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BRUNET–DERRIDA PARTICLE SYSTEMS, FREE BOUNDARY
PROBLEMS AND WIENER–HOPF EQUATIONS

BY RICK DURRETT1,2 AND DANIEL REMENIK1,2

Duke University and University of Toronto

We consider a branching-selection system in R with N particles which
give birth independently at rate 1 and where after each birth the leftmost
particle is erased, keeping the number of particles constant. We show that, as
N → ∞, the empirical measure process associated to the system converges in
distribution to a deterministic measure-valued process whose densities solve
a free boundary integro-differential equation. We also show that this equation
has a unique traveling wave solution traveling at speed c or no such solution
depending on whether c ≥ a or c < a, where a is the asymptotic speed of
the branching random walk obtained by ignoring the removal of the leftmost
particles in our process. The traveling wave solutions correspond to solutions
of Wiener–Hopf equations.

1. Introduction and statement of the results. We will consider the fol-
lowing branching-selection particle system. At any time t we have N particles
on the real line with positions ηN

t (1) ≥ · · · ≥ ηN
t (N). Each one of the N par-

ticles gives birth at rate 1 to a new particle whose position is chosen, relative
to the parent particle, using a given probability distribution ρ on R. Whenever
a new particle is born, we reorder the N + 1 particles and erase the leftmost
one (so the number of particles is always kept equal to N ). We will denote by
XN = {(η(1), . . . , η(N)) ∈ R

N :η(1) ≥ · · · ≥ η(N)} the state space of our process.
We learned of this process through the work of Durrett and Mayberry (2010),

who considered the special case in which ρ corresponds to a uniform random
variable on [−1,1]. However, our process is a member of a family of processes
that first arose in work of Brunet and Derrida (1997), who studied a discrete analog
of the Fisher–Kolmogorov PDE:

∂h

∂t
= ∂2h

∂x2 + h − h3.

In a simpler version of their process, model A in Brunet et al. (2007), the discrete
time dynamics occur in the following way: at each time step each of the N particles
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is replaced by a fixed number k of particles whose displacements from the parent
particle are chosen independently, and then only the N rightmost particles are
kept. They conjectured that the system moves to the right with a deterministic
asymptotic speed vN which increases as N → ∞ to some explicit maximal speed
v at a rate of order (logN)−2. This slow rate of convergence was recently proved
by Bérard and Gouéré (2010) in the case k = 2 under some assumptions on the
distribution used to choose the locations of the new particles (one being that new
particles are always sent to the right of the parent particle).

Although we will say something about the behavior of the system for fixed N ,
our main interest in this paper is to study the behavior of the empirical distribu-
tion of the process as N → ∞. Before proceeding with this, let us specify some
assumptions. When a particle at x gives birth, the new particle is sent to a location
x + y with y being chosen from an absolutely continuous probability distribution
ρ(y) dy. We will assume that ρ is symmetric and that

∫ ∞
−∞ |x|ρ(x) dx < ∞. The

initial condition for our process will always be specified as follows: each parti-
cle starts at a location chosen independently from a probability measure f0(x) dx,
where f0(x) = 0 for x < 0 and f0(x) is strictly positive and continuous for x > 0.

1.1. Convergence to the solution of a free boundary problem. Let

νN
t = 1

N

N∑
i=1

δηN
t (i)

be the empirical measure associated to ηN
t . Observe that the initial empirical mea-

sure νN
0 (dx) converges in distribution to f0(x) dx. We will show that, as N → ∞,

this empirical measure process converges to a deterministic measure-valued pro-
cess whose densities are the solution of a certain free boundary problem.

Alternatively one could think of the following (weaker) version of the problem.
It is not hard to see that the probability measure E(νN

t (·)) on R is absolutely contin-
uous. Let f N(t, x) be its density. We want to study its limit as N → ∞. We expect
this limit f (t, x) to correspond to the densities of the limiting measure-valued pro-
cess mentioned above. Now observe that if ξN

t is a version of our process in which
we do not erase the leftmost particle after births (i.e., ξN

t is a branching random
walk), then we would expect that the density of the corresponding expected empir-
ical measure converges to the solution f̂ (t, x) of the following integro-differential
equation:

∂f̂

∂t
(t, x) =

∫ ∞
−∞

f̂ (t, y)ρ(x − y)dy.(1.1)

This is indeed the case, as we will see in Proposition 2.1. Observe that the total
mass of f̂ (t, ·) grows exponentially [in fact

∫ ∞
−∞ f̂ (t, y) dy = et , see (2.5)].

By adding the selection step to our process we ensure that the limiting den-
sity always has mass 1, but otherwise the branching mechanism is still gov-
erned by the convolution term appearing in (1.1). Thus we expect that if the limit
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f (t, x) = limN→∞ f N(t, x) exists, then it has to satisfy the following: there ex-
ists a continuous increasing function γ : [0,∞) −→ R with γ (0) = 0 such that
(f (t, x), γ (t)) is the unique solution to the following free boundary problem
(FB):

∂f

∂t
(t, x) =

∫ ∞
−∞

f (t, y)ρ(x − y)dy ∀x > γ (t),(FB1) ∫ ∞
γ (t)

f (t, y) dy = 1,(FB2)

f (t, x) = 0 ∀x ≤ γ (t)(FB3)

with initial condition f (0, x) = f0(x) for all x ∈ R. γ (t) is a moving boundary
which keeps the mass of f (t, ·) at 1, but the speed at which it moves is not known
in advance and depends in turn on f .

It is not a priori obvious that (FB) has a solution, let alone that such a solution
is unique. We will prove the existence and uniqueness using arguments closely
related to the ones we will use to prove the existence of the limiting density.

We will denote by P the space of probability measures on R, which we endow
with the topology of weak convergence, and by D([0, T ], P) the space of càdlàg
functions from [0, T ] to P endowed with the Skorohod topology.

THEOREM 1. For any fixed T > 0 the sequence of P -valued processes
νN
t on [0, T ] converges in distribution in D([0, T ], P) to a deterministic νt ∈

D([0, T ], P). νt is absolutely continuous with respect to the Lebesgue measure for
every t ∈ [0, T ] and the corresponding densities f (t, ·) are characterized by the
following: there exists a continuous, strictly increasing function γ : [0,∞) −→ R

with γ (0) = 0 such that (f (t, x), γ (t)) is the unique solution of the free bound-
ary problem (FB). In particular for x > γ (t), f (t, x) is strictly positive, jointly
continuous in t and x and differentiable in t .

Let us remark that there are at least two other examples in the literature of
particle systems converging to the solution of a free boundary equation, but in
both cases the limiting equation is of a different type. Landim, Olla and Volchan
(1998) study a tracer particle moving in a varying environment corresponding to
the simple symmetric exclusion process, while Gravner and Quastel (2000) study
an internal diffusion limited aggregation model. In both cases an hydrodynamic
limit is proved with the limiting equation being closely related to the famous Stefan
problem, which involves free boundary problems for the heat equation where the
moving boundary separates a solid and a liquid phase [see Meirmanov (1992) and
references therein for more on this problem].
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1.2. Behavior of the finite system. To study the finite system it will be useful
to introduce the shifted process 	N

t , which we define as follows:

	N
t = (	N

t (1), . . . ,	N
t (N)) with 	N

t (j) = ηN
t (j) − ηN

t (N).

Observe that 	N
t (N) is always 0. It is clear that 	N

t is also a Markov process, and
its transitions are the same as those of ηN

t except that after erasing the leftmost
particle the N remaining particles are shifted to the left so that the new leftmost
one lies at the origin.

We will denote by minηN
t = ηN

t (N) and maxηN
t = ηN

t (1) the locations of the
leftmost and rightmost particles in ηN

t .

THEOREM 2. For every fixed N > 0 the following hold:

(a) There is an aN > 0 such that

lim
t→∞

minηN
t

t
= lim

t→∞
maxηN

t

t
= aN

almost surely and in L1. Moreover, the sequence (aN)N>0 is nondecreasing.
(b) The process 	N

t has a unique stationary distribution μN , which is absolutely
continuous.

(c) For any (random or deterministic) initial condition ν0 we have

‖P
ν0(	N

t ∈ ·) − μN(·)‖TV −−−→
t→∞ 0.

From this point on we will assume that the displacement distribution ρ has
exponential decay. To be precise, we assume that there is an α > 0 such that

ρ(x) ≤ Ce−α|x|(1.2)

for some C > 0. We will write

� = sup
{
α > 0 : sup

x∈R

[
eα|x|ρ(x)

]
< ∞

}
.

That is, � ∈ (0,∞] is the maximal exponential rate of decay of ρ in the sense
that ρ(x) ≤ Ce−αx for some C > 0 when α < � but not when α > �. � may be
∞ (as in the cases where ρ has compact support or ρ corresponds to a normal
distribution), while � > 0 is ensured by (1.2).

Now let

φ(θ) =
∫ ∞
−∞

eθxρ(x) dx(1.3)

be the moment generating function of the displacement distribution ρ. Equation
(1.2) and our definition of � imply that φ(θ) < ∞ for θ ∈ (−�,�). To avoid
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unnecesary technical complications we will make the following extra assumption,
which in particular implies that φ(θ) = ∞ for |θ | > �:

φ(θ)

θ
−−−→
θ→�− ∞.(1.4)

This assumption always holds when � = ∞: choosing 0 < l1 < l2 so that ρ(x) ≥
M for some M > 0 and all x ∈ [l1, l2] we get

1

θ

∫ ∞
−∞

eθxρ(x) dx ≥ M(l2 − l1)

θ
eθl1 −−−→

θ→∞ ∞.

Our next result will relate the asymptotic propagation speed aN of our process
ηN

t with the asympotic speed of the rightmost particle in the branching random
walk ξN

t .

THEOREM 3.

lim
N→∞aN = a,

where a is the asymptotic speed of the rightmost particle in ξN
t , that is, in a branch-

ing random walk where particles branch at rate 1 and their offspring are displaced
by an amount chosen according to ρ.

REMARK. If ρ is uniform on [−1,1] this follows from (8) in Durrett and May-
berry (2010). However, the couplings on which the proof is based extend easily to
our more general setting, so we do not give the details of the proof.

The speed a has an explicit expression [see Biggins (1977)]: by standard results
of the theory of large deviations, if St is a continuous time random walk jumping
at rate 1 and with jump distribution ρ, then the limit

�(x) = lim
t→∞

1

t
log P(St > xt)(1.5)

exists and equals −(supθ>0{xθ − φ(θ)} + 1); a is given then by the formula
�(a) = −1 [see Durrett and Mayberry (2010) for more on this].

1.3. Traveling wave solutions. A traveling wave solution of (FB) is a solu-
tion of the form f (t, x) = w(x − ct) and γ (t) = ct for some c > 0 [with initial
condition f0(x) = w(x)].

If w is a traveling wave solution, then from (FB1) we get

cw′(z) = −
∫ ∞

0
w(y)ρ(z − y)dy ∀z > 0,
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so integrating from z = x to ∞ we deduce that w must solve the following system
of equations (TW):

w(x) = 1

c

∫ ∞
0

w(y)R(x − y)dy ∀x > 0,(TW1) ∫ ∞
0

w(x)dx = 1,(TW2)

w(x) = 0 ∀x ≤ 0,(TW3)

w(x) ≥ 0 ∀x > 0,(TW4)

where

R(x) =
∫ ∞
x

ρ(y) dy

is the tail distribution of ρ. On the other hand, it is easy to check that if w satisfies
(TW) and f0(x) = w(x), then (w(x − ct), ct) is the solution of (FB).

