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QUENCHED EXIT ESTIMATES AND BALLISTICITY CONDITIONS
FOR HIGHER-DIMENSIONAL RANDOM WALK IN RANDOM
ENVIRONMENT

BY ALEXANDER DREWITZl’2 AND ALEJANDRO F. RAMfREZ3
ETH Ziirich and Pontificia Unversidad Catdlica de Chile

Consider a random walk in an i.i.d. uniformly elliptic environment in di-
mensions larger than one. In 2002, Sznitman introduced for each y € (0, 1)
the ballisticity condition (7), and the condition (T’) defined as the fulfill-
ment of (T')y, for each y € (0, 1). Sznitman proved that (T') implies a bal-
listic law of large numbers. Furthermore, he showed that for all y € (0.5, 1),
(T)y is equivalent to (T"). Recently, Berger has proved that in dimensions
larger than three, for each y € (0, 1), condition (T);, implies a ballistic law
of large numbers. On the other hand, Drewitz and Ramirez have shown that
in dimensions d > 2 there is a constant y; € (0.366, 0.388) such that for each
¥ € (y4, 1), condition (T'), is equivalent to (T"). Here, for dimensions larger
than three, we extend the previous range of equivalence to all y € (0, 1). For
the proof, the so-called effective criterion of Sznitman is established employ-
ing a sharp estimate for the probability of atypical quenched exit distributions
of the walk leaving certain boxes. In this context, we also obtain an affir-
mative answer to a conjecture raised by Sznitman in 2004 concerning these
probabilities. A key ingredient for our estimates is the multiscale method de-
veloped recently by Berger.

1. Introduction and statement of the main results. We continue our inves-
tigation of the interrelations between the ballisticity conditions (7'), and (T in-
troduced by Sznitman in [8] for random walk in random environment (RWRE).
In dimensions larger than or equal to four, the results we establish in this paper
amount to a considerable improvement of what has been obtained in our work [4].
To prove the corresponding results, we take advantage of techniques recently de-
veloped by Berger in [1]. We derive sharp estimates on the probability of certain
quenched exit distributions of the RWRE and thereby provide an affirmative an-
swer to a slightly stronger version of a conjecture announced by Sznitman in [9].

We start by giving an introduction to the model, thereby fixing the nota-
tion we employ. Denote by M, the space of probability measures on the set
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{e € Z¢:|le||; = 1} of canonical unit vectors and set  := (/\/ld)Zd. For each en-
vironment o = (w(x,-)),czd € 2, we consider the Markov chain (X,),cn with
transition probabilities from x to x + e given by w(x, e) for |le||; = 1, and 0 oth-
erwise. We denote by P, ,, the law of this Markov chain conditioned on {Xo = x}.
Furthermore, let P be a probability measure on 2 such that the coordinates
(w(x, ) eza of the environment w are i.i.d. under [P. Then PP is called elliptic if
P(mine,=1 @(0, e) > 0) = 1 while it is called uniformly elliptic if there is a con-
stant k > 0 such that P(minje,=1 w(0,e) > «) = 1. We call Py, the quenched
law of the RWRE starting from x, and correspondingly we define the averaged (or
annealed) law of the RWRE by P, := [, Py »P(dw).

Given a direction [ € S¢, we say that the RWRE is transient in the direction | if

Py lim X, -1 =00) =1.
Furthermore, we say that the RWRE is ballistic in the direction [ if Py-a.s.

. . n-
liminf > 0.
n— o0 n

It is well known that in dimension one there exists uniformly elliptic RWRE in i.i.d.
environments which is transient but not ballistic to the right. It was also recently
established that in dimensions larger than one there exists elliptic RWRE in i.i.d.
environments which is transient but not ballistic in a given direction see Sabot and
Tournier in [6]. Nevertheless, the following fundamental conjecture remains open.

CONIJECTURE 1.1. In dimensions larger than one, every uniformly elliptic
RWRE in an i.i.d. environment which is transient in a given direction is necessarily
ballistic in the same direction.

Some partial progress has been made toward the resolution of this conjecture
by studying transient RWRE satisfying some additional assumptions introduced
in [8], usually called ballisticity conditions. For each [ € S9! and L > 0, let us
define

T} :=inf{n >0:X, -1 > L}.

DEFINITION 1.2, Lety € (0,1) and / € SY~!. We say that condition (T), is
satisfied with respect to / [written (T'),, |l or (T), ] if for each !’ in a neighborhood
of [ and each b > 0 one has that

limsup L™ log Po(Tg > Tb_Ll/) <0.
L—o0

We say that condition (T’) is satisfied with respect to [ [written (7")|l or (T")], if
for each y € (0, 1), condition (T), |/ is fulfilled.
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It is known that in dimensions d > 2, condition (7”) implies the existence of a
deterministic v € R? \ {0} such that Pp-a.s. lim,_ % = v, as well as a central
limit theorem for the RWRE so that under the annealed law Py,

. XI_-nJ — |_-nJv
n

B":

converges in distribution to a Brownian motion in the Skorokhod space D([0, co),
Rd) as n — oo; see, for instance, Theorem 4.1 in [9] for further details. Recently,
in [1] the author has shown that in dimensions larger than three, the above law of
large numbers and central limit theorem remain valid if condition (7'), is satisfied
for some y € (0, 1). In addition, in [9] the author has proven that if IP is uniformly
elliptic, then in dimensions d > 2, for each y € (0.5, 1) and each [ € S9-1, condi-
tion (7'),, | is equivalent to (7”)|1. In [4], the authors pushed down this equivalence
to each y € (yy, 1), where y4 € (0.366, 0.388) is decreasing with the dimension.
The first main result of the present paper is a considerable improvement of these
previous results for dimensions larger than three.

THEOREM 1.3. Let d > 4 and P be uniformly elliptic. Then for all y € (0, 1)
and [ € S, condition (T)y |l is equivalent to (T")|l.

The proof of Theorem 1.3 takes advantage of the effective criterion and is there-
fore closely related to upper bounds for quenched probabilities of atypical exit
behavior of the RWRE. To state the corresponding result, denote for any subset
B C Z4 its boundary by

9B :={xeZ\ B:3y € B such that |x — y||; = 1}
and define the slab
Upip={xeZ:—LF <x-1<L).
Furthermore, for the rest of this paper we let
Tg :=inf{n e Ny: X,, € B}

denote the first hitting time. For x € Z¢ set Ty := T{x). In terms of this notation, in
[9] the author conjectured the following (cf. Figure 1).

CONJECTURE 1.4. Let d > 2, IP be uniformly elliptic and assume (T")|l to
hold for some | € S4=1. Fix ¢ > 0 and B €(0,1). Then for all « € (0, d),

limsup L™ log P(Po.o, (X7, -1 >0) = e_CLﬂ) <0.

L—o00
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d+

FIG. 1. Sketch of the known and conjectured bounds for «.

Theorem 4.4 of [9] states that the above conjecture holds true for all positive «
with
d ((2,3 v 2h )
a< — — .
d+1
The second main result of the present paper gives an affirmative answer to a
seemingly stronger statement than the one of Conjecture 1.4. For [ € S?~!, denote
by
.Rd d
m:R32x — (x-DleR
the orthogonal projection on the space {A/: 1 € R} as well as by
L Risx > x—mkx)eR?

the orthogonal projection on the orthogonal complement {A/: 1 € R}*. Using this
notation, for K > 0 we define the box

Brix={xeZ":0<x-1<L,|mui(x)|oc <KL}
as well as its right boundary part
(1.1) 04Brik:={x€dBrx:x-1>1L}
see Figure 2.

We can now state the desired result.

THEOREM 1.5.  Let d > 4, P be uniformly elliptic and assume (T), |l to hold

forsomey € (0,1),1 € S9! Fixe >0 and B € (0, 1). Then there exists a constant
K > 0 such that for all « € (0, fd),

. _ —eLf
limsup L™ log P(Po o (Tog, , « = To, B, x) <€ &) <0.

L—o0
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FIG. 2. The set By, ;| g and its boundary part 0+ By | k.

REMARK 1.6.

(a) The result we prove is slightly stronger than the conjecture announced in [9]
since we can dispose of the extent of the slab in direction —/ as well as restrict the
extent in directions orthogonal to /. Scrutinizing the proof it will be clear that one
can improve this result replacing the box By j g by a parabola-shaped set which
grows in the directions transversal to v at least like L* for some o > 1/2.

(b) Note that this theorem is optimal in the sense that its conclusion will not
hold in general for o > Bd. In fact, for plain nestling RWRE, this can be shown by
the use of so-called naive traps (see [9], page 244).

(c) In both, Theorem 1.3 as well as Theorem 1.5, the restriction to dimensions
larger than three is caused by the following: for a very large set of environments
we need that the trajectories of two independent d-dimensional random walks in
this environment intersect only very rarely; see equations (A.35) and (A.36).

The proof of Theorem 1.5 exploits heavily a recent multiscale technique intro-
duced in [1] to study the slowdown upper bound for RWRE. To explain this in more
detail, note that from that source one also infers that every RWRE in a uniformly
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elliptic i.i.d. environment which satisfies condition (7'),, for some y € (0, 1), has
an asymptotic speed v # 0. The main result of [1] states that for every RWRE in
a uniformly elliptic i.i.d. environment satisfying condition (7'),,, some y € (0, 1),
the following holds: for each a # v in the convex hull of 0 and v as well as € > 0
small enough, and any o < d the inequality

P()( Xn

— —a
n

< e) <exp{—(ogn)“}

holds for all n large enough. To prove the above result, Berger develops a mul-
tiscale technique which describes the behavior of the walk at the scale of the so
called naive traps, which at time »n are of radius of order logn. Here, we rely on
such a multiscale technique to make explicit the role of the regions of the same
scale as the naive traps to prove Theorem 1.5.

In Section 2, we show how certain exit estimates from boxes imply Theorem 1.5
and how in turn such a result implies Theorem 1.3. In Section 3, we start with
giving a heuristic explanation of a modified version of Berger’s multiscale tech-
nique and of how to deduce the aforementioned exit estimates. We then set up
our framework of notation and auxiliary results before making precise the previ-
ous heuristics by giving the corresponding proofs. In the Appendix we establish
several specific results concerning local limit theorem type results and estimates
involving intersections of random walks.

2. Proofs of the main results. The proofs of Theorems 1.3 and 1.5 are based
on a multiscale argument and a semi-local limit theorem developed in [1] for
RWRE in dimensions larger than or equal to four.

It is well known that if for some y € (0, 1) and / € S?~!, condition (T), |l is
fulfilled, then Pp-a.s. the limit

N . X _
v:= lim " esdl
n=>00 || Xp|l2

exists and is constant (cf., e.g., Theorem 1 in Simenhaus [7]); it is called the as-
ymptotic direction.
Define for a vector e; of the canonical basis of 7 and [ € S~ ! such that [ -e i F

0 the projection f[l] via

» Yo
7 Risx > —LieR?
l-ej

on the space {Al: A € R} and by frljl the projection

» ‘e
#lRIsx > x——LieR!
-e;
J
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4—0.C}

CL
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5 (L1—6+Li§6>

L1+r§

F1G. 3. The set Cy, and its boundary part 04+Cy. .

on the space {Aej: A € R}, In the case j = 1, we will abbreviate this notation by
mpand ;0. For j e {l,...,d},8 > 0and L > 0, define the set

Cri={xeZ?:0<x ¢; < L' |7 (0)lloo < L* +x - ¢;L72);
cf. Figure 3. In analogy to (1.1), we introduce the right boundary parts
04CL:={xe€dCL:x-¢ej > L't

and 9, (x + Cr) :=x+98,.Cy, forx € Z4.
The proof of the following proposition will be deferred to Section 3.

PROPOSITION 2.1. Let d > 4, P be uniformly elliptic and assume (T), |l to
hold for some y € (0, 1), | € S?~1. Without loss of generality, let ej be a vector of
the canonical basis such that v - ej > 0 and fix g € (0, 1) as well as o € (0, Bd).

Then for all § > 0 small enough there exists a sequence of events (E1)eN Such
that for all L large enough we have

. _Lﬁ—ﬁ
inf Pyo(Tye, =To,c;) > e
weny,

and

For the sake of notational simplicity and without loss of generality, we assume
j =1 from now on.

2.1. Proof of Theorem 1.5. We will show that Theorem 1.5 is a consequence of
Proposition 2.1. For this purpose, let the assumptions of Theorem 1.5 be fulfilled.
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In particular, let (T'), |/ be fulfilled (which implies / - 0 > 0; cf. Theorem 1.1 of [8])
and fix c > 0, B € (0, 1) as well as @ € (0, Bd). Let § > 0 small enough such that
the implication of Proposition 2.1 holds and 38 < 8 — 8. Choose B’ € (B — 6, B)
and define x € Z¢ to be one of the (possibly several) sites closest to L?'l. Then the
following property of the displaced set x + C will be used:

(Exit) Let K be large enough and § > 0 small enough. Then for L large enough,
if the walk starting in x leaves x + Cr through 04 (x + Cpr), it also leaves the box
By 1.k through 0. By | k.

Now since the measure P is uniformly elliptic, we know that there exists a constant
C depending on the dimension d, such that for all L large enough and for P-a.a. w
the inequality

_ g
2.1) Po.o(Togy, ¢ > Te) > e €L

holds true. By Proposition 2.1, for o € (0, d) fixed, there are subsets E; C Q
such that for L large enough, P(Ez) > 1 — e~ L% and such that for w € E 1, one has

PO,w(TBBL,/,K = T3+BL,/,K)
> Po.o(Tony ik > Tes Toercp) 01, (X)) = Ty, rr0p) (07, (X))
= PO,w(TaBL,z.K > Tx)Px,w(TB(X-I—CL) = T3+(X+CL))

—cLf B3 —CLB
> ¢ CLV (=LP70 _ ,—CL

for L large enough, where 6, : (Zd)NO — (Z”l)NO denotes the canonical n-fold left
shift and to obtain the first inequality we used property (Exit). In the second in-
equality, we have used the strong Markov property and in the third one we em-
ployed inequality (2.1) as well as Proposition 2.1 in combination with the transla-
tion invariance of the measure IP. This finishes the proof of the theorem.

2.2. Proof of Theorem 1.3. In [8], the author introduces the so called effective
criterion, which is a ballisticity condition equivalent to condition (7”) and which
facilitates the explicit verification of condition (7). The proof of Theorem 1.3
will rest on the fact that the effective criterion implies condition (7). Indeed,
we will prove that (T),, implies the effective criterion, the main ingredient being
Theorem 1.5.

For the sake of convenience, we recall here the effective criterion and its fea-
tures. For positive numbers L, L" and L as well as a space rotation R around the
origin we define the box specification B(R, L, L', Z) asthebox B:={xeZ%:x e
R((—=L, L") x (—L, L)4~1")}. Furthermore, let

PO,w(XTaB ¢ a+B)
Po,w(XTag € 8+B) '

pB(w) ==
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Here, 0B :={x € dB:R(e1) -x > L', |R(ej) - x| < L Vje{2,...,d}}. We will
sometimes write p instead of pp if the box we refer to is clear from the context and
use R to label any rotation mapping e to 0. Note that due to the uniform ellipticity
assumption, P-a.s. we have p € (0, 00). Given [ € ST, we say that the effective
criterion with respect to [ is satisfied if

1\36@=1) _
(2.2) %ng{cl(d) (log ;) Ld_1L3(d_])+lE,og} -1

Here, when taking the infimum, a runs over [0, 1] while B runs over the box-
specifications B(R, L — 2, L + 2, i) with R a rotation such that R(e1) =1/, L >
co(d), 3/d < L < L3 Furthermore, c{(d) and cy(d) are dimension dependent
constants.

The following result was proven in [8].

THEOREM 2.2. For eachl € S4~1, the following conditions are equivalent:

(a) The effective criterion with respect to l is satisfied.
(b) (T")|l is satisfied.

Due to this result, we can check condition (7”), which by nature of its definition
is asymptotic, by investigating the local behavior of the walk only; indeed, to have
the infimum on the left-hand side of (2.2) smaller than 1, it is sufficient to find one
box B and a € [0, 1] such that the corresponding inequality holds.

Recall that from Theorem 1.1 of [8] we infer that for [ such that / - v > 0, we
have that (T'), |l implies (7), |0, and (T)'|0 implies (7')’|l. Thus, because of (2.2)
and Theorem 2.2, in order to prove Theorem 1.3 it is then sufficient to show that
(T), |0 implies that

(D) for every natural n € N, one has that Ep? = o(L") as L — o0;

here, p corresponds to a box specification B (1%, L—2,L+2,L%.
To show the desired decay, we split Ep? according to

n—1
(2.3) Ep’ =&+ ) & +&n
j=1
where n = n(y) is a natural number the choice of which will depend on v,
—k LB
& :=E(0%, Po(X1,5 € 04+ B) > e ML),
B; B;
£ =E(o% e 7 < py o (Xp,, €0, B) <e ML)

for je{l,...,n—1}and

_ Bn
En =E(p", Po.o(X1,5 € 04 B) <)
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with parameters

y=p1<Br<---<Bp:=1,

a=L"% ¢¢€(0,1), as well as k, large enough and arbitrary positive constants
ki,ka, ..., kn—1. To bound &), we employ the following lemma, which has been
proven in [4].

LEMMA 2.3. Forall L >0,
80 < ek]Ly_E—(S]LV_S-f—O(Ly_E)
where

81 :=—limsup L™ log Po(X1,, ¢ 3+B) > 0.

L—o0o

To deal with the middle summand in the right-hand side of (2.3), we use the
following lemma.

LEMMA 2.4. Forall L >0, j €{l,...,n}and ¢ > 0, we have that
& < K LI =PI o Py
PROOF. Using Markov’s inequality, for j € {1,...,n — 1} we obtain the esti-
mate
) Bi —e ) Bi
(2.4) E; <M P(Py o (X1, € 94 B) < e R,

Due to Theorem 1.5, for € > 0 fixed, the outer probability on the right-hand side

of (2.4) can be estimated from above by oL o’ g

For the term &, in (2.3), we have the following estimate.

