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PERIODIC HOMOGENIZATION WITH AN INTERFACE: THE
MULTI-DIMENSIONAL CASE

BY MARTIN HAIRER1 AND CHARLES MANSON

New York University and University of Warwick

We consider a diffusion process with coefficients that are periodic outside
of an “interface region” of finite thickness. The question investigated in this
article is the limiting long time/large scale behavior of such a process under
diffusive rescaling. It is clear that outside of the interface, the limiting process
must behave like Brownian motion, with diffusion matrices given by the stan-
dard theory of homogenization. The interesting behavior therefore occurs on
the interface. Our main result is that the limiting process is a semimartingale
whose bounded variation part is proportional to the local time spent on the
interface. The proportionality vector can have nonzero components parallel
to the interface, so that the limiting diffusion is not necessarily reversible.
We also exhibit an explicit way of identifying its parameters in terms of the
coefficients of the original diffusion.

Similarly to the one-dimensional case, our method of proof relies on the
framework provided by Freidlin and Wentzell [Ann. Probab. 21 (1993) 2215–
2245] for diffusion processes on a graph in order to identify the generator of
the limiting process.

1. Introduction. The theory of periodic homogenization is by now extremely
well understood; see, for example, the monographs [4, 23]. Recall that the most
basic result states that if X is a diffusion with smooth periodic coefficients, then
the diffusively rescaled process Xε(t) = εX(t/ε2) converges in law to a Brownian
motion with an explicitly computable diffusion matrix. If one considers diffusions
that are “locally periodic,” but with slow modulations over spatial scales of or-
der ε−1, then it was shown in [5] that the rescaled process converges in general to
some diffusion process with a computable expression for both its drift and diffu-
sion coefficients.

In this article, we will also consider the “locally periodic” situation, but instead
of considering slow modulations of the coefficients, we consider the case of a
sharp [i.e., of size O(1)] transition between two periodic structures. In the (much
simpler) one-dimensional case, this model was previously studied in [17], where
we showed that the rescaled process converges in law to skew Brownian motion
with an explicit expression for the skewness parameter. In higher dimensions, this
model has not yet been studied to the best of our knowledge. The aim of this article
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is to clarify what is the behavior of Xε near the interface for very small values of
ε. It is important to remark at this stage that we do not make the assumption that
our diffusion is reversible. As we will see in Section 2, there are then situations in
which the limiting process is not reversible either, contrary to the one-dimensional
situation.

One feature of the problem at hand is that there is no finite invariant measure
built into the framework of the problem. This is unlike most other homogeniza-
tion problems, even those exhibiting rather “bad” ergodic properties, such as the
random environment case [21, 24] or the quenched convergence results for the
Bouchaud trap model [2]. Since in our case the invariant measure μ of X is only
σ -finite, this leads to two problems when trying to compute the effect of the behav-
ior of X near the interface in the limit ε → 0. Indeed, one would “naïvely” expect
that an effective drift along the interface can be described by the quantity∫

b(x)μ(dx).(1.1)

One problem with this expression is that there is no obvious natural normalization
for μ. Furthermore, since b is periodic away from the interface and the same is
(approximately) true for μ, this integral certainly does not converge, even if we
consider it as an integral over R × T

d−1 by making use of the periodic structure
in the directions parallel to the interface. See however (2.4) and Proposition 6.3
below for the correct way of interpreting (1.1) and our main result, Theorem 2.4
below, on how this quantity appears in the construction of the limiting process.

Another common feature of many homogenization results is the usage of a glob-
ally defined corrector function to compensate for the singular terms appearing in
the problem. This is of course the case for standard periodic homogenization [4],
but also for a number of stochastic homogenization problems, as, for example, in
[21, 22, 24, 25]. For the present problem however, it will be convenient to make
use of corrector function that only cancels the singular terms away from the inter-
face and to treat the behavior of the limiting process at the interface by completely
different means.

One very recent homogenization result where discontinuous coefficients appear
in the limiting equation can be found in [3] (which in turn generalizes [18]). How-
ever, their framework is quite different to the one considered here and does not
seem to encompass our problem. Much more closely related problems are ho-
mogenization problems with the presence of a boundary [1, 14]. Those have been
mostly studied by analytical tools so far. In our probabilistic language, what comes
closest to the boundary layers studied in these articles is the σ -finite invariant mea-
sure of X, which is shown in Proposition 5.5 below to converge exponentially fast
to a measure with periodic densities away from the interface.

For simplicity, we will consider the case of a constant diffusion matrix, but it is
straightforward to adapt the proofs to cover the case of nonconstant diffusivity as
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FIG. 1. Example of a vector field b satisfying our conditions.

well. More precisely, we consider the family of processes Xε taking values in R
d ,

solutions to the stochastic differential equations

dXε = 1

ε
b

(
Xε

ε

)
ds + dB(s), Xε(0) = x,(1.2)

where B is a d-dimensional standard Wiener process. The drift b is assumed to
be smooth and such that b(x + ei) = b(x) for the unit vectors ei with i = 2, . . . , d

(but not for i = 1). Furthermore, we assume that there exist smooth vector fields
b± with unit period in every direction and η > 0 such that

b(x) = b+(x), x1 > η, b(x) = b−(x), x1 < −η.

Figure 1 is a typical illustration of the type of vector fields that we have in mind.
If we denote by X the same process, but with ε = 1, then the process Xε given

by (1.2) is equal in law to the diffusive rescaling of X by a factor 1
ε
. In the sequel,

we denote the generator of X by L and the generator of Xε by Lε . We furthermore
denote by L± the generators for the diffusion processes on the torus given by

dX± = b±(X±) ds + dB(s),(1.3)

and by μ± the corresponding invariant probability measures. With this notation at
hand, we impose the centering condition

∫
Td b±(x)μ±(x) = 0.

Under these conditions, our main result formulated in Theorem 2.4 below states
that the family Xε converges in law to a limiting process X̄. Furthermore, we
give an explicit characterization of X̄, both as the unique solution of a martingale
problem with some explicitly given generator and as the solution of a stochastic
differential equation involving a local time term on the interface {x1 = 0}. In addi-
tion to the homogenized diffusion coefficients on either side of the interface, this
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limiting process is characterized by a “transmissivity coefficient,” as well as by a
“drift vector” pointing along the interface.

The remainder of this article is structured as follows. After formulating our main
results in Section 2, we show tightness of the family in Section 3. In Section 4, we
then formulate the main tool used in the identification of the limiting process,
namely a multidimensional analogue of the tool used by Freidlin and Wentzell in
[12] to study homogenization problems where the limiting process takes values in
a graph. Section 5 is then devoted to the computation of the transmissivity coeffi-
cient, whereas Section 6 contains the computation of the drift vector. Finally, we
show in Section 7 that the martingale problem is well-posed and we identify its
solution with the solution to a stochastic differential equation.

1.1. Notation. We define the “interface” of width K by

IK = {x ∈ R
d :x1 ∈ [−K,K]}.

We also denote by ∂IK its boundary.
Frequently throughout the paper we will construct successive escape and sub-

sequent reentry times particularly when constructing invariant measures in terms
of the invariant measure of an embedded Markov chain as in [16]. We will denote
such pairs of stopping times as σ , φ, which denote escape and reentry times, re-
spectively. Other stopping times not part of such a sequence will be denoted by τ .

2. The main result. Before stating the main result, we will first define the
various quantities involved and their relevance. It is clear that, in view of standard
results from periodic homogenization [4, 23], any limiting process for Xε should
behave like Brownian motion on either side of the interface I0 = {x1 = 0}, with
effective diffusion tensors given by

D±
ij =

∫
Td

(δik + ∂kg
±
i )(δkj + ∂kg

±
j ) dμ±.