Equation (TW1) is known as a Wiener–Hopf equation. Equations of this type
have been studied since at least the 1920s (at the time in relation with the theory
of radiative energy transfer), and have since been extensively studied and found
relevance in diverse problems in mathematical physics and probability. In general,
these equations can be solved using the Wiener–Hopf method, which was intro-
duced in Wiener and Hopf (1931) [see Chapter 4 of Paley and Wiener (1987) and
also Kreı̆n (1962)]. But the solutions provided by this method are not necessarily
positive, so they are not useful in our setting. Instead, we will rely on the results of
Spitzer (1957), who studied these equations via probabilistic methods in the case
where R(x)/c is a probability kernel.

To do that we need to convert our equation to one where the kernel with respect
to which we integrate is a probability kernel. To that end, we need to make the
following observation. In Lemma 4.1 we will show that there is a λ∗ ∈ (0,�) such
that

φ(λ∗)
λ∗ = min

λ∈(0,�)

φ(λ)

λ
= a,(1.6)

where φ is the moment generating function of ρ defined in (1.3) and a is the
asymptotic speed introduced in Theorem 3. On the other hand, the function λ �→
φ(λ)/λ is continuous and goes to ∞ as λ → 0 [and moreover, as we will show in
Lemma 4.1, it is decreasing on (0, λ∗)]. Thus for every c ≥ a there is a λ ∈ (0, λ∗]
such that φ(λ)/λ = c.

Observe that the tail distribution R of ρ has the same decay as ρ [see (1.2)].
That is, for every 0 < α < � there is a C > 0 so that

R(x) ≤ Ce−αx ∀x ≥ 0.(1.7)
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Fix c ≥ a and use the above observation to pick a λ ∈ (0, λ∗] such that φ(λ)/λ = c.
Equation (1.7) implies that the function x �→ eλxR(x) is in L1(R). Moreover, in-
tegration by parts yields ∫ ∞

−∞
eλxR(x) dx = φ(λ)

λ
.

Therefore

k(x) = λ

φ(λ)
eλxR(x)(1.8)

is a probability kernel. On the other hand, if w is a solution of (TW) with c =
φ(λ)/λ then it is easy to check that u(x) = eλxw(x) satisfies

u(x) =
∫ ∞

0
u(y)k(x − y)dy ∀x ≥ 0.(1.9)

Thus the idea will be to recover solutions of (TW) from positive solutions of (1.9).
Positive solutions of (1.9) can be regarded as densities of stationary measures

for the following Markov chain. Let ξn be a sequence of i.i.d. random variables
with distribution given by k, let X0 = 0 and define

Xn+1 = (Xn + ξn)
+,

where x+ = max{0, x}. This chain appears, for example, in the study of ladder
variables for a random walk [see Chapter XII of Feller (1971)] and in the study
of the GI/G/1 queue [see Chapter 5 of Durrett (2004)]. If u satisfies (1.9), it is
0 on the negative half-line and it is nonnegative on the positive half-line, then
the measure (supported on [0,∞)) having u as its density is invariant for Xn.
Assuming that E(|ξ1|) < ∞, Xn is recurrent, null-recurrent or transient according
to whether E(ξ1) is negative, zero or positive. As we will see in Section 4, this
expectation is negative in our case if and only if λ < λ∗ and it is zero for λ = λ∗.
In both cases the theory of recurrent Harris chains suggests (and Theorem 4.2 will
prove) that there exists a unique (up to multiplicative constant) invariant measure
for Xn, although this measure may not be finite in the null-recurrent case. The
difference between the recurrent and null-recurrent cases explains the difference
between the cases c > a and c = a in Theorem 4 below. The fact that the chain
is transient when λ > λ∗ suggests that there are no positive solutions of (1.9) for
these values of λ (again see Theorem 4.2 for a proof). This in turn hints at the
possibility that there are no solutions of (TW) for c < a. Our proof of this fact will
not rely in seeing (TW) as a Wiener–Hopf equation, but instead will use explicitly
the fact that its solutions are traveling wave solutions of (FB).

THEOREM 4. Assume that (1.2) and (1.4) hold.

(a) If c ≥ a the equation (TW) has a unique solution w. This solution is differen-
tiable except at the origin.
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(b) When c > a, and letting λ ∈ (0, λ∗) be such that φ(λ)/λ = c, the solution sat-
isfies

∫ ∞
0 eλxw(x) dx < ∞ [which, in particular, implies that

∫ ∞
x w(y) dy =

o(e−λx)]. Moreover, if λ̃ > λ then supx eλ̃x
∫ ∞
x w(y) dy = ∞.

(c) When c = a the solution satisfies
∫ ∞
x w(y) dy = O(e−λ∗x) together with∫ x

0 eλ∗yw(y) dy = O(x). The last integral goes to ∞ as x → ∞.
(d) If c < a the equation (TW) has no solution.

We remark that, when c > a, the solution w given by the theorem can be ob-
tained by the following limiting procedure. Take 0 < λ < λ∗ as in the above state-
ment and let u0 be the density of any nonnegative random variable whose distri-
bution is absolutely continuous. Now let w0(x) = e−λxu0(x) and then for n ≥ 1
let

wn+1(x) = 1

c

∫ ∞
0

wn(y)R(x − y)dy for x ≥ 0.

Then the limit w∞(x) = limn→∞ wn(x) exists and defines an integrable continu-
ous function. The solution w is then given by w(x) = Kw∞(x) with K > 0 chosen
so that w integrates to 1. The fact that w has this representation follows from the
results of Spitzer (see Theorem 4.2).

The rest of the paper is devoted to proofs, with one section devoted to each one
of the proofs of Theorems 1, 2 and 4.

2. Proof of Theorem 1.

2.1. Outline of the proof. Most of the work in the proof of Theorem 1 will
correspond to showing that for each fixed t ≥ 0 the tail distribution of our process
at that time, defined as

FN(t, x) = νN
t ([x,∞)),

converges (almost surely and in L1) to a deterministic limit F(t, x) corresponding
to the tail distribution of a random variable and that, moreover, the limit F(t, x)

has a density f (t, x) [i.e., F(t, x) = ∫ ∞
x f (t, y) dy] which solves (FB).

To achieve this we will compare the process νN
t with two auxiliary measure-

valued processes ν
N,k
t and νk

t . As we will see below, the first of the two will be a
stochastic process, but the second one will be deterministic.

REMARK. To avoid confusion (and notational complications) we will use the
following convention: upper-case superscripts, such as in νN

t or FN(t, x), refer
to quantities associated with our stochastic process ηN

t , while lower-case super-
scripts, such as in νk

t or the function Fk(t, x) which we will introduce below, refer
to deterministic quantities associated with the deterministic process νk

t .
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We begin by defining a process η
N,k
t with values in

⋃
M≥N XM inductively as

follows. For each m = 0, . . . ,2k −1, run the process with no killing on the interval
[ m

2k ,
m+1

2k ) and then at time m+1
2k repeatedly delete the leftmost particle until there

are only N left. To make clear the distinction between the particles we erase in ηN
t

and those we erase in this modified process at dyadic times, we will refer to this
last procedure as shaving off the extra mass in η

N,k
t .

Having defined η
N,k
t we now define ν

N,k
t as the empirical measure associated

to it:

ν
N,k
t = 1

N

|ηN,k
t |∑

i=1

δ
η

N,k
t (i)

,

where |ηN,k
t | ≥ N is the number of particles in η

N,k
t . In everything that follows we

will consider the càdlàg version of η
N,k
t and ν

N,k
t , and we do the same for the other

processes and functions defined below.
The first step in the proof of Theorem 1 will be to study the convergence of the

tail distribution of ν
N,k
t , defined by

FN,k(t, x) = ν
N,k
t ([x,∞)).

We will see in Proposition 2.2 that FN,k(t, x) converges in probability to FN(t, x)

as k → ∞, and a key fact will be that this convergence is uniform in N .
The second auxiliary process, νk

t , will turn out to be the limit of ν
N,k
t as

N → ∞. We define it in terms of its density, which is constructed inductively
on each of the dyadic subintervals of [0,1]. We let f k(0, x) = f0(x). If we have
constructed f k up to time m

2k for some m ∈ {0, . . . ,2k − 1} then for t ∈ ( m
2k ,

m+1
2k )

we let f k(t, x) be the solution of

∂f k

∂t
(t, x) =

∫ ∞
−∞

f k(t, y)ρ(x − y)dy.(2.1)

Then at time m+1
2k we let Xk

m+1 be such that∫ ∞
Xk

m+1

f k

((
m + 1

2k

)
−, y

)
dy = 1(2.2)

and define

f k

(
m + 1

2k
, x

)
= f k

((
m + 1

2k

)
−, x

)
1x>Xk

m+1
.

In other words, on each dyadic subinterval we let f k evolve following (1.1) and
then at each dyadic time we shave off the extra mass in f k . The measure νk

t is
defined as the measure having f k(t, ·) as its density. We also denote by Fk be the
tail distribution of νk

t :

Fk(t, x) = νk
t ([x,∞)) =

∫ ∞
x

f k(y) dy.
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We will show in Lemma 2.5 that, for fixed t and x, Fk(t, x) is decreasing in k,
so we may define F(t, x) = limk→∞ Fk(t, x). We will show in Proposition 2.2 that
FN,k(t, x) converges in probability to Fk(t, x) as N → ∞ for fixed k. Since the
convergence of FN,k(t, x) to FN(t, x) as k → ∞ is uniform in N , we will be able
to interchange limits to obtain the convergence of FN(t, x) to F(t, x) as N → ∞.
The rest of the proof will consist of showing that F(t, x) has a density which solves
(FB) and then to extend the convergence of the tail distributions FN(t, x) for fixed
t and x to the convergence of the measure-valued process ν

N,k
t .

2.2. Convergence of the auxiliary processes. Our first result will allow us to
deduce the limiting behavior of FN,k(t, x) as N → ∞ inside each dyadic subin-
terval. Recall that in Section 1.1 we introduced the branching random walk ξN

t

defined like ηN
t but with no killing. Let ν̂N

t be the associated empirical measure.
Let M be the space of finite measures on R, endowed with the topology of weak
convergence, and let C([0,1], M) and D([0,1], M) be the spaces of continuous
and càdlàg functions from [0,1] to M endowed, respectively, with the uniform
and Skorohod topologies.

PROPOSITION 2.1. The empirical process ν̂N
t associated to the branching

random walk ξN
t converges in distribution in D([0,1], M) to a deterministic ν̂t

in C([0,1], M) which for each t ∈ [0,1] is absolutely continuous with respect to
the Lebesgue measure. If we denote the density of ν̂t by f̂ (t, x) then f̂ (t, x) is the
unique solution to the integro-differential equation

∂f̂

∂t
(t, x) =

∫ ∞
−∞

f̂ (t, y)ρ(x − y)dy(2.3)

on [0,1] with initial condition f̂ (0, x) = f0(x).