LEMMA 2.5. There exists a constant C > 0 such that for any ¢ > 0,

5n S eCLlfé‘_Lﬂndfé‘_,’_o(Lﬁndfs)'
PROOF. Using the uniform ellipticity assumption, we see that there is a con-
stant C > O such that
1- —k, LP
(2.5) En < LT P(Py (X 1y, € 04 B) < e Rl

An application of Theorem 1.5 to estimate the second factor of the right-hand side
of inequality (2.5) establishes the proof. [J
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From Lemmas 2.3, 2.4 and 2.5, we deduce that for k; < 81, n = n(y) large
enough, arbitrarily chosen positive constants k», ..., k, as well as ¢ and B, ..., B,
satisfying

Bi=v, e<y,
Bj+1 < Bjd
for j e{l,...,n— 1}, and
1 < fnd,

all the terms &, ..., &, on the right-hand side of (2.3) decay stretched exponen-
tially. It is easily observed that the above choice of parameters is feasible, which
establishes the desired decay in (D) and thus finishes the proof of Theorem 1.3.

3. Proof of Proposition 2.1 and auxiliary results. The proof of Proposi-
tion 2.1 is based on a modified version of the multiscale argument developed in [1].
In general, in our construction, we will name the corresponding results of the con-
struction in [1] in brackets in the corresponding places.

We start with giving a heuristic (and cursory) idea of the proof. Afterward, we
will set up all the necessary notation and auxiliary results before providing a rig-
orous proof of Proposition 2.1.

3.1. Heuristics leading to Proposition 2.1. The basic strategy of the proof is
to construct, for B € (0, 1) and @ < 8d given, a sequence of events (G ) cN, each
a subset of €2, such that for L large enough one has

(3.1) P(GS) <e L”

and at the same time

(32) inf Poo(Ty,c, =Toc,) = e,
a)EGL

where ¢ is a constant that changes values various times throughout this subsec-
tion. In order to define G, for each of finitely many scales, we cover the box Cp,
with boxes of that certain scale. Boxes of the first scale have extent roughly L2V
in direction ©, and extent marginally larger than LY in directions orthogonal to 9.
Here, ¥ > 0 is much smaller than 8. The boxes of larger scale more or less have
Y replaced by larger numbers [see (3.4), (3.7) and (3.8)]. Given an environment,
we declare a box to be good if within this box and with respect to the given en-
vironment, the quenched random walk behaves very much like the annealed one.
Otherwise, it is called bad.

We then define G as the event that there are not significantly more than L*
bad boxes of each scale contained in Cy. Using Proposition 3.4, which states that
the probability of a box being bad decays faster than polynomially as a function
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in L, by large deviations for binomially distributed variables one shows that the
probability of the complement of this event is smaller than e~ ", so that (3.1) is
satisfied (cf. Lemma 3.6).

It remains to show that on G, inequality (3.2) is satisfied. For this purpose, we
associate to the walk a “current scale” that slowly increases as the e-coordinate
of the walk increases. We will then require the walk to essentially leave in eg-
direction (i.e., through their right boundary parts) all the boxes of its current scale
it traverses; this ensures that it leaves C;, through 9, C; . Since the probability that
the random walk exits a good box through the right boundary part is relatively
large, one can essentially bound the probability of leaving C, through 0, Cy from
below by the cost the walk incurs when traversing bad boxes.

Now each time the walk finds itself in a bad box of its current scale, it will
instead move in boxes of smaller scale that contain its current position, and leave
these boxes through their right boundary parts. Each time this happens, it has to
“correct” the errors incurred by moving in such boxes through some deterministic
steps, the cost of which will not exceed e_"LN ; in a certain way, these corrections
make the walk look as if it has been leaving a box of its current scale through its
right boundary part. Thus, we can roughly bound the probability of leaving Cp
through 0, Cy by

(3.3) e—eNL

where N is the number of bad boxes that the walk visits.

Now in order to obtain a useful upper bound for N, we can force the random
walk to have CLT-type fluctuations in directions transversal to ¥ at constant cost
in each box (see random direction event, Section 3.6). By means of this random
direction event, one can then infer the existence of a direction (depending on the
environment) such that, if the CLT-type fluctuations of the walk essentially center
around this direction, then the walk encounters a little less than L? bad boxes of
each scale on its way through Cy. From (3.3), we deduce that the probability for
the walker to leave C, through 0+ Cy can then be bounded from below by e=cL”
This suggests that (3.2) holds.

3.2. Preliminaries. We first recall an equivalent formulation of condition
(T), and introduce the basic notation that will be used throughout the rest of this
paper.

We will use C to denote a generic constant that may change from one side
to the other of the same inequality. This constant may usually depend on various
parameters, but in particular does not depend on the variable L nor N (recall that L
is the variable which makes the slabs and boxes grow, and N will play a similar role
in general results). In “general lemmas,” we will usually denote the corresponding
probability measure and expectation by P and E, respectively. Furthermore, when
considering stopping times without mentioning the process they apply to, then they
will usually refer to the RWRE X.
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Not all auxiliary results will appear in the order in which they are employed. In
fact, in order to improve readability, we defer the majority of them to the Appendix.

In addition, we assume the conditions of Proposition 2.1 to be fulfilled for the
rest of this paper without further mentioning.

We first introduce the regeneration times in direction ej. Setting 79 := 0, we
define the first regeneration time t; as the first time X, - e; obtains a new maximum
and never falls below that maximum again, that is,

T1 ::inf{n eN: sup Xp-e1<Xj,-erand inf Xi-e1> X, -el}.
0<k<n—1 k=n

Now define recursively in n the (n + 1)st regeneration time 1,41 as the first time
after t, that X,, - [ obtains a new maximum and never goes below that maximum
again, thatis, 7,11 := 71 (X¢,+.). For n € N, we define the radius of the nth regen-
eration as

X = sup | Xg—Xq, -

T—1<k=<1y

This notation gives rise to the following equivalent formulation of (7'), proven
in [8], Corollary 1.5.

THEOREM 3.1. Let y € (0,1) and | € SY~'. Then the following are equiva-
lent:
(1) Condition (T), |l is satisfied.

(i) Po(lim,_ o0 Xy -1 =00) = 1 and Egexp{c(X*)"} < oo for some ¢ > 0.

REMARK 3.2. Note in particular that, similarly to Proposition 1.3 of Sznitman
and Zerner [10], condition (ii) implies Egexp{c(X *))7} < oo for any n > 2.

We will repeatedly use the above equivalence. Now for each natural k and N

we define the scales
Ri(N) := [exp{(loglog N)**1}1.
Note that for every natural n, N and k one has that
R;(N) € o(Rk+1(N)) and Ry(N) € o(N).

Define for each natural N the sublattice

V%(N N J
X —

4

Ly :=N?Z 741

of Z4. Furthermore, for each N and x € Z¢ we define the blocks

(34) PO,N):={yeZ':=N*<y-e; < N |7;0(3)lloc < Re(N)N}
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and
Px,N):=x+P(O,N)
as well as their middle thirds
PO, N):={y € Z:=N?/3 < y-e1 < N*/3, |71 (9)lloo < Re(N)N/3}
and
P(x,N):=x +P(0,N).

Note that this construction ensures that for each x € N2Z x Z4~1 there exists a
z € Ly such that x € P(z, N). Furthermore, define its right boundary part

4 P(x,N):={y € dP(x,N):(y —x)-e; = N}.

See Figure 4 for an illustration.
For N > 1, define the event

An(X) = [X*™ < Ry(N) Vn e {1,...,2N?}},

where at times we write Ay instead of Ay (X) if the corresponding process X
is clear from the context. Using Markov’s inequality, the following lemma is a
consequence of Theorem 3.1.

<3, P(z,N)

2Rs(N)N

t 2N? !

FIG. 4. The set P(x,N) and its right boundary part 9+ P(x, N) as well as its middle third
P(x,N).
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LEMMA 3.3. There exists a constant C > 0 such that for each N > 1,
(3.5) Po(AS) < Ce=C ' Ra)”
and, defining the event
Avi= [ {Pro(Af) e BTy
xeP(0,N)

which is contained in the Borel-o-algebra of €2, one has

P(Af) < Ce™ € RV,

We define the set of rapidly decreasing sequences as

S(N) := [(a,,)neN cRN: sup |nkan| < oo Vk e N]
neN
and note that due to Lemma 3.3 we have that N — Py(A}) and N — P(AY) are
contained in S(N).

3.3. Berger’s semi-local limit theorem and scaling. As a first step in the scal-
ing, we introduce a classification of blocks. We need to define some parameters
which will remain fixed throughout this paper. For § and « as in the assumptions
of Proposition 2.1, choose § such that

Bd —«o
12d

0<é<

Furthermore, fix

(3.6) = (25, ?)

and x such that
O<x<(B—=68)2AY/4n6/(d—1).

From now on let L € N, define L := [ LY ] and recursively in k the scales

(3.7 Liy1:=Lg[L*].

Define ¢ to be the smallest k such that L,% > L' Forke{l,...,.} and x €
CrNLy,, we call a block

(3.8) P(x, L)

good with respect to the environment w if the following three properties are satis-
fied for ¥ := x and all z € P(x, Ly):

()
(3.9 P o(Topx, ) 7 Ty Pix. L) < e Ri”



474 A.DREWITZ AND A. FE. RAMIREZ

(i1)
| Ez0(XTyp (o 1 1 ToPer.Lo) = TouPix.Li)
(3.10)
—E; (XTap(X,Lk) \Tope,i0) = To,pex.io) |1 < Ra(Ly).
(iii)
x| P o (XTypery) € QNToP (L) = Tor P L)
(3.11) = P(X1yp(, 1, € C1Top(, 1) = To,Px, L) |

- L}({ﬁ—l)(d—l)—z?(d—l)/(d%—l)’
where the maximum in Q is taken over all (d — 1)-dimensional hypercubes Q C
4P (x, L) of side length [LY7.

Otherwise, we say that the block P (x, Ly) is bad. For k € {1, ..., (} we will usually
refer to boxes of the form P(x, L) as a box of scale k.

The following result is essentially Proposition 4.5 of [1], which can be under-
stood as a semi-local central limit theorem for RWRE. For the sake of complete-
ness, we will give its proof in the Appendix.

PROPOSITION 3.4 (Proposition 4.5 of [1]). Assume that (T),|l is satisfied

and fix ¥ € (0, d%l A 1). Then there exists a sequence of events (Gr)pen C Q2
such that P(G€) € S(N) and forall w e Gy and k € {1,...,}:

(i) display (3.9),
(i) display (3.10) and
(iii) display (3.11)

are satisfied forallx e CL N Ly, z € 75(x, L) and the chosen ¥ .
In particular, due to the translation invariance of the environment, we have that

P(P(x,-) is bad) € S(N) for any x € 7.

REMARK 3.5.  For the sake of notational simplicity, we will prove the propo-
sition by showing that there exist sequences G(Ll) , G(Lu) and G(Lm), L € N, of subsets
of 2 such that

PGY).  P(GP) and B(GI)
are contained in S (N) as functions in L and such that for @ contained in these
sets, x =0, and z € P(0, L), displays (3.9), (3.10) and (3.11), respectively, are
fulfilled for L instead of L. The required result then follows by observing that

P is translation invariant and using |Cr| < C L?? in combination with a standard
union bound.



EXIT ESTIMATES AND BALLISTICITY CONDITIONS 475

We next give an upper bound on the probability that an environment has many
bad blocks. For this purpose, set

Or:={weQ:|{xeCrNLy, :Px, L)
(3.12)
is bad with respect to w}| < L*T Vk e {1,...,4}}.

Furthermore, observe that £; can be represented as the disjoint union of 2 - gd—1
(translated) sublattices of Z¢ such that for any sublattice £ of these and 71,22 € L,
we have P(z;, L) NP(z2, L) = D.

LEMMA 3.6 (Lemma 5.1 of [1]). For L large enough,

P(©S) <e L.

PROOF. Forke({l,...,},set
Ji, (@) :=[{ze CL N Ly, :P(z, L) is bad with respect to w}|
and note that
L
(3.13) P(©9) <Y P(J, > L**).
k=1
d—1
As in [1] we can write Jg, = ]&) + -4+ ]g.g ) with JL(T) distributed bi-

nomially with parameters D(Ly) and p(Lg) for m € {1,...,2 - 8411, Here,
p(L) :=P(P(0, L) is bad), that is, in particular, due to Proposition 3.4,

(3.14) peSN),

and D(Lg) is the maximal number of intersection points any of the above-
mentioned translated sublattices has with Cp, that is, in particular

(3.15) D(Ly) <CL*™
for some constant C and all L. Now form € {1, ...,2- 871}, we have
Loz+8 Loz+5
(m) (m)
(3.16) ]P’(JL'Z1 > 2-8d_1> < exp{—m}ﬂiexp{]{kn }
with
D(Ly)
D(L i D(L)—j
Bexpls(} = 3 (7)) epoy(1 - epe) ™
j=0
(3.17) ’

’

1= p(Ly) \ PO
(1 - ep(Lk)>
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and from (3.14) and (3.15) we conclude that
L= p(Li) \PHO
- PAERT =1
(1 - ep(Lk))

uniformly in j € {0, ..., D(Ly)}. Substituting this back into displays (3.17), (3.16)
and (3.13), we conclude the proof. [J

lim

L—o00

We now need to recall the concept of closeness between two probability mea-
sures introduced in [1]. Here and in the following, if Z is a d-dimensional ran-
dom variable defined on a probability space with probability measure u, we write
E,Z := [Zdp and if p is a measure on R4, then we write E, = [xdpu,
whenever the integrals are well defined. Furthermore, we define its variance via
VarZ .= E||Z - EZ ||% whenever this expression is well defined and correspond-
ingly for a probability measure x on R with appropriate integrability conditions
we write Var,.

DEFINITION 3.7. Let u1 and 17 be two probability measures on Z¢. Let A €
[0, 1) and K be a natural number. We say that us is (A, K)-close to 1 if there
exists a coupling p of three random variables Z;, Z, and Z such that:

(@) woZ;' = p;for je{l,2},

(b) u(Z1 # Zp) <A,

©) u(llZo—2Z2lh =K)=1,

(d) E;LZI = E;J,ZO>

© Y.llx—E Zil13 - |n(Zi =x) — u(Zo=x)| <A VarZ,.

REMARK 3.8. Assume given a random variable X that is distributed accord-
ing to some distribution which is (A, K)-close to some other distribution. Then
the corresponding coupling which establishes this closeness can be defined on an
extension of the probability space X is defined on, with X playing the role of Z5.
We will therefore assume this property to be fulfilled from now on without further
mentioning when dealing with such couplings.

3.4. General auxiliary results. The following lemma is a sort of remedy for
the fact that

.....

with respect to Py(-|AL), due to the conditioning on Ay, is not a martingale. To
state the result, set

Eo( X, — X1
(318) ﬁL — 0( £9) ‘[1) Al .
||E0(XT2 - Xrl)ﬂAL ||2

We start with showing that for L large, v; hardly deviates from the asymptotic
direction 0.
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LEMMA 3.9.

[0 —v.]l2 € SN).

PROOF. Note that
EO(X‘L'z _X‘L'l) EO(X‘Q _Xrl,AL)

||ﬁ—ﬁL||2=H _
1Eo(Xe — Xl 1Eo(Xes — Xups A2

= |Eo(Xe, = Xe)DIIEo(Xe, — Xoy, AL) Il

2

(3.19)
- EO(X‘[Q - X‘[]v AL)”EO(X‘L’Q - X‘E])HZ”Z

x (Il Eo(Xr, = X2 Eo(X ey — Xrps AD2) ™
Inserting a productive 0, the numerator evaluates to
| Eo(Xz, = Xe) | Eo(X vy — Xvy, AL) 2 — Eo(Xzy — Xe)II Eo(Xzy — X))l
+ Eo(Xv, — Xe) | Eo(Xvy — X1)) 2 — Eo(Xvy — Xops ADIEo(Xzy — X1 ll2]
< |Eo(Xz, = Xe) 2|1 Eo(X vy — Xvy, AL) 2 — | Eo (X, — X)) 2]
+ 1 Eo(Xz, — X7y AD 121l Eo(X 7, — X)) l2
<20 Eo(Xz, — Xzl Eo(Xr, — Xoy, AD 2,

where the last inequality follows from the reverse triangle inequality. But Cauchy—
Schwarz’s inequality and Lemma 3.3 yield

I Eo(Xzy — Xey» A2 < Eo(| Xz, — Xo, ll2, AS)
< Eo(| Xe, — X1, 1512 Po(AS)!/2
< Ce—C‘le(L)V/Z’

whence (3.19) is contained in S(N) as a function in L. [

Therefore, (751 (3. (Xt; — X1;_)))nea,... 212y is nearly a mean-zero martin-
gale with respect to Py(-|Ar) and this is what we will exploit in the proof of the
next lemma.

LEMMA 3.10. For L and x € 75(0, L), define the event

Fep:={3nef0,...., T2} : 1750 (Xn — X)|loc = R3(L)L
or (Xp—x)-e;1 <—Ra(L)}.