(Summation of k is implied.) Here, the corrector functions g± : Td → R
d are the

unique solutions to L±g± = −b± such that∫
Td

g±(x)μ±(dx) = 0.

Since b± are centered with respect to μ±, such functions do indeed exist.
This justifies the introduction of a differential operator L̄ on R

d defined in two
parts by L̄+ on I+ = {x1 > 0} and L̄− on I− = {x1 < 0} with

L̄± = D±
ij

2
∂i ∂j ,(2.1)

then one would expect any limiting process to solve a martingale problem asso-
ciated to L̄. However, the above definition of L̄ is not complete, since we did not
specify any boundary condition at the interface I0.
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One of the main ingredients in the analysis of the behavior of the limiting
process at the interface is the invariant measure μ for the (original, not rescaled)
process X. It is not clear a priori that such an invariant measure exists, since X is
not expected to be recurrent in general. However, if we identify points that differ
by integer multiples of ej for j = 2, . . . , d , we can interpret X as a process with
state space R × T

d−1. It then follows from the results in [16] that this process
admits a σ -finite invariant measure μ on R × T

d−1.
Note that the invariant measure μ is not finite and can therefore not be normal-

ized in a canonical way. However, if we define the “unit cells” C±
j by

C+
j = [j, j + 1] × T

d−1, C−
j = [−j − 1,−j ] × T

d−1,

then it is possible to make sense of the quantity q± = limj→∞ μ(C±
j ) (we will

show in Proposition 5.5 below that this limit actually exists).
Let now p± be given by

p± = q±D±
11

q+D+
11 + q−D−

11

,

which can also we rewritten in a more suggestive way as

p+
p−

= q+D+
11

q−D−
11

.(2.2)

This is the homogenized diffusion coefficient in the direction perpendicular to the
interface, weighted by the invariant measure of a unit cell. Comparing with the
one-dimensional case [17], one would expect this to yield the likelihood for Xε

to exit a small (but still much larger than ε) neighborhood of the interface on a
specific side.

REMARK 2.1. The ratio

p+
√

D−
11

p−
√

D+
11 + p+

√
D−

11

(2.3)

gives the asymptotic probability of the process being located in the rhs (+) of
the interface after a long time. This follows from the weak convergence of the
first component to a skew Brownian motion with (possibly) different diffusion
coefficients on either side of the interface. If we rescale this skew BM on either
side of the interface by

√
D±

11 to obtain a standard skew BM, we can use the scale
function of BM to finish the verification of (2.3).

However, unlike in the one-dimensional case, these quantities are not yet suffi-
cient to characterize the limiting process. The reason is that since Xε is expected
to spend time proportional to ε in the interface, but the drift is of order ε−1 there,



PERIODIC HOMOGENIZATION WITH AN INTERFACE 653

it is not impossible that the limiting process picks up a nontrivial drift along the
interface. It turns out that this drift can be described by the coefficients αj given
by

αj = 2
(

p+
D+

11

+ p−
D−

11

)∫
R×Td−1

(
bj (x) + Lgj (x)

)
μ(dx),(2.4)

where μ is again normalized in such a way that q+ + q− = 1 and where g is any
smooth function agreeing with g± on either side of the interface (see Section 3).

REMARK 2.2. Since
∫
R×Td−1 Lφ(x)μ(dx) = 0 for every smooth compactly

supported function φ, one should interpret the integral on the right-hand side of
(2.4) as a “renormalized” form of the intuitive more meaningful quantity (1.1).

REMARK 2.3. The expression (2.4) is useful in order to generate examples
with nonvanishing values for the coefficients αi .

Given all of these ingredients, we can construct an operator L̄ as follows. The
domain D(L̄) of L̄ consists of functions f : Rd → R such that:

• The restrictions of f to I+, I− and I0 are smooth.
• The partial derivatives ∂if are continuous for i ≥ 2.
• The partial derivative ∂1f (x) has right and left limits ∂1f |I± as x → I0 and

these limits satisfy the gluing condition

p+ ∂1f |I+ − p−∂1f |I− +
d∑

j=2

αj ∂jf = 0.(2.5)

For any f ∈ D(L̄), we then set L̄f (x) = L±f (x) for x ∈ I±. With these defini-
tions at hand, we can state the main result of the article.

THEOREM 2.4. The family of processes Xε converges in law to the unique
solution X̄ to the martingale problem given by the operator L̄. Furthermore, there
exist matrices M± and a vector K ∈ R

d such that this solution solves the SDE

dX̄(t) = 1X̄1≤0M− dW(t) + 1X̄1>0M+ dW(t) + K dL(t).(2.6)

where L denotes the symmetric local time of X̄1 at the origin and W is a standard
d-dimensional Wiener process. The matrices M± and the vector K satisfy

M±MT± = D±, K1 = p+ − p−, Kj = αj ,

for j = {2, . . . , d}.
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FIG. 2. Sample paths at small (left) and large (right) scales.

In Figure 2, we show an example of a numerical simulation of the process stud-
ied in this article. The figure on the left shows the small-scale structure (the pe-
riodic structure of the drift is drawn as a grid). One can clearly see the periodic
structure of the sample path, especially to the left of the interface. One can also see
that the effective diffusivity is not necessarily proportional to the identity. In this
case, to the left of the interface, the process diffuses much more easily horizontally
than vertically.

The picture to the right shows a simulation of the process at a much larger scale.
We used a slightly different vector field for the drift in order to obtain a simulation
that shows clearly the strong drift experienced by the process when it hits the
interface.

REMARK 2.5. Since the quadratic variation of X̄ has a discontinuity at
X̄1 = 0, we do have to specify which kind of local time L is. Using the symmetric
local time yields nicer expressions. See, for example, [19, 26] for a definition of
the symmetric local time.

Analyzing what this means for a simple example, we consider the case of a
two-dimensional problem where we have b1 = 0 and b2 = f (x1) for f a smooth
function that is zero outside of Iη. Clearly, p± = 1

2 . In this case, the invariant
measure μ of the process X is given by 1

2 times Lebesgue measure on R × S1 and
we can choose g = 0. This implies that we then simply have

α2 =
∫

R

f (x) dx,

as one would expect.
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3. Tightness of the family. The aim of this section is to prove the following
tightness result.

THEOREM 3.1. Denote by P
ε the law of Xε

x on C(R+,R
d). Then the family

{Pε}ε∈(0,1] is tight.

Similar to what happens in the classical theory of periodic homogenization, it
will be very convenient to construct a “corrected process” Y , obtained by adding
to X a corrector function that cancels out to first order the effect of the small
oscillations. To this aim, we introduce a smooth function g : Rd → R

d which is
periodic in the directions 2, . . . , d and such that g(x) = g+(x) for x1 ≥ η and
similarly for x1 ≤ −η. (Recall that g± was defined in Section 2.) We do not specify
the behavior of g inside the interface Iη, except that it has to be smooth in the
whole space and periodic in the directions parallel to the interface. We fix such
a function g once and for all from now on. We furthermore denote by Y ε the
process defined by Y ε = Xε + εg(ε−1Xε), as well as y = x + εg(x/ε) for its
initial condition.

Defining the corrected drift b̃(x) = (Lg + b)(x) and the corrected diffusion
coefficient σ̃ij (x) = δij + ∂jgi(x), it follows from Itô’s formula that the ith com-
ponent of Y ε

y satisfies

(Y ε
y )i(t) = yi +

∫ t

0

1

ε
b̃i

(
1

ε
Xε

x(s)

)
ds +

∫ t

0
σ̃ij

(
1

ε
Xε

x(s)

)
dWj(s).(3.1)

It is very important to note that the corrected drift b̃ vanishes outside of Iη, so that
the process Y is subject to a large drift only when X is inside the interface.