PROOF. By Theorem 5.3 of Fournier and Méléard (2004) we have that ν̂N
t

converges in distribution to a deterministic ν̂t in C([0,1], M) which is the unique
solution of the following system: for all bounded and measurable ϕ,∫ ∞

−∞
ϕ(x)̂νt (dx) =

∫ ∞
−∞

ϕ(x)̂ν0(dx)

(2.4)

+
∫ t

0

∫ ∞
−∞

∫ ∞
−∞

ϕ(y)ρ(x − y)dy ν̂s(dx) ds.

Moreover, by Proposition 5.4 of the same paper, ν̂t is absolutely continuous for all
t ∈ [0,1], and hence its density f̂ (t, x) must satisfy f̂ (0, x) = f0(x) and

d

dt

∫ ∞
−∞

ϕ(x)f̂ (t, x) dx =
∫ ∞
−∞

∫ ∞
−∞

ϕ(y)ρ(x − y)f̂ (t, x) dy dx.

Taking ϕ = 1[z,z+h], dividing by h, taking h → 0 and using the symmetry of ρ we
deduce that f̂ satisfies (FB1) at z and the result follows. �



BRUNET–DERRIDA PARTICLE SYSTEMS 2053

Recall that f0(x) > 0 for x ≥ 0. It is clear that if f̂ solves (2.3) then f̂ (t, x) > 0
for all t ∈ [0,1] and x ∈ R.

PROPOSITION 2.2. For every fixed k ≥ 1 and every t ∈ [0,1] and x ∈ R,
FN,k(t, x) converges in probability to Fk(t, x).

PROOF. Proposition 2.1 implies that ν
N,k
t ([x,∞)) converges in probability to

νk
t ([x,∞)) for all t ∈ [0, 1

2k ) and all x ∈ R. Using the partial order in M given
by μ � ν if and only if μ([x,∞)) ≤ ν([x,∞)) for all x ∈ R, it is clear that the
mappings t �→ νk

t and t �→ ν
N,k
t are increasing on [0, 1

2k ), and thus the limits

limt↑1/2k νk
t = νk− and limt↑1/2k ν

N,k
t = ν

N,k
− exist (for ν

N,k
t this statement holds

almost surely). On the interval [0, 1
2k ) the process νk

t is the same as the process ν̂t

defined in Proposition 2.1. On the other hand, by (2.3) we have∫ ∞
−∞

f̂ (t, x) dx = 1 +
∫ t

0

∫ ∞
−∞

f̂ (s, x) dx ds,

whence it is easy to see that ∫ ∞
−∞

f̂ (t, x) dx = et .(2.5)

Therefore for 0 ≤ s ≤ t ≤ 1
2k we have

(νk
t − νk

s )(R) = et − es.

Similarly, ν
N,k
t corresponds to the branching random walk ξN

t on [0, 1
2k ), and thus

using (5.4) of Fournier and Méléard (2004) we can see that E(νN.k
t (·)) equals ν̂t (·)

on this interval, so for 0 ≤ s ≤ t ≤ 1
2k we have

E
(
(ν

N,k
t − νN,k

s )(R)
) = et − es.

Using these two equalities together with the fact that νk− is absolutely continuous

it is easy to see that ν
N,k
− ([x,∞)) converges in probability to νk−([x,∞)) for all x.

Since x �→ νk−((x,∞)) is strictly decreasing at x = Xk
1, the location of the point

at which the mass of ν
N,k
t is shaved off at time 1

2k converges in probability to Xk
1.

The result for t = 1
2k follows from this, and induction gives the desired result. �

Next we turn to the convergence of FN,k(t, x) as k → ∞.

PROPOSITION 2.3. For every given t ∈ [0,1] and x ∈ R, FN,k(t, x) converges
in probability to FN(t, x) as k → ∞, uniformly in N .

The proof depends on the following lemma:
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LEMMA 2.4. We can couple η
N,k
t and ηN

t (starting with the same initial con-
figuration) in such a way that the following holds: for every N ≥ 1, k ≥ 1 and
t ∈ [0,1],

E(|ηN
t 	η

N,k
t |) ≤ N

e − 1

e2−k − 1
2−2k+1e2−k + N2−k+2,

where A	B = A \ B ∪ B \ A.

Before proving the lemma we need to give an explicit construction of the pro-
cess ηN

t . Consider an i.i.d. family (UN
i )i≥1 with uniform distribution on {1, . . . ,N}

and an i.i.d. family (Ri)i≥1 with distribution ρ and let (T N
i )i≥1 be the jump times

of a Poisson process with rate N . To construct ηN
t we proceed as follows: at each

time T N
i we branch ηN

T N
i

(UN
i ) using Ri for the displacement, erase the leftmost

particle, and then relabel the particles to keep the ordering. The reader can check
that the resulting process ηN

t has the desired distribution.

PROOF OF LEMMA 2.4. The coupling will be constructed inductively on each
dyadic subinterval of [0,1]. We start both processes with the same initial con-
figuration. The idea will be to use the same branching times and displacements
whenever possible. To do this we will decompose η

N,k
t in the following way (for

convenience we regard η
N,k
t and ηN

t here as sets)

η
N,k
t = G

N,k
t ∪ D

N,k
t ∪ B

N,k
t ,(2.6)

where the unions are disjoint and:

• G
N,k
t ⊆ ηN

t are “good particles,” that is, particles which are coupled, in the sense
that G

N,k
t = η

N,k
t ∩ ηN

t ;
• B

N,k
t are “bad particles,” that is, particles which are not coupled;

• D
N,k
t are “dangerous particles,” that is, particles which will become bad if not

erased at the next dyadic time.

The basic idea of our coupling is the following. Good particles, which are
present in both processes, evolve together using the same branching times and
locations. When a good particle branches, a particle is erased from ηN

t but not
from η

N,k
t . If the particle erased from ηN

t is not a good particle then the coupling
is not affected. Otherwise, if the erased particle is good, we relabel it as dangerous
in η

N,k
t . Observe that if this particle does not branch before the next dyadic time

then it will not affect the coupling since it will surely get erased (by definition it
is to the left of every good particle). When dangerous or bad particles give birth in
η

N,k
t we label their offspring as bad. Our goal will be to bound the number of bad

particles.
Now we define the coupling more precisely. The first step is to construct ηN

t

using the sequences UN
i , Ri and T N

i as described in the paragraph preceding this
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proof. Now we need to explain how to construct η
N,k
t and decompose it into good,

dangerous and bad particles. For the initial condition we choose G
N,k
0 = ηN

0 and

D
N,k
0 = B

N,k
0 = ∅.

We assume that we have constructed the coupling until time m
2k for some 0 ≤

m ≤ 2k − 1 and that the following holds:

G
N,k

m/2k = η
N,k

m/2k ∩ ηN
m/2k and D

N,k

m/2k = ∅.(2.7)

Observe that this condition holds trivially for m = 0. Observe also that ηN
m/2k \

G
N,k

m/2k and B
N,k

m/2k both have N − |GN,k

m/2k | particles, and thus we may identify par-

ticles in each set in a one-to-one fashion by, for example, going from left to right
in each set.

Next we define the coupling on the interval ( m
2k ,

m+1
2k ]. Let m

2k ≤ T N
Im

< T N
Im+1 <

· · · ≤ T N
Jm

≤ m+1
2k be the sequence of branching times for particles in ηN

t on this
time interval (there are almost surely a finite number Jm − Im + 1 of such times).
We remark that after each branching event we will still have each particle in ηN

t \
G

N,k
t identified with one particle in B

N,k
t (see the second and last bullet below).

For each Im ≤ i ≤ Jm we do the following:

• If the branching at time T N
i occurs at a particle which is in G

N,k

T N
i

, we add the

new particle to G
N,k

T N
i

.

• Otherwise, if the particle that is undergoing a branching in ηN
t at time T N

i is not
a good particle (and therefore it is not in η

N,k

T N
i

), we use the branching time and

displacement to branch the particle in B
N,k

m/2k which is identified with it, and we

identify this new bad particle with the new particle born in ηN
t at this branching

event.
• If the particle erased from ηN

T N
i

after the branching at time T N
i is good (i.e., it is

also in G
N,k

T N
i

), we relabel it as dangerous by moving it from G
N,k

T N
i

to D
N,k

T N
i

. This

dangerous particle in η
N,k
t will not have an associated particle in ηN

t , so we use
independent branching times and displacements for it and all its offspring, and
label all its offspring as bad.

• Otherwise, if the particle erased from ηN

T N
i

after the branching at time T N
i is not

in G
N,k

T N
i

then there is a particle in B
N,k

T N
i

identified with it; after the branching we

remove this identification and use independent branching times and displace-
ments for this bad particle and its offspring.

We remark that the offspring of dangerous and bad particles in η
N,k
t is always

labeled as bad and that whenever one of these particles has no associated particle
in ηN

t it uses independent branching times and displacements.
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The rules used to identify particles in ηN
t \ G

N,k
t with particles in B

N,k
t are not

particularly important, the main point is that every branching event in ηN
t corre-

sponds to a branching event in η
N,k
t (though not the other way around, as some

bad particles in η
N,k
t branch independently of ηN

t ).
At time m+1

2k we need to shave off the extra mass in η
N,k
t . Observe that, by our

construction, we may erase particles of each of the three types. After erasing we
relabel all remaining dangerous particles as bad by settting

G
N,k

(m+1)/2k = η
N,k

(m+1)/2k ∩ ηN
(m+1)/2k , B

N,k

(m+1)/2k = η
N,k

(m+1)/2k \ ηN
(m+1)/2k

and

DN
(m+1)/2k = ∅.

In particular we see that the condition (2.7) holds at time m+1
2k , allowing us to

continue our inductive coupling.
We claim that the total number of bad particles after shaving and relabeling is

bounded by the number of bad particles right before shaving:∣∣BN,k

(m+1)/2k

∣∣ ≤ ∣∣BN,k

(m+1)/2k−
∣∣.(2.8)

To see where the inequality comes from observe first that

B
N,k

(m+1)/2k ⊆ B
N,k

(m+1)/2k− ∪ D
N,k

(m+1)/2k−.

Now each particle in D
N,k

(m+1)/2k− is associated with a branching time T N
i at which

the number of particles in η
N,k

T N
i

was increased by one. Therefore to each dangerous

particle there corresponds some particle which will be erased when shaving; the
corresponding particle to be erased is possibly the dangerous particle itself (in
which case this particle will disappear after shaving so it will not be in B

N,k

(m+1)/2k

after relabeling), and otherwise it has to be a bad particle because all good particles
are to the right of any dangerous particle. In this way we continue the coupling until
time 1.

Fix a dyadic subinterval [ m
2k ,

m+1
2k ). We claim that on this time interval the pair

(|DN,k
t |, |BN,k

t |) is stochastically dominated by a process (dk
t , bk

t ) which evolves
as follows:

dk
t −→ dk

t + 1 at rate N,

bk
t −→ bk

t + 1 at rate dk
t + bk

t

with initial conditions dk
m/2k = 0 and bk

m/2k = |BN,k

m/2k |. In fact, bad particles in-
crease by one when either a dangerous or a bad particle branches (so the second
rate is actually the correct one), while dangerous particles are created as a con-
sequence of some (but generally not all) of the branchings in ηN

t , which occur at
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rate N . An elementary calculation then shows that, for h > 0,

E(dk
t+h − dk

t ) = Nh + o(h), E(bk
t+h − bk

t ) = E(dk
t + bk

t )h + o(h).

