 2E
{

sup
f ∈F

|Pnεf (Z)|
}
,

where ε1, . . . , εn be a Rademacher sequence (i.e., i.i.d. sequence taking values ±1
with probability 1/2) independent of Z1, . . . ,Zn and Pf (Z) = Ef (Z).

LEMMA 3 [Contraction theorem Ledoux and Talagrand (1991)]. Let z1, . . . , zn

be nonrandom elements of some space Z , and let F be a class of real valued func-
tions on Z . Let ε1, . . . , εn be a Rademacher sequence. Consider Lipschitz functions
γi : R �→ R, that is,

|γi(s) − γi(s̃)| ≤ |s − s̃| ∀s, s̃ ∈ R.

Then for any function f̃ : Z �→ R, we have

E
{

sup
f ∈F

∣∣Pnε
(
γ (f ) − γ (f̃ )

)∣∣} ≤ 2E
{

sup
f ∈F

|Pnε(f − f̃ )|
}
.
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LEMMA 4 [Concentration theorem Massart (2000)]. Let Z1, . . . ,Zn be inde-
pendent random variables with values in some space Z and let γ ∈ �, a class of
real valued functions on Z . We assume that for some positive constants li,γ and
ui,γ , li,γ ≤ γ (Zi) ≤ ui,γ ∀γ ∈ �. Define

L2 = sup
γ∈�

n∑
i=1

(ui,γ − li,γ )2/n

and

Z = sup
γ∈�

|(Pn − P)γ (Z)|,

then for any t > 0,

P(Z ≥ EZ + t) ≤ exp
(
− nt2

2L2

)
.

Let N > 0, define a set of β

B(N) = {β ∈ B,‖β − β0‖ ≤ N}.
Let

G1(N) = sup
β∈B(N)

|(Pn − P){l(XT β, Y ) − l(XT β0, Y )}In(X, Y )|,

where In(X, Y ) is defined in condition B. The next result is about the upper bound
of the tail probability for G1(N) in the neighborhood of B(N).

LEMMA 5. For all t > 0, it holds that

P
(
G1(N) ≥ 4Nkn(q/n)1/2(1 + t)

) ≤ exp(−2t2/K2
n).

PROOF. The main idea is to apply the concentration theorem (Lemma 4). To
this end, we first show that the random variables involved are bounded. By condi-
tion B and the Cauchy–Schwarz inequality, we have that on the set �n,

|l(XT β, Y ) − l(XT β0, Y )| ≤ kn|XT (β − β0)| ≤ kn‖X‖‖β − β0‖.
On the set �n, by the definition of B(N), the above random variable is further
bounded by knq

1/2KnN . Hence, L2 = 4k2
nqK2

nN2, using the notation of Lemma 4.
We need to bound the expectation EG1(N). An application of the symmetriza-

tion theorem (Lemma 2) yields that

EG1(N) ≤ 2E
[

sup
β∈B(N)

|Pnε{l(XT β, Y ) − l(XT β0, Y )}In(X, Y )|
]
.
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By the contraction theorem (Lemma 3), and the Lipschitz condition in condition B,
we can bound the right-hand side of the above inequality further by

4knE
{

sup
β∈B(N)

|PnεXT (β − β0)In(X, Y )|
}
.(6)

By the Cauchy–Schwarz inequality, the expectation in (6) is controlled by

E‖PnεXIn(X, Y )‖ sup
β∈B(N)

‖β − β0‖ ≤ E‖PnεXIn(X, Y )‖N.(7)

By Jensen’s inequality, the expectation in (7) is bounded above by

(E‖PnεXIn(X, Y )‖2)1/2 = (
E‖X‖2In(X, Y )/n

)1/2 ≤ (q/n)1/2,

by noticing that

E‖X‖2In(X, Y ) ≤ E‖X‖2 = E(X2
1 + · · · + X2

q) = q,

since EX2
j = 1. Combining these results, we conclude that

EG1(N) ≤ 4Nkn(q/n)1/2.

An application of the concentration theorem (Lemma 4) yields that

P
(
G1(N) ≥ 4Nkn(q/n)1/2(1 + t)

) ≤ exp
(
−n{4Nkn(q/n)1/2t}2

8qK2
nk2

nN
2

)
= exp(−2t2/K2

n).