Our main tool in the proof of Theorem 3.1 is the following result, which is very
similar to [28], Theorem 1.4.6.

PROPOSITION 3.2. Let P be a family of probability measures on 
 =
C(R+,R

d) and denote by x the canonical process on 
. Assume that

lim
R↗∞ sup

P∈P
P
(|x(0)| ≥ R

)= 0.

Furthermore, for any given ρ > 0, let τ0 = 0, and define recursively τi+1 =
inft>τi

|x(t) − x(τi)| > ρ. Assume that the limit

lim
δ→0

ess sup P[τn+1 − τn ≤ δ|Fτn] → 0, P a.s., on {τn < ∞}(3.2)

holds uniformly for every P ∈ P and every n ≥ 0. Then the family of probability
measures P is tight on 
.

PROOF. The proof is similar to that of Theorem 1.4.6 in [28], except that their
Lemma 1.4.4 is replaced by (3.2).
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Fix an arbitrary final time T > 0. Furthermore, denote for ω ∈ 


Nρ = Nρ(ω) = min{n : τn+1 > T },
and the modulus of continuity by δρ ,

δρ = δρ(ω) = min{τn − τn−1 : 1 ≤ n ≤ Nρ(ω)}.
Note that this expression depends on ρ via the definition of the stopping times τi .

With this notation at hand, tightness follows as in [28] if one can show that
limδ→0 supP∈P P(δρ ≤ δ) = 0 for every fixed ρ > 0. As in [28], one has for every
k > 0 the bound

P(δρ ≤ δ) ≤
k∑

i=1

E
[
P[τi+1 − τi ≤ δ|Fτi

]]+ P(Nρ > k).

For every fixed k > 0, the first term then converges uniformly to 0 by assumption.
Since the second term is independent of δ, it remains to verify that converges to 0
as k → ∞, uniformly over P (convergence for every fixed P ∈ P is trivial but
not sufficient for our needs).

This is a consequence of [28], Lemma 1.4.5, provided that one can find λ < 1
such that E[e−(τi+1−τi )|Fτi

] ≤ λ. This in turn follows from

E
[
e−(τi+1−τi )|Fτi

]≤ P[τi+1 − τi ≤ t0|Fτi
] + e−t0P[τi+1 − τi > t0|Fτi

]
≤ e−t0 + (1 − e−t0)P[τi+1 − τi ≤ t0|Fτi

].
Indeed, by choosing t0 sufficiently small, this term can be made strictly less than 1,
provided that P[τi+1 − τi ≤ t0|Fτi

] tends to zero uniformly (over the members of
P and over i) as t0 tends to zero, which is precisely our assumption. �

We now turn to the following.

PROOF OF THEOREM 3.1. Recall that we defined the process Y ε = Xε +
εg(ε−1Xε) in Section 2. Note then that, just as in [17], Proposition 2.5, the tight-
ness of the laws of Xε

x is equivalent to that of the laws of Y ε
x . Therefore, all that

remains to be shown is that we have the bound (3.2) for the law of Y ε , uniformly
over ε ∈ (0,1]. The approach that we use is to consider separately the martingale
part and the bounded variation part for Y ε

y given by (3.1), and to show that the
probability of either of these moving by at least ρ

2 during a time interval δ tends to
zero uniformly over the initial condition.

Given any fixed ρ,γ > 0, we want to show that there exists a sufficiently small
δ > 0 such that P(τn+1 − τn ≤ δ|Fτn) < γ uniformly over P ∈ P (i.e., uniformly
over the laws of Y ε

x with ε ∈ (0,1]) and n. We split the contributions from the
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martingale and the bounded variation parts in the following way:

P(τn+1 − τn ≤ δ|Fτn)

= PX(τn)

(
sup
t<δ

|Y(t) − Y(0)| > ρ
)

≤ sup
x

Px

(
sup
t<δ

∣∣∣∣1ε
∫ t

0
b̃i(ε

−1Xε
x(s)) ds

∣∣∣∣> ρ

2

)
(3.3)

+ sup
x

Px

(
sup
t<δ

∣∣∣∣
∫ t

0
σ̃ij (ε

−1Xε
x(s)) dWj(s)

∣∣∣∣> ρ

2

)

≤ 2

ερ
sup
x

Ex

∫ t

0
|b̃i(ε

−1Xε
x(s))|ds

+ 2

ρ
sup
x

Ex sup
t≤δ

∣∣∣∣
∫ t

0
σ̃ij (ε

−1Xε
x(s)) dWj(s)

∣∣∣∣.
Here, we used the Chebychev’s inequality to obtain the last bound. Since the func-
tions σ̃ij are uniformly bounded, the stochastic integral appearing in the second
term is easily bounded by O(

√
δ) by the Burkholder–Davis–Gundy inequalities.

Furthermore, by the definition of the corrector function g, there exists η̃ > 0 such
that b̃(x) = 0 for x /∈ Iη̃ε , so that there exists a constant C such that

P(τn+1 − τn ≤ δ|Fτn) ≤ C

ρε
sup
x

Ex

(∫ δ

0
1Iη̃ε

(Xε
x(s)) ds

)
+ C

√
δ

ρ
.(3.4)

For fixed ρ > 0, the second term obviously goes to 0 as δ → 0, uniformly in ε,
so it remains to consider the first term. As one would expect from the expression
for the local time of a Brownian motion, it turns out that the expected time spent
by the process in Iη̃ε scales like ε

√
δ, thus showing that this term is also of order√

δ/ρ. Once we are able to show this, the proof is complete.
The occupation time of the interface appearing in the first term of (3.4) is

bounded by the trivial estimate Cδ/(ρε), which goes to 0 as δ → 0 provided that
we consider ε ≥ √

δ, say. We can therefore assume without any loss of generality
in the sequel that we consider ε <

√
δ.

The idea to bound the occupation time is the following. We decompose the
trajectory for the process Xε into excursions away from the interface, separated
by pieces of trajectory inside the interface. We first show that if the process starts
inside the interface, then the expected time spent in the interface before making a
new excursion is of order ε2. Then, we show that each excursion has a probability
at least ε/

√
δ of being of length δ or more. This shows that in the time interval δ

of interest, the process will perform at most of the order of
√

δ/ε excursions, so
that the total time spent in the interface is indeed of the order ε

√
δ, thus showing

that the first term in (3.4) behaves like
√

δ/ρ, as expected.
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More precisely, we first choose two constants K > 0 and K̂ > 0 such that the
chain of implications

{Xε ∈ Iη̃ε} ⇒ {Y ε ∈ I
K̂ε

} ⇒ {
Xε ∈ I(K−1)ε

}⇒ {Xε ∈ IKε}(3.5)

holds. We then set up a sequence of stopping times in the following way. We set
φ0 = 0 and we set recursively

σn = inf{t ≥ φn :Xε(t) /∈ IKε},
φn = inf{t ≥ σn−1 :Y ε(t) ∈ I

K̂ε
}.

[Note that we can have σ0 = 0 if the initial condition does not belong to IKε . Apart
from that, the second implication in (3.5) shows that increments from one stopping
time to the next are always strictly positive.] This construction was chosen in such
a way that the times when Xε ∈ Iη̃ε always fall between φn and σn for some n ≥ 0.
In particular, if we set

N = inf{n ≥ 0 :φn+1 − σn ≥ δ},
then we have the bound

sup
x

Ex

(∫ δ

0
1Iη̃ε

(Xε
x(s)) ds

)
≤ sup

x
Ex

(
N∑

n=0

(σn − φn)

)

= sup
x

∞∑
n=0

Ex

(
(σn − φn)1N≥n

)

=
∞∑

n=0

sup
x

Px(N ≥ n) sup
x

Ex

(
EXε(φn)σ1

)
,

where we used the strong Markov property and the fact that {N ≥ n} is Fφn -
measurable in order to obtain the last identity. It follows from the definition of N

that this expression is in turn bounded by

sup
x∈Rd

Exσ0
∑
n≥0

(
sup

x /∈IKε

Px(φ0 < δ)
)n = supx∈Rd Exσ0 supx /∈IKε

Px(φ0 < δ)

infx /∈IKε
Px(φ0 ≥ δ)

.