Then E(dk
t ) = N(t − m

2k ) and thus dividing by h and taking h → 0 we see that

E(bk
t ) must solve

dE(bk
t )

dt
= N

(
t − m

2k

)
+ E(bk

t )(2.9)

for t ∈ [ m
2k ,

m+1
2k ). The solution of this ODE satisfies

E(bk
t ) = (

E(bk
m/2k ) + N

)
et−m/2k − N

(
t − m

2k
+ 1

)
(2.10)

≤ E(bk
m/2k )e

2−k + 2−2kN,

where we have used the inequality ex − 1 − x ≤ x2 for x ∈ [0,1] and the fact
that t − m

2k ≤ 1
2k . Since bk

0 = 0 we deduce that E(bk
(1/2k)−) ≤ N2−2k . At time

1
2k we need to shave off the extra mass in η

N,k

(1/2k)− and this leaves us with

dk
1/2k = 0 and bk

1/2k ≤ bk
(1/2k)− by (2.8). Repeating this argument we get E(bk

2/2k ) ≤
E(bk

(2/2k)−) ≤ N [2−2ke2−k + 2−2k], and inductively we deduce that

E(bk
m/2k ) ≤ N

[
m−1∑
j=0

ej2−k

]
2−2k = N

1 − em2−k

1 − e2−k
2−2k ≤ N

e − 1

e2−k − 1
2−2k,(2.11)

where we used the fact that m ≤ 2k − 1. Therefore, for t ∈ [ m
2k ,

m+1
2k ) we have,

using (2.10),

E(bk
t ) ≤ N

e − 1

e2−k − 1
2−2ke2−k + N2−2k,

while, we recall, we also have E(dk
t ) = N(t − m

2k ) ≤ N2−k . Since |ηN
t 	η

N,k
t | ≤

2(dk
t + bk

t ), the result follows. �

PROOF OF PROPOSITION 2.3. Fix k > 0 for a moment and assume that t ∈
[ m

2k ,
m+1

2k ). Using the coupling introduced in Lemma 2.4 we have

E
(|FN,k(t, x) − FN(t, x)|) = E

(∣∣∣∣∣ 1

N

N∑
i=1

(
1
η

N,k
t (i)≥x

− 1ηN
t (i)≥x

)∣∣∣∣∣
)

≤ E

(
1

N

N∑
i=1

1
η

N,k
t (i)�=ηN

t (i)

)

≤ e − 1

e2−k − 1
2−2k+1e2−k + 2−k+2,
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so we deduce by Markov’s inequality that

P
(|FN,k(t, x) − FN(t, x)| > ε

) ≤ 1

ε

[
e − 1

e2−k − 1
2−2k+1e2−k + 2−k+2

]
−−−→
k→∞ 0

uniformly in N . �

LEMMA 2.5.

Fk(t, x) ≥ Fk+1(t, x) for all t ∈ [0,1], x ∈ R, k ≥ 1.

PROOF. Fix k ≥ 1 and x ∈ R. The result is trivial at t = 0. We will work
inductively on the intervals ( m

2k ,
m+1

2k ]. Take 0 ≤ m ≤ 2k − 1 and assume that

Fk

(
m

2k
, x

)
≥ Fk+1

(
m

2k
, x

)
.

Then writing H = Fk − Fk+1 we have for m
2k < t < m

2k + 1
2k+1 = 2m+1

2k+1 that

∂H

∂t
(t, x) =

∫ ∞
x

∫ ∞
−∞

[f k(t, u) − f k+1(t, u)]ρ(y − u)dudy

=
∫ ∞
−∞

∫ ∞
x

[f k(t, y − v) − f k+1(t, y − v)]ρ(v) dy dv(2.12)

=
∫ ∞
−∞

H(t, x − v)ρ(v) dv =
∫ ∞
−∞

H(t, z)ρ(x − z) dz,

so H satisfies (FB1) on this interval and thus, since H( m
2k , ·) ≥ 0, we get H(t, ·) ≥

0 for t ∈ ( m
2k ,

2m+1
2k+1 ). At time 2m+1

2k+1 the density f k+1 is shaved off, leaving

Fk(2m+1
2k+1 , x) ≥ Fk+1(2m+1

2k+1 , x). Repeating the above argument we get

Fk(t, x) ≥ Fk+1(t, x) for all t ∈
(

m

2k
,
m + 1

2k

)
.(2.13)

Now at time m+1
2k+1 both densities f k and f k+1 are shaved off, say at points xk and

xk+1, respectively. Then by (2.13), xk ≥ xk+1, and thus (2.13) holds at t = m+1
2k+1 as

well. �

Since Fk(t, x) is decreasing and positive, we can define

F(t, x) = lim
k→∞Fk(t, x).(2.14)

It is obvious that for each given t , F(t, ·) is nonincreasing and its range is [0,1].

PROPOSITION 2.6. For every t ∈ [0,1] and x ∈ R, FN(t, x) converges almost
surely and in L1 as N → ∞ to F(t, x).
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PROOF. First observe that, for fixed t ∈ [0,1] and x ∈ R and since FN(t, x) ≤
1, the sequence of random variables (FN(t, x))N>0 is uniformly integrable, so it
is enough to show that FN(t, x) → F(t, x) in probability.

Fix ε > 0. Use Proposition 2.2 to choose, for each k > 0, an Nk > 0 so that

P

(
|FN,k(t, x) − Fk(t, x)| > ε

2

)
<

1

k

for every N ≥ Nk and Nk ↑ ∞. Define kN as follows: kN = 1 for N < N1 and
kN = k for Nk ≤ N ≤ Nk+1. We have

P
(|FN,kN (t, x) − F(t, x)| > ε

)
≤ P

(
|FN,kN (t, x) − FkN (t, x)| > ε

2

)
+ P

(
|FkN (t, x) − F(t, x)| > ε

2

)
.

By the definition of kN , the first term on the right-hand side is less than 1/kN ,
while by (2.14) the second one is 0 when kN is large enough. We deduce that
FN,kN (t, x) converges in probability as N → ∞ to F(t, x).

To finish the proof write

P
(|FN(t, x) − F(t, x)| > ε

)
≤ P

(
|FN(t, x) − FN,kN (t, x)| > ε

2

)
+ P

(
|FN,kN (t, x) − F(t, x)| > ε

2

)
.

We already know that the second term on the right-hand side goes to 0, while
the first one goes to 0 thanks to Proposition 2.3 (here we use the fact that the
convergence is uniform in N ). �

Recall the definition in (2.2) of the shaving points Xk
m and let Xk : [0,1] −→ R

be the corresponding linear interpolation, that is,

Xk(t) = Xk
m + Xk

m+1 − Xk
m

2k

(
t − m

2k

)
for

m

2k
< t ≤ m + 1

2k
.

LEMMA 2.7. Xk(t) converges uniformly in [0,1] to a continuous function
γ (t).

PROOF. We will start by showing that the sequence of functions (Xk)k>0 is
relatively compact. By the Arzelà–Ascoli theorem, we only need to show that our
sequence is uniformly bounded and equicontinuous.

Observe that, for each given k, Xk(t) is increasing. Indeed, it is enough to
show that Xk

m ≤ Xk
m+1 for 0 ≤ m < 2k , and this follows from the fact that,
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if f k( m
2k , ·) ≥ 0, then (FB1) implies that f k(t, ·) ≥ f k( m

2k , ·) for m
2k < t < m+1

2k .
Therefore

sup
k>0

sup
t∈[0,1]

Xk(t) = sup
k>0

Xk(1).

To show that this last supremum is finite, observe that f̂ (t, x) (which was defined
in Proposition 2.1) satisfies f̂ (t, x) ≥ f k(t, x) for all k. On the other hand we
know by (2.5) that

∫ ∞
−∞ f̂ (1, x) dx = e. Therefore if we let M > 0 be such that∫ ∞

M f̂ (1, x) dx < 1 we deduce that Xk(1) ≤ M for all k and the uniform bounded-
ness follows.

For the equicontinuity we need to show that given any ε > 0 there is a δ > 0
such that

sup
k>0

|Xk(t) − Xk(s)| < ε,

whenever |t − s| < δ. Assume that s < t , fix k for a moment and let l
2k and m

2k

be the dyadic numbers immediately to the right of s and t , respectively (here we
assume k is large enough so that m ∨ l < 2k). Then

|Xk(t) − Xk(s)| ≤
∣∣∣∣Xk(t) − Xk

(
m

2k

)∣∣∣∣
+

∣∣∣∣Xk

(
m

2k

)
− Xk

(
l

2k

)∣∣∣∣ + ∣∣∣∣Xk

(
l

2k

)
− Xk(s)

∣∣∣∣
(2.15)

≤
∣∣∣∣Xk

(
m + 1

2k

)
− Xk

(
m

2k

)∣∣∣∣ + ∣∣∣∣Xk

(
m

2k

)
− Xk

(
l

2k

)∣∣∣∣
+

∣∣∣∣Xk

(
l + 1

2k

)
− Xk

(
l

2k

)∣∣∣∣.
Now for any p,q ∈ {0, . . . ,2k} with q ≥ p we have∫ ∞

Xk(p/2k)+ε
f k

(
q

2k
, y

)
dy

=
∫ ∞
Xk(p/2k)

f k

(
p

2k
, y

)
dy +

∫ ∞
Xk(p/2k)

[
f k

(
q

2k
, y

)
− f k

(
p

2k
, y

)]
dy(2.16)

−
∫ Xk(p/2k)+ε

Xk(p/2k)
f k

(
q

2k
, y

)
dy.

The first term on the right-hand side equals 1. The second term corresponds to the
amount of mass accumulated by f k to the right of Xk(

p

2k ) on the time interval
(

p

2k ,
q

2k ]. Using (FB1) it is not hard to see that this is bounded by the same quantity

with f k replaced by f̂ , so using (2.5) we get the bound∫ ∞
Xk(p/2k)

[
f̂

(
q

2k
, y

)
− f̂

(
p

2k
, y

)]
dy ≤ eq/2k − ep/2k ≤ e

q − p

2k
.
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On the other hand, using the fact that Xk(t) is increasing, it is clear that
f k(

q

2k , x) ≥ f k(0, x) = f0(x) for x ≥ Xk(
q

2k ). Therefore the last term on (2.16)
is greater than or equal to ∫ Xk(p/2k)+ε

Xk(p/2k)
f0(y) dy.

Now Xk(
p

2k ) is nonnegative and bounded by M by the preceding arguments, so the
last integral is at least

L = inf
x∈[0,M]

∫ x+ε

x
f0(y) dy > 0,

where we used the fact that f0 is strictly positive on the positive half-line. Putting
the last two bounds together with (2.16) we get∫ ∞

Xk(p/2k)+ε
f k

(
q

2k
, y

)
dy ≤ 1 + e

q − p

2k
− L.