This proves the lemma. �

PROOF OF THEOREM 1. The proof takes two main steps: we first bound ‖β̂ −
β0‖ by G(N) for a small N , where N chosen so that conditions B and C hold, and
then utilize Lemma 5 to conclude.

Following a similar idea in van de Geer (2002), we define a convex combination
βs = sβ̂ + (1 − s)β0 with

s = (1 + ‖β̂ − β0‖/N)−1.

Then, by definition,

‖βs − β0‖ = s‖β̂ − β0‖ ≤ N,

namely, βs ∈ B(N). Due to the convexity, we have

Pnl(XT βs, Y ) ≤ sPnl(XT β̂, Y ) + (1 − s)Pnl(XT β0, Y )
(8)

≤ Pnl(XT β0, Y ).

Since β0 is the minimizer, we have

E[l(XT βs, Y ) − l(XT β0, Y )] ≥ 0,
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where βs is regarded a parameter in the above expectation. Hence, it follows from
(8) that

E[l(XT βs, Y ) − l(XT β0, Y )]
≤ (E − Pn)[l(XT βs, Y ) − l(XT β0, Y )]
≤ G(N),

where

G(N) = sup
β∈B(N)

|(Pn − P){l(XT β, Y ) − l(XT β0, Y )}|.

By condition C, it follows that

‖βs − β0‖ ≤ [G(N)/Vn]1/2.(9)

We now use (9) to conclude the result. Note that for any x,

P(‖βs − β0‖ ≥ x) ≤ P
(
G(N) ≥ Vnx

2)
.

Setting x = N/2, we have

P(‖βs − β0‖ ≥ N/2) ≤ P {G(N) ≥ VnN
2/4}.

Using the definition of βs , the left-hand side is the same as P {‖β̂ − β0‖ ≥ N}.
Now, by taking N = 4an(1 + t)/Vn with an = 4kn

√
q/n, we have

P {‖β̂ − β0‖ ≥ N} ≤ P {G(N) ≥ VnN
2/4}

= P {G(N) ≥ Nan(1 + t)}.
The last probability is bounded by

P {G(N) ≥ Nan(1 + t),�n,�} + P {�c
n,�},(10)

where �n,� = {‖Xi‖ ≤ Kn, |Yi | ≤ K�
n}.

On the set �n,�, since

sup
β∈B(N)

Pn|l(XT β, Y ) − l(XT β0, Y )|(1 − In(X, Y )
) = 0,

by the triangular inequality,

G(N) ≤ G1(N) + sup
β∈B(N)

∣∣E[l(XT β, Y ) − l(XT β0, Y )](1 − In(X, Y )
)∣∣.

It follows from condition B that (10) is bounded by

P {G1(N) ≥ Nan(1 + t) + o(q/n)} + nP {(X, Y ) ∈ �c
n}.

The conclusion follows from Lemma 5. �
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PROOF OF THEOREM 2. First of all, the target function El(β0 + βjXj ,Y ) is
a convex function in βj . We first show that if cov(b′(XT β�),Xj ) = 0, then βM

j

must be zero. Recall EXj = 0. The score equation of the marginal regression at
βM

j takes the form

E{b′(XT
j βM

j )Xj } = E(YXj ) = E{b′(XT β�)Xj }.
It can be equivalently written as

cov(b′(XT
j βM

j ),Xj ) = cov(b′(XT β�),Xj ) = 0.

Since both functions f (t) = b′(βM
j,0 + t) and h(t) = t are strictly monotone in t ,

when t �= 0,

{f (t) − f (0)}(t − 0) > 0.

If βM
j �= 0, let t = βM

j Xj ,

βM
j cov(f (βM

j Xj ),Xj ) = E[E{f (t) − f (0)}(t − 0)|Xj �= 0] > 0,

which leads to a contradiction. Hence βM
j must be zero.