We now bound both terms appearing in this expression separately.
First, we turn to the expected escape time from the interface, Exσ0. The idea

is to use a comparison argument just like in [17], Proposition 3.8. We define a
“worst-case scenario” process V ε

x , which is the solution to the SDE with initial
condition x, diffusion coefficient 1 and drift coefficient given by bε

V , where

bε
V (x) =

⎧⎪⎪⎨
⎪⎪⎩

−bV

ε
, for x ≥ 0,

bV

ε
, for x < 0,

for some constant bV > 0. We then have the following lemma.
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LEMMA 3.3. There exist bV > 0 and K̃ > 0 such that, if we define τ K̃ =
inf{t ≥ 0 :V ε

x (t) /∈ I
K̃ε

}, we have

Exσ0 ≤ Exτ
K̃ ,

for every x ∈ R
d .

The proof of Lemma 3.3 is almost identical to that of [17], Proposition 3.8, so
we are going to omit it. A straightforward calculation using the particular form of
the drift coefficient for V allows to check that there exists indeed a constant C > 0
such that the bound

sup
x

Exτ
K̃ ≤ Cε2,

holds so that, combining this with Lemma 3.3, we have supx∈Rd Exσ0 ≤ Cε2.
Let us now turn to the bound on Px(φ0 ≥ δ). The idea here is to look at the

process Y ε instead of Xε and to time-change it in such a way that we can compare
it to a standard Brownian motion. Note first that the last two implications in (3.5)
show that if we start with Xε anywhere outside of IKε , then the first component
of Y ε has to travel by at least ε before the process Y ε can hit I

K̂ε
. Furthermore, it

follows from (3.1) that the time change Ct such that Y ε(Ct ) is a standard Brownian
motion satisfies Ct ≥ ct for some c > 0. It therefore follows that, setting H(z) =
inft>0{Bt > z}, one has the lower bound

inf
x /∈IKε

Px(φ0 ≥ δ) ≥ P
(
H(ε) ≥ δ/c

)
.

The explicit expression for the law of H(z) given in [8], page 163, equation 2.02,
yields in turn

P
(
H(ε) ≥ δ/c

)= ∫ ∞
δ/(cε2)

e−1/(2t)

√
2πt3/2

dt.

It follows immediately that this in turn is bounded from below by Cε/
√

δ for
some C > 0, provided that ε ≤ √

δ. Collecting these bounds completes the proof
of Theorem 3.1. �

4. Main tool for identifying the limit process. Instead of considering a
graph as before, we will consider a generalized multidimensional version different
from that considered by Freidlin and Wentzell in [12], Section 6. Note that the
generalization considered here is different (and actually simpler) than the one con-
sidered in [13]. We consider processes in R

d and we set I− = {x ∈ R
d :x1 < 0},

and similarly for I+. We consider a family of R
d -valued processes Xε and we de-

note by τ ε the first hitting time of Iεη. Correspondingly, τ δ is the first escape time
of the set Iδ by Xε .

With this the main tool, will be the following multidimensional analogue
of [12], Theorem 4.1.
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THEOREM 4.1. Let L̄i be second order differential operators on Ii with
bounded coefficients and let Di be some sets of test functions over Ii whose mem-
bers are bounded and have bounded derivatives of all orders. Suppose that for
i ∈ {+,−}, any function f ∈ Di and for any λ > 0, the bound

Ex

[
e−λτε

f (Xε(τ ε)) − f (Xε(0))

(4.1)

+
∫ τ ε

0
e−λt (λf (Xε(t)) − L̄if (Xε(t))

)
dt

]
= O(k(ε)),

holds as ε → 0, uniformly with respect to x ∈ Ii . Assume furthermore that the rate
k is such that limε→0 k(ε) = 0.

Assume that, for every λ > 0 and every i ∈ {+,−}, there exist functions ui,λ ∈
Di such that L̄iui,λ(x) = λui,λ(x) holds for x ∈ Ii with |x1| ≤ 1 and such that
u±,λ(x) = 1 for x1 = 0 and x1 = ±1.

Assume that there exists a rate δ = δ(ε) → 0 such that δ(ε)/k(ε) → ∞ as
ε → 0 and such that for λ > 0,

E
ε
x

[∫ ∞
0

e−λt1(−δ,δ)(X
ε
1(t)) dt

]
→ 0(4.2)

as ε → 0, uniformly in the initial point. Assume the convergence

P
ε
x[Xε(τ δ) ∈ Ii] → pi,(4.3)

holds uniformly in x in the set Iεη for some constants p± with p+ + p− = 1.
Assume furthermore that there exist constants αj and C such that

1

δ
E

ε
x[Xε

j (τ
δ) − xj ] → αj ,

1

δ2 E
ε
x

[(
Xε

j (τ
δ) − xj

)2]≤ C,(4.4)

for j ≥ 2. Again, the limit is assumed to be uniform over x ∈ Iεη as ε → 0, and
the inequality is assumed to be uniform over all ε ∈ (0,1] and all x ∈ Iεη.

Let then D be the set of continuous functions f : Rd → R such that the restric-
tion of f to Ii belongs to Di and such that the gluing condition (2.5) holds. Then,
for any fixed f ∈ D, t0 ≥ 0 and λ > 0,

�(ε) = ess sup
∣∣∣∣Eε

x

[∫ ∞
t0

e−λt [λf (Xε(t)) − L̄f (Xε(t))]dt

(4.5)

− e−λt0f (Xε(t0))
∣∣∣F[0,t0]

]∣∣∣∣→ 0

as ε → 0, uniformly with respect to x. In particular, every weak limit of Xε as
ε → 0 satisfies the martingale problem for L̄.

REMARK 4.2. Note that we did not specify how “large” the sets Di of admis-
sible test functions need to be. If these sets are too small, then the theorem still
holds, but the corresponding martingale problem might become ill-posed.
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PROOF OF THEOREM 4.1. Since the proof is virtually identical to that of [12],
Theorem 4.1, we only sketch it here. The basic idea behind the proof given by Frei-
dlin and Wentzell is to rewrite (4.5) using the strong Markov property of Xε as a
sum of terms between successive stopping times. To this effect, set, for exam-
ple, σ0 = 0 and then recursively φn = inf{t > σn :Xε

1(t) ∈ Iεη}, σn+1 = inf{t >

φn :Xε
1(t) /∈ Iδ}. They then break up the term produced from (4.5) into two sums

of analogous terms between times σn and φn and those between φn and σn+1.
The terms covering the time intervals [σn,φn] are bounded exactly as in [12],

making use of (4.1), together with the bound
∑

n Exe
−λσn = O(1/δ) which follows

from the existence of the functions ui,λ just as in [12].
Using assumption (4.2), the terms covering the time intervals [φn,σn+1] are

then simplified to ∑
n

e−λφn
(
f (Xε(σn+1)) − f (Xε(φn))

)
,

modulo contributions that converge to 0 as ε → 0. Since the expectation of this
term is bounded by

sup
x∈Iηε

Ex

(
f (Xε(τ δ)) − f (x)

)∑
n

Ee−λφn,

and since we already know that
∑

n Ee−λφn = O(1/δ), in remains to show that the
supremum is of order o(δ). It follows from Taylor’s expansion and the fact that

f ∈ C 2 outside of the interface, that on the event 
+ def= {Xε
1(τ

δ) > 0}, one has

f (Xε(τ δ))−f (x) = δ∂1f (x)|I+ +
d∑

i=2

∂if (x)
(
Xε

i (τ
δ)−xi

)+ O
(|Xε

i (τ
δ)−xi |2),

and similarly on 
− = {Xε
1(τ

δ) < 0}. Combining this with (4.4), we thus have

Ex

(
f (Xε(τ δ)) − f (x)

)= δ ∂1f (x)|I+Px(
+) + δ ∂1f (x)|I−Px(
−)

+ δ

d∑
i=2

αi ∂if (x) + o(δ).