Now |t − s| < δ implies that m−l
2k ≤ δ + 1

2k , and thus we deduce that∫ ∞
Xk(p/2k)+ε

f k

(
q

2k
, y

)
dy < 1

for small enough δ and large enough k and for (p, q) ∈ {(l, l + 1), (m,m +
1), (l,m)}. The preceding means that if δ is small enough and K is large enough
then |Xk(

q

2k ) − Xk(
p

2k )| < ε for k ≥ K and for these three pairs (p, q). Using
(2.15) we obtain

sup
k≥K

|Xk(t) − Xk(s)| < ε,

if |t − s| < δ and δ is small enough. Since the functions Xk are all uniformly con-
tinuous (on [0,1]), it is clear that, by choosing δ even smaller if necessary, the same
will hold also for k = 1, . . . ,K − 1. This finishes the proof of the equicontinuity.

The last thing we need to show is that our sequence has a unique limit point.
Consider two convergent subsequences Xnk → γ1 and Xmk → γ2. Let t = i

2l be
any dyadic number in [0,1] and assume that k is large enough so that nk ∧mk ≥ l.
Recall from the proof of Lemma 2.5 that Xk(t) is nonincreasing in k for each fixed
t ∈ [0,1]. Since Fnk(t, x) = 1 for all x ≤ Xnk(t) we deduce that

Fnk(t, x) = 1 for all x ≤ γ1(t).(2.17)

Now given any k there is a k′ such that nk′ ≥ mk , so by Lemma 2.5 we get

1 = Fnk′ (t, x) ≤ Fmk(t, x) ≤ 1 for all x ≤ γ1(t).

This means that Xmk(t) ≥ γ1(t) for all large enough k, and taking k → ∞ we
deduce that γ2(t) ≥ γ1(t). By symmetry we get γ1(t) ≥ γ2(t). This gives γ1(t) =
γ2(t) for all dyadic t ∈ [0,1], and now the uniqueness follows from the continuity
of γ1 and γ2. �
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2.3. Properties of F and proof of the theorem. To finish the proof of the The-
orem 1 we need to show that F has a density which satisfies (FB) and the rest of
the requirements of the theorem and then extend the convergence to the measure-
valued process νN

t . The first step in doing that will be to derive an equation satisfied
by F .

Suppose that (g(t, x), γ (t)) solves (FB) and let G(t, x) = ∫ ∞
x g(t, y) dy.

Then it is not difficult to check, repeating the arguments leading to (2.12), that
(G(t, x), γ (t)) must solve the following free boundary problem (FB′):

∂G

∂t
(t, x) =

∫ ∞
−∞

G(t, y)ρ(x − y)dy ∀x > γ (t),(FB1′)

G(t, x) = 1 ∀x ≤ γ (t)(FB2′)

with initial condition G(0, x) = ∫ ∞
x f0(y) dy. Moreover, if (G(t, x), γ (t)) solves

(FB′) and G(t, ·) is absolutely continuous for all t , then (g(t, x), γ (t)), where
g(t, ·) is the density of G(t, ·), must solve (FB).

PROPOSITION 2.8. F(t, x) is differentiable in t for all x > γ (t) and it satis-
fies (FB′).

PROOF. We already proved [see (2.17)] that (F (t, x), γ (t)) satisfies (FB2′).
For x > γ (t) and by the definition of Fk(t, x) [which implies that Fk(t, x) is
differentiable inside each dyadic subinterval] we may write

Fk(t, x) = Fk(0, x) +
nk(t)∑
m=1

[
Fk

(
m

2k
, x

)
− Fk

(
m − 1

2k
, x

)]
+ [Fk(t, x) − Fk(nk(t), x)],

= Fk(0, x) +
nk(t)∑
m=1

[∫
((m−1)/2k,m/2k)

∂F k

∂s
(s, x) ds

]

+
∫
(nk(t)/2k,t)

∂F k

∂s
(s, x) ds

+
nk(t)∑
m=1

[
Fk

(
m

2k
, x

)
− Fk

((
m

2k

)
−, x

)]
+ [Fk(t, x) − Fk(t−, x)],

where nk(t) = �2kt�
2k . Recalling that Xk(t) ↓ γ (t), we can take k large enough so

that γ (t) ≤ Xk(t) < x. Since Xk(s) is increasing in s we deduce that Xk( m
2k ) < x
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for m = 1, . . . , nk(t), and therefore all the terms in the last line above are 0. On the
other hand, observe that Fk must solve (FB1′) on each dyadic subinterval, which
can be checked repeating again the calculations in (2.12). Therefore,

Fk(t, x) = Fk(0, x) +
nk(t)∑
m=1

∫
((m−1)/2k,m/2k)

∫ ∞
−∞

Fk(s, y)ρ(x − y)dy ds

+
∫
(nk(t)/2k,t)

∫ ∞
−∞

Fk(s, y)ρ(x − y)dy ds

= Fk(0, x) +
∫ t

0

∫ ∞
−∞

F(s, y)ρ(x − y)dy ds(2.18)

+
nk(t)∑
m=1

∫
((m−1)/2k,m/2k)

∫ ∞
−∞

[Fk(s, y) − F(s, y)]ρ(x − y)dy ds

+
∫
((nk(t))/2k,t)

∫ ∞
−∞

[Fk(s, y) − F(s, y)]ρ(x − y)dy ds.

Now for fixed y, Fk(·, y) is a decreasing sequence converging to F(·, y), so Dini’s
theorem implies that

	k(y) = sup
t∈[0,1]

|Fk(t, y) − F(t, y)|−−−→
k→∞ 0.

The sum of the terms on the last two lines of (2.18) is bounded by

nk(t)∑
m=1

∫
((m−1)/2k,m/2k)

∫ ∞
−∞

	k(y)ρ(x − y)dy ds

+
∫
(nk(t)/2k,t)

∫ ∞
−∞

	k(y)ρ(x − y)dy ds

≤ t

∫ ∞
−∞

	k(y)ρ(x − y)dy,

and this last integral goes to 0 as k → ∞ by the dominated convergence theorem,
because using (2.5) we get 	k(y) ≤ supt∈[0,1] Fk(t, y) ≤ ∫ ∞

y f̂ (1, z) dz ≤ e. Using
this and taking k → ∞ in (2.18) we get

F(t, x) = F(0, x) +
∫ t

0

∫ ∞
−∞

F(s, y)ρ(x − y)dy ds.(2.19)

To finish the proof it is enough to show that the mapping s �→ ∫ ∞
−∞ F(s, y)ρ(x−

y)dy is continuous, since if that is the case then we can differentiate (2.19) and
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deduce (FB1′). This actually follows easily from (2.19):∣∣∣∣∫ ∞
−∞

F(s + h,y)ρ(x − y)dy −
∫ ∞
−∞

F(s, y)ρ(x − y)dy

∣∣∣∣
=

∫ ∞
−∞

∫ s+h

s

∫ ∞
−∞

F(r, z)ρ(y − z)ρ(x − y)dz dr dy(2.20)

≤
∫ s+h

s

∫ ∞
−∞

∫ ∞
−∞

ρ(y − z)ρ(x − y)dz dy dr = h. �

Let νt be the probability measure defined by νt ([x,∞)) = F(t, x). Since F

satisfies (FB′) we have that for every b > a > γ (t),

d

dt
νt ([a, b]) =

∫ ∞
−∞

νt ([a − y, b − y])ρ(y) dy

and thus by standard measure theory arguments we deduce that for every bounded
and measurable ϕ with support contained in (γ (t),∞),

d

dt

∫ ∞
−∞

ϕ(y)νt (dy) =
∫ ∞
−∞

∫ ∞
−∞

ϕ(x + y)ρ(y)νt (dx) dy(2.21)

[cf. (2.4)]. Now if A ⊆ (γ (t),∞) has zero Lebesgue measure and the support of
ϕ is contained in A, then the right-hand side above is 0 and we deduce that νt (A)

is constant. Since ν0(A) = ∫
A f0(x) dx = 0, we have proved that νt is absolutely

continuous with respect to the Lebesgue measure. We will denote its density by
f (t, ·), and we obviously have F(t, x) = ∫ ∞

x f (t, y) dy.
At this point we are ready to finish the proof of Theorem 1 by showing that

F satisfies the desired properties and then using the convergence of the tail dis-
tributions FN(t, x) to obtain the convergence in distribution of the process νN

t in
D([0,1], P).

PROOF OF THEOREM 1. By Proposition 2.6 we know that FN(t, x) →
F(t, x) almost surely as N → ∞ and that F can be written in terms of the in-
tegral of f . Now, by (2.19),∫ ∞

x
f (t, y) dy =

∫ ∞
x

f0(y) dy +
∫ t

0

∫ ∞
−∞

∫ ∞
y

f (s, z)ρ(x − y)dz dy ds

for x > γ (t), so for any h > 0 we have

1

h

[∫ ∞
x+h

f (t, y) dy −
∫ ∞
x

f (t, y) dy

]
(2.22)

= −1

h

∫ x+h

x
f0(y) dy −

∫ t

0

∫ ∞
−∞

1

h

∫ x+h−u

x−u
f (s, z) dzρ(u)duds.

The first term on the right-hand side goes to f0(x) as h → 0 [recall that f0(x)

is continuous for x > 0]. The second term goes to
∫ t

0
∫ ∞
−∞ f (s, x − u)ρ(u)duds
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by the dominated convergence theorem. On the other hand, the left-hand side of
(2.22) goes to ∂F

∂x
(t, x), which equals −f (t, x) for almost every x > γ (t). We

deduce that

f (t, x) = f0(x) +
∫ t

0

∫ ∞
−∞

f (s, y)ρ(x − y)dy ds(2.23)

for almost every x.
Now if xn → x, then by (2.23)

|f (t, xn) − f (t, x)| ≤ |f0(xn) − f0(x)|
+

∫ t

0

∫ ∞
−∞

f (s, y)|ρ(xn − y) − ρ(x − y)|dy ds.

The first term on the right-hand side goes to 0 as n → ∞ because f0 is contin-
uous, while the second term goes to 0 by the continuity and boundedness of ρ and
the dominated convergence theorem. We deduce that f (t, x) is continuous in x and
thus, in particular, (2.23) holds for every x. Hence (f (t, x), γ (t)) satisfies (FB).
Moreover, since the above convergence can be achieved uniformly for t in com-
pact intervals, it is easy to see that, if f (t, x) is continuous in t for x �= γ (t) (as we
will show next), then it is actually jointly continuous in t and x outside the curve
{(t, γ (t)) : t ≥ 0}. The fact that f (t, x) is differentiable (and thus continuous) in
t for x �= γ (t) follows easily from (2.23) by repeating the arguments in (2.20). γ

is strictly increasing because, according to the evolution defined by (FB), f (t, x)

always increases when x > γ (t) [alternatively, differentiate (FB2) with respect to
t to find that γ ′(t) > 0]. We also have that f (t, x) > 0 for x > γ (t) thanks to the
facts that f0(x) > 0 for x > 0 and that γ is increasing.

The only thing left to show before turning to the proof of the convergence in
distribution of νN

t in D([0,1], P) is that (f (t, x), γ (t)) is the unique solution of
(FB). To do this, it is enough to show that if (h(t, x), σ (t)) is any given solution
and H(t, x) = ∫ ∞

x h(t, y) dy then H(t, x) = F(t, x). Indeed, if that is the case then
the above arguments imply that h(t, x) is jointly continuous in t and x outside the
curve {(t, γ (t)) : t ≥ 0}, and thus h(t, x) = f (t, x), while (FB2) and (FB3) imply
that σ(t) = γ (t).