Then there exists a constant C > 0 such that for all L,

max  Py(Fy,p) < Ce € R,
xeP(0,L)
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In particular,

(3.20) max Po(X7yp,, & 0+P(0, L)) < Cem € RO,
xeP(0,L) ’

PROOF. Setting F, ; :={In € {0,..., T2} : |70 (Xn — ¥)lleo > R3(L)L},
we have
(321) Px(Fx,L)fpx(F;vL, AL)+PX(ACL)

Note that (7751 21Xy — X1, ))nepa,... 212y 18 a (d — 1)-dimensional martin-
gale with respect to Py (-|Ar). Furthermore, observe that due to Lemma 3.9, in
particular we have

sup 171 (v) = F5 (oo < Ro(L)
yeP(0,L)

for L large enough. Therefore, Azuma’s inequality applied to the coordinates
yields

Px(Fx,L’ AL)
<P(Fne{r,....t2}: 1750 (Xn — X)) loo = R3(L)L — 2R2(L)|AL)
<P (@nefr,....,nm2}: 751 (Xn = Xz)lloo = R3(L)L — 3Ry(L)|AL)

<P(Inefl,....2L%: 1751 (Xe, — Xep)lloo = R3(L)L — 4Ry(L)|AL)

212 2

(R3(L)L/2) }

2(d —1 S ek e
== )J;exp{ 2iRo(LY
R3(L)L/2)?

<exp{—R3(L)}

for L large enough. In particular, in combination with (3.21) and (3.5) this reason-
ing finishes the proof of the first part. Equality (3.20) is an immediate consequence.
O

The following lemma, which we will prove in Section A.6 (see page 533), pro-
vides lower bounds on certain exit probabilities.

LEMMA 3.11. Let C' be a positive constant. Then there exists a positive con-
stant ¢ such that for all L large enough, and all x € P(0, L), y € 9, P(0, L) with
751 (y —x)|l1 < C'L, we have

PX(XTaP(o,L) =¥z L'~
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Let now x € £ and z € 75(x, L). Then, following [1], for v € Q2 we de-
fine uéx’w to be the distribution of XTypir with respect to P; o (:|Topx,1) =

Ty, p(x,1))- Similarly, we define ,uZL . to be the distribution of X TypeeL) with re-

spect to P, (:|Typx,L) = To, P(x,L))-
We now get the following bounds for VarMLO, which will turn out to be useful

in the proof of Corollary 3.13 below.

LEMMA 3.12. There exists a constant C such that for all x € 75(0, L) and
all L,

c'L?<var,, <CL%
I‘Lx,O

PROOF. The lower bound is a consequence of Lemma 3.11.
To prove the upper bound, note that S, :=>}_; X¢, — X, |, — Eo(X¢, — X))
is a martingale in n with respect to Py. We define the stopping time

T = lnf!n S N: (Sn + Z EO(ka - erl)) - €] Z L2}

k=1
and note that in particular (S,A7 - €j)neN is a martingale for any j € {2,...,d]}.
The independence of the increments yields that so is

((Sn/\T : ej)z - (E(Sm ’ ej)z)m:n/\T)neN'

Since for n = 0 the martingale equals 0, we have, noting that
m
2
E(Sm - ej)z = Z E((ka — Xg = Eo(Xg, — Xg ) - ej)
k=1

as well as T < L2, that
E(St-ep)*<CL>.

Taking into consideration Lemma 3.3 and Lemma 3.10, this implies the upper
bound. [

Forx € Z4 and k € Z., we will use the
(3.22) Hy:={xeZ%:x e =k}

from the following proof onward.
In [1], the author derived a result similar to the following corollary of Proposi-
tion 3.4.

COROLLARY 3.13. Fix 9 € (0,5/8] and let L be large enough. Furthermore,
letkefl,....,t},x e CLN Ly, and w € Q such that (3.10) and (3.11) are fulfilled
for this choice of ¥ and all 7 € P(x, Ly).

Then ,uZL,’},w is (L,:Z?(d_l)/(z(dﬂ)), 2dLZ)-close to MzL,.kx-
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PROOF. For fixed k, x, w and z as in the assumptions, we will show the de-
sired closeness for L large enough. Observing that this lower bound on L holds
uniformly in the admissible choices of k, x, w and z then finishes the proof.

We will construct the coupling of Definition 3.7 in the case x = 0, the remaining
cases being handled in exactly the same manner. Cover 0+ P (0, L) by at most n =
[2Re(Ly) L, "79~" disjoint cubes Q1, Qa, ..., O of side length [L?7]. Consider
an i.i.d. sequence (Y;) jen of random variables defined on a probability space with
probability measure P* (the space should also be large enough to accommodate
the random variables we will define in the remaining part of this proof) such that

_um({ x)
Mzo(Q])
and P*(Y; =x)=0if x ¢ Q;; set

P*(Yj=x) xe€Qj,

n
Y = Z YJ']l{XTaP((),Lk>€Qf}
j=1

and

P_ o= Poo(|Ts,p0.L0) = ToPo.L0) ® P*.
Clearly, P; ,-a.s., ||XTaP(o,Lk) -Yh=sd-1) |'L}?'| and consequently we have

1Bz 0¥ —EzoXyp., 1 < (d = DILYT.
Display (3.10) yields
HEz,wXTamo.Lk) —E (XTBP(O Ly) 1Ta,P0.L) = Tar, Lk))”l < Ra(Li)
and thus
|Ee0Y — Ec(X1yp01,) 1 Tor P00 = Topo,.20) | < dLY

for L large enough. Let now U be an Hyp-valued random variable defined on the
same probability space as the sequence (Y;) jen (and choose U to be independent
of everything else) such that P, ,-a.s. we have ||U |1 < del9 as well as

E: oU = E:(X15p.1,)| To, PO.L0) = Topo.Lp) — Ez oY
Define
Zo:=Y+U
and

Zy:=XTypo.1,)-
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Then taking P; ,, as the p of Definition 3.7, part (c) of that definition is fulfilled
for K =2d LZ and L large enough. To show the remaining parts, we first note that
for y € Z% we have

Pz,a)(ZO =y) = Z Pz,w(U = M)Pz,a)(Y =y—u).

u: |uly <dL]
Since furthermore P, ., o ¥ ~! is supported on 8P (0, Ly), we get
3 IPw(Zo=y) — uih(y)l
yezd
(3.23) <2 Y P.,U=uw

. 9
u:llulli<dLy

L
x > P =y —u)—pn ol
y:y—u€dy+P(0,Ly)

By heat-kernel estimates to be proven later [cf. part (b) of Lemma A.2], for each
y € HLI% and every u such that |ju||; < dL?,

(v —u) — prh(MI < CLY - LY =cL) ™.
In combination with (3.23) and the validity of (3.11), this yields

3 IP.w(Zo =) — ulh ()l
yezd

L —
<2 Y (Puo =y —n b0+ CL™)
yed P(0,Ly)

(3.24) [(mew(Q) uit(Q; >|>+(2R6(Lk))d 'Lteny” }

< CRe(Ly)? 'LV~ + |'2R6(Lk)L1_ﬂ'|d*1 .Lliﬂ—lxd—l)—ﬁ(d—l)/(d“)

< Lk—ﬁ(d—l)/(Z(d-‘rl))’

L large enough; here, the second inequality is obtained by noting that the sign
of [P, ,(Y =y) — Mé”‘z(y)l is constant as y varies over Q; for fixed j, while the
penultimate inequality takes advantage of # <5/8 and d > 4. Thus, due to (3.24),
there exists a random variable Z defined on the probability space with probability
measure P, ., such that P, ., 0 Zl_1 =puzo0and P, ,(Z1 # Zp) < L,:ﬂ(d_l)/(z(dﬂ)).
This establishes (a), (b) and (d) of Definition 3.7 for A = Lk_ﬁ(d_l)/(z([”l)).



482 A.DREWITZ AND A. FE. RAMIREZ

To see (e), observe that
Vary ,Z1 = Vary (X1,5 ., | Top0.L) = To, P0.L))-
Now note that the support of ,ué kz(') — P, ,(Zp =") is contained in

{y € Hyp:32 €0, P(0, Ly) such that ly — zlli <dL}}.

Thus, for any y in the support of ui’b(-) — P, »,(Zy="-) we get as a consequence
of (b) in combination with the penultimate line of (3.24) that

2
ZHX — E; (XTBP(O,Lk) |Ta, p0.L0) = Topo.Lo) |
X
X [Py w(Z1 =x) =P (Zo=x)|

<4d*(LiRELO) Y bt (x) — P o(Zo = x))
X

—9(d-1)/({d+1
<4d*R2(Ly)L} - Ry(LyLy " P/EHD,

where the last inequality holds for L large enough. In combination with Lem-
ma 3.12, we deduce that the right-hand side is bounded from above by A Var Z; for
L large enough, which finishes the proof. [

3.5. Auxiliary walk. As a preparation to prove Proposition 2.1, for each envi-
ronment, we introduce a refinement (Y;,) of the finite-time auxiliary random walk
defined in [1]. In blocks P(x, L) where the environment is such that the quenched
RWRE (X,) behaves similarly to the annealed one, the quenched walk (Y;) will
behave quite like (X,,). In blocks where the quenched and annealed behavior of
(Xp) differ significantly, the quenched walk (Y;) will make up for this deviation
by corrections, in order to more or less mimick the annealed behavior of (X,). As
a consequence, the quenched walk (Y},) starting in O will leave Cy, through 0+ Cp,
with a probability not too small, with respect to sufficiently many environments.
Note that its construction will depend on a couple of parameters and in particular
will be done for each L > 0 separately. For the sake of notational simplicity, we do
not explicitly name these dependencies in the notation (Y,). In order to facilitate
understanding for the reader familiar with [1], we stick to the notation of that paper
wherever appropriate.

On a heuristic level, the construction of the auxiliary walk (Y;,) can be described
as follows. Let L and w be given. In order to leave Cy, through 94 Cy, the walker
starts with performing a few deterministic steps in positive ej-direction.

Then, starting a recursive step, there is associated a natural scale k' € {1, ..., }
to the current position of the walker (this scale is roughly given by the largest k €
{1, ..., t} for which L,% divides the current ej-coordinate of the walker); the walker
then looks for good boxes of the form P(x, L), such thatk e {1, ..., k'}, x € Ly,
and such that his current position is contained in P(x, Ly). We now distinguish
cases:
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e If such a box exists, then the walker picks the largest of these boxes and moves
according to a random walk in the corresponding environment, conditioned
on leaving this box through its right boundary part. If this box is of the form
P(x, Ly) for some k < k’, then before starting the recursion step from a posi-
tion with natural scale k" again, the walker will perform a correction, making
up for having moved in boxes smaller than the ones corresponding to its natural
scale.

e If no such good box exists, the walker performs some deterministic steps in
positive eq-direction again and then returns to the start of the recursive step.

To formally construct our process, we need some auxiliary results. The follow-

ing lemma will be proved in Section A.6 (see page 523).

_ LEMMA 3.14.  There exists a finite constant C such that for all L and x €
P, L),

L?—x. el .
Ep —x— =] <CRyL)
x,0 V-eq 1
and
L% —x -eq .
(325) EXXTBP(O.L) — X — WU < CRQ(L)
t €1 1

In order to state further auxiliary results, for x € Z¢ such that x - ¢; € L3N,

define z(x, k) to be an element z € £, suchthatx - e; =z -ej and x € P(z, Ly).
Furthermore, for x such that x - e| ¢ L%N set z(x, k) := 0. In addition, abbreviate
for j, k € N the hitting times

Ti(j) :=inf{n e N:Y, - e; = jL3}.

LEMMA 3.15. Letkef{l,...,t—1},Ag € HOO75(O, Li+1) deterministic and
(Ai)ie{l,..., LLx |2} be random variables. Set S; := Z{:o A; and assume furthermore

that for every i, conditioned on Ay, ..., Aj_1, the variable A; takes values in

0+ P(z(Si—1,k), Lr) — z(Si—1, k) only, with

(3.26)  |E(Ai[AL, ..., A1) — (E 1 o7 i~ < Ra(Lg)
Si—1,2(S;—1,0)

a.s. Then for L large enough andt > R5(Ly)Lj+1,
PEje{l,.... [L*)*}: 1750 (Sj — Ao)lloo = 1)
3.27)

l‘2
<2(d - 1)LLXJ2exp{——}.
72L%,  Re(L)?
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PROOF. Noting that 751 (A0) = 0 for all A € R, the triangle inequality yields

(3.28) 1751(S; = A oo <IZ o H1 2P oo + 1257 o
where
z{): Zm —EAiAL . AD),  jefl, ., LX),
zsV =0,
@ .
z (E(AilAL ..., Ai—1) — (E S
ZXET[L (AilA i—1) (Méik—lsZ(Si—lvk) i—1))
and
3. L}
z E —Si - b).
ZJT J_<( L,k i1 i l) ﬁ-el U)
Due to (3.26), a.s.
(3.29) 127 o < jRa(Lp).

while Lemma 3.14 results in
(3.30) 129 o, < CiRa (L)

Using (3.28) to (3.30) and because of # > Rs(Lg)Lk+1, for L large enough the
probability in (3.27) can be bounded from above by

P@Eje{l..... ILX*}: 750 (28") | o 2 1/3).

Now with respect to P, the sequence (ﬁ'ﬁj_(Zﬁ-l)))j L 2} isa(d—1)-
dimensional mean zero martingale such that ”7%1’31_(2(1) ) — T (Z(l))||oo <

2L, Re(Ly) forall j €{0,..., LLXJZ}. Thus, Azuma’s inequality yields
. ~ 1
P@Ej el ... LX) |75 (Z") ] o 2 1/3)

.....

2
2(d — 1| L") {— : }
<2 JLL” | exp 72| Lx |>(Li Re(Ly))?
2
=2(d —1)|LX? {—t—}
(d—D[L" ] exp 72L%,  Re(Ly)? -

We now introduce some quantities that will play an important role in the re-
maining part of this paper. For k > 2, let

A —R9+k(L)L - (d—-1)/(2(d+1))
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2R4(L)L

b 2L? !

F1G. 5. The set P1(x, L) contained in P(x, L).

and
Ky =4[ L %dTL) 1,
where ¢} := x as in the definition of good blocks. Furthermore, define the boxes
P10, L) :={y € PO, L) : I75: (M lloo < Re(L)L/2}
and
Pi(x, L) :=x+P1(0,L)
as well as its right boundary part
01 Pi(x, L) :={y € 0P1(x, L): (y = x) -e1 = L7);

cf. Figure 5.
From now on, we will occasionally emphasize the process to which a certain
random time refers by writing it as a superscript to the corresponding random time
S . .
(as, e.g., Ta+7>1 0,Lp D the following lemma).

LEMMA 3.16. Consider S LLx |2 of Lemma 3.15 and assume that the distrib-

ution P o SL_LIXJ2 of SLLXJ2 with respect to P is (2kli41,2kKi41)-close to ,uf”}fl

for some x € P(0, Li11). Then for L large enough, the distribution of S LLX )2 with

respect to P(-|T85+ PUOLir) = Ty, Low) 8 (k4 Dhi1, 2k + 1) Ki1)-close

to Mik(;r ! for all admissible choices of Ao, k and x.
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PROOF. Let u be the coupling of Zy, Z; and Z; as in the definition of
(2kAg+1,2k Ky 1)-closeness, that is, such that:

@ poZy'=pi and po zy = Po Slexp’
(b) u(Zy# Zo) < 2kriy1,

©) nllZo— Z2ll1 <2kKpq1) =1,

(d) E;LZI = E;J,ZO>

© Y. llx—E Zil} - 1u(Zy =x) — u(Zo=x)| < 2kjs1 Var Z;.

Then we look for Zj, Z| and Zj such that:

—1 L —1 S S
R uig and o Zy ™ = PCITy 0.1y = Topi0.Li) ©
|Lx|?
(b)) w(Z] # Zh) < @k + DAgy1,
) nlZy— Z5Ih < @k + DKp1) = 1,
d) E,Z)=E,Z),
€) Yyllx — ELZ)I3 - 1u(Zy = x) — p(Z) = x)| < 2k + DAgy1 Var Z).

For this purpose and due to Remark 3.8, we can assume

Zy=S8 112
without loss of generality. Set
Zi =7
and
Zh = Zols _7S + Z31..s s ,
2 T3+7’1 (O’Lk+1>_T37’1 O Lgy1) 2 T3+7’1 (Ova+1>7éT37’1 O Ly

where Z3 is independent of the remaining random variables and distributed as
SiLxp? with respect to
S _ 7S
PIT3, 50,060 = Top10.1411))-

Furthermore, set

Z3 :=Zol,s _7S +Z51 s s .
0 Tipiongn=liriongy 2 Tiipioag a0

Now as E Z’1 = E Z and since due to Lemma 3.15 we have that
S S
max P (75 p, 0.L1) # Top0.Ln)

is contained in S(N) as a function in L (where the maximum is taken over all
admissible choices of Ag; see the assumptions of Lemma 3.15), it follows that
|EZ§— EZ]l is contained in S(N) as a function in L. Thus, there exists a random
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variable U taking values in Hp such that P(J|U|ly < Kg+1) =1, P(U #0) is
contained in S(N) as a function of L, and such that EZ} + EU = EZ]. Set
Zh=2Z5+U.
Then (a'), (¢/) and (d’) are fulfilled. Furthermore,
S S
P(Zy # Z1) < 2%khicr1 + P(T3, py 0.1y # Tomy.14s) + P(U #0)
< @k + Dhipi

for L large enough, which establishes (b"). With respect to the variance bound we
obtain

L
2Ny = E i g ) = P(Zg= )|
y x,0
= Z ly—E L4 ”%
y Mx,()

L
X |pi'o (v) = P(Zolys

=73
B+Pl(0‘Lk+]) 3'Pl (O.Lk+|)

+ Zy1;s +U =y)]

s
+Py (O’Lk+1)7£T37’1 O.Lgyy)

< GdLit1 Re(Lit 1)) (P(T3, p, 0., # Topy0.4s0) + PU #0)
L
+ 2Ny = E I 15" (0) = P(Zo = )]
y x,0

< 2k + Dt Var 1y,
x,0
for L large enough. Since the above computations are uniform in the admissible
choices of Ag, k and x, the result follows. [

LEMMA 3.17. Letke{l,...,i1}and x € 75(0, L) N Hy. Furthermore, let a
distribution v be given which is supported on 0+ P(0, Ly) and ((2k — 1)Ag, 2k —

1) Ky)-close to /,Lﬁyko. Then for L large enough, v(- + x) is (2kAy, 2kK})-close to
,ué”z) for all admissible choices of k and x.