On the other side, if βM
j = 0, the score equations now take the form

E{b′(βM
j,0)} = E{b′(XT β�)}(11)

and

E{b′(βM
j,0)Xj } = E{b′(XT β�)Xj }.(12)

Since b′(βM
j,0) is a constant, we can get the desired result by plugging (11) into (12).

�

PROOF OF THEOREM 3. We first prove the case that b′′(θ) is bounded. By the
Lipschitz continuity of the function b′(·), we have

|{b′(βM
j,0 + Xjβ

M
j ) − b′(βM

j,0)}Xj | ≤ D1|βM
j |X2

j .

D1 = supx b′′(x). By taking the expectation on both sides, we have

|E{b′(βM
j,0 + Xjβ

M
j ) − b′(βM

j,0)}Xj | ≤ D1|βM
j |,

namely,

D1|βM
j | ≥ | cov(b′(βM

j,0 + Xjβ
M
j ),Xj )|.(13)

Note that βM
j,0 and βM

j satisfy the score equation

E{b′(βM
0,1 + βM

j Xj ) − b′(XT β�)}Xj = 0.(14)
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It follows from (13) and EXj = 0 that

|βM
j | ≥ D−1

1 c1n
−κ .

The conclusion follows.
We now prove the second case. The result holds trivially if |βM

j | ≥ cn−κ for a

sufficiently large universal constant c. Now suppose that |βM
j | ≤ c9n

−κ , for some

positive constant c9. We will show later that |βM
j,0 − βM

0 | ≤ c10 for some c10 > 0,

where βM
0 is such that b′(βM

0 ) = EY . In this case, if |Xj | ≤ nκ , then the points
βM

j,0 and (βM
j,0 + Xjβ

M
j ) falls in the interval βM

0 ± h, independent of j , where
h = c9 + c10.

By the Lipschitz continuity of the function b′(·) in the neighborhood around
βM

0 , we have for |Xj | ≤ nκ ,

|{b′(βM
j,0 + Xjβ

M
j ) − b′(βM

j,0)}Xj | ≤ D2|βM
j |X2

j ,

where D2 = maxx∈[βM
0 −h,βM

0 +h] b′′(x). By taking the expectation on both sides, it
follows that

|E{b′(βM
j,0 + Xjβ

M
j ) − b′(βM

j,0)}XjI (|Xj | ≤ nκ)| ≤ D2|βM
j |.(15)

By using (14) and EXj = 0, we deduce from (15) that

D2|βM
j | ≥ | cov(XT β�,Xj )| − A0 − A1,(16)

where Am = E|b′(βM
j,0 + Xm

j βM
j )Xj |I (|Xj | ≥ nκ) for m = 0 and 1. Since |βM

j,0 +
Xjβ

M
j | ≤ a|Xj | for |Xj | ≥ nκ for a sufficiently large n, independent of j , by the

condition given in the theorem, we have

Am ≤ EG(a|Xj |)m|Xj |I (|Xj | ≥ nκ) ≤ dn−κ for m = 0 and 1.

The conclusion now follows from (16).
It remains to show that when |βM

j | ≤ c9n
−κ we have |βM

j,0 − βM
0 | ≤ c10. To this

end, let

�(β0) = E{b(β0 + βM
j Xj ) − Y(β0 + βM

j Xj )}.
Then, it is easy to see that

�′(β0) = Eb′(β0 + βM
j Xj ) − b′(βM

0 ).

Observe that

|Eb′(β0 + βM
j Xj ) − b′(β0)| ≤ R1 + R2,(17)

where R1 = sup|x|≤c9n
η−κ |b′(β0 + x) − b′(β0)| and R2 = 2EG(a|Xj |)I (|Xj | >

nη). Now, R1 = o(1) due to the continuity of b′(·) and R2 = o(1) by the condition
of the theorem. Consequently, by (17), we conclude that

�′(β0) = b′(β0) − b′(βM
0 ) + o(1).
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Since b′(·) is a strictly increasing function, it is now obvious that

�′(βM
0 − c10) < 0, �′(βM

0 + c10) > 0

for any given c10 > 0. Hence, |βM
j,0 − βM

0 | < c10. �

PROOF OF PROPOSITION 1. Without loss of generality, assume that g(·) is
strictly increasing and ρ > 0. Since X and Z are jointly normally distributed, Z

can be expressed as

Z = ρX + ε,

where ρ = E(XZ) is the regression coefficient, and X and ε are independent.
Thus,

Ef (Z)X = Eg(ρX)X = E[g(ρX) − g(0)]X,(18)

where g(x) = Ef (x + ε) is a strictly increasing function. The right-hand side of
(18) is always nonnegative and is zero if and only if ρ = 0.