The idea of the proof will be to compare h(t, x) and f k(t, x) by adapting the
coupling introduced in the proof of Lemma 2.4 to the deterministic system, so we
will sketch the main ideas and leave the details to the reader. We will write

f k(t, x) = gk(t, x) + dk(t, x) + bk(t, x),

which is to be interpreted in a manner analogous to (2.6). We construct these
three functions inductively on each dyadic subinterval of [0,1]. We start with
gk(0, x) = f0(x) and dk(0, x) = bk(0, x) = 0 for all x. Next, for t ∈ (0, 1

2k ) we let
the three functions evolve according to the following system of integro-differential
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equations:

∂gk

∂t
(t, x) = 1x>σ(t)

∫ ∞
−∞

gk(t, y)ρ(x − y)dy,

gk(t, x) = 0 for x ≤ σ(t),
(2.24)

∂dk

∂t
(t, x) = 1x≤σ(t)

∫ ∞
−∞

gk(t, y)ρ(x − y)dy,

∂bk

∂t
(t, x) =

∫ ∞
−∞

[dk(t, y) + bk(t, y)]ρ(x − y)dy.

In words, the “good mass” gk(t, x) is constrained to be to the right of σ(t) and
evolves by the analog of branching (the convolution term on the right-hand side of
the first equation), which is also constrained to the half-line (σ (t),∞); the “dan-
gerous mass” dk(t, x) evolves by acquiring the mass due to the branching of the
good mass to the left of σ(t); and the “bad mass” bk(t, x) arises from acquiring
the mass due to the branching of both the dangerous mass and the bad mass.

Adding the first, third, and fourth equations above we see clearly that f k(t, x)

satisfies (2.1) on this interval as required. At time 1
2k we need to shave off the extra

mass in f k . Observe that gk(( 1
2k )−, x) = h(( 1

2k )−, x) for all x, so Xk
1 ≥ σ( 1

2k ).

Thus all the mass to the left of σ( 1
2k ) needs to be erased, so we put dk( 1

2k , x) = 0

for all x. The rest of the mass to be erased from f k will come from both gk and bk .
This leaves us with

gk

(
1

2k
, x

)
≤ h

(
1

2k
, x

)
, dk

(
1

2k
, x

)
= 0 and bk

(
1

2k
, x

)
≥ 0.

We continue the construction inductively. Assume that the above holds at time
m
2k for some 1 ≤ m < 2k . On the interval ( m

2k ,
m+1

2k ) we let gk , dk and bk evolve

according to (2.24). At time m+1
2k we need to shave off the extra mass in f k , and

as in the proof of Lemma 2.4 it is not hard to see that after doing that we may
rebalance dk and bk in such a way that dk(m+1

2k , x) = 0 for all x and the total

mass of bk(m+1
2k , x) is at most the total mass of bk((m+1

2k )−, x). Observe that this

construction preserves the inequality gk(t, x) ≤ h(t, x) thanks to the observation
following the proof of Proposition 2.1.

We continue in a similar way to the proof of Lemma 2.4. Fix a dyadic interval
[ m

2k ,
m+1

2k ) and observe that, for t on this interval, if we let

dk
t =

∫ ∞
−∞

dk(t, x) dx and bt =
∫ ∞
−∞

bk(t, x) dx

be the total dangerous and bad masses, respectively, then these quantities satisfy
the differential inequalities d

dt
dk

t ≤ 1 and d
dt

bt ≤ dk
t + bt , whence we deduce that
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bt satisfies

d

dt
bt ≤ t − m

2k
+ bt .

Thus the same argument we used to obtain (2.11) gives

sup
m=0,...,2k

bk
m/2k = e − 1

e2−k − 1
2−2k −−−→

k→∞ 0.

Now let t = l
2k be any dyadic number in [0,1] and assume that k ≥ l. Using the

fact that dk(t, x) = 0 for all x ∈ R we can write

0 =
∫ ∞
x

(
h(t, y) − f k(t, y)

)
dy

(2.25)
=

∫ ∞
x

(
h(t, y) − gk(t, y)

)
dy −

∫ ∞
x

bk(t, y) dy

so
∫ ∞
x (h(t, y) − gk(t, y)) dy ≤ bk

t → 0. Thus, since h(t, y) ≥ gk(t, y), we deduce
that

∫ ∞
x gk(t, y) dy → ∫ ∞

x h(t, y) dy as k → ∞ uniformly in x, which in turn im-
plies by (2.25) that

lim
k→∞Fk(t, x) = lim

k→∞

∫ ∞
x

f k(t, y) dy =
∫ ∞
x

h(t, y) dy = H(t, x)

uniformly in x and for every dyadic number t ∈ [0,1]. Since (H(t, x), σ (t)) solves
(FB′), H is continuous in t and we deduce that H(t, x) = F(t, x) for all t ∈ [0,1].

To show that the sequence of processes νN
t converges in distribution in

D([0,1], P) to the deterministic process νt in this space defined by having its
densities evolve according to (FB), it is enough to prove that this sequence is tight.
In fact, if ν

Nk
t is any convergent subsequence, then its limit νt is completely defined

by its tail distribution at each time t , which we know must be F(t, ·). To show that
νN
t is tight it is enough, by Theorem 2.1 of Roelly-Coppoletta (1986), to show that

for any continuous and bounded function ϕ on R the sequence of real-valued pro-
cesses 〈νN

t , ϕ〉 = ∫ ∞
−∞ ϕ(x)νN

t (dx) is tight in D([0, T ],R). Fix one such function
ϕ. By Aldous’ criterion [which we take from Theorem 2.2.2 in Joffe and Métivier
(1986) and the corollary that preceeds it in page 34], we need to prove that the
following two conditions hold:

(i) For every rational t ∈ [0, T ] and every ε > 0, there is an L > 0 such that

sup
N>0

P(|〈νN
t , ϕ〉| > L) ≤ ε.

(ii) If TN
T is the collection of stopping times with respect to the natural filtration

associated to 〈νN
t , ϕ〉 that are almost surely bounded by T , then for every ε > 0

lim
r→0

lim sup
N→∞

sup
s<r

τ∈TN
T

P
(∣∣〈νN

(τ+s)∧T , ϕ
〉 − 〈νN

τ ,ϕ〉∣∣ > ε
) = 0.
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The first condition holds trivially in our case by taking L > ‖ϕ‖∞. To get the
second one fix N > 0, ε > 0, 0 < s < r and τ ∈ TN

T and let K be the number of
branchings in ηN

t on the interval [τ, (τ + s) ∧ T ]. Observing that∣∣〈νN
(τ+s)∧T , ϕ

〉 − 〈νN
τ ,ϕ〉∣∣ ≤ 2‖ϕ‖∞

N
K

and E(K) ≤ Ns < Nr , we deduce by Markov’s inequality that

P
(∣∣〈νN

(τ+s)∧T , ϕ
〉 − 〈νN

τ ,ϕ〉∣∣ > ε
) ≤ P

(
2‖ϕ‖∞

N
K > ε

)
≤ 2‖ϕ‖∞E(K)

εN
<

2‖ϕ‖∞r

ε

and (ii) follows. �

3. Proof of the results for the finite system. Now we turn to the properties
of the finite system. Recall the explicit construction of ηN

t we gave before the
proof of Lemma 2.4: given an i.i.d. family (UN

i )i≥1 with uniform distribution on
{1, . . . ,N}, an i.i.d. family (Ri)i≥1 with distribution ρ and the jump times (T N

i )i≥1

of a Poisson process with rate N , we construct ηN
t by letting ηN

T N
i

(UN
i ) branch at

time T N
i , using Ri for the displacement, erasing the leftmost particle, and then

relabeling the particles to keep the ordering.
This construction allows us to give a monotone coupling for two copies of the

process. As in the proof of Proposition 2.2, for μ,ν ∈ M we will say that μ � ν

whenever μ([x,∞)) ≤ ν([x,∞)) for all x ∈ R. Observe that if μ = ∑N1
i=1 δxi

with

x1 ≥ · · · ≥ xN1 and ν = ∑N2
i=1 δyi

with y1 ≥ · · · ≥ yN2 then μ � ν if and only if

N1 ≤ N2 and xi ≤ yi for i = 1, . . . ,N1. It is easy to check that if η
N1
t and ξ

N2
t are

two copies of our process (note that we allow them to have different total number
of particles) with η

N1
0 � ξ

N2
0 (i.e., in the sense that

∑N1
i=1 δ

η
N1
0 (i)

� ∑N2
i=1 δ

ξ
N2
0 (i)

),

then if we use the same branching times and displacements and the same uniform
variables for the particles in η

N1
t and the leftmost N1 particles in η

N2
t , then we have

η
N1
t � ξ

N2
t for all t ≥ 0.

For most of the proof of Theorem 2 it will more convenient to work with the
discrete time version of our process ηN

n which is defined as follows: at each time
step, choose one particle uniformly at random, and then branch that particle and
remove the leftmost particle among the N + 1. The variables UN

i and Ri can be
used to decide which particle to branch and where to send its offspring at each time
step.

PROOF OF THEOREM 2(a). We will first prove that each of the two limits
exists with probability 1 and in L1 and that the limits are nonrandom. We will do
this for the discrete time process and leave to the reader the (easy) extension to the
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continuous time case. We borrow the proof from that of Proposition 2 in Bérard
and Gouéré (2010). Since it is simple we include it for convenience. We observe
that, as in the cited proof, by translation invariance and the monotonicity property
of the coupling discussed above, it is enough to prove the result when all particles
start at the origin.

The result is a consequence of the subadditive ergodic theorem. To see why,
suppose we run the process up to time k, restart it with all N particles at maxηN

k ,
and then run it for an extra l units of time. Then the resulting configuration will
dominate the configuration that we would get by running the process for time
k + l. To apply the subadditive ergodic theorem we will need to make this precise
by introducing an appropriate coupling.

Consider the variables UN
i and Ri used to construct ηN

n . For each k ≥ 0 let
(ηN

k,n)n≥0 be a copy of our process, started at η0, constructed as follows: if ηN
k,n is

given then we let ηN
k,n+1 be specified by adding a particle at ηN

k,n(U
N
n+k) + Rn+k

and then removing the leftmost particle. That is, the index n in ηN
k,n corresponds

to time while the index k indicates that the kth copy of the process (ηN
k,n)n≥0 uses

the random the variables UN
i and Ri starting from the kth one. With this definition

and in view of the preceding paragraph it is not difficult to see that for any k, l ≥ 0,

maxηN
0,k+l ≤ maxηN

0,k + maxηN
k,l.