Since we assume that Px(
±) → p± uniformly over x ∈ Iηε , the required bound
now follows from the gluing condition. �

Most of the remainder of this article is devoted to the verification of the assump-
tions of Theorem 4.1. The bounds (4.1) and (4.2) will be relatively straightforward
to verify and this will form the content of the remainder of this section. The con-
vergence (4.3) is the one that is most difficult to obtain and will be the content
of Section 5. Finally, we will show that (4.4) holds in Section 6. We start by the
following result.
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LEMMA 4.3. Let L̄± be as in (2.1) and let Xε be the family of processes from
Section 2. Then, the bound (4.1) holds with k(ε) = ε for every λ > 0 and for every
smooth bounded function f : Ii → R that has bounded derivatives of all orders.

PROOF. It follows from [17], Lemma 3.4, that, for any initial point x with
x1 
= 0 and for ε sufficiently small so that x /∈ Iεη,

Ex

[∫ τ ε

0
e−λsf (Xε(s))h

(
Xε(s)

ε

)
ds

]
= O(ε),(4.6)

for h centered with respect to μ+ (resp., μ− if x1 < 0). We assume that x1 > 0
from now on, but the calculations are identical for the case x1 < 0.

Note now that it suffices to obtain the bound (4.1) for the family of processes
Y ε , since ‖Y ε(t) − Xε(t)‖ = O(ε), uniformly. Applying Itô’s formula to e−λτε ×
f (Y ε(τ ε)), we obtain the identity

e−λτε

f (Y ε(τ ε)) = f (y) +
∫ τ ε

0
−λe−λsf (Y ε(s)) ds

+ 1

2

∫ τ ε

0
e−λs(σ̃ikσ̃kj )

(
Xε

ε

)
∂2
ij f (Y ε(s)) ds

+
∫ τ ε

0
e−λsσ̃ik

(
Xε(s)

ε

)
∂if (Y ε(s)) dWk(s).

Since |Y ε − Xε| ≤ O(ε) and since all derivatives of f are assumed to be bounded,
it then follows from (4.6) that

E(e−λτε

f (Y ε(τ ε))) = f (y) − λE

∫ τ ε

0
e−λsf (Y ε(s)) ds

+ 1

2
E

∫ τ ε

0
e−λsD+

ij ∂2
ij f (Y ε(s)) ds + O(ε),

which is precisely the required result. �

Additionally we have that the solution to L̄iu = λu on Ii , u = 1 on {x1 = 0} and
{x1 = ±1}, is bounded and has bounded derivatives of all orders. This follows from

the fact that u is given explicitly by u(x) = C1e

√
λ(D±

11)
−1x1 + C2e

−
√

λ(D±
11)

−1x1 for
some constants Ci . We now show that the process Y ε satisfies the bound (4.2), that
is, it does not spend too much time in the vicinity of the interface.

LEMMA 4.4. If we choose δ = εα for any α ∈ (1
2 ,1), then (4.2) holds for the

family of processes Xε from Section 2.

PROOF. Again, it suffices to show the bound for the process Y ε since it differs
from Xε by O(ε). We would like to use an argument similar to what can be used
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in the one-dimensional case [17], that is, we time-change the corrected process Y ε

in such a way that it becomes a diffusion with diffusion coefficient 1. Its drift then
vanishes outside of the interface and is bounded by K/ε for some K > 0. At this
stage, one compares this process to the “worst-case scenario” process Zε given by

dZε = b̂(Zε) dt + dB(t),

where the drift b̂ is given by

b̂(z) =
⎧⎨
⎩

−Kε−1, if z ∈ [0, lε),
Kε−1, if z ∈ (−lε,0),
0, otherwise,

for some l ∈ R. It can then be shown that Zε spends more time in the interface than
Y ε does, so that the requested bound can be obtained from a simple calculation.

The problem with this argument is that in the multi-dimensional case the time-
change required to turn the first component of Y ε into a diffusion with unit diffu-
sion coefficient is given by

Tt = inf

{
s ∈ R+ :

∫ s

0

n∑
i=1

(
δ1i + ∂ig1(ε

−1Xε(u))
)2

du > t

}
.(4.7)

We do not know of an argument giving a uniform bound from below on the quantity
appearing under the integral in this expression. Therefore, an upper bound on the
time spent by the process Zε in the interval (−δ, δ) does not give us any control
on the time spent by Y ε (and therefore Xε) in that interval.

Because of this, we modify our argument in the following way. We break up the
integral in (4.2) as

Ex

[∫ ∞
0

e−λt1(−δ,δ)(Y
ε
1 (t)) dt

]
= Ex

[∫ ∞
0

e−λt1(−cε,cε)(Y
ε
1 (t)) dt

]
(4.8)

+ Ex

[∫ ∞
0

e−λt1(−δ,−cε)(Y
ε
1 (t)) dt

]
(4.9)

+ Ex

[∫ ∞
0

e−λt1(cε,δ)(Y
ε
1 (t)) dt

]
,

where Y ε
1 is the first component of Y ε and c is a value to be determined. By symme-

try, the last two terms are of the same order, so that it is sufficient to bound the first
two terms. In order to bound the first term, we use the argument outlined above, but
we replace Y ε by the process Ỹ ε given by Ỹ ε(t) = Xε(t) + εg̃(ε−1Xε(t)), where
the corrector g̃ has the following properties:

1. The function g̃(x) is smooth, periodic in the variables parallel to the interface,
and equal to g(x) for x /∈ Ic1 for some c1.

2. One has the implication Y ε ∈ Icε ⇒ Ỹ ε ∈ Ic2ε for some c2 < c1.
3. If Ỹ ε ∈ Ic2ε , then g̃(ε−1Xε) = 0.
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It is always possible to satisfy these properties by choosing c1 sufficiently large
and setting g = 0 in a sufficiently wide band around the interface. We now set
Z̃(t) = Ỹ (T̃t ), where T̃t is defined as in (4.7), but with g replaced by g̃, so that it
follows from the second property that one has the bound

Ex

∫ ∞
0

e−λt1(−cε,cε)(Y
ε
1 (t)) dt ≤ Ex

∫ ∞
0

e−λt1(−c2ε,c2ε)(Ỹ
ε
1 (t)) dt

≤ Ex

∫ ∞
0

e−λTt 1(−c2ε,c2ε)(Z̃
ε
1(t)) dTt .

At this stage, we remark that since the function g̃ has bounded derivatives, there
exists a constant K1 such that Tt ≥ K1t almost surely. On the other hand, it follows
from the last property that one actually has dTt = dt whenever Ỹ ε ∈ Ic2ε , so that
this expression is bounded by

Ex

∫ ∞
0

e−K1t1(−c2ε,c2ε)(Z̃
ε
1(t)) dt.