To prove the second part, we first note that the random variable on the right-hand
side of (18) is nonnegative. Thus, by the mean-value theorem, we have that

|Ef (Z)X| ≥ inf|x|≤cρ
|g′(x)|ρEX2I (|X| ≤ c).

Hence, the result follows. �

PROOF OF LEMMA 1. By Chebyshev’s inequality,

P(Y ≥ u) ≤ exp(−s0u)E exp(s0Y).

Let θ = XT β�. Since Y belongs to an exponential family, we have

E{exp(s0Y)|θ} = exp
(
b(θ + s0) − b(θ)

)
.

Hence

P(Y ≥ u) ≤ exp(−s0u)E exp
(
b(XT β� + s0) − b(XT β�)

)
.

Similarly we can get

P(Y ≤ −u) ≤ exp(−s0u)E exp
(
b(XT β� − s0) − b(XT β�)

)
.

The desired result thus follows from condition D by letting u = m0t
α/s0. �

PROOF OF THEOREM 4. Note that condition B is satisfied with kn defined in
Section 5.2. The tail part of condition B can also be easily checked. In fact,

E[l(XT
j βj , Y ) − l(βM

j ,Y )](1 − In(Xj , Y )
)

≤ ∣∣Eb(XT
j βj )I (|Xj | ≥ Kn)

∣∣ + ∣∣Eb(XT
j βM

j )I (|Xj | ≥ Kn)
∣∣

+ B(βj ) + B(βM
j ),
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where B(βj ) = |EYXT
j βj (1−In(Xj , Y ))|. The first two terms are of order o(1/n)

by assumption, and the last two terms can be bounded by the exponential tail con-
ditions in condition D and the Cauchy–Schwarz inequality.

By Theorem 1, we have for any t > 0,

P
(√

n|β̂M
j − βM

j | ≥ 16(1 + t)kn/V
) ≤ exp(−2t2/K2

n) + nm1 exp(−m0K
α
n ).

By taking 1 + t = c3V n1/2−κ/(16kn), it follows that

P(|β̂M
j − βM

j | ≥ c3n
−κ) ≤ exp

(−c4n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n ).

The first result follows from the union bound of probability.
To prove the second part, note that on the event

An ≡
{

max
j∈M�

|β̂M
j − βM

j | ≤ c2n
−κ/2

}
,

by Theorem 3, we have

|β̂M
j | ≥ c2n

−κ/2 for all j ∈ M�.(19)

Hence, by the choice of γn, we have M� ⊂ M̂γn . The result now follows from a
simple union bound

P(Ac
n) ≤ sn

{
exp

(−c4n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n )

}
.

This completes the proof. �

PROOF OF THEOREM 5. The key idea of the proof is to show that

‖βM‖2 = O(‖�β�‖2) = O{λmax(�)}.(20)

If so, the number of {j : |βM
j | > εn−κ} cannot exceed O{n2κλmax(�)} for any ε >

0. Thus, on the set

Bn =
{

max
1≤j≤pn

|β̂M
j − βM

j | ≤ εn−κ
}
,

the number of {j : |β̂M
j | > 2εn−κ} cannot exceed the number of {j : |βM

j | > εn−κ},
which is bounded by O{n2κλmax(�)}. By taking ε = c5/2, we have

P [|M̂γn | ≤ O{n2κλmax(�)}] ≥ P(Bn).