PROOF. Ifvis ((2k —1)Ag, 2k — 1)K})-close to /,Li’ko, then there exist Zg, Z;
and Z; fulfilling the requirements of Definition 3.7, where we denote the coupling
measure by P.

We set Z) := Z, — x and will construct Z and Z/ such that the correspond-
ing points of Definition 3.7 are satisfied. First of all, note that (as a consequence
of Lemma 3.10 and a decomposition into regenerations) there exist random vari-
ables Z7 and V taking values in 9, P(0, L;) and {0, 1}, respectively, and such that
P(V =0) € S(N) as a function in L and

Zy = (Z1 — ) zpea, Prx.Lo). V=1 + Z11{Zy¢o, Py (x. L)}V =0)
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is distributed according to ,ué %) Let furthermore

Zj = (Zo — ) zpc0, Prcx. L) + 221 200,71 (e, Lo
As a consequence, there exists an Hp-valued random variable independent from
everything else such that P(||U||; < Kx) =1, P(U #0) is contained in S(N) as a
function in L, and E(Z§+ U) = EZ]. Set
Zy:=Z25+U.
Then, since P(Zy # Z1) < (2k — 1)1 by assumption, we get
P(Z)# Z}) < P(Zo# Z1) + P(Zo ¢ 04 P1(x, L)) + P(U #0) + P(V =0)
<2k

for L large enough. Furthermore, P(||Z( — Z}|l1 < 2kKy) = 1. To check the re-
maining variance condition, note that

>l = Eugkoll% [|P(Zi=y)— P(Zy=y)
y s

2
=Y lly—E 1l
y 0,0

X (|P((Z1 = X)L zgea, Py (x.L0). V=1 + Z1 L Zo¢0, P (x.Li))U{V =0} = V)
— P((Zo — )1 zpeo, Py (x.L) + Z31 zog0, P (o) + U =Y)])
< (deR6(Lk))2(P(ZO ¢ 04P1(x,Ly)) + P(U #0) + P(V =0))

L
+ 2y = B I 500 = P(Zo =)l
y *

<2kAi Var 1,
H0,0
for L large enough, where to obtain the last inequality we employed the ((2k —
1Ak, 2k — 1) Ky)-closeness of v to [Liko as well as Lemma 3.12. Again, since the
above computations are uniform in the admissible choices of k and x, this yields
the result. [J

In order to construct the auxiliary walk, we need the following result which
guarantees that if boxes on a certain scale are left in some way close to the an-
nealed distribution conditioned on leaving through the right boundary part of the
boundary, then the same applies to the containing box on the larger scale as well.
Essentially, this is Lemma 4.16 of [1].

LEMMA 3.18. Let X € (0, 1), L be large enough and n € N such thatn < AL.
Furthermore, let (A;)!_, be random variables such that for every i, the variable
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A; takes values in ;P (0, L) only, and, conditioned on A1, ..., Aj_1, the distrib-
ution of A; is (A K) close to ,uo o- In addition, assume R3 (L) <K<L.
Then for S A the distribution of Sy is (Ro(L)X,4nK)-close to

N
Ho,0 -

The proof of this crucial lemma can be found from page 527 onward.

Now we rigorously construct the auxiliary walk (Y;) in environment o start-
ing in 0, and denote the corresponding probability measure by Py, also. For
ke{l,...,.— 1} we recursively define

My, as the smallest integer larger than or equal to
k
LP=% 4 12X such that L7 | divides Y M,-L?.
j=1
Note that Ly = L | L*] 1mphes that My < [LA~6914+2[L?X7, and that for every
ke{2,...,t}, from x - e; — Z k=1 1 M; L2 L%No we can infer that x - ¢| € L%N.
Define P®) (x) := P(z(x, k), Lk),

(3.31)

k—1
k(x) :=max{k e{l,...,t}):x-e; — ZMjLﬁ € L,%No
i=1
(3.32) ’

and PW (x) is good}
and

k—1
(3.33) K (x):= max{k e{l.....)ix-e1— Y ML} € LiN}

j=1
with the maximum of the empty set defined to be 0. We now define the auxiliary
random walk (Y,) and a corresponding sequence of stopping times (¢,) recur-
sively. For z € 9, P(0, L1) chosen according to M(%,o’ fix Yo, ..., ¥;, to be an arbi-
trary nearest-neighbor path (independent of w) of shortest length connecting O with
z such that {Yy, ..., Y;,—1} C P(0, L). Furthermore, set ¢| := g“l/ = TaiP(O,LI) =
[1. Next, we define the recursive step of the construction.

(R) Assume that the walk is defined up to time ¢, and set x := Yer.
e If k(x) > 0, then choose Y/ . according to the law of X. with respect to

Pro (| Typien ) = T3+7>(k<x>>(x)),

up to time ¢, + [,, where

. C +
l . Tap(k(x))(x)
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(3.34) Di:={T

(3.35)
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e Otherwise, if k(x) = 0, then similarly to the start of the construction, we
choose

Yoy oo s Yo,

to be a nearest-neighbor path of shortest length connecting x with z, where

z is chosen according to '““;I;,Iz(x,l) and such that this path leaves PV (x) in

its last step only.

In both cases, set 11 :=¢, +1,. If Yo -€1> L'*% then we stop the con-
struction of Y.

If 1Vk(x) =k, thenset Ye, ., 11: =Y  +e1, Yo, 42:=Y as
well as ¢, | := §+1 + 2 and repeat step (R).

Otherwise, if 1V k(x) <k'(Y,, ), given ¢1, ..., &1 and (Y)ieo,....c0011)
define foreach k € {(1 Vk(x))+1,... ,k/(YCnH)} the number j (k) :==Y,,, -
e/ L%. Furthermore, define for j, k € N the stopping time 7}/(j) equal to ¢,
if there exists m < n + 1 such that {,, = T;(j), and equal to Ty (j) otherwise.

Now fork e {(1Vk(x))+1,..., k’(anH )} with increasing order we itera-
tively perform the following step, where §rf_lkvlk(x)) =Cna:

(B) Conditioned on Y71 t-1)> by construction (and as a consequence of
Corollary 3.13 and Lemma 3.18), the distribution of the variable

Yeun = 2(V-1- )
is 2k — 1A, 2(k — 1)Ky )-close to

L

Y11 G0o-0 7201 ao-1)%).0°
‘We now condition the variable

Yo = 2(YrGw-1- )

on the event
Y1l G-+ _YrGw-nt |
3-0—7)1 (Z(YT]é(j(k)_l)7k)ﬁLk) - 8P1(Z(YTé(j(k)—l)’k)’Lk) :

In combination with Lemma 3.16 we may infer that for L large enough,
the distribution of this conditioned random variable still is ((2k —
DAr, 2k — 1)Ky)-close to

L

Yo o072 Go—1)6),0°

Thus, Lemma 3.17 implies that
the distribution of the variable Y%(;:ll) —Yrw-1

is (2kAk, 2k Ky)-close to ,ug”z).
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k) . (k—1) . .
Set §n+1 =&, Bk jwlli, where the B jk) defined below take

values in Hy and play a correcting role. Furthermore, let Yg_(k .- Y ®

1 n+1

be a nearest-neighbor path of shortest length from Y e to Y k-1 +
n+1

Bk, j k). Note that from the conditioning in (3.34) in combmatlon with

Remark 3.19 below, we may infer that Yg(k) = Y7 Gw-1) takes values
n+l
in 3, P®(0) only. If k < k'(Ye,.,), then repeat step (B) for k + 1; if
k =k'(Yy,,,), continue below.
k)
Set Yn(i)l"‘l _eri)l + e; as well as Y’fljr)l_'_z =Y (k) and §n+l = n(+1 + 2.
Now we continue the construction at the recursion step (R).

It remains to define the variables By ;. Set B; j =0 for all j. For any n € N,
we will define those By j, k € {2,...,}, for which Y, € H, L2 using only the

environment o, the auxiliary walk Y up to time ¢, as well as the values of
{,3 ke {2,...,k— 1} and ]L2 = ]L }. We define B ; to be 0 in the follow-
ing cases.

e If there is no n € N such that ¢, = T (j — 1), then B ; =0.
e Otherwise, let n be such that §, = Ty (j — 1). If P(k)(Ygé) is good, then B ; = 0.

Thus, assume now that ¢, = Tx(j — 1) such that P(k)(Yg) is bad. Let x := Y/
and let MI; . be the distribution of the variable Y «-1) — x, which due to (3.35)

n+1
is (2kAg,2kKy)-close to /,LO o- Thus, we find (Zo, Z1, Z>) defined on the same
probability space as (Y,) (which without loss of generality is assumed to be large

enough) such that Z, equals Y (k 1) — x (cf. Remark 3.8), such that Z; ~ ,uo 0

and such that furthermore the requlrements of (2kAy, 2k Ky)-closeness (cf. Defini-
tion 3.7) are satisfied. Now define

(336) ﬂkJ' = Zo — Zz,

and note that B¢ ; € Hp a.s. This completes the definition of B ;.

The deterministic corrections caused by the variables B ; are not too big, that
is, not too expensive in terms of probability. This is made precise in the following
remark.

REMARK 3.19. By construction of (Y,), for every k € {2,...,t} and j € N
such that B ; has been defined above, with probability 1,

Br,j < 2K, < L4x
for L large.

REMARK 3.20. Observe that by construction we infer that TBYCL = Ta c, @
with Cy, denoting the set of Proposition 2.1.
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3.6. Random direction event. As in [1], we will introduce a so-called random
direction event in order to ensure that, in most environments, the walker does not
hit too many bad boxes. For this purpose, for k € {1, ...} set

Yhoim;L?
(3.37) By:= =2
Lk
Forwe[—1,119" " ke{2,...,.and j € {Bx + 1, ..., My}, define

where in a slight abuse of notation we write L;(0, w) to denote the vector

O, Lywy, ..., Liywg—1) € R4, Furthermore, define
w _ R w)
W= ] W)
Jj=Bi+1

as well as the random direction event
L
(w) . (w)
w =M w,".
k=1
To obtain a lower bound for the probability of this event, we have to establish some
auxiliary results first.

CLAM 3.21. For all L large enough and all k € {1,...,t}, j € {Bx +
1,..., By + My} and w € Q, one has that Py ,(-|Y1, ..., YTk/(j_l))-a.s. the dis-

T ; L
tribution of Yy = Y-y is 2k i, 2k Ky )-close to MO,]Z)'

PROOF. Similarly to Lemma 6.6 of [1], this result is a consequence of the con-
struction of the auxiliary walk. In fact, if P®( Y7/(j—1)) 1s good, then the statement
follows from the first part of step (R) in the construction of the auxiliary walk in
combination with Corollary 3.13.

Otherwise, if P® (YTk’( i—1)) is bad, it follows from step (B) of that construction.
O

We now get the following corollary.

COROLLARY 3.22 (Corollary 6.7 of [1]).  There exists a constant p > 0 such
that for all L large enough, w € 2, allk, j as in Claim3.21,Y := YTk’(j—l) + EﬂLk ,
0,0

and for all x € HjL,% such that |Y — x||1 < 4Ly, one has

(338) PO,(D(”YT](/(]) —XHI < Lk|Y1, ey YTk,(j—l)) > pP.
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PROOF. This follows from Claim 3.21 in combination with Lemmas 3.14
and 3.11. O

LEMMA 3.23 (Lemma 7.1 of [1]). There exists p > O such that for all L large
enough, w € 2, all w € [—1, l]d_l, aswell as k, j as in Claim 3.21, one has

Po.o(W (DWW W B+ D, W (= 1) > p
[with W™ (By) == Q].
PROOF. On the event
W AW W B+ DN WM G- 1)

one has

1Y5-1) = Yrymo = G = 1= BO(E 1y = L0, w)) | o < Li
and thus

Yy i — By)(E L — (Yo E
| Y78 + (G — Bi( W + L0, w)) =(Yry -y + Mé,l(c))”oo

=X
<2Lg.
Corollary 3.22 now yields the desired result. [J

Departing from this result we obtain the desired lower bound on the probability
of the random direction event.

LEMMA 3.24. There exists a constant C > 0 such that for all L large enough
aswell as all w € Q and w € [—1, l]dfl,

Py w(w(w)) > e*CLﬂ’G‘S.

PROOF. We compute
Po. (W(w))

t  Br+Mj

=11 TI PooW(DIW ™, ..o W™,
k=1 j=By+1

W (B + 1), ..., W (= 1))

—68
> p25<=l M Z e_CLﬂ

for C > 0 large enough, where the first inequality is a consequence of Lemma 3.23
while the second follows from the bound M < Z(L’3 _651 for L large enough; see
directly after (3.31). O
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We now want to bound from above the probability that the auxiliary walk hits
too many bad boxes. For this purpose, we start with the following auxiliary result.

LEMMA 3.25 (Lemma 7.4 of [1]). For all L large enough, w € Q, k €
(1,...,0—1}, j € {Beg1 LLX >, ..., LLH‘S/LiJ}andzeELkﬂHjL% one has

/[_1 11 PO,w({Yn nefl,..., TLYH,g}} NP(z, L) # @|W(w)) dw

(3.39)
< [(AH65+20W~1)

PROOF. Choose k" to be the number out of {k, ..., — 1} such that Bk/L%, <
jL,% < Bk’+1L%/+1- We start with noting that for fixed w € [—1, 119", with proba-
bility 1 with respect to Po(-|W ™)), the walk Y is located in a (d — 1)-dimensional
hypercube of side length ZI;,:_II Lj <(Ly_; attime T},(By). Letting w vary over
[—1, 11971, the union of all appearing hypercubes covers a hypercube of side
length at least My Ly —1 > |—L'B_68-|Lk/_1.

Now let {y1,..., ¥y} C ELk, be the set of all elements y; € ELk, such that
Pz, L) NP(yj, L) # @ for all j € {1,...,r}, and note that, due to a reason-
ing siflni}ar to the observation just before Lemma 3.6, r is bounded from above by
31547,

From steps (R) and (B) in the construction of the auxiliary walk Y, it follows
that if there exists ¢, such that z(Y;/, k') = y;, then Y leaves P(y;, Ly’) through
0+P(yj, Li). Therefore, we conclude that

{(Yain e NYNP(z, Ly) # 2} C | J{{Ya:n e N} N P(y;, L) # 2.
j=I1

But due to the above reasoning, there exists a constant C such that the right-hand
side can have positive probability with respect to Py, (-|W ™) only if w lies in a
certain (d — 1)-dimensional hypercube of side length
CRe(Ly)Ly
LB—68], K1
This establishes (3.39). [

< CL—BT63+3x1/2.

Now adopt the notation

Diw:={xeCNLy, x-e1> BkL% and P(x, Lg) is bad with respect to w}
and
(340) Brw:=|{x € Dro:{Yainefl,....T) s} NP, L) # o}

We are interested in the distribution of the variable By ,,. Recall that ® has been
defined in (3.12).
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LEMMA 3.26 (Lemma 7.5 of [1]). For all L large enough and all k €
{1,....,t—1}aswellas w € Oy,

/ o Eoo(BrolW™) dw < 15/LP7%.
[-1,1]4—

PROOF. With the same reasoning as in the proof of Lemma 3.25, steps (R)
and (B) of the construction of the auxiliary walk Y imply that Py(-|W™)-as. we
have

{xeCnLyp, ByLi<x-e) < Bk+1L%+1,
(3.41) P, L) N{Yyine(l,...,T)\}} # o}
<3159 M < (157 — 1HLP9,

Now consider x € Dy o, wWith x - e > Bk+1L%+1- Then by Lemma 3.25,

v/[—l - PO,w({Yn nefl,..., TLYH(;}} NP(x, L) # ®|W(w)) dw

(3.42)
< [(BH65+20 =)

for L large enough. Therefore, (3.41) and (3.42) in combination with (3.12) yield
f Eo.o(Br.olW™) dw < (159 — 1)LF=6 4 [ (h+65+20(=D pa+s
(1,141 7 ’ N

< 15465
due to our choice of §. [J
Because of the modifications in our construction of the auxiliary walk in com-

parison to the one in [1], we give here a modified result concerning the density of
the path measures of X with respect to Y.

LEMMA 3.27 (Lemma 6.5 of [1]). Let (v,) = (vl,...,vTLv]H) be a finite
nearest-neighbor path in Z4 starting in O such that TL”l s =1inffn eN:v, -1 >
L1+5}. Furthermore, for k € {1, ...,1} and w € 2, let

Qk,w(v) = HZ € Dk,a) . {vn nefl, ..., TLvlJra}} NP(z, L) # QH

and set Q,(v) ==Y j_; Ok.0(v).
Then for all L large enough and all w € 2 we have
PooXj=vi¥jell..... Tj\uh) 1 30, (nLo¥ 41 p-05

(3.43) - =
PO,w(szvj V]E{l,...,T£)1+5}) 2

for all admissible choices of (vy).
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PROOF. Due to ellipticity, the numerator in (3.43) is positive; therefore, it is
sufficient to consider those trajectories (v,) only for which the probability in the
denominator is positive as well.