This expression in turn can be bounded by O(ε) just as in [17].
We now proceed to bounding the term (4.9). For this, let us first introduce a

constant c3 < c and make c from (4.8) sufficiently large such that:

4. The implication Xε(t) ∈ Ic3ε ⇒ Y ε(t) ∈ Icε holds.
5. One has c3 > η + 1.

Then, we define a series of stopping times {φ′
n}n and {σ ′

n}n recursively by φ′−1 =
0, . . . , σ ′

n = inf{t ≥ φ′
n−1 :Xε

1(t) /∈ (−2δ,−c3ε + ε)} and φ′
n = inf{t ≥ σ ′

n :Xε
1(t) ∈

(−δ,−c3ε)}.
Now we can use the strong Markov property as in [12], Lemma 4.1, with the

stopping times φ′
n to obtain the bound Ex[∑∞

n=0 e−λσ ′
n(ε)] = O(1

ε
), uniformly in

the initial point x for x ∈ {x :x1 = −c3ε + ε} ∪ {x :x1 = −2δ}. This is a conse-
quence of the fact that Ex[e−λσ ′

0] = 1 − O(ε) uniformly. Furthermore, it follows
from the definition of these stopping times, property 4 and the strong Markov
property that (4.9) is bounded by

Ex

∫ ∞
0

e−λt1(−δ,−c3ε)(X
ε
1(t)) dt ≤ Ex

∑
n≥0

∫ σ ′
n

φ′
n−1

e−λt dt

≤ λ−1
Ex

∑
n≥0

e−λφ′
n−1(σ ′

n − φ′
n−1)

(4.10)

≤ λ−1

(
Ex

∞∑
n=0

e−λφ′
n(ε)

)
sup
x

Exσ
′
0

≤ C

ελ
sup
x

Exσ
′
0.
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It follows that it suffices to be able to choose δ in such a way that Exσ
′
0 is o(ε)

uniformly in the initial point. Specifically, we will show that (4.10) is O(δ2), so
that the claim follows.

This will be a consequence of the following result.

LEMMA 4.5. Let X− be as in (1.3) and define X−,ε(t) = εX−(ε−2t). Let
τ = inf{t > 0 :X−,ε

1 (t) /∈ [−1,0]}. Then, there exists a constant C such that

Exτ ≤ C,

independently of ε ∈ (0,1] and independently of x ∈ R
d .

Before we prove Lemma 4.5, we use it to complete the proof of Lemma 4.4.
It follows from property 5. that up to time σ ′

0, the process Xε is identical in law
to the process X−,ε . Furthermore, the stopping time σ ′

0 is certainly bounded from
above by the first exit time of the first component of X−,ε from (−2δ,0). Rescaling
space by a factor 2δ and rescaling time correspondingly by 4δ2, we deduce from
Lemma 4.5 that Eσ ′

0 ≤ 4Cδ2, uniformly in the initial condition as required. �

We now turn to the proof of the lemma.

PROOF OF LEMMA 4.5. Denote by U the region {x ∈ R
d :x1 ∈ [−1,0]} and

define f ε by f ε(x) = Exτ . Then f ε satisfies

Lεf ε = −1, f ε(x) = 0 for x ∈ ∂U ,

where Lε = 1
2� + ε−1b−(ε−1·)∇x . In order to obtain a bound on f , we will give

a uniformly bounded (uniformly over ε) function gε such that it satisfies

Lεgε = −1, gε(x) ≥ 0 for x ∈ ∂U .(4.11)

It then follows from the strong maximum principle (which we can apply since our
diffusion is periodic in the directions in which U is unbounded) that gε ≥ f ε , so
that the requested bound holds.

We use a standard multiscale expansion for gε of the form

gε = g0 + εg1 + ε2g2.

Now to find such a gε . We proceed by starting off with a constant order term, that
is, the typical term one would expect for the escape time if we were dealing with a
Brownian motion, then removing the order 1

ε
terms that arise when the operator Lε

acts on the constant order term by adding an order ε term. Then finally we add an
order ε2 term to remove the constant order terms that are produced by the action
of Lε on the order ε term. Incidentally, this approach of correction works exactly
with the maximum order term in ε being 2 and produces a series of terms that are
known and have the right properties to provide a uniform bound.
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Taking guidance from the fact that the homogenized process is given by Brown-
ian motion, we make the ansatz g0(x) = C2 − C1x1(1 + x1), for C1 and C2 two
constants to be determined. Applying Lε to g0 yields

Lεg0(x) = −C1 − C1

ε
b−,1

(
x

ε

)
(1 + 2x1)

for b−,1 the first component of b−. Our aim now is to choose g1 in such a way that
Lg1 contains a term of order ε−1 that precisely cancels out the second term in this
expression. Denote as in the introduction by g− the unique centered solution to the
Poisson equation

Lg− = b−,(4.12)

where L = 1
2� + b−∇x is the generator for the nonrescaled process. We then set

g1(x) = C1(1 + 2x1)g−,1(ε
−1x), where g−,1 is the first component of g−, and we

note that

εLεg1(x) = C1

ε
b−,1

(
x

ε

)
(1 + 2x1)

+ 2C1b−,1

(
x

ε

)
g−,1

(
x

ε

)
+ 2C1

∂g−,1

∂x1

(
x

ε

)
(4.13)

= C1

ε
b−,1

(
x

ε

)
(1 + 2x1) + C1F

(
x

ε

)
,

for some periodic function F independent of ε and of C1. The term involving F

appearing in this expression is still of order one, so we aim to compensate it by
a judicious choice of g2. It is not necessarily centred with respect to the invariant
measure μ of our process, but there exists a periodic centred function h such that

Lh = F − K,

K =
∫

F(x)μ(dx) = −
∫

|∇g−,1(x)|2μ(dx) + 2
∫

∂g−,1

∂x1
μ(dx).

Finally, setting g2(x) = −h(ε−1x), we obtain

Lεgε = C1(K − 1) = −C1

∫
|e1 − ∇g−,1(x)|2μ(dx).(4.14)

Since the integral is strictly positive, the right-hand side can be made to be equal
to −1. Furthermore, since the corrector terms εg1 + ε2g2 are uniformly bounded
for ε < 1, it is straightforward to find a constant C2 that ensures that g(x) ≥ 0 for
x ∈ ∂U , thus concluding the proof. �
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5. Computation of the transmissivity coefficient. The aim of this section is
to prove that the following proposition holds.

PROPOSITION 5.1. The identity (4.3) holds for the family of processes Xε in
Section 2 with p± given by (2.2).

Let us first introduce some notation. Given a starting point x ∈ Iη, we set
p

x,k
+ = Px(X(τ (k)) > 0), and similarly for p

x,k
− , where τ (k) is the first hitting time

of ∂Ik . We furthermore set

p̄k+ = sup
x∈Iη

p
x,k
+ , pk

+ = inf
x∈Iη

p
x,k
+ , p

(k)
+ = 1

2
(p̄k+ + pk

+),

and similarly for p−. It is clear that Proposition 5.1 follows if we can show that
pk+ converges to a limit satisfying (2.2) and p̄k+ − pk

+ → 0 as k → ∞.
We will first show the latter, as it is relatively straightforward to show. In order

to show the convergence of pk+, our main ingredient will be to show that the in-
variant measure μ(dx) for the process X looks more and more similar to μ±(dx)

as x1 → ±∞. Note that in this whole section, we will always consider X and X±
as processes on R × T

d−1, obtained by identifying points (x, y) such that x1 = y1
and xj −yj ∈ Z for j ≥ 2. With this interpretation, the interface is compact and we
will show that the processes are recurrent. If we were to consider them as processes
in R

d , they would not be recurrent for d ≥ 3.
Before we show that indeed p̄k+ − pk

+ → 0, we obtain some recurrence proper-
ties of X and ensure that it visits any open set in Iη sufficiently often before the
hitting time τ (k).