The conclusion follows from Theorem 4(i).
It remains to prove (20). We first bound βM

j . Since b′(·) is monotonically in-
creasing, the function

{b′(βM
j,0 + Xjβ

M
j ) − b′(βM

j,0)}Xjβ
M
j

is always positive. By Taylor’s expansion, we have

{b′(βM
j,0 + Xjβ

M
j ) − b′(βM

j,0)}βM
j Xj ≥ D3(β

M
j Xj )

2I (|Xj | ≤ K),



SIS IN GLIM 3599

where D3 = inf|x|≤K(B+1) b
′′(x), since (βM

j,0, β
M
j ) is an interior point of the square

B with length 2B . By taking the expectation on both sides and using EXj = 0, we
have

Eb′(βM
j,0 + Xjβ

M
j )βM

j Xj ≥ D3E(βM
j Xj )

2I (|Xj | ≤ K).

Since EX2
j I (|Xj | ≤ K) = 1 − EX2

j I (|Xj | > K), it is uniformly bounded from
below for a sufficiently large K , due to the uniform exponential tail bound in con-
dition D. Thus, it follows from (12) that

|βM
j |2 ≤ D4|Eb′(XT β�)Xj |(21)

for some D4 > 0.
We now further bound from above the right-hand side of (21) by using

var(XT β�) = O(1). We first show the case where b′′(·) is bounded. By the Lip-
schitz continuity of the function b′(·), we have

|{b′(XT β�) − b′(β�
0)}Xj | ≤ D5|Xj XT

Mβ�
1|,

where XM = (X1, . . . ,Xpn)
T and β�

1 = (β�
1, . . . , β�

pn
)T .

By putting the above equation into the vector form and taking the expectation
on both sides, we have

‖E{b′(XT β�) − b′(β�
0)}XM‖2 ≤ D2

5‖EXMXT
Mβ�

1‖2

(22)
≤ D2

5λmax(�)‖�1/2β�‖2.

Using EXM = 0 and var(XT β�) = O(1), we conclude that

‖Eb′(XT β�)XM‖2 ≤ D6λmax(�)

for some positive constant D6. This together with (21) entails (20).
It remains to bound (21) for the second case. Since XM = R�

1/2
1 U, it follows

that

Eb′(β�
0 + XT

Mβ�
1)XM = Eb′(β�

0 + βT
2 RU)R�

1/2
1 U,

where β2 = �
1/2
1 β�

1. By conditioning on βT
2 U, it can be computed that

E(U|βT
2 U) = βT

2 U/‖β2‖2β2.

Therefore,

Eb′(β�
0 + XT

Mβ�
1)XM = Eb′(β�

0 + βT
2 RU)R�

1/2
1 βT

2 U/‖β2‖2β2

= Eb′(XT β�)(XT β� − β�
0)�

1/2
1 β2/‖β2‖2.

This entails that

‖Eb′(XT β�)XM‖2 = |Eb′(XT β�)(XT β� − β0)|2‖�1/2
1 β2‖2/‖β2‖4.(23)
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By condition G, |Eb′(XT β�)(XT β� −β�
0)| = O(1). We also observe the facts that

‖�1/2
1 β2‖ ≤ λ

1/2
max(�)‖β2‖ and that ‖β2‖ = ‖�1/2β�‖ is bounded. This proves

(20) for the second case by using (21) and completes the proof. �

PROOF OF THEOREM 6. If cov(b′(XT β�),Xj ) = 0, by Theorem 2, we have
βM

j = 0, hence by the model identifiability at βM
0 , βM

j,0 = βM
0 . Hence, L�

j = 0.

On the other hand, if L�
j = 0, by condition C′, it follows that βM

j = βM
0 , that is,

βM
j,0 = βM

0 and βM
j = 0. Hence by Theorem 2, cov(b′(XT β�),Xj ) = 0. �

PROOF OF THEOREM 7. If | cov(b′(XT β�),Xj )| ≥ c1n
−κ , for j ∈ M�, by

Theorem 3, we have minj∈M� |βM
j | ≥ c2n

−κ . The first result thus follows from
condition C′.

To prove the second result, we will bound L�
j . We first show the case where

b′′(·) is bounded. By definition, we have

0 ≤ L�
j ≤ E{l(βM

j,0, Y ) − l(XT
j βM

j ,Y )}.(24)

By Taylor’s expansion of the right-hand side of (24), we have that

E{l(βM
j,0, Y ) − l(XT

j βM
j ,Y )} ≤ D5(β

M
j )2 for some D5 > 0.(25)

The desired result thus follows from (24), (25) and the proof in Theorem 5 that

‖L�‖ ≤ O(‖βM‖2) = O(λmax(�)).