Moreover, for any given d ≥ 1 the family (ηN
dm,d)m≥1 is i.i.d., because to compute

ηN
dm,d we only need to use the variables UN

i and Ri for i = dm, . . . , dm + d − 1.
Also observe that the distribution of (ηN

k,n)n≥0 does not depend on k. Now for
0 ≤ k ≤ n define ξN

k,n = ηN
k,n−k . Then using the above facts we see that

max ξN
0,k+l ≤ max ξN

0,k + max ξN
k,k+l ,

the family (max ξN
dm,d(m+1))m≥1 is i.i.d. for any d ≥ 1 and the distribution of the se-

quence (max ξN
k,n+k)n≥0 does not depend on k. It is not hard to check that max ξN

k,n

satisfies the rest of the hypotheses of the subadditive ergodic theorem [see The-
orem 6.6.1 in Durrett (2004)] and thus limn→∞ max ξN

0,n/n exists almost surely

and in L1, and moreover the limit is nonrandom. Since (ξN
0,n)n≥0 has the same

distribution as (ηN
n )n≥0, the same holds for limn→∞ maxηN

n /n.
The above proof can be straightforwardly adapted to obtain the existence of the

limit for minηN
t /t . To show that the two limits are equal it is enough to prove that

(maxηN
t − minηN

t )/t → 0 in probability as t → ∞. Observe that if we follow the
genealogy of the particle at maxηN

t back in time and go back in time N generations
then we will necessarily reach a particle that is not in ηN

t (at time t), and that is
thus to the left of minηN

t . If we call Xt the position of this particle and let Nt be
the number of branchings in the system up to time t , then clearly maxηN

t − Xt ≤
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i=Nt−N |Ri |. Thus for any ε > 0 we have that

P

(∣∣∣∣maxηN
t − minηN

t

t

∣∣∣∣ > ε

)
≤ P

(|Ri | >
√

t for some Nt − N ≤ i ≤ Nt

) + 1N
√

t/t>ε

= 1 − P
(|R1| ≤

√
t
)N + 1N/

√
t>ε −−−→

t→∞ 0.

The monotone coupling introduced above allows to deduce that aN is nonde-
creasing. On the other hand, in the case N = 1 we have that η1

t (1) is simply a
random walk jumping at rate 1 whose jump distribution is that of R1 ∨ 0. There-
fore E(η1

t (1)) = bt with b = ∫ ∞
0 xρ(x) dx > 0, and thus aN ≥ a1 = b > 0 for all

N ≥ 1. �

To prove parts (b) and (c) of Theorem 2 we will work with the discrete time
version of the shifted process: 	N

n = (	N
n (1), . . . ,	N

n (N)) with

	N
n (j) = ηN

n (j) − ηN
n (N).

PROPOSITION 3.1. 	N
n is a positive recurrent Harris chain.

PROOF. Following Athreya and Ney (1978), in order to show that 	N
n is Harris

recurrent we need to show that there is a set A ⊆ XN such that:

(i) P
ξ (τA < ∞) = 1 for all ξ ∈ XN , where τA = inf{n ≥ 0 :	N

n ∈ A}.
(ii) There exists a probability measure q on A, a λ > 0 and a k ∈ N so that

P
ξ (	N

k ∈ B) ≥ λq(B) for all ξ ∈ A and all B ⊆ A.

To achieve this, choose some L > 0 so that δ = ρ((0,L)) > 0 and let

A = {ξ ∈ XN : ξ(i) − ξ(i + 1) ∈ (0,L) for i = 1, . . . ,N − 1 and ξ(N) = 0}.
Then for any initial condition 	N

0 ∈ XN we can get to A in N − 1 steps via the
following path: at time 1 we choose to branch the rightmost particle [the one at
	N

0 (1), which happens with probability N−1] and send the newborn particle to
a location x1 ∈ (	N

0 (1),	N
0 (1) + L) (which happens with probability at least δ).

Next we branch the particle at x1 and send the newborn particle to a location x2 ∈
(x1, x1 + L) (which happens with probability at least δ/N ). If we continue this for
N − 1 steps we will end up with a configuration in A, and thus

P
ξ (	N

N−1 ∈ A) ≥
(

δ

N

)N−1

.(3.1)

The bound is independent of the initial condition ξ , so by the Borel–Cantelli
lemma it follows that (i) holds. Moreover, if B ⊆ A is of the form B = {ξ ∈
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XN : ξ(i) − ξ(i + 1) ∈ Bi ⊆ (0,L) for i = 1, . . . ,N − 1 and ξ(N) = 0}, then the
preceding argument implies that

P
ξ (	N

N−1 ∈ B) ≥ ρ(B1) · · ·ρ(BN−1)

NN−1 ,

so by taking λ = N−N+1 and q to be the normalized Lebesgue measure on the first
N − 1 coordinates of the configurations in A, we deduce that (ii) also holds.

To check that 	N
n is actually positive recurrent it is enough to check that

supξ∈XN
E

ξ (τA) < ∞. This follows from (3.1) and the strong Markov property
by writing

E
ξ (τA) = ∑

n≥1

P
ξ (τA ≥ n) ≤ N − 1 + ∑

i≥1

(i+1)N−1∑
n=iN

P
ξ (τA ≥ n)

≤ N − 1 + (N − 1)
∑
i≥1

[
1 −

(
δ

N

)N−1]i

= (N − 1)

(
N

δ

)N−1

< ∞

for any ξ ∈ XN . �

PROOF OF THEOREM 2(b). The result now follows from Proposition 3.1. The
fact that 	N

n is positive recurrent implies that the invariant measure whose exis-
tence is assured by the Harris recurrence is finite. The absolute continuity of μN

is a direct consequence of Theorem 2(c), which we prove below, together with
the fact that if the initial condition for 	N

t is absolutely continuous, then so is the
distribution of the process at all times. �

PROOF OF THEOREM 2(c). Let A ⊆ XN and k = N − 1 be the objects which
we found satisfy (i) and (ii) in the proof of Proposition 3.1. It is enough to prove
the result along the k subsequences of the form (	N

km+j )m≥0 with 0 ≤ j < k.
Moreover, using the Markov property at time j we see that it is enough to prove
the result along the subsequence (	N

km)m≥0, which is an aperiodic recurrent Harris
chain. The result for this subsequence follows from Theorem 4.1(ii) in Athreya and
Ney (1978) as long as we have that supξ P

ξ (τA > t) < 1 for some t > 0, where τA

is the hitting time of A. This follows easily from the estimate in (3.1) (which is
uniform in ξ ). �

4. Proof of Theorem 4. Recall that in this part we are assuming that ρ (and
hence its tail distribution R) has exponential decay and, consequently, that the mo-
ment generating function of ρ, φ(θ) = ∫ ∞

−∞ eθxρ(x) dx, is finite for θ ∈ (−�,�)

[see (1.2) and (1.7)]. Before getting started with the proof of Theorem 4 we need
to prove the claim we implicitly made in (1.6).
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LEMMA 4.1.

min
λ∈(0,�)

φ(λ)

λ
= a,

where a is the asymptotic speed defined in Theorem 3. Moreover, letting λ∗ ∈
(0,�) be the number such that φ(λ∗)/λ∗ = a, we have that φ′(λ∗) = a, φ(λ)/λ is
strictly convex on (0,�) and the sign of φ′(λ) − φ(λ)/λ equals that of λ − λ∗.

PROOF. Define c(λ) = φ(λ)/λ for λ ∈ (0, λ∗). A little calculus shows that
c(λ) is strictly convex:

c′′(λ) = φ′′(λ)

λ
− 2φ′(λ)

λ2 + 2φ(λ)

λ3 = 1

λ3

∫ ∞
−∞

[(λx − 1)2 + 1]eλxρ(x) dx > 0.

It is clear that c(λ) → ∞ as λ → 0. On the other hand, (1.4) implies c(λ) → ∞ as
λ → �− as well. Thus the minimum of c is attained at some λ∗ ∈ (0,�), and we
have c′(λ∗) = 0, or φ′(λ∗) = φ(λ∗)/λ∗, which will give the second claim in the
lemma once we show that c(λ∗) = a.

Recalling the characterization of a given after (1.5), we need to show that

sup
θ>0

[θc(λ∗) − φ(θ)] = 0.

This is easy: using the definition of c we get

sup
θ>0

[θc(λ∗) − φ(θ)] ≥ λ∗c(λ∗) − φ(λ∗) = 0,

while for all θ > 0

θc(λ∗) − φ(θ) ≤ θc(θ) − φ(θ) = 0.

Finally, to get the last claim in the lemma recall that c′(λ∗) = 0 and c is convex,
so

φ′(λ) − φ(λ)

λ
= λc′(λ)

is negative for λ ∈ (0, λ∗) and positive for λ ∈ (λ∗,�). �

Recall [see (1.8)] that

k(x) = λ

φ(λ)
eλxR(x).

As we explained in Section 1.3 the proof of Theorem 4 will depend on looking for
positive solutions to the equation (1.9). We will actually consider a slightly more
general equation:

U(x) =
∫ ∞

0
U(y)k(x − y)dy ∀x ≥ 0,(4.1)
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where we look for a nondecreasing solution U , continuous except at the origin,
with U(x) = 0 for all x < 0. In Spitzer’s terminology, a solution U with these prop-
erties is a P ∗-solution of (4.1). When limx→∞ U(x) = 1 we call U a P -solution,
and think of it as the distribution function of a nonnegative random variable. The
following summarizes the two results of Spitzer that we will need.

THEOREM 4.2 [Theorems 2 and 4 in Spitzer (1957)].

(a) If
∫ ∞
−∞ xk(x) dx ≤ 0 then there is a unique (up to multiplicative constant) P ∗-

solution of (4.1).
(b) If

∫ ∞
−∞ xk(x) dx < 0 then there is a unique P -solution of (4.1) which can be

obtained as the limit U(x) = limn→∞ Un(x) of the iterative procedure defined
by Un+1(x) = ∫ ∞

0 Un(y)k(x − y)dy starting with an arbitrary continuous U0
corresponding to the distribution function of a nonnegative random variable.

(c) If
∫ ∞
−∞ xk(x) dx ≥ 0 then (4.1) has no P -solution.

Repeating the arguments we used to show that F(t, x) had a density [see (2.21)]
we see that if U is a P ∗-solution of (4.1) then there is a nonnegative function u

such that U(x) = ∫ x
0 u(y) dy. Again repeating previous arguments (see the first

part of the proof of Theorem 1), we deduce that u satisfies (1.9), while obviously
u(x) = 0 for x ≤ 0. u is continuous except possibly at the origin by the dominated
convergence theorem thanks to the fact that k is continuous. Multiplying u(x) by
eλx will allow us to obtain a solution for (TW) with the desired properties.

PROOF OF THEOREM 4. Let c ≥ a and take λ ∈ (0, λ∗] such that φ(λ)/λ = c

as above. The uniqueness of the solutions of (TW) in this case follows from Theo-
rem 4.2(a). In fact, if w1 and w2 are two solutions of (TW) then ui(x) = eλxwi(x)

solves (1.9) for i = 1,2, and thus the functions Ui(x) = ∫ x
0 ui(y) dy are P ∗-

solutions of (4.1), and they are continuous because the ui are locally integrable.
Hence U1(x) = AU2(x) for all x ∈ R and some A > 0, which implies that
w1(x) = Aw2(x) for all x ∈ R. Integrating this relation we get A = 1 and unique-
ness follows.

To show existence we start by integrating by parts to obtain∫ ∞
−∞

xk(x) dx = λ

φ(λ)

∫ ∞
−∞

xeλxR(x) dx = 1

φ(λ)

∫ ∞
−∞

(
x − 1

λ

)
eλxρ(x) dx.