LEMMA 5.2. Fix a neighborhood γ ⊂ Iη. Then the probability for X to enter
γ before hitting ∂Ik , starting from an arbitrary initial point in Iη tends to 1
uniformly as k → ∞. In particular, the process X is recurrent.

Our first step in showing this result is to argue that if the process starts at dis-
tance O(1) of the interface, then it will return to the interface with overwhelming
probability before exiting Ik .

LEMMA 5.3. There exists K > 0 such that the probability, starting at x, for
X to return to Iη before hitting ∂Ik , is bounded from above by 1 − x−K

k
and from

below by 1 − x+K
k

.

PROOF. Denote by f k(x) the probability of hitting Iη before ∂Ik , start-
ing from x. We assume without loss of generality that x1 > 0, since the case
x1 < 0 follows using the same argument. The function f k then satisfies the equa-
tion Lf k = 0, endowed with the boundary conditions f k(x) = 1 if x1 = η and
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f k(x) = 0 if x1 = k. As in the proof of Lemma 4.5, we aim to construct a function
gk satisfying Lgk = 0 and such that either gk(x) ≤ f k(x) on the two boundaries or
gk(x) ≥ f k(x) on the two boundaries. The claim then follows from the maximum
principle.

Let g+ be as in (4.12) and set

gk(x) = 1 − k−1(K + x1 − g+,1(x)
)
,

for some constant K to be determined. It is straightforward to check that gk does
indeed satisfy Lgk = 0, as well as the required inequalities on the boundary, pro-
vided that K is either sufficiently large or sufficiently small. This concludes the
proof. �

We now use the result of Lemma 5.3 to prove Lemma 5.2. This is done using
the strong Markov property in conjunction with success/failure trials.

PROOF OF LEMMA 5.2. Consider the two hyperplanes that delimit Iη and
two further hyperplanes at distance m from Iη, with m a sufficiently large constant
to be determined later. We then break the process into excursions from ∂Iη to
∂Iη+m and back.

More precisely, we define two sets of stopping times {σm
n }n and {φm

n }n re-
cursively by σm

1 = inf{t ≥ 0 :X(t) ∈ ∂Iη+m}, . . . , φm
n = inf{t > σm

n :X(t) ∈ Iη},
σm

n+1 = inf{t > φm
n :X(t) ∈ ∂Iη+m}. We furthermore denote by Fn the σ -algebra

generated by trajectories of X up to the time φm
n and by F̄n the σ -algebra gener-

ated by trajectories of X up to the time σm
n+1. We also denote by τγ the first hitting

time of the set γ and by τ (k) the first hitting time of the set ∂Ik .
It follows from the ellipticity of X and the resulting smoothness of its transition

probabilities that there exists some p > 0 such that infx∈∂Iη
P1(x, γ ) = 2p > 0.

Furthermore, it is straightforward, for instance using a comparison argument with
a process with constant drift away from the interface and using the continuity of
paths, to show that

lim
m→∞ sup

x∈Iη

Px(σ
m
1 ≤ 1) = 0.(5.1)

It follows that we can choose m large enough so that the probability appearing in
(5.1) is bounded above by p. As a consequence, for such a choice of m, one has
the almost sure bound

P(τγ < σm
n+1|Fn) ≥ p.(5.2)

On the other hand, it follows from Lemma 5.3 that the probability that the process
hits ∂Ik between σm

n and φm
n is bounded from above uniformly by βk = O(k−1)

so that, almost surely,

P
(
τ (k) < φm

n+1|F̄n

)≤ βk.(5.3)
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Note furthermore that by construction the event appearing in (5.2) is F̄n-
measurable.

Denote now by Yn a Markov chain with states {−1,0,1} such that {±1} are
absorbing and such that P(Yn+1 = −1|Yn = 0) = p, P(Yn+1 = 1|Yn = 0) = βk .
As a consequence of (5.2) and (5.3), it is then possible to couple Y and X in such
a way that the following two implications hold almost surely:

{Yn = 0 and Yn+1 = −1} ⇒ {
φm

n < τγ < σm
n+1 < τ(k)},{

σm
n+1 < τ(k) < φm

n+1 < τγ

}⇒ {(Yn = 0 and Yn+1 = 1)}.
It follows that the probability of entering γ before the hitting time τ (k) is bounded
from below by

P
(
τγ < τ (k))≥ P

(
lim

n→∞Yn = −1
)

= p

p + βk

.

Since p is fixed and βk = O(k−1), this quantity can be made arbitrarily close to 1.
This shows that the set γ is recurrent for X. Since furthermore X has transition

probabilities that have strictly positive densities with respect to Lebesgue mea-
sure (as a consequence of the ellipticity of the equations describing it), recurrence
follows from [20], Theorem 8.0.1. �

We now use this result to prove the following proposition.

PROPOSITION 5.4. p̄k+ − pk
+ → 0 as k → ∞.

PROOF. The idea is to use the fact that, before the process exits Ik , it has had
sufficient amount of time to forget about its initial condition by visiting a small set
on which a strong minorizing condition holds for its transition probabilities.

Fix a value β > 0. Our aim is to show that there then exists k0 > 0 such that

pk

± ≥ p
0,k
± − β,

say, for every k ≥ k0. Since p
x,k
+ = 1 − p

x,k
− , the claim then follows. We restrict

ourselves to the bound for p+ since the other bound can be obtained in exactly the
same way.

The argument is now the following. It follows from the smoothness of transition
probabilities that there exists a neighborhood γ of the origin such that the transition
probabilities at time 1 for X, starting from γ satisfy the lower bound

ρ(y) = inf
x∈γ

P1(x, y),

with
∫
R×Td−1 ρ(y) dy ≥ 1 − β/2. It then follows immediately that for x ∈ γ , one

has p
x,k
+ ≥ p

0,k
+ − β/2 − Px(∃t ≤ 1 :X(t) ∈ ∂Ik). For arbitrary x, it therefore

follows from the strong Markov property that

p
x,k
+ ≥ p

0,k
+ − β/2 − sup

y∈γ
Py

(∃t ≤ 1 :X(t) ∈ Ik

)− Px(X hits ∂Ik before γ ).
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The last term can be made smaller than β/4 by Lemma 5.2. The remaining term
Py(∃t ≤ 1 :X(t) ∈ Ik) on the other hand was already shown to be arbitrary small
in (5.1). �

We next show that the invariant measure of the process converges to that of the
relevant periodic process with increasing distance from the interface.

PROPOSITION 5.5. Let A denote a bounded measurable set and denote by
μ the (unique up to scaling) invariant σ -finite measure of the process X. Denote
furthermore by μ± the invariant measure of the relevant periodic process, normal-
ized in such a way that μ±([k, k +1]×T

d−1) = 1 for every k ∈ Z. Then there exist
normalization constants q± such that

lim
k→∞

(|μ(A + k) − q+μ+(A)| + |μ(A − k) − q−μ−(A)|)= 0.(5.4)

(Here k is an integer.) Furthermore, this convergence is exponential, and uniform
over the set A if we restrict its diameter.

REMARK 5.6. We used the shorthand notation A + k for {x + k :x ∈ A}.

PROOF OF PROPOSITION 5.5. We restrict ourselves to the estimate of μ(A +
k), since the one on μ(A − k) is similar. For fixed k ≥ 0, we introduce the se-
quence of stopping times given by φ

(k)
0 = inf{t ≥ 0 :X1(t) = k} and then recur-

sively σ
(k)
n = inf{t ≥ φ

(k)
n : |X1(t) − k| = 1}, φ

(k)
n+1 = inf{t ≥ σ

(k)
n :X1(t) = k}.