Now we prove the second case. By the mean-value theorem,

E{l(βM
j,0, Y ) − l(XT

j βM
j ,Y )} = E{Y − b′(βM

j,0 + sXjβ
M
j )}Xjβ

M
j(26)

for some 0 < s < 1. Since EYXj = Eb′(XT
j βM

j )Xj , the last term is equal to

E{b′(XT
j βM

j ) − b′(βM
j,0 + sXjβ

M
j )}Xjβ

M
j .(27)

By the monotonicity of b′(·), when Xjβ
M
j ≥ 0, both factors in (27) is nonnegative,

and hence

{b′(XT
j βM

j )−b′(βM
j,0 + sXjβ

M
j )}Xjβ

M
j ≤ {b′(XT

j βM
j )−b′(βM

j,0)}Xjβ
M
j .(28)

When Xjβ
M
j < 0, both factors in (28) are negative and (28) continues to hold. It

follows from (26)–(28) and EXj = 0, the right-hand side of (26) is bounded by

Eb′(XT
j βM

j )Xjβ
M
j = Eb′(XT β�)Xjβ

M
j .(29)

Combining (24), (26) and (29), we can bound ‖L�‖ in the vector form by the
Cauchy–Schwarz inequality

‖L�‖ ≤ ‖Eb′(XT β�)XM‖‖βM‖ = O(‖�β�‖‖βM‖),
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where (23) is used in the last equality. The desired result thus follows from Theo-
rem 5. �

PROOF OF THEOREM 8. To prove the result, we first bound Lj,n from be-
low to show the strength of the signals. Let β̂M

0 = (β̂M
0 ,0)T . Then, by Taylor’s

expansion, we have

2Lj,n = (β̂M
0 − β̂M

j )�′′
j (ξn)(β̂

M
0 − β̂M

j ) ≥ λj,min(β̂
M
j )2,(30)

where λj,min is the minimum eigenvalue of the Hessian matrix

�′′
j (ξn) = Pnb

′′(ξT
n Xj )Xj XT

j ,

where ξn lies between β̂M
0 and β̂M

j . We will show

P {λj,min > c11} = 1 − O{exp(−c12n
1−κ)}(31)

for some c11 > 0 and c12 > 0.
Suppose (31) holds. Then, by (19), we have

P
{

min
j∈M�

|β̂M
j | ≥ c2n

−κ/2
}

= 1 − O
(
sn

{
exp

(−c4n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n )

})
.

This, together with (30) and (31), implies

P
{

min
j∈M�

Lj,n ≥ c11c
2
2n

−2κ/8
}

= 1 − O
(
sn

{
exp

(−c4n
1−2κ/(knKn)

2) + nm1 exp(−m0K
α
n )

})
.

Hence, by choosing the thresholding νn = c7n
−2κ , for c7 < c11c

2
2/8, M� ⊂ N̂νn

with the probability tending to one exponentially fast, and the result follows.
We now prove (31). It is obvious that

�′′
j (ξn) ≥ min|x|≤(B+1)K

b′′(x)PnXj XT
j I (|Xj | ≤ K)

for any given K . Since the random variable involved is uniformly bounded in j , it
follows from the Hoeffding inequality [Hoeffding (1963)] that

P
{∣∣(Pn − P)Xk

j I (|Xj | ≤ K)
∣∣ > ε

} ≤ exp
(−2nε2/(4K2k)

)
(32)

for any k ≥ 0 and ε > 0. By taking ε = n−κ/2, we have

P
{∣∣(Pn − P)Xk

j I (|Xj | ≤ K)
∣∣ > n−κ/2} ≤ exp

(−2n1−κ/(4K2k)
)
.

Consequently, with probability tending to one exponentially fast, we have

�′′
j (ξn) ≥ min|x|≤(B+1)K

b′′(x)EXj XT
j I (|Xj | ≤ K)/2.(33)
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The minimum eigenvalue of the matrix EXj XT
j I (|Xj | ≤ K) is

min|a|≤1
E

(
a2 + 2a

√
1 − a2Xj + (1 − a2)X2

j

)
I (|Xj | ≤ K).