To any such (v,) and environment o, there belong sequences (¢,) and (¢,) as
in the definition of Y. In fact, set §o := ¢j:= 0 and ¢y := ¢} == Typ g 1,)- Given
0, .-, ¢nand &y, ..., &), define x, :=vg,, ¢ :=min{l >, 1v;_1 - €1 > X, - €1}
(only if n > 1) as well as x;, := v,/. For k(x,) asin (3.32), if k(x;) > 0, set {41 :=
Taiﬂk)(x,;)’ otherwise set ;41 1= TalirPU)(x,;)‘

Now to estimate the probability in the denominator from above, we only con-
sider the contributions coming from Y moving in good boxes in which it behaves
like the quenched walk X conditioned on leaving the box through its right bound-
ary part:

P(),a)(Yj :Uj V] € {1, ey TZ]+5})

= 1_[ Px,@,w(Xl =V 41
n:k(x,)>0

Vl € {1, ey ;I’H-l - g;;}lTap(k(x,/,))(x’;) = Ta+7j(k(x;,))(x’/l))'

To obtain a lower bound for the numerator, as a consequence of the strong Markov
property we may decompose it into movements within the corresponding boxes as
follows:

Poow(Xj=v;Vjell,..., T} 1))

= l_[ PU;,/,’("(XZ = v{,;Jrl
n:k(v{’;)>0

Vie{l o Gt = GT wogn =T, ey,
{1 gt — Gy ik 5:1))(1;{,;) 5, P gn))(”c/l))

X | | Py, o(T o,y =T G, )
o\ ap e 2, P
nik(og)>0 o (vy) P (vy)

x (1LY Qo) (2=4) Qo V)

2y 29
% l_[ KZKCL 1_[ KCL
n:g“,;<TL"l+(S n:k(v{,;):O

for L large enough as well as k(vg) and k/(vg;) as defined in (3.32) and (3.33).
Here, the first and second product on the right-hand side come from X moving in
good boxes. The third and fourth factor on the right-hand side originate from the
corrections in the case of moving in bad boxes. In this case, Remark 3.19 tells us
that each of the correcting variables By ; is bounded from above by L3X_ Since
each time such a correction occurs, the number of influencing correcting variables
Bk,j is bounded from above by ¢, we obtain the third factor. The fourth factor
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originates from the conditioning on Dy in (3.34), the probability of which can be
estimated using Lemma 3.15. The fifth factor follows from the fact that directly
before each time ¢, we force the walk to do one step in the direction of ¢ and one
step back, while the last factor originates from the deterministic moves performed
within bad boxes of scale one. Consequently, we obtain

P()vw(ijvj VjE{l,...,TLvHa})
PO,a)(Yj = vj V.] € {17 '--sT£1+5})

— 3Q, ()L
(3.44) > [] P x,’,,w(Tap<k<x,’l>>(x;1)— 3+7D(k(X;/1))(x;’))(K ¢ )
n:k(x))>0
2y 2y
% 1—[ 2 CL 1—[ «CL
}1:;‘,§<TL“lJra n: k(vgr/l):O

for L large enough. Since k(vg; ) > 0 implies that P(k(vfé)) (v) is good, from (3.9)
we infer that the value of the first product on the right-hand side is bigger than 1/2
uniformly in all (v,) we consider, for all L large enough. Due to the construction
of the auxiliary walk Y, there are at most > ;_; My < 20LP=9 stopping times o4

such that ¢, < TL”1 +s- Therefore, and due to the choice of § and y, for L large

enough, the total expression on the right-hand side is bounded from below by
k3oL HALP™® 1 - \hich finishes the proof. [

3.7. Proof of Proposition 2.1. With By, as defined in (3.40) and for L large
enough, Lemma 3.26 yields

L
/ . Eo,w<z Bk,w|W<w>> dw < 154 LP~6
(=11 k=1

for w € O. Hence, for such w and L fixed, we can find w € [—1, 1]9~! such that
L
(3.45) Eo,w<z Bk,ww(w)) <154 LP=%
k=1
Fix such w and define
L
W= {Z Brw=<2- 15d¢Lﬂ—65} nw.
k=1
Using (3.45), Markov’s inequality yields

L
1
Po,w(iZBk,w >2. 15dLLﬂ—65HW<W>) <5

k=1
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whence we obtain

t
PO,a)(W) = PO,w({Z Bk,a) <2. ISdLLﬂ_&S}
k=1

W(w)> PO,w(W(w))

(3.46) ]
2 S Poo(W) z e

for L large enough and where the last inequality follows from Lemma 3.24.

We now observe that there is a set V., of paths such that W ={(,) e VL .w}
and in particular, for (v,) € Vi, we have Q,(v) <2 - 154 LP=6 Thus, as a
consequence of (3.6) and Lemma 3.27,

PO,a)((Xn) € VL,a)) = e_Lﬁia/ZPO,w((Yn) € VL,a))

(3.47)
= 7Py (WY = e

for L large enough, where the first inequality follows from the fact that w € ® in
combination with Lemma 3.27 and our choices of § and v/, while the last estimate
follows from (3.46). Due to Remark 3.20, we may and do choose V , in such a
way that it only contain paths that start in 0 and leave Cp through 0, Cy. We take
the required family of events in Proposition 2.1 as E;, := ®r, and observe that
from (3.47) and Lemma 3.6 we can infer that &7 has the desired properties.

APPENDIX: AUXILIARY RESULTS AND PROOF OF PROPOSITION 3.4

This section contains slight modifications of auxiliary results proven in [1] as
well as some further lemmas. With respect to results to which the first point ap-
plies, this section is very much based on [1].

In order to prove Proposition 3.4, we will proceed as outlined in Remark 3.5.

A.1. Proof of Proposition 3.4(i). Set

i — 14
Gg) = {w €Q: max P, o(Typo,r) # T, po,1) <e Ri(L) }
z€P(0,L)

Then Markov’s inequality in combination with Lemma 3.10 yields

ne
P(GY) <M DR max P, ,(Typo,1) # To,po.1))
2eP(0,L)

14
<MW" S™ P (Typo.1) # Toypoo.)
2€P(0,L)

<RI 0o CTIRALY < 0(p=CT Ra(L)

In combination with Remark 3.5, this finishes the proof.
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A.2. Auxiliary results for the proof of Proposition 3.4(ii) and (iii). We need
the following local CLT-type results.

CLAIM A.1. Let (Y))jen be 74 -valued, independent random variables with
Sfinite (m + 1)st moments for some m > 3. Furthermore, assume that (Y;);>2 are
identically distributed and that there exists v € 74 such that P(Y, = v) > 0 and
P(Y2=v+ej)>O0forall je{l,...,d}. Let I" denote the covariance matrix of
Yy and S, ="' (Y; — EY;). Then there exists a constant C which is determined
by the distributions of Y1 and Y> such that for all n € N and all x, y and z € 7¢
with |x —ylli=landz—y=y — x:

(a)
(A.1) P(S,=x)<Cn~2
(b)
(A2) |P(Sy =x) — P(S, = y)| < Cn~@+D/2,
(©)
(A3) |P(Sy=x) —2P(S, =y) + P(S, =2)| < Cn @H2/2,

(d) In addition, for all w, x, y and z such that there exist i # j withx —y =
w—z=e¢andx—-—w=y—2z=e¢j,

(Ad)  |PSy=x)+P(Sp=2)—P(Sy=y)— P(Sy =w)| <Cn~ @272,
PROOF. Display (A.1) is essentially a consequence of the local limit theorem,
see, for example, Theorem 2.3.8 in Lawler and Limic [5]. Indeed, if EY> € 74,

that source yields that for S, := ZZ:&(Y;{ — EYy) and I' the covariance matrix
of Y», there exists a constant C such that

[P (S, =x) — pn(x)]

(A.5)
< Cnf(d+1)/2((||x”llnnfm/2 i 1)ef(xT1"_1x)/(2n) +n7(m72)/2)

foralln € N and x € Z4, where

e~/ @n)

1
Pn(x):= (2mn)d/2/detT

denotes the heat-kernel. Equality (A.5) in particular implies P(S), = x) < Cn=4/2,
which entails (A.1). If EY> ¢ Z¢, then as one may check by redoing the proof,
(A.5) holds true for all n € N and x € Z¢ — nEY,, with P(S], = x) replaced by
P (S, = x + nEY>,), which again implies (A.1).
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Now in order to prove (A.2), note that the triangle inequality yields

|P(Sn+1=x) — P(Sp+1=1Y)]
< max [P(S), =2z1)— P(S, =2z2)|

T znzt la—zlhi=1

=< max |P(S;,:Zl)_pn(zl)|+|pn(zl)_pn(22)|

T znzt la—z2lhi=1
+ |pn(z2) — P(S,, = 22)|.

Then (A.5) in combination with standard heat kernel estimates yields the desired
result.

In a similar manner, (A.3) and (A.4) can be deduced from Theorem 2.3.8 of [5],
which we will omit for the sake of conciseness. [

Using a decomposition according to regeneration times, the previous claim can
be employed to prove the following lemma.

LEMMA A.2. For L and x € 75(0, L), let vy | denote either Px(XTL2 € ),
PX(XTan,L) €-), Mﬁ,o or Px(XTL2 e (X, —x)-e1 >0VneN).

(a) There exists a constant C such that for all L, x € 75(0, Lyandy e Hpo,
(A.6) vy (y) < CL™IHL

(b) There exists a constant C such that for all L, x € P, L), y € Hy2 and
jef{2,...,d},

e () — e (v £ej)| < CL™%

(c) There exists a constant C such that for all L and x,y € 75(0, L) with ||x —
vl aswell as z € Hy»,

vy, 1.(2) — vy, 1(2)] < CL7™9.

(d) There exists a constant C such that forall L, x € 75(0, Lyandw,y,z € Hy>
such that lw—ylli=landw —y=y—1z,

e, (W) =20, L (V) + vy L (2)| < CL™47L,

(e) There exists a constant C such that for all L, x € 75(0, L)andv,w,y,z €
Hp> suchthat lv—wli=1l,z—y=w—vandz—w=y —v,

[e.2(2) = VoL (V) — (VoL (W) — vy L ()] < CL™47L

PROOF. The fact that the particular choice among the first three possibilities
for vy g, is irrelevant, is a direct consequence of Lemma 3.10. With respect to the
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case that vy | = Py (XTL2 € -|(X,;, —x) -e; > 0Vn € N), the desired result follows
analogously from what comes below in combination with Corollary 1.5 of [10].
We will give the proof for v, ; = P)C(XTL2 €-).
For k,I € N we define the event B(l, k) := {X, - e; =1} as well as B(/) :=
UL_, B(, k) and
. L*—1
B():=BWU)N () B():

Jj=l+1

that is, for I < L? and on é(l ), one has that [ is the ej-coordinate at which the last
renewal before reaching the e;-coordinate L? occurs.

(a) We have
L2
(A7) P(Xr,=y)<PAD+ Y A
I=L2—R>(L)
with F; := P, (X T, =Y, é(l)), and furthermore
L2
F=) Y P(Xy=2zXr,=y B)
k=0z€H,
L2
(A.8) =Y > Xy =2)P (X1, =y, BDIXy, =2
k=0z€eH,
L2
=Y PXr, =y, BDOIXe; =2) ) Pe(Xy, =2).
Z€H] k=0

In order to estimate the inner sum of (A.8), set m := Eo(X., — X+,) and for [ €
{L? — Ry(L), ..., L?} fixed, define [* := Lm~Le1J' We now distinguish cases.

First, assume k > [*. Then {X, -e1 =1} C H'UH?, where H' := {X
[/2} and H? .= {(Xy — erzJ) -ep <1/2}. We get

Px(er:Zle): Z Px(er:Z|XTLk/2J:y)Px(X‘L’Lk/QJ:y),
y:y-e<l/2

Tlk/2) -e1 <

and uniformly in y and z we have Py (X, = 2| Xz =) < Ck=4/2 due to the
independence of the renewals (cf. Corollary 1.5 in [10]) and (A.1). Now observe
that using standard estimates for centred random variables with finite 2dth mo-
ment [note that (X, — X¢,) - e; has finite 2dth moment as a consequence of the
assumption (T'), ], there exists a constant C such that uniformly in k and L we
have

(A9) Py(Xepp €1 <1/2) < 1A CK (k—1%)7%.
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We therefore get

L? 00
> Pi(Xy =z H") <CI™? (dz_*+ S+ + 1)¢F)d(jdﬁ)‘2d>

k=1* j=1
< cl-d+D/2
and analogously for H2, whence
L2
(A.10) > Pi(Xy =2) < CICHD2,
k=I*

Now assume k < [*. Then in the same manner as above we obtain
l*
(A.11) S PXy=2)< cj—d+D/2
k=1*/2

and furthermore (A.9) supplies us with

*)2 */2
(A.12) Y P (Xg=2)<CY k(- <crt.
k=0 k=0

In order to deal with the outer sum of (A.8), note that for fixed / as well as y* € H;»
and z* € H; we have

Y PulXr, =y BOIXey=2)= ) P(X1,=y,BD)IXs =2")
z€H; YEH, >
(A.13) R
= P(B())| Xy, =2%).

Using (A.10) to (A.12) in combination with (A.8), we therefore deduce that for all
le{lL>—-RyL),..., L%,

Fi < CP(B(I))L™.
Thus, in combination with (A.7) and Lemma 3.3 we get
Pi(X7, =y) <CL™,

which finishes the proof.

(b) We have
L2
(Ad4) |P(X7,=y) = P(X1, =y+e))| <2P.(AD+ Y.
I=L2—R>(L)

with lAB(l) as defined before and
Fi:=Py(X1, =y, B)) — P(Xr, =y e, BU)).
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We compute

L2
Fi=) > (P(Xy=2Xr,=y B0)
k=0zeH,
— P (Xq =zkej, X1, =y +ej, B()))
L2
=2 Y (PXy =) Pe(X1,, =y, BDI Xy, =2)
k=0zeH,

(A.15) N
— Px(er =Z:|:€j)Px(XTL2 =y:|:ej, B(l)|er =Z:|:€j))

=Y P(Xr,=y. BO)|Xs, =2)
z€H
L2

X Z |Py(Xq, =2) — Px(Xy, =2E¢))l,
k=0

where to obtain the last line we used the translation invariance of P. Fix [ € {L? —
Ry(L), ..., Lz} and let m and [* as before. Again we distinguish cases.

First, assume k > [*. Then {X, - e; =1} C H'U H?, where H! and H? as
before. Then

|Py(Xq =2, H") — Py(Xq =z %e;, HY)|

= 2 Py =alXeyy =) = Pe(Xy, =zt €j|Xey =)
y:iy-e=l/2
X Pe(Xe 0 =),
and uniformly in y, we have
|Pe(Xo, =2l Xeyp =) — Pe(Xg =2k €| Xq, =) < CKI7D2
due to the independence of the renewals and (A.2). Using (A.9), we get

L2
Y |Py(Xg =2, H") = Py(Xy =z+ej, H")|
k=Il*

e.¢]

< Cl1-4-DP2 (ﬁ +I G+ 1>¢z_*)d(j¢z_*)‘2d) <12
Jj=1

and analogously for H?, whence

LZ
(A.16) Y IPc(Xy =2) — Py(Xq =z Fej)| <CI792
k=I*
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Now assume k < [*. Then in the same manner we obtain
1*
(A.17) Y IPc(Xq =2) = Py(Xq =z Eej)| < CI79/2
k:L2/2

and furthermore (A.9) supplies us with

1*/2 1*/2
Y IP(Xy=2) — Py(Xy=2Ee))| <CY K~k
k=0 k=0
(A.18)
< Cl_d+1.

Using (A.13) and (A.15) to (A.18), we deduce that there exists C such that for all
le{l?-Ry(L),..., L%,

Fi < CP.(BU)L™.
In combination with (A.14) and Lemma 3.3, we get
|Po(X1,, =) — Po(X1, =y +e))| <CL™,

which finishes the proof.

Parts (c), (d) and (e) follow from analogous calculations using (A.2), (A.3) and
(A.4), respectively. For the sake of conciseness, we omit giving the corresponding
proofs here. [J

To prove parts (ii) and (iii) of Proposition 3.4, we quote and reprove a condi-
tional Azuma-type inequality appearing in [1].

In this context, denote by (Mj)ren, a one-dimensional martingale on a proba-
bility space (€2, F, P) with filtration (Fi)ren, and Mo =0. Set Ay := My — M
and assume that the | Ag| are uniformly bounded from above by a finite constant.
Define for any nonnegative random variable X its conditional essential supre-
mum with respect to Fy as esssup(X|Fi_1) := lim,_ 00 E(X"|Fr—1)'/", where
the right-hand side exists due to Jensen’s inequality. Set

ok = esssup(|Ag|[Fk—1).
Then the essential variance of the martingale is defined as
k
Vi :=ess sup(z ajz).
j=1
LEMMA A.3. Ifthe Ay are uniformly bounded, then for alln e N and t > 0,

P(IMy| > 1) <2e"2/@V0)
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Furthermore, if M,, = (M,(,l), el M,(,d)) with M,(,j ) being one-dimensional martin-
gales such that the differences Ay are uniformly bounded and with Vn(] ) as essen-

.....

P(IMylloo > 1) <2de™" 1@V

PROOF. First, observe that the d-dimensional case is a direct consequence
of the one-dimensional case by considering its components and a standard union
bound. It is therefore sufficient to prove the one-dimensional case.

We start with showing that for each k € {1, ..., n},

(A.19) E(eZi=+8| i) < 1/ esssup (i oj1Fin)
To establish this inequality in the case k = n, we first of all note that
(A20)  lim E(A,|"F-1)"" 14 > esssup(|AnlLa)la — &
for all x € [0, 00), € > 0 and
A= Age =] lim E(A"F )™ e, x +el| € Fui,

We then observe that for such A and with C4 :=esssup(|A,|14) as well as
eCh 4 e=Ca + eCh —e=Ca
2 2 Ca’

hAZ[—CA,CA]BSH

we obtain
Ee®Fu-1) < E(ha(An)|Fa-1)1a
=ha(E(ApLa|Fn-1))1a
eCa e Ca

=ha(0)1s = flA

=cosh(Cx)1y4.