Thus the sign of
∫ ∞
−∞ xk(x) dx is the same as that of φ′(λ) − φ(λ)/λ. This last

quantity is strictly negative for λ ∈ (0, λ∗) and vanishes for λ = λ∗ by Lemma 4.1.
If c > a, then λ < λ∗ and thus Theorem 4.2(b) provides us with a P -solution

of (4.1) to which, by the discussion preceding this proof, we can associate a con-
tinuous (except at the origin) function u satisfying (1.9) and corresponding to the
density of a nonnegative random variable. Now let A = ∫ ∞

0 e−λxu(x) dx which is
clearly finite (actually A < 1). Define w(x) = A−1e−λxu(x). Then w is the den-
sity of a nonnegative random variable and it is easy to check that it satisfies (TW1)
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with c = φ(λ)/λ. The random variable w obviously satisfies (TW2), (TW3) and
(TW4) as well, it is continuous except possibly at the origin because so is u and, by
definition,

∫ ∞
0 eλxw(x) dx = A−1 < ∞. The last thing left to show in this case is

that w is differentiable (except at the origin), but this follows easily from writing,
for x ≥ 0,

w(x) = 1

c

∫ ∞
0

w(y)

∫ ∞
x−y

ρ(z) dz dy = 1

c

∫ ∞
x

∫ ∞
0

w(y)ρ(z − y)dy dz,

and using the fact that the integrand above is continuous. This establishes (a) in
the case c > a.

The equality
∫ ∞

0 eλxw(x) dx = A−1 < ∞ obtained above gives the first claim
in (b). To prove the second claim in (b) we may obviously assume that λ̃ ∈ (λ,λ∗).
Let W(x) = ∫ ∞

x w(y) dy. It is not hard to check that W satisfies

W(x) = 1

c

∫ ∞
−∞

W(y)R(x − y)dy ∀x ≥ 0.

Then if A = supx≥0 eλ̃xW(x) < ∞ we have that

W(x)eλ̃x = 1

c

∫ ∞
−∞

W(y)eλ̃yeλ̃(x−y)R(x − y)dy

≤ A

c

∫ ∞
−∞

eλ̃(x−y)R(x − y)dy = A

c

φ(̃λ)

λ̃
.

Taking supremum in x ≥ 0 and recalling that c = φ(λ)/λ the above says that

A ≤ φ(̃λ)

λ̃

λ

φ(λ)
A,

and since A > 0 this says that φ(̃λ)/̃λ ≥ φ(λ)/λ. But Lemma 4.1 implies exactly
the opposite for λ < λ̃ < λ∗. This is a contradiction, and thus A = ∞, which fin-
ishes the proof of (b).

The case c = a is similar so we will skip some details. Now we have λ = λ∗
and thus

∫ ∞
−∞ xk(x) dx = 0. Theorem 4.2(a) provides us now with a P ∗-solution

of (TW) to which corresponds a function u which is the density of a measure
supported on [0,∞) and which satisfies (1.9). Let A = ∫ ∞

0 e−λ∗xu(x) dx. We need
this quantity to be finite, so that w(x) = A−1e−λ∗xu(x) is a continuous probability
density. This follows from Theorem 6.2 of Engibaryan (1996), which assures that
U(x) = ∫ x

0 u(y) dy ≤ Cx for some C > 0, and integration by parts:

A =
∫ ∞

0
e−λ∗xu(x) dx = lim

x→∞ e−λ∗xU(x) − U(0) + λ∗
∫ ∞

0
e−λ∗xU(x) dx

≤ Cλ∗
∫ ∞

0
e−λ∗xx dx < ∞.
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It is easy again to verify that w satisfies (TW), and its differentiability follows
from the same reasons as above. Hence we have established (a) for the case c = a.
Clearly ∫ x

0
eλ∗yw(y) dy = A−1

∫ x

0
u(y) dy = O(x),(4.2)

which is the second claim in (c). The first and third claims in (c) follow from two
other consequences of the cited result in Engibaryan (1996), namely that U(x) →
∞ as x → ∞ and that U is subadditive. For the third claim use the first of these
properties of U and the first equality in (4.2), while for the first one integrate by
parts to get

eλ∗x
∫ ∞
x

w(y) dy =
∫ ∞
x

e−λ∗(y−x)u(y) dy =
∫ ∞

0
e−λ∗zu(x + z) dz

= lim
z→∞ e−λ∗zU(x + z) − U(x) +

∫ ∞
0

λ∗e−λ∗zU(x + z) dz

≤ −U(x) +
∫ ∞

0
λ∗e−λ∗z[U(x) + U(z)]dz

≤ C

∫ ∞
0

λ∗e−λ∗zz dz = C

λ∗ .

We are only left showing (d), that is, that there are no solutions of (TW) when
c < a. We start by observing that if w were a solution then the above arguments
would imply that w is differentiable on the positive axis, and thus if we set f0(x) =
w(x) in (FB) we get γ (t) = ct . Therefore, to show the nonexistence of solutions
for c < a it is enough to show that, given any ε > 0 and any f0 supported on
[0,∞), there is a T > 0 such that the solution (f (t, x), γ (t)) of (FB) satisfies

γ (T ) > (a − ε)T .(4.3)

Recall the definition of the process ν̂t in the proof of Proposition 2.1, which
corresponded to the deterministic measure valued limit of the branching random
walk ν̂N

t , and observe that we can run this process started with any initial measure
(not necessarily an absolutely continuous one). Moreover, (2.4) still holds in this
case by Theorem 5.3 of Fournier and Méléard (2004). Consider a copy of ν̂t started
with a unit mass at 0 and let F̂ (t, x) = ν̂t ([x,∞)). For T > 0 we define χT > 0 to
be such that F̂ (T ,χT ) = 1.

Applying (2.4) to ϕ(y) = 1y∈[x,∞), we see that F̂ (t, x) satisfies (FB1′) for all
x ∈ R. Now consider a copy of νt started at the product measure ν0 defined by f0.
Then (F (t, x), γ (t)) satisfies (FB′) and, since γ is strictly increasing, it satisfies
(FB1′) for x = γ (T ) and all t ∈ [0, T ). We deduce that

∂

∂t

(
F(t, γ (T )) − F̂ (t, γ (T ))

) =
∫ ∞
−∞

(
F(t, y) − F̂ (t, y)

)
ρ

(
γ (T ) − y

)
dy
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for all t ∈ [0, T ). Since F(0, x) = ∫ ∞
x f0(y) dy and F̂ (0, x) = 1x≤0, we have that

F(0, x) ≥ F̂ (0, x) for all x and thus the above equation implies that

F(t, γ (T )) ≥ F̂ (t, γ (T ))

for all t ∈ [0, T ). Now F̂ (t, x) is clearly continuous in t , while

F(T ,γ (T )) − F(t, γ (T )) = F(t, γ (t)) − F(t, γ (T )) =
∫ γ (T )

γ (t)
f (t, y) dy

≤
∫ γ (T )

γ (t)
f̂ (t, y) dy ≤

∫ γ (T )

γ (t)
f̂ (T , y) dy −−−→

t→T − 0

thanks to the continuity of γ . Therefore the inequality also holds for t = T , which
gives 1 = F(T ,γ (T )) ≥ F̂ (T , γ (T )), whence

χT ≤ γ (T ).

To finish the proof of (4.3) we need to show that

χT > (a − ε)T(4.4)

for large enough T . Observe that ν̂t (which we recall is started with ν̂0 = δ0),
corresponds to the mean measure of the branching random walk ξ1

t (started with
just one particle located at the origin). This can be made precise by writing down
the formula for the generator of ξ1

t and applying it to functions of the form ξ �→
〈ξ,ϕ〉 = ∑N(ξ)

i=1 ϕ(ξ(i)), where N(ξ) is the number of particles in the branching
random walk configuration ξ , to deduce that after taking expectations the resulting
equation is the same as (2.4). We leave the details to the reader, and instead only
state that the above implies that

ν̂T ([cT ,∞)) = E(ξ1
T ([cT ,∞)))(4.5)

for every c, where ξ1
T ([cT ,∞)) denotes the number of particles in the branching

random walk to the right of cT at time T . On the other hand it is well known that

E(ξ1
T ([cT ,∞))) = eT

P(ST ≥ cT ),

where St is defined as in (1.5) [see, e.g., the third equation in the proof of Proposi-
tion I.1.21 in Liggett (1999)], and thus (1.5) implies that

lim
T →∞

1

T
log(E(ξ1

T ([cT ,∞)))) = �(c) + 1.

Since � is strictly decreasing on [0,∞) and �(a) = −1 we deduce that

lim
T →∞

1

T
log(E(ξ1

T ([cT ,∞)))) > 0 for all 0 ≤ c < a.

This together with (4.5) implies that

ν̂T

([(a − ε)T ,∞)
)
> 1

for large enough T . Therefore (4.4) holds and the proof is complete. �



BRUNET–DERRIDA PARTICLE SYSTEMS 2077

Acknowledgments. The authors would like to thank Nathanaël Berestycki
and Lee Zhuo Zhao for pointing out a mistake in an earlier version of one of the
proofs, and an anonymous referee for valuable comments and suggestions.

REFERENCES

ATHREYA, K. B. and NEY, P. (1978). A new approach to the limit theory of recurrent Markov chains.
Trans. Amer. Math. Soc. 245 493–501. MR0511425

BÉRARD, J. and GOUÉRÉ, J.-B. (2010). Brunet–Derrida behavior of branching-selection particle
systems on the line. Comm. Math. Phys. 298 323–342. MR2669438

BIGGINS, J. D. (1977). Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14 630–
636. MR0464415

BRUNET, E. and DERRIDA, B. (1997). Shift in the velocity of a front due to a cutoff. Phys. Rev. E
(3) 56 2597–2604. MR1473413

BRUNET, É., DERRIDA, B., MUELLER, A. H. and MUNIER, S. (2007). Effect of selection on ances-
try: An exactly soluble case and its phenomenological generalization. Phys. Rev. E (3) 76 041104,
20. MR2365627

CHAYES, L. and SWINDLE, G. (1996). Hydrodynamic limits for one-dimensional particle systems
with moving boundaries. Ann. Probab. 24 559–598. MR1404521

DURRETT, R. (2004). Probability: Theory and Examples, 3rd ed. Duxbury Press, Belmont, CA.
DURRETT, R. and MAYBERRY, J. (2010). Evolution in predator-prey systems. Stochastic Process.

Appl. 120 1364–1392. MR2639750
ENGIBARYAN, N. B. (1996). Convolution equations containing singular probability distributions.

Izv. Ross. Akad. Nauk Ser. Mat. 60 21–48. MR1399417
FELLER, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed.

Wiley, New York. MR0270403
FOURNIER, N. and MÉLÉARD, S. (2004). A microscopic probabilistic description of a locally

regulated population and macroscopic approximations. Ann. Appl. Probab. 14 1880–1919.
MR2099656

GRAVNER, J. and QUASTEL, J. (2000). Internal DLA and the Stefan problem. Ann. Probab. 28
1528–1562. MR1813833

JOFFE, A. and MÉTIVIER, M. (1986). Weak convergence of sequences of semimartingales with
applications to multitype branching processes. Adv. in Appl. Probab. 18 20–65. MR0827331
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