It is bounded from below by

min|a|≤1
E{a2 + (1 − a2)X2

j I (|Xj | ≤ K)} − 2
∣∣EXjI (|Xj | ≤ K)

∣∣ − K−2,(34)

where we used P(|Xj | ≥ K) ≤ K−2. Since EXj = 0 and EX2
j = 1,∣∣EXjI (|Xj | ≤ K)

∣∣ = ∣∣EXjI (|Xj | > K)
∣∣ ≤ K−1EX2

j I (|Xj | > K) ≤ K−1.

Hence the quantity in (34) can be further bounded from below by

EX2
j I (|Xj | ≤ K) + min|a|≤1

a2EX2
j I (|Xj | > K) − 2K−1 − K−2

≥ 1 − sup
j

EX2
j I (|Xj | > K) − 2K−1 − K−2.

The result follows from condition G and (33). �

PROOF OF THEOREM 9. By (30), it can be easily seen that

2Lj,n ≤ D1λmax(PnXj XT
j )‖β̂M

0 − β̂M
j ‖2,

where D1 = supx b′′(x) as defined in the proof of Theorem 3. By (32), with the
exception on a set with negligible probability, it follows that

λmax(PnXj XT
j ) ≤ 2λmax(EXj XT

j ) = 2,

uniformly in j . Therefore, with probability tending to one exponentially fast, we
have

Lj,n ≤ D7{(β̂M
0 − β̂M

j,0)
2 + (β̂M

j )2}(35)

for some D7 > 0.
We now use (35) to show that if Lj,n > c7n

−2κ , then |β̂M
j | ≥ D8n

−κ , with ex-

ception on a set with negligible probability, where D8 = {c8/(2D7)}1/2. This im-
plies that

|N̂νn | ≤ |M̂γn |,
with γn = D8n

−κ . The conclusion then follows from Theorem 5.
We now show that Lj,n > c7n

−2κ implies that |β̂M
j | ≥ D8n

−κ , with exception

on a set with negligible probability. Suppose that |β̂M
j | < D8n

−κ . From the likeli-
hood equations, we have

b′(β̂M
0 ) = Ȳ = Pnb

′(β̂M
j,0 + β̂M

j Xj ).(36)
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From the proof of Theorem 4, with exception on a set with negligible probability,
we have |β̂M

0 − βM
0 | ≤ c13n

−κ and |β̂M
j,0 − βM

j,0| ≤ c14n
−κ , for some constants

c13 and c14. Since (βM
0 ,0) and (βM

j,0, β
M
j ) are interior points of the square B

with length 2B , it follows that with exception on a set with negligible probabil-
ity, |β̂M

0 | ≤ B and |β̂M
j,0| ≤ B . Recall D1 = supx b′′(x). By Taylor’s expansion, for

some 0 < s < 1, we have

|Pnb
′(β̂M

j,0 + β̂M
j Xj ) − b′(β̂M

j,0)| = |b′′(β̂M
j,0 + sβ̂M

j Xj )β̂
M
j PnXj |

(37)
≤ D1|β̂M

j PnXj | = oP (|β̂M
j |),

where the last step follows from the facts that EXj = 0 and consequently PnXj =
o(1) with an exception on a set of negligible probability, by applying the Hoeffding
inequality on �c

n and considering the exponential tail property of Xj . Hence, by
(36) and (37), we have

|b′(β̂M
0 ) − b′(β̂M

j,0)| = oP (|β̂M
j |).

Let D9 = inf|x|≤2B b′′(x), with exception on a set with negligible probability, we
have

|b′(β̂M
0 ) − b′(β̂M

j,0)| ≥ D9|β̂M
0 − β̂M

j,0|.
Therefore, we conclude that

|β̂M
0 − β̂M

j,0| = oP (|β̂M
j |).

By (35), we have |β̂M
j | > D8n

−κ . This is a contraction, except on a set that has
a negligible probability. This completes the proof. �
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