Since by comparison of the corresponding power series one has cosh(x) < <’/ 2,
we obtain with (A.20) that

E(e® 14| Fn_1)
(A.21)

) 1, . 2
SR eXp{E(mleooE(|An|m|fn_1>”m +e) }“‘
Summing (A.21) over all A := A, . for x = je, j € Ng we get
1 .
E(e™|Fuop) < exp{im11_>mooE(|An|m|]:n—1)2/m}

x expf{ess sup |An|28 + 82/2}.
Since A, was assumed to be bounded, taking ¢ | 0 yields (A.19) for k = n.
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Now we assume (A.19) to hold true for £ + 1 and deduce its validity for k:
(X1~ | Fimt) = E(eM E(e™1= | F)| Fi)
< E(eBre(172 550X o170 7))
< E(eAke(1/2>esssup<27:k+1a}|fk71)| Fi1)
= o1/ esssup(Ties1 071 Fk1) (oD )
< /D esssup(Ty i 071 Fi1) ,(1/2)07
— o(1/2esssup(L_ oI Fi1)
where to obtain the second inequality we used that for any nonnegative random
variable X we have
ess sup(X|Fr) <esssup(X|Fi—1).

Altogether, this establishes (A.19).

Inserting k = 1 in (A.19), we deduce Ee*Mn < e(1/222Va for any real A. This
estimate in combination with the exponential Chebyshev inequality yields

P(IM,| >t)=P(M, >1t)+ P(M, < —t)
<e M(EMMn 4 EemtMn)

< 2e—me(1/z);\2vn

for A > 0. Setting A :=1¢/V,, this finishes the proof. [J

The following result appears as Lemma 3.3 in Berger and Zeitouni [2] and will
prove helpful in the following.

LEMMA A.4. Letd > 3 and let (vy)pex be i.i.d., 78 -valued random variables
such that P-a.s. we have vi-e; > 1 aswell as E||v1|" < oo for somer € [2,d —1].
Furthermore, assume that for some § > 0,

Pw-e1=1) >34,
and that for all z € 7Z¢ of the form z = e + ej, j€{2,...,d}, one has
Plvi=zlvi-ep=1)>4.
Set Sy :=Y_"_, vi. Then there exists a constant K > 0 such that for all z € 74,
P(AneN:S,=z) <K|z-e | "¢-D/r+d=D)
Furthermore, for all | € N,
Z PAneN:S,=2z)<1.

z€H;

The following result guarantees that with positive probability with respect to the
annealed measure, the trajectories of two independent RWRE do never intersect.
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LEMMA A.5. Letd > 4. Then there exists M € (0, c0) such that for x1,x; €
Z4 with (x; — x2) - e1 =0 and ||x; — x2|lec > M we have
(A22) Py o({XPV:ineNIn{x?:neN}=2)>0,
where

Py, =P (XD ey > x1-e1 VneN) @ P, (|1XP - e3> xp - €3 ¥ € N)
and XV and X denote copies of the RWRE X “driven” by Py, and P,,, respec-
tively.

In particular, for all | € N,

inf P, ®@P,({XV:neNN|{XP:neN}=02)>0
X1,X2€Hj,x15#x2

also.

PROOF. Due to uniform ellipticity, the last statement is a direct consequence
of (A.22). Thus, we prove (A.22) now.

The proof is inspired by the proof of Proposition 3.4 in [2]. The translation
invariance of [P implies that we can assume x - e; = x - eo = 0 without loss of
generality. Denote by m := Ey, (X (1y*(2) the expectation of the second renewal
radius and for N € N set

D ®)
7 *
By :={ 3 |(x) ||lsN/z}.
k=1

For j € {1, 2}, with respect to Py, , (-] An (X)),

n
N w(k sk A
(ZH (XDY O = By (| (x D) )||1|AN(X(”)))
k=1 nel0,....2N2)

is a martingale with bounded increments. Therefore, applying Azuma’s inequality
for N € 4mN large enough results in

Py ((BY))

N/ (4m) o
=Px1,xz< > 1x), >N/2>

k=1

N/(4m) -
(A.23) Sle,x2<|: Z ”(X(]))*()Hl
k=1

By (1(X9) P 14y (X)) > N/“} \AN<x<f>>)

+ wacz (AN(X(j))C)
(N/4)?

2

} +Px1sX2(AN(X(j))C)§
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here, we took advantage of
m = By o (| (X)) 1w (X))

for all k and N € N.
Furthermore, for j € {1,2}, n € N and v € (0,1) define the random times

hjn:=max{k € Ny: Xg) -e1 < n} as well as the event

= N A& < @mny).
n>N/(4m)

Then (T'),, implies that for any v > 0 and K > 0 there exists a constant C > 0 such
that for all N we have

(A.25) P, o ((T9)) <Nk,

v,
Now we distinguish the situations in which the trajectories of the two walks

could intersect in order to explain the decomposition in (A.27) and (A.28) below;
for this purpose, assume that x; and x, from the assumptions satisfy

(A.26) lx1 — x2llo0 = N*.

(a) If the walks intersect within the first N /(4m) renewal times of both walks,
then due to (A.26) this event is a subset of (B,(Vl))c U (Bl(\%))" . This yields the first
summand in (A.27).

(b) Otherwise, the intersection may occur on (Tv(’ljz,)C U (TV(’ZK,)C, which yields
the second summand in (A.27).

(c) It remains to consider intersections after N /(4m) renewal times for at least
one walk on BI(V]) N Bz(\%) N Tv(ljz, N Tv(?lg]; note that due to the restriction to Bl(\}) N BI(\?)
and (A.26), the intersection can take place in H,, with n > N/(4m) only. In this
case, since we restrict to Tv(lji, N Tv(,zji,, if the trajectories intersect in the hyper-
plane H,, there must have occurred a renewal for each of the walks in distance at
most (2mn)” from the point of intersection which implies that the two renewals
must occur at sites that have distance 2(2mn)¥ at most from each other. Thus,
(A.28) corresponds to an intersection after at least N/(4m) renewals for at least
one walk, on BI(VI) N B](\%) N TV“}Z, N Tu(212/

Consequently, choosing v > 0 small enough, we obtain using Lemma A.4 with
r =2 as well as (A.24) and (A.25), that

Py ({X{V:ineN}n{X?:neN}+#0)
(A27)  =2Py 0 ((BY))) + 2Py (1))

FY Y Y Peu@Exd=g)
J=N/@m)zeHj 7' |z—2' 1 =2(2mj)”
(A.28)
X Py x, (Fk: Xif) =7)
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(A.29) < C(N—K + Y Y P ,@EixD=y)
J=N/(4m) zeH;

: on—2(d—1)/(d
XX 2emy) e
7' lz=2'Ih 2@2mj)Y
(A.30) < C(N_K +NVdN—2(d—1)/(d+1)+1) 50

as N — oo, and where for ease of notation we omitted to emphasize that the
renewal times 7; refer to the process that is evaluated at these times. Choosing
M = N* for some N such that the term in (A.30) is smaller than 1, this establishes
the lemma. [

Forwe Qand z € Z¢ weset P, ,, := P, , @ P, as well as P, := Jo Prow ®
P, ,P(dw), where the RWRE “driven” by the first factor is denoted by X! and
the one driven by the second factor is denoted by X?. Using the previous lemma,
we can bound the number of intersections of two independent RWREs as follows.

LEMMA A.6. There exists a positive constant C such that for all L large
enough as well as 7 € P(0, L) and m e N,
P.({X{V:neN}N{XP:neN}NP©O,L)| >mR{T(L)AL(XD), AL(XP))

<e Om,

PROOF. For L large enough, any k such that k + Ry(L) < L and j € {1,2} we
have

(A31) 1, xo - |[{xe{XP neN} ik <x-er <k+RyL)}| < R§T(L)
as well as
(A.32) 1y, xon - [{x € {X{:neN}ix-e <0} < RS (L).

For every k, let Qi :=P(0, L) N{x:x - e; <kRy(L)} and Q} :=P(0,L) N
{x:x-e1 > kRy(L)}. Due to Lemma A.5, we can infer that there exists p > 0 such
that for every k and uniformly in z € P(0, L),

P ({{X":neNn{XP:neN}nQf, =a}
(A.33) Ap(XD), AL(X@), (xV:neN}n o,
[XP:neNJn Q) > p.
Let
T = (ke 2Ng: {X":n e N} N {XP :n e N} N Qf N O, # o)
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and
JOW = {ke2Ng+ 1:{XV:n e N} n{XP :n e N} N O N Qp,, # 2}

Then by (A.33), conditioned on Az (XV) N Az (X?®), both J© and J©dD
are stochastically dominated by a geometric variable with parameter p.
The lemma now follows when we remember that by (A.31) and (A.32),

]].AL(X(I)):U.AL(X(Z)) . HXr(ll) ne N} N {X,sz) ne N} ﬂ'P(O, L)|
< Rgl—‘rl(L)(J(even) _}_J(odd))' 0

As a corollary of Lemma A.6, we obtain the following estimate.

COROLLARY A.7. With the same notation as in Lemma A.6,
P(3z € P(0, L):
(A.34) E..({XV:neN)}
N{XP:neNyNPO, L)||AL(XD), AL(XP)) = R3(L))
is contained in S(N) as a function in L.
PROOF. Set Z := |{X,(,1) :n e N}N {X,(,z) :n € N} NP, L)| and note that

on Az (XMW)yN Az (X®), the variable Z is bounded from above by |P(0, L)| <
(2L%)4. Thus,

P(E, ,Z > Ry(L)|AL(XD), AL(X®))
<P(E, (Z, Z>nRITN(L)AL(XD), AL(XP)) > R3(L)/2)
+ P(E;0(Z. Z <nRET(L)IAL(XD), AL (X)) = Ri(L)/2)
=0 for n=R»(L)

< @LYP(Z > nRITV L) AL(XD), AL(XD)) < e CRAD)

for n = R»(L) and L large enough due to Lemma A.6. Taking the union bound for
z € P(0, L) finishes the proof. [

We define J (L) C 2 to be the set of all w such that for every z € 75(0, L),
E.o({X\V:neN}n{X?P:neN}nPO,L)||AL(XD), AL(XP)) < R3(L).
Then by Corollary A.7,
(A.35) P(J()) € S(N),
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and for w € J(L) and z € P(0, L),

(A.36) > Po(Tx <00) < R3(L).
x€P(0,L)

A.3. Proof of Proposition 3.4(ii). The following lemma will yield part (ii) of
Proposition 3.4.

LEMMA A.8. There exists a sequence of events Ggi) C Q such that
P(G) e S(N)
and for every w € Ggi) and 7 € P(0, L),

| Ez.or(XTyp 0.1 | Tor0.0) = To, P0.1y) — E<(XTyp1, [ Tor0.1) = Ta, Poo.0) |
< R4(L).

PROOF. As a consequence of Lemma 3.3, Proposition 3.4(i) and (A.35), it is
sufficient to show that denoting

U(@.2) = |Es.o(X1,,. AL, (L) — Ex(X1,,. AL, J L)1,

one has that

IP( U {a):U(a),z)>R4(L)/2})

ze75(0,L)
(A.37)

is contained in S(N) as a function in L.
To this end, note that on Ay the walk starting in P(0, L) can visit sites in

Spi={xeZ:—Ry(L)—L?/3<x-e] < L2,
(A.38) )
7L () lloo < 2L7Ro (L)}

only before hitting H;>. Order the vertices contained in S lexicographically, that
is in increasing order of their first differing coordinate, as x1, x2, ..., x,. Let Go :=
{2, @} and for k € {1, ..., n}, let G be the o-algebra on Q2 that is generated by
(w(xj))jeq,....k}- Furthermore, define the martingale

My = E-(X1,,. Az, J(L)IGY).

Note that due to the independence structure of PP, taking the conditional expec-
tation with respect to G is nothing else than taking the expectation with re-
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spect to the process as well as over all those w(x) for which x ¢ {xi,..., x¢}.
Thus, Ez,a)(XTLza Ar,J(L)) = EZ(XTLZ, Ar, J(L)|G,)(w) for P-a.a. w as well as
E.(Xr,. AL, J(L)) = E-(X1,. AL, J(L)|Go)-

Next, we estimate esssup(|| My — My_1|/1|Gk—1) similarly to [1], which again
is based on ideas from Bolthausen and Sznitman [3]. For x € Z4, let

B(x):={y € Hy.e;—1:llx — ylli < R2(L) +1}.

Note that if x is visited, then on Ay, the first visit to the affine hyperplane H,..,—1
will occur at a point contained in B(x). Therefore,

Ui :=esssup(|My — My_11l1|Gx—1)
=ess sup(HEZ(XTLZ, Ar, J(L), Ty, < o0|Gk)
- EZ(XTLZ, A, J(L), Ty, < 00|Gk—1)|l;1Gk—1)
< R3(L)Py(Ty, <00, AL, J(L)|Gr-1)

(A.39) )
<R (L) ) = P(Xr,, =y, JL)Gk1)
YEB(x)NSL
=RyL) Y Poo(Xr, =y (L)
YEB(x)NSL

< R%(L)( > P, o(Ty < 00, J(L))
yeB(xx)NP(0,L)

+ P o(To, Po.L) # Tap(o,L))>-
Here, the first equality follows since
EZ(XTLza AL’ J(L)’ T)Ck = Oo|gk) - EZ(XTL27 AL’ J(L)’ Txk = Oolgk—l) = Oa

which is due to the fact that the restriction to Ty, = oo makes the inner ran-
dom variables independent of the realization of w (x). The first inequality follows
since, if the walker hits x;, then on Ay, the site of the subsequent renewal has dis-
tance at most Ry(L) to x; and consequently, using standard coupling arguments,
one obtains that the values of

EZ(XTLza ALa ‘](L)’ TXk < oolgk)

as a function in w (x;) (and all other coordinates fixed) lie within distance of R%(L)
of each other.
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Now forw € Gg) NJ (L), remembering that | B(xx)| < 3R> (L))? and that every
y is in B(x) for at most (3R; (L))d different points x, using (A.39) we infer

Yui<y RQ‘(L)( > P, o(Ty < 00, J(L))
k=1 k=1

yeB(x)NP(0,L)

2
+ P, (T, Po,1) # Tap(o,L))>

n
<2GBR:(L)™R3(L) Y Y Puu(Ty <00, J(L))
k=1 “yeB(x;)NP(0,L)

2
+ P o(Ts, po,0) # Toro,1)) )

< 2<3R2<L>>4dR§‘(L)( S Py (Ty < 00, J(L))
yeP(,L)

2
+ P, o(Ts, po,0) # Toro,1)) )

<4(3R(L)™R3(L)R3(L) < R3(L)

for L large enough, where the fourth inequality is a consequence of (A.36) and
part (i) of Proposition 3.4.
Therefore, by Lemma A.3 applied to the (d — 1)-dimensional martingale My,

P(U(w,2) > Ra(L)/2) < 2de  RiD/BRIL) 1 p(1 (L)) + P(GP)

and the right-hand side is contained in S(N) as a function in L due to Proposi-
tion 3.4(i), Lemma 3.3 and (A.35). Now since the above estimates and hence the
last inclusion were uniform in z € P(0, L), we infer that (A.37) holds, which in
combination with Remark 3.5 finishes the proof. [J

A.4. Auxiliary results for the proof of Proposition 3.4(iii). The following
lemma is the basis for proving Proposition 3.4(iii).

LEMMA A.9. Fix ¥ € (dd;l, 1], let C be a constant and denote by BY(L)
the set of those o for which for all M € {|2L?], ..., L2}, all z € P(0, L) and all

(d — 1)-dimensional hypercubes Q of side length [LV that are contained in Hy;,
one has

(A.40) |Pew(X1y € Q) = P(X7) € @)l < CLOTDED,

Then for C large enough, P(B P (L)) is contained in S(N) as a function in L.
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PROOF. Choose ¥’ € (41, 9), set U := |L?'], fix M € {|2L?],..., L%
and with Sy as in the previous proof set Sﬁ” =8, N{xeZ:x e <M)}. Simi-
larly to the proof of Lemma A.8, we let x1, x2, ..., x, be a lexicographic order-
ing of the vertices in S,’f’ and denote by G the o-algebra on Q generated by
w(x1),...,w(xg). For v e Hy 4y, we start with estimating

‘PZ(XTM.H/ =V, AL, J(L)|Qn) — PZ(XTM+U =V, AL, J(L))

and for this purpose consider the martingale
My := P (X1, =v, AL, J(L)|Gr).

As in the proof of Lemma A.8, from which we borrow the notation B(xy), we
are going to take advantage of Lemma A.3, whence we will need to bound Ay :=
esssup(| My — My_1||Gr—1). By part (c) of Lemma A.2, again in combination with
standard coupling arguments, we obtain

Ar < CR3(L)P,(Ty, <00, AL, J(L)|Gi_1) - U/?

<CU™PRiL) Y Po(Xn, =y AL J(L)
yeBpNSY

’

<CU™2R3(L) Yo Pu(Ty <00, J(L))
yeB(xx)NP(0,L)

+ P.o(To,p0,1) # TBP(O,L)))-

Therefore, for w € J(L) N Gg), and based on the same calculation as in the proof
of Lemma A.8,

n
(A41) ess sup(Z A,%) < Ry(LY)U™.
k=1

Indeed, continuing the previous chain, for w € J(L) N Gg) we have

Y A <CURI(L) Z( > P, o(Ty < 00, J(L))
k=1

k=1 “yeB(x;)NP(0,L)

2
+ P, o(Ts, po,10) # TaP(O,L)))

< CUR}(L)BR(L))* Z( Y Pu(Ty <00, J(L)
k=1 “yeB(xx)NP(0,L)

2
+ P, o(To,Po,0) # Toro,1)) )
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< CU—dR;‘(L)(3R2(L))2d( Y Pou(Ty <00, J (L)
yeP(0,L)

2
+nP; o(Typo,0) # Tr,P0,L)) >
< RI(L)U™

for L large enough and where to obtain the second line we applied the Cauchy—
Schwarz inequality in combination with |B(xg)| < (3R> (L))?. Therefore, using
(A.41) and Lemma A.3, for each v € Hy;+ 7 we have

P(|P,(X1y,y = v, AL, J(L)|Gn) — Po(X1yy,y = v, AL, J(L))| > L'=%/4)

< 2¢~UP/(B2R4(L))

with n := M > 0 [here we use the assumption ' > (d — 1) /d to guarantee
the positivity of n]. We define the subset
T(L):= N {1P.(X 7y = VIGn) — Po(X71yy,y, = 0)| < L'79/2}
Me{(2/5)L2],...,L?},
veHyu,
zeP(0,L)

of Q. Now for any of these choices of M, v and z, we obtain
P(|P:(X 1y, = VIGn) — P:(X1y, = )| > L'77/2)
<P(|P(X1y,y = v, AL, J(L)|Gy)
— P(X7y,y = v, A, J(L))| > L' 79 /4)
+P(P,(AS UJ(L)|G,) > L'™/8)
+P(P,(AS UJ(L)) > L'™9/8).

Thus, in combination with Lemma 3.3 and Proposition 3.4(i), and since the previ-
ous bounds were uniform in the (at most polynomially many) admissible choices
of M, v and z,* we get that

(A.42) P(T ()¢ € S(N).
Now in order to estimate

|Pz,a)(XTM € Q) - PZ(XTM € Q)|7

4More precisely, in order to have only polynomially many choices for v, we restrict v to be con-
tained in the union of all admissible hypercubes 0@ appearing in (A.43).
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we denote by ¢(Q) the centre of the cube Q and set ¢’(Q) :=c(Q) + ﬁgu v. Fur-
thermore, set

0V :={yeHyrv:ly —c' (Do < (0.9VE=DL? 2}
and
(A43) 0P :={yeHuiu:lly —(Q)oo < (L.HYVEDL? 2},

Then by standard annealed estimates there exists ¢ € S(N) such that for all z €
P, L),

(A44) P.(X1,,, € Q) < P.(X7,, € Q) + (L),
(A.45) P;(X1y.y € Q%) > P.(X1,, € Q) — o(L),
(A.46) P.(X1y,0 € 0V1Gn) < Pow(X1, € Q) + (L)
and

(A47) P.(X1y.y € 0P1Gn) > Poo(X1, € Q) — (L)

for w € Ay . Indeed, in order to prove equation (A.44) note that
PZ(XTM+U € Q(l)) = PZ(XTM €0, XTM+U € Q(l))
+Po(X1, ¢ Q. X1y, € Q).

By Lemma 3.3 and restricting to Ay, using Azuma’s inequality one can show that

sup  Pr(X7y & Q. X114y € Q(l))
zeP(0,L)

is contained in S(N) as a function in L; this then implies (A.44). The remaining
inequalities are shown in similar ways.

In order to make use of (A.44) to (A.47), note that for w € T (L) N A we get
with Lemma A.2(a) that

‘PZ(XTM+U € Q(1)|gn) — P(X7y,y € Q<2))|
= }PZ(XTMJrU € Q(1)|gn) - PZ(XTM+U € Q(l))|
+| D P(Xpyy=v)
veQ@\ QM
< |P.(X1y0 € Q1G0) = PoX1yy, € Q1)+ 0P\ 0PV]CL
<cL@-b@-1n

for some constant C. If P, (X7, € Q) < P,(Xr,, € Q), then this estimate in
combination with (A.45) and (A.46) yields (A.40). Otherwise, again for w €
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T(L)N Ar we compute
‘Pz,w(XTMHJ € Q(z)) - PZ(XTM+U € Q(l))|

<|P.(X1y,y € QP1Gn) — P(X1yy,y € 09| +10@\ @P]CL
< CL(ﬁ_l)(d_l),

which in combination with (A.44) and (A.47) again implies (A.40).

Thus, for C large enough, and since the bounds we derived so far were uniform
in the admissible choices of M, z and Q, it follows that 7(L) N Az € BY(L).
Therefore, employing (A.42), we get P(BY (-)) e S(N). O

Departing from Lemma A.9, due to the following result, for a large set of en-
vironments we can bound from above the quenched probability of hitting a hyper-
plane in a hypercube of side length [L”] for any ¢ € (0, 1].

LEMMA A.10. For 9 € (0,1] and h € N, denote by EZ (L) the set of those
w for which for all z € PO, L), all M € {L%LZJ,...,LZ} and all (d — 1)-
dimensional hypercubes Q of side length [L?] which are contained in Hyy,

(A.48) P, (X1, € Q) < Ry(L)LP~ D@D,

Then there exists h(%) € N such that P(Eg(ﬁ)(L)c) is contained in S(N) as a
function in L.

PROOF. We prove the lemma by descending induction on ¢. Lemma A.9 in
combination with Lemma A.2(a) implies that IP’(B?(JC) e S(N) for each ¥ €

(%, 1]. For the induction step, assume that the statement of the lemma holds for
some " and choose ¥ such that p := % € (dd;l, 1]. Set h’ := h(®"). For z € Z¢,
define the canonical shift on Z¢ via 0, :Z¢ 5 x > x +z € Z¢ and let

G:=B L)NGI, N [\ 0By (L)),
zeP(0,L)

where BP (L) as in Lemma A.9 and

_ oyY
GTU’J = ﬂ ﬂ {Py,w(TB’P(x,LLPJ) # T3+’P(x’|_L,DJ)) < e RUL7D }
x€PO,L) yeP(x,|LP])

The translation invariance of IP implies that
P(o: (B} (LL” ) = (B} (LL”))),

and therefore, as a consequence of Proposition 3.4(i), P(G) is contained in S(N)
as a function in L. Thus, it _is sufficient to show that for some # an~d all L large
enough, we have that G C BZ(L). To this end we fix w € G, z € P(0,L), M €
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{L%LZJ, e L2} and a cube Q of side length [LY7in P(0, L) N Hy. Let ¢(Q) be

2
the centre of Q and x’ be an element of Z¢ closest to ¢(Q) — %ﬁ. Due to the
strong Markov property and the fact that w € G*[ L)
P.o(X1, € Q) — ) Peo(X1, 0 =)

veH, \ , 2NP(/LLP])
(A.49)

X Pv,w(XTM €0)

is contained in S(N) as a function in L. To estimate the second factor of the sum,
observe that since

we [\ 0By (L)),
z€P(0,L)
we get that for every v e Hy, |, 2,

(AS0)  Pyo(Xy € Q) < Ry (L)LP "D = Ry, (L)L =P,

With respect to the first factor of the sum, for L large enough, Hy_ ;,2 N
P(x’, L)) is the union of less than R7(L) cubes of side length |L”]. Since

w € BP(L), we deduce that for every cube Q' of side length [L”] that is con-
tained in HMfLL/’ﬂ NP0, L), one has
(A.51) P.w(X1,, . € Q) < Ry(L)L®™ DD
for L large enough. Combining (A.49), (A.50) and (A.51), we infer that
Pro(X1y € Q) < Ry(L)Ry (L)LY ~P@=D . Ry(1yL P~ D@D
< Ry(L)L D@D

for h = max{7, '} + 1 and L large enough.
Noting that the above estimates are uniform in the (at most polynomially many)
admissible choices of z, M and Q, this finishes the proof. [J

The next result employs the previous lemmas to yield bounds on the difference
of certain annealed and semi-annealed hitting probabilities.

LEMMA A.11. Let G be the o-algebra in Q2 generated by the functions {2 >
o w(2):z-e1 < LZ}. Let n € (0, d—fl A1), U := |L"] and denote by B(L,n)
the set of those w for which for all z € P(0, L) and all v € Hj2, y, one has
|P.(X7,, , =vIG) — P.(X7,,  =v) < LU=,
Then P(B(L, n)€) is contained in S(N) as a function in L.

PROOF. Letv € H;2,; and let ¢ > 0 be such that ¢ < %n. Define K, to be
the natural number such that 2~ X212 > U > 2= Ke=112 andfork {1,...,.Kp —
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1} we set
PO .= PO, L)N{x:L> 2% <x.ey < L?—27F112),

In addition, we take

PED .= PO, L)N{x:L> 27K 2 < x.ey < L%,

PO =P, L)N{x:x-e <L?/2}
and
F(v):={x € PO, L):[lx —u(v,x)|1 < Ry(L)lI(v —x) - er[[}/*},

where u(v, x) :=v + %ﬁ Then for k € {0, ..., K} we define

PO @) :=PPNF()
and
PO ) := [y e 24 :3x € PP (v) such that ||x — y||; < Ra(L)}.

See Figure 6 for an illustration.
Similarly to the previous, we use a lexicographic enumeration x1, x3, ..., X, of

A KL A
(A.52) Pi= P
k=0

2Rg¢(L)L

PO (v)

2172 — U —

FIG. 6. The sets P®) (v) contained in P(0, L).
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and the corresponding filtration {G;};¢(o,....n}. We consider the martingale M; :=

PZ(XTL2+U =v,Ar, J(L)|G;). Again, in order to use Lemma A.3, we need to

bound U; :=esssup(|M; — M;_1]|Gi—1). With the same reasoning as in the proof
of Lemma A.9 and with Lemma A.2(c), we obtain for i such that x; € P® (v):

Ui < CRy(L)P(T; < 00, Ap, J(L)|Gi—y) - L~ 2%+DW/2),

To obtain a useful upper bound for U; withk € {0, ..., Ky }and w € EZ(:?) NJ(L),
we will estimate

Vo) = Y Poo(Te <00, Ap, J(L)) .
xeP® (v)

Using (A.36), we get for w € J(L) that
Ve (0) < R3(L).

Now choose 4() > 8 such that the implication of Lemma A.10 holds true; then
for k > 0 as well as B(x) as in the proof of Lemma A.9,

Vo)=Y P.o(Tx <00, Ar)?
xeP® (v)

2
> (Z Pz,w(xrmzy))

xeP®) (v) YEB()

(A.53) <GR(LYT D Po(Xpy, =)
yeP® ()
< GRLYT X Riyy (L1200
yeP® (v)

< Ru(py1 (L) LAE@HD/ZHO=DE=D)p =k L@+ 1)/2]

for L large enough, where inequality (A.53) follows from the fact that w €
R
B9y (L). _

Therefore, we get that for w € J(L) N BZ(&) we have

n K
esssup (Z U,-2> < CR%(L) Z Vw(k)L_Zded
i=1 k=0

< CRyw)+1 (L)L~

KL
4+ CRp41 (L) L2(@+D/2+@=D(d—-1)-2d Z okd—k(d+1)/2
k=1
< CRypy41(L) (L2 4 L3734+2d=DogKL(@d=D/2)
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< CRu)+1(L)(L™2 4 [272dH2d=D0 y=(d=1/2)
< [y (=d3

for L large enough and where the penultimate inequality follows from the defini-
tion of K, while the last inequality is due to the choice of . Thus, Lemma A.3
yields that

(A.54) P(|PZ(XTL2+U =0, ALlGn) — P.(X7,,,, =V, Ap)| > L'y =953 )

is contained in S(N) as a function in L, uniformly in the admissible choices of z
and v. .

Observe furthermore that with P defined in (A.52), for example, by Azuma’s
inequality,

PZ(XTL2+U =1, AL? Ta’ﬁ‘l < TU)
is contained in S(N), and thus, due to Markov’s inequality, so is
P(P.(X7,,,, =v, AL, Typ < Tu1G) = L'~y 1=9753 ).
In combination with (A.54) and the fact that
{0:|P(X7,,,, =v,ALIG) — P.(X1,, , =v,ALlGy)| = L' U1 =D 2}

Clw:P.(X1, , =v, AL, Typ < T1§) = L' U= 2),

this supplies us with the fact that
]P)(|PZ(XTL2+U =, Ang) — PZ(XTL2+U =, AL)| > Ll—dU(l—d)/?))

is contained in S(N) also.
A union bound in combination with Lemma 3.3 and Lemma 3.10 completes the
proof of the lemma. [

LEMMA A.12. Forany v € (0, d% A 1) denote by DV (L) the set of those w

for which for all z € P(0, L) and all (d — 1)-dimensional hypercubes Q of side
length [L?7 that are contained in 3, P (0, L),

|Peo(XTypo 1, € QlTap0.0) = To, P00.L))
(A.55) — P.(X7yp.1, € QITop.) = T, Po0.0)]
< [ @=DE=D=9d-1)/d+])

Then P(DV (L)€) is contained in S(N) as a function in L.

PROOF. Choose ¢’ € (30, 9) and U := [L*"/@+D | Then by Lemma A.11

and Proposition 3.4(i), we know that P(B(-, %)C U G@C) € S(N) whence it is
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sufficient to show that B(L, 4191) N G(l) c D (L); this we will do similarly to the
last step of the proof of Lemma A.9. We denote by c(Q) one of those elements of
74 closest to the centre of Q and let x’ € H;>_; be one of the lattice points closest

toc(Q) + U 5 v Furthermore, let Q(l) and Q(Z) be (d — 1)-dimensional hypercubes
that are contamed in Hy>_ ;; and are centred in x', such that the side length of oM
is [L? — Re(L)v/U| and the side length of Q@ is [L” 4+ Rg(L)~/U7. Then due
to Lemma A.11, on B(L )forz e{l,2},

K d+1
(A56)  |P(X7,, , € 09IG) — P,(Xr oy € 0| <|o?|L! -y 1-D/3

for all corresponding z and Q. Now similarly to (A.44) to (A.47), there exists
¢ € S(N) such that for all such z and Q,

P(X1, ,€0") -9

(A.57) )
< P.(Xr1,, € Q) < P(X7, , € 0P) +9(L)
as well as
P.(X7,,, € 0"VIG) —p(L)
(A.58)

< Pro(X1,, € Q) < Po(X1,, € 0P1G) + 0(L).
Proposition 3.4(i) and Lemma 3.10 imply that for w € G(i),
|Peo(XTyp.) € ClTopo,0) = T, Po,1) — Pro(X1,, € 0)]
and
| P (XTypor) € QTop0.1) = To, P0.1)) — P:(X1,, € Q)]

are both contained in S(N) as functions in L. Therefore, for w € B(L, 7 +1) N G(Ii),
using (A.56) to (A.58) and as a consequence of Lemma A.2(a),

1P (XTyp.r) € ClTapo0.1) = To, P0.L))
— P.(XTypo.1) € ClTar0.1) = Ta, PO.1))|
<|P,0(Xr, € Q) — P(X1,, € D)+ 9(L)
<[@?|LI=y =D L c(|0®@] — @V )L + (L)
< C(LO-DEDY =D | R (1)UL 14211

< L(z?—l)(d—l)—z?(d—l)/(d+l)

for L large enough and some ¢ € S(N). Here, we used that U = LLM,/ @+D ] and
9’ € (39, 9) to obtain the last line. O
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A.5. Proof of Proposition 3.4(iii). Denote by DV (L) the set of all  such
that

max  max| P, o(X7,p,, € Q1Tor0.L) = Ta,P0.L))
zeP©,L) @

— P:(XTypo 1) € ClTopo.0) = To,po.0)|
< L(ﬁ—l)(d—l)—ﬁ(d—l)/(d-H)

holds, where the maximum in Q is taken over all (d — 1)-dimensional hypercubes
Q C 3, P(0, L) of side length [L”7. Then for ¥ € (0, % A1), Lemma A.12 is
applicable and yields that P(D? (L)) is contained in S(N) as a function in L. In
combination with Remark 3.5, this finishes the proof.

A.6. Further auxiliary results. The principal purpose of this subsection is to
prove Lemma 3.18 that has been employed in step (B) in the construction of the
auxiliary random walk on page 490.

We start with proving some further auxiliary results, parts of which have been
stated and employed above already.

PROOF OF LEMMA 3.14. We observe that due to Lemma 3.10, it is sufficient
to establish (3.25). With v, as defined in (3.18), we obtain
L?—x- el .

R T

1

Lz—x-elA

(A.59) < } 013

EXXT — X —

IPO,L ~

o0 g e |

Lz—x-elA Lz—x-elA

Tt~V ——F%——V
Vg, - €1 Vel

v
To estimate the first summand on the right-hand side of (A.59), note that for H :=
inf{n € NiZ?zl(er — X)) re1 > L?}, we can infer from Lemma 3.10 and
Lemma 3.3 that

(A.60) IExX1yp0,) — Ex(Xeys Al <2Ra(L)

for L large enough. Now (Z?Zl Xo;p — Xp; ) — Ex(X¢; — Xo; [[AL)peqi, 212
is a zero-mean martingale with respect to Px(-|Ar), whence the optimal stopping
theorem implies

Ex(Xv, —x|AL) = (Ex(H|AL) — 1) - Ex(Xy, — X7, |AL)
(A.61)
+ Ex (X7, —x|AL).

But as a consequence of the conditioning on Ay, we have

(A.62) |Ex(Xry —x|AL) -e1 = (L> — x - )| < Ra(L).
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Since furthermore

(A.63) |Ex(X, — Xo|AL) — Ex(X¢, —x|AL) || <2R2(L)
using (A.61) to (A.63), we get

L% —x -eq .
Ey(Xvy —x|AL) — ——vr|| <3Ra(L).
VL - €] 1

Combining this with (A.60) we obtain that the first summand on the right-hand
side of (A.59) is bounded from above by SR> (L).

Furthermore, the second summand on the right-hand side of (A.59) is contained
in S(N) as a function in L due to Lemma 3.9. This finishes the proof. [J

J7

In the following, we will sometimes consider distributions (J)L for j € N, and

in particular, 4/j L is not necessarily a natural number anymore. However, as one
may check, this does not lead to any complications.

CLAIM A.13. For je{l,..., LLXJZ}, let U be distributed according to the

convolution V“(%,o * MO‘,'(’)._l . Then U can be represented as U = U + U’ such that

U~ /La/gL and

P(IU'Ili > 2Ra(L)) < Ce™C Rl
for some constant C independent of j and L.
PROOF.  Since we assume all appearing probability spaces to be large enough,
it is sufficient to construct U, U and U’ as desired. First, observe that for
Apn = {X*" < Ry(N)Vn e {l,...,k}},
the same reasoning as in the proof of Lemma 3.3 yields that
Po(A sy py.) < Cexp{=C ' Ra(L)").
This in combination with Azuma’s inequality, Lemma 3.10 and Lemma 3.14,
yields that for L large enough we have
Po(Typo.y7=11) 7 To, P0.y7=T1))

Re(L)?

2

< PU(AS 1) + 2L expf =0
< Cexp{—C'Ra(L)"}.

Now for [ € N, let n(/) be the unique natural number such that 7,;)—1 < 71 < 7,().

Then due to the above, in combination with Lemma 3.3,

PO(”XT”((J'_])LQ) - XT{)’P((),\/J'TIL) ||1 2 R2(L)) S Cexp{_c_l RZ(L)V}
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Now let Z denote a RWRE coupled to X in such a way that Zg =
and

XT3+7>(0,~/]'—1L)
Zflz+‘ - X’n((.f—l)L2>+' B X’n«j—l)Lz)’

whereas between times 0 and rIZ it evolves independently of X. Then

P0<{T3P(o,ﬁL) # Ty, p0.vjL)}

z z
(A64) Ul Typo,v7=10) # To.p0,v7=10) ) Y TP 20 1) # T4 P(20.1) )

u{ max || Z, —Zo||1>R2(L)}UA

O<n<r

(LLX|L)?, L)

< Cexp{—C'Ra(L)"}

for C large enough and all L; restricted to the complement of the event on the
left-hand side of (A.64),

(A6S) X1, g oy + Zrz =200 = Xy g 1 < 2Ra(L).

Furthermore, with respect to

z z
Po(\ Typco. 7=y = To, P0./7=TL) Tsp(zo.) = T3, P(20.1))>
the variable

U .= XTa+7>(o.mL> + ZTBZ+7’<Z<%“

is distributed according to ji (j)_lL * ,ué o» While with respect to

Po(1Typ0,71) = To, (0, V7L))>

the variable U := X Typo.viv) is distributed as u(‘)/g Therefore, setting U’ := U —

U , in combination with (A.64) and (A.65) we deduce the desired result. [
The following lemma is essentially a discrete second-order Taylor expansion.

LEMMA A.14. Let u be a finite signed measure on Z¢ and let f:7¢ — R.
Choose m, k, J, N eNand o € 74 such that:

(a) foreveryx,y e 72 such that lx —ylli =1, we have | f (x) — f(¥)| < m;

(b) foreveryx,y,z,w ez andi,je{l,...,d}suchthatx —y=z—w = ¢;
and x —z =y — w = ej, we have that | f (x) + f(w) — f(y) — f(2)| <k (note
that if i = j then y = z and this is the discrete second derivative, while if i # j it
is a discrete mixed second derivative);

(©) 2ymx)=0
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) X xpu@)) < N;
€ Y llx—oll}-ln@)|<J.

Then

<mN +kJ.

> Fopx)

PROOF. From (c), we infer that ), f(x)u(x) =Y, (f(x)+c)u(x) for every
c € R. Therefore, without loss of generality, we may assume that f (o) = 0. Let
g:7Z% — R be the affine function characterized by

(A.66) g(0)=/f(e)=0 and glo+e)=floe+e) Viell,....d}.

Then for any x € Z¢,
(A.67) () — g@)| <klx —oll}-
In fact, setting h := f — g we get for B(x,0) :={y € Z%:x; Aoi < yi <xi V
oi Vie{l,...,d}} that
d

(A.68) |f(x) —g(x)| < |h(o)| + max ‘—h(y)‘ -llx —ell,

ie{l,...d},| 0e;

y€EB(x.0)
where a%h(y) =h(y+e)—h(y).

In addition, for %Zaeih(y) =h(y+e)—h(y)—(h(y +e +ej) —h(y+ej))
we get for y € B(x, o) that
2

dej de;

h(z)

0 0
(A.69) \—h(y)'s\—h(g)‘+ max v = el
de; de;

Jell,....d},
z€B(x,0)

. 52 2 .
Noting that h(p) = a%h(g) =0 as well as ﬁh = ﬁf, and plugging (A.69)
into (A.68), (b) yields (A.67).
Now (e) in combination with (A.67) results in

Y fEp@) =Y gu(x)

<3 If ) — g - )] <kJ.

In addition, since g is affine, g — g(0) is linear and hence (A.66) in combination
with (a) and (d) yields

> gou(x)

- 'g<2x:xu(X)> ~50)+ X sOnw)| <mi.

Due to the triangle inequality, these two estimates imply the statement of the
lemma. O
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PROOF OF LEMMA 3.18. We will construct a coupling that establishes the
desired closeness. For each k € {1, ..., n}, conditioned on Ay, ..., Ay_, the dis-
tribution of Ay is (A, K)-close to M(%,o by assumption, whence a coupling as de-
fined in Definition 3.7 exists. As mentioned in Remark 3.8, the coupling can be
constructed on the (possibly extended) probability space the variables Ay are de-
fined on, with Ay playing the role of Z; of that definition. We will assume such
couplings to be given. Thus, for each such k& we still denote the variable corre-
sponding to Z, in Definition 3.7 by Ay; the variable corresponding to Zy will
be denoted by Y. Without loss of generality, due to the fact that the Aj’s and
,ué o are supported on 9P (0, L), we may assume that the Y;’s take values in
d4+P(0, L) only. Again, without loss of generality, we assume all these couplings
to be defined on one common probability space (€2, F, P). Thus, using the nota-
tion Fx—1:=0(Aq,..., Axk—1) fork €{2,...,n} and Fo := {9, @}, the following
hold P-a.s.:

@) X [P (Ve =x|Fp-1) — uf o ()] < A5
) P(IYk — Axlh = K|Fe—1) =13
©) EQulFi-1) = E L 5

(d) 2o llx = By 117 - 1PV = x| Fier) = o ()] < A Var, .

To prove the desired result, it is sufficient to show that there exists a random vari-
able Y’ defined on the same probability space such that:

@) Y, 1P =x) — uggt ()] < ARo(L);
") P(IY' = Sylli <4nK) = 1;
(") EY' =E fL,

00

@) Xylx— E i IF- 1P =x) - Moo Ll <ARg(L)Var .
0,0

() 0
To this end, set

n
(A.70) SV =" 1.
Using descending induction, we start with showing that for all j € {1, ..., n} the
following holds:
(IS) Conditioned on Ay, ..., A;_1, we can write S =y 4+ 7 for some

Y and ZY) such that || Z¢)||; < (n — j)R3(L) a.s. and such that with respect to
P(-|Fj-1), the variable YY) is distributed as ,u‘" JHIL Dél), where D(j) is a

signed measure the variational norm ||D§j ) lITv of which is bounded from above
by 1) with A = X and

AD =2 U+D L CARg(Vn — jL)(n — j)~!

for j < n and some constant C.



528 A.DREWITZ AND A. FE. RAMIREZ

For j = n, the statement holds true due to the assumptions with Z = 0. We now
assume that the statement holds for j + 1 and prove it for ;.
Setting H :=Y; + YU+D for each z we have

P(H=z|Fj-) =) PY;=x|F_)P(YVTV =z —x|¥; =x, Fj_1).
X
With [Lﬁ i defined as the convolution P(Y; € -|F;_1) * Mov’g—j L, this yields that

Y IPH =21Fj-) = iy .y, @)
Z
<> Y P¥;=x|F;j-D)
Z X
(A.71) x [P(YUD) =z —x|¥; =x, Fj_1) — ! (z—x)|
=Y PO =xIF) - [P(YUD = y1Y) =x, Fjo) = s )]
X,y
i ,
< D5 |y <2070

holds a.s. i
Next, we set [LlL nej = Mé,o * /LO”’S_] L and will bound

AT e (2) = /1,%, jr, @
(A.72)

(x) (P(Yj=2—x|Fj_1) — 5oz — x))

from above. —
For this purpose, for given z, we will apply Lemma A.14 to the function uo’g_j L

with the corresponding measure p given by P(Y; € -|F;j_1) — Mé,o (note that

llltv < 2).
We now determine the parameters k,m,J and N of the assumptions of

Lemma A.14. Parts (d) and (e) of Lemma A.2 yield that we can choose k <
C(v/n—j L)~?=!, Furthermore, as a consequence of (¢) we can choose N equal
to 0, whence the exact value of m does not matter (m = 1 works). In addition, (d)
yields that J can be chosen equal to 2 Var e with o equal to one of the elements

of Z4 closest to E ko Thus, Lemmas 3.12 and A.14 in combination with (A.72)
yield that a.s., ’

(A73) A1 (@) = iy, @1 < CAL ™ (n = )=V,

Note that for z such that ||z — EﬂIL Nloo > 4d Rs(/n — jL)s/n — jL, the terms
Sn—J
ﬁf’n_j (z) and /:‘ﬁ,j,Y,- (z) vanish. Thus, using (A.71) and (A.73), the triangle in-
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equality implies that a.s.,

Y IP(H=2z|Fj-1) — if,_ ;)]
4
<Y |P(H=2F;-1) = iy ;y,|
Z

AL AL
+ Z Wn,j,yj (z) — M1,n_j(Z)|
zeH(n_j)Lz,

||Z*Eﬁ{4 Ih=4dRe(n—jL)/n—jL
h—]

<AUtD 4 CaRg(Vn—jL) ' — )N
Consequently, we get that the distribution of H can be written as l&lL,n— it 5? )
for a signed measure 59 ! with
—(j i - \d—1 N
(A.74) IDY |y < 2U+D + CARs(Vn = L) (= j)~ .
By Claim A.13, there exists Z'(j) such that
. _c-1
P(IZ' ()l > R3(L)) < Ce™€ BT,
and such that the distribution of H + Z'(j) is ,uo‘,g_j +IL + 5? ) Let
H:=H+Z'()) LyzG)i=rs(0)-
Then due to (A.74), the distribution of H equals /LO"S_j Ly béj ) for some signed
measure bg ) such that
V(i —(j _ -1 i - \d—1 \—
|| Déj) lrv = Déj) [y +Ce € RWT <a UV L CARs(Vn—jL) (= 7"
We let
zD =200+ 2/ () Yz <mwy
and
YO .— s _ 70)
Then we infer that
(A.75) |29, < (n— HRs(L)

and the distribution of ¥/ is Mo g_j Ly Déj ) where Déj )isa signed measure
such that | DY [lpy < A& with
A0 <2U+D 4 CaRg(Vn — L) (n— j)~"

This establishes (IS).
Using (¢’) and (A.70), the expectation of Y M s computed via

(A.76) EYD —gs® _gzM _ nE, — EzZW.
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Therefore, in combination with (A.75), we get
I _ _ 1)
YO £l < InEyg, — Bl +[EZ),

< CnRy(v/nL) +nR3(L)
<2nR3(L)

for L large enough, since n < L by assumption; indeed, with the help of Lem-
ma 3.14 one deduces

Ey —E mlh<n|E — 2| +[2E 5k
n L — L1 =n L — % v = v — L
Ko,0 u«o{g (KU A v-eg u({g 1

< C(nR2(L) + Ry(v/nL)).

As in the proof of Corollary 3.13, we can find a variable U which is independent
of all the variables we have seen so far, and such that |U||; <2nR3(L), U € Hy
almost surely and

EU=E 4 —EYW,
Ho,0

We define

v =y +u,
which directly yields that (c”) holds. To check (b”), note that in combination with
(IS) and the definition of SV we get

150 =¥l = 8, = SO, + ]SO = YO 4+ [y ® —y'],
(A.77)
<nK +nR3(L)+2nR3(L) <4nK

since K > R3(L). Now from (IS) it follows that A(D) < CARe(L?)4! log(n) <
CAR7(L) for L large enough. Thus, (a”) is a consequence of

SIPEY =x0) — gt @)

L
<2 ¥ > PU=»PYV=x—y) - uitwo
x€d4+P(0,/nL) y€Hy,
llyllh<2nR3(L)

<2 ) ( Y PU=yPYY=x-y)

x€3+P(0,/nL) YE€H)y,
lylli<2nR3(L)

(A.78)
- /L({gL(x — y))‘

+ CnR3(L)(ﬁL)‘d>
< CAR7(L)
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for L large enough and where we used Lemma A.2(b) to obtain the second in-
equality, and also the fact that A > nL~!.
The remaining part of the proof consists of establishing that Y’ also satis-

fies (d”). Denoting by D, be the signed measure such that Y’ ~ ,u(*){gL + D>, this

amounts to showing that

A.79 x—E i ll?-|Da(x)| < AR9(L) Var
(A.79) ;n MQfOLnl | D2 (x)| o(L) W

holds.
To start with, note that

Yollx—E silli- 1D2(x)|
< Ho,0

(A.80) S@=D)Ix—E 13 - 1 D2 ()]

d
2
=d—-1))Y. > (x—E s)-e) - |Dax).
i=2 x H00
To proceed, we write Dy = D; — D, for the Jordan decomposition of D, and

estimate

2
D (- E, i) -ei)” - | Da(x)|

X

(A-81) <23 (0 —E ) -e) - Dy ()
T 0,0

(A.82) +

26— E i) cei)? - Da()|.

X

To bound (A.81) from above, note that D, (x) < Ma{gL (x) for all x. Combined
with the fact that || D, [ty < ||D2lltv < CAR7(L) [due to (A.78)], we obtain

(A.83) Y& —E ) ei)’ Dy (x) < ARg(L)nL>
0,0

X

for L large enough, since ,u(*){gL is supported on 9. P(0, /nL).
In order to estimate (A.82), note that due to (¢””) we have Y~ xD>(x) =0, and
hence (A.82) equals |Var(D3, i)| with

(A.84) Var(D»,i):= Z(x -¢;)?Da(x) = Var(Y' - ¢;) — Var(W - ¢;),

where W denotes a random variable distributed according to ,ua{gL. By Claim A.13,
there exists a random variable W’ such that W’ ~ (:“(%,0)*”’ with (/"(%,0)*" denoting
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the n-fold convolution of ué o» and such that

P(IW — W'[l; > nR3(L)) < Cne=C~ R(LY
for L large enough. Then
[Var(D,,i)| < [Var(W - ¢;) — Var(W' - ¢;)|
(A.85) + [Var(W' - ¢;) — Var(S - ¢;)]|

+ [Var(SW - ¢;) — Var(Y’ - ¢;)|.
Now for L large enough,
|Var(W - ¢;) — Var(W' - ¢;)|
<Var((W — W) -¢)

+2|Cov((W — W') -e;, W' - 1)
(A.86)
<esssup(W = W) -¢;)*P(|W — W'||; > nR3(L))

+2n? R3(L)? 4 2nR3(L)y/Var(W')
<Cn’?Ry(L)L,
where among others we used /n < L and Lemma 3.12. Furthermore,
[Var(Y' - e;) — Var(SWD . ¢;)| = |Var((SV + U’) - ;) — Var(S!D . ¢;)|

< 2esssup(||U’||1)y/ Var(SD) +esssup(| U [11)*
(A.87) < Cn*R3(L)L + 4n’R3(L)

(A.88) <Cn’?R3(L)L,

where we used n < L and that by the definition of ¥’, we know that U’ := ¥’ — (D
satisfies ||U’||; < 3nR3(L).
To estimate the remaining summand, note that Cov(Y;, Y;) = 0 for j # k, and

hence
n

(A.89) |Var(SY) - ;) — Var(W' - )| < | Var(¥Y; - ¢;) — Var L et
j=1
Furthermore, since E ko = EY; for every j, from (d") we infer that
|Var(Y; - e;) — VaruéOOCfi)*‘ |

Dx-ei = (B )’ (P(Y;=x) = ufio(x)

X
2
<D (xrei—(Epp - e) IP(Yj=x) = pgo(x)]
X

<AVar, r ,
)
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and as a consequence

(A.90) [Var($V - e;) — Var(W' - e)| < n Var, 1. .

Using (A.85) to (A.90) in combination with Lemma 3.12, we deduce that
|Var(Ds, i)| < CanL?,

whence in combination with (A.81) to (A.84) we have

D _(x-ei —E i -e)*|Da(x)| < 2Rs(L)AnL?
X 0,0

for L large enough. Therefore, (A.80) yields
Dok = E e llf - 1D2(x)| < 2d” Rg(L)AnL?
X 0,0

for L large enough. In combination with Lemma 3.12, we deduce that (A.79) holds
and thus (d”) is fulfilled. O

We now prove the previously employed Lemma 3.11.

PROOF OF LEMMA 3.11. We continue to use the notation B(/, k) and B([)
introduced in the proof of Lemma A.2, from which this proof draws its strategy.
Again, denote by I'" the covariance matrix of X, — X, with respect to Py and set
m := Eo(X:, — X¢,). Using (A.5) and the fact that, since r—tis positive definite,
the corresponding quadratic form induces a norm, we infer that for any C > 0 there
exists a constant ¢ > 0 such that for k large enough and y € Hy> with ||y —x —
km||; < Cv/k, we have

(A91) Py(X7, =y, B(L* k) = ck™*/*,

Setting [* := L2=X€1 and € := 4C/, for k € {[I* — T, ..., [I* + ~/IF]} and x, y

; mel
as in the assumptions, we have

ly —x —kmlli < lI7Tge(y — )+ |Fm — km]l; < CL

for L large enough. Then, using (A.91) with y € 34P(0, L), uniformly in x €
P (0, L) we have

Py(X7,=y) > Pi(X1, =y, B(L))

[1*+/1%]
> Y PdXr, =y, BIL*K)
k=|1*—/T*)

> L9,

which due to (3.20) finishes the proof. [J
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