This allows us to define an embedded Markov chain Z(k) on T
d−1 by setting

Z
(k)
n = �X(φ

(k)
n ), where �(x,y) = y for (x, y) ∈ R × T

d−1.
We similarly define an embedded Markov chain Z for the process X+. (By

periodicity of X+, the choice of k is unimportant for the law of Z, so that we
drop its dependence of k.) Denote by π(k) the invariant measure for Z(k) and by
π the invariant measure for Z. We then define σ -finite measures μ+ and μ(k) on
R × T

d−1 through the identities

μ(k)(B) =
∫

Td−1
Ex+ke1

∫ φ
(k)
1

0
1B(X(s)) ds π(k)(dx),(5.5)

μ+(B) =
∫

Td−1
Ex+ke1

∫ φ
(k)
1

0
1B

(
X+(s) − k

)
ds π(dx).(5.6)

[Here and below we make a slight abuse of notation and identify elements x ∈
T

d−1 with the element (0, x) ∈ R×T
d−1.] It follows from [16], Theorem 2.1, that

μ(k) is invariant for the process X and μ+ is invariant for X+. Therefore, there
exist constants ck > 0 such that μ(k) = ckμ since the invariant measure for X is
unique up to normalization. Note that by translation invariance of X+, μ+ does
not depend on k.
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Note that we can assume without any loss of generality that A ⊂ {x :x1 > 0} [it
suffices to shift it by a finite number of steps to the right in (5.4)]. In this case, we
can rewrite (5.5) as

μ(k)(A + k) =
∫

Td−1
Ex+ke1

∫ φ
(k)
1

0
1A

(
X+(s) − k

)
ds π(k)(dx).(5.7)

This is because X(t) = X+(t) for t ≤ σ
(k)
1 and, if X(σ

(k)
1 ) < k, then

∫ φ
(k)
1

σ
(k)
1

1A

(
X(s) − k

)
ds = 0,

whereas if X(σ
(k)
1 ) > k, then X(t) = X+(t) for t ≤ φ

(k)
1 . This shows that the claim

follows if we can show that ‖π − π(k)‖TV → 0 as k → ∞ and there exists a
constant c∞ such that ck → c∞.

Let us first show that the latter is a consequence of the former. Setting
Bk = [k, k + 1] × T

d−1, we have ck+1/ck = μ(k)(Bk+1)/μ
(k+1)(Bk+1). On

the other hand a straightforward trial/error argument allows one to show that

Ex

∫ φ
(0)
1

0 1A(X+(s)) ds is bounded uniformly over x ∈ T
d−1. It then follows im-

mediately from (5.7) that there exists a constant C such that∣∣μ(k)(Bk+1) − μ(B0)
∣∣≤ C

∥∥π − π(k)
∥∥

TV,

and similarly for |μ(k+1)(Bk+1)−μ(B0)|. It follows that provided that
∑

k≥0 ‖π −
π(k)‖TV < ∞, one does indeed have ck → c∞.

Denote now by P the transition probabilities for Z and by P (k) the transition
probabilities for Z(k). Then, we can write P = QR, where R is the Markov kernel
from T

d−1 to {−1,1} × T
d−1 given by R(x,A) = Px(X

+(σ1) ∈ A) and Q is the
Markov kernel from {−1,1} × T

d−1 to T
d−1 given by Q(x,A) = Px(X

+(φ0) ∈
A) for X1(0) = 0, σ1 = inf{t > 0 : |X1(t)| = 1} and φ1 = inf{t > σ1 :X1(t) = 0}.
Since the diffusion X+ is elliptic, both Q and R are strong Feller and irreducible.
It follows from the Doeblin–Doob–Khas’minskii theorem [10], Proposition 4.1.1,
that P(x, ·) and P(y, ·) are mutually equivalent for any x, y ∈ T

d−1. Furthermore,
it follows from the Meyer–Mokobodzki theorem [9, 15, 27] that the map x �→
P(x, ·) is continuous in the total variation topology. We conclude that the map
(x, y) �→ ‖P(x, ·) − P(y, ·)‖TV reaches its maximum and that this is strictly less
than 2, so that P satisfies Doeblin’s condition. It follows that there exists a constant
η < 1 such that P has the contraction property

‖Pν1 − Pν2‖TV ≤ η‖ν1 − ν2‖TV,

for any two probability measures ν1, ν2 on T
d−1. Therefore, if we can find con-

stants εk such that

sup
x∈Td−1

∥∥P(x, ·) − P (k)(x, ·)∥∥TV ≤ εk,(5.8)
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then we have∥∥π − π(k)
∥∥

TV ≤ ∥∥Pπ − Pπ(k)
∥∥

TV + ∥∥Pπ(k) − P (k)π(k)
∥∥

TV
(5.9)

≤ η
∥∥π − π(k)

∥∥
TV + εk,

so that ‖π −π(k)‖TV ≤ εk/(1−η). The problem thus boils down to obtaining (5.8)
for an exponentially decaying sequence εk .

It follows from the same calculation as in Lemma 5.3 that the probability that X

reaches the interface Iη before time φ
(k)
1 when started on the hyperplane {x1 = k}

is bounded from above by O(1/k). This yields the “trivial” bound εk ≤ O(1/k),
which unfortunately is not even summable. However, a more refined analysis al-
lows to obtain Proposition 5.7 below, thus concluding the proof. �

PROPOSITION 5.7. There exists a constant ρ ∈ (0,1) such that εk ≤ O(ρk).

PROOF. The intuitive idea behind the proof of Proposition 5.7 is that if the
process goes all the way back to the interface then, by the time it reaches again
the plane {x1 = k}, its hitting distribution depends only very little on its behavior
near the interface. In order to formalize this, let us introduce the Markov transition
kernel Q+ from T

d−1 to T
d−1 which is such that Q+(x, ·) is the hitting distrib-

ution of the plane {1} × T
d−1 for the process X+ started at (0, x). Similarly, we

denote by Q�,k(x, ·) the hitting distribution of the plane {k}×T
d−1 for the process

X started at (�, x).
For a fixed integer � > η, our aim is to show that Q�,k(x, ·) gets very close

to Qk−�+ (x, ·). Here, we denote by Qk+ the kth iteration of the Markov transition
kernel Q+. With this notation at hand, define the quantities

αk ≡ sup
x∈Td−1

‖Q�,k(x, ·) − Qk−�+ (x, ·)‖TV.

Note now that since, for fixed �, the probability that X reaches the interface I�

before time φ
(k)
1 when started on the hyperplane {x1 = k} is bounded from above

by O(1/k), we have

εk ≤ sup
x∈Td−1

‖Qk−1,k(x, ·) − Q+(x, ·)‖TV

(5.10)

≤ C

k
sup

x∈Td−1
‖Q�,k(x, ·) − Qk−�+ (x, ·)‖TV ≤ C

k
αk,

so that it suffices to obtain an exponentially decaying bound on the αk’s.
We now look for a recursion relation on the αk’s which then yields the required

bound. We have the identities Q�,k = Qk−1,kQ�,k−1 and Qk−�+ = Q+Qk−�−1+ . It
follows from the triangle inequality that one has the bound

‖Q�,kδx − Qk−�+ δx‖TV ≤ ‖(Qk−1,k − Q+)Q�,k−1δx‖TV
(5.11)

+ ‖Q+(Q�,k−1δx − Qk−�−1+ δx)‖TV.



PERIODIC HOMOGENIZATION WITH AN INTERFACE 673

At this stage, we note that by exactly the same reasoning as for P , the kernel Q+
satisfies Doeblin’s condition. Therefore, there exists a constant η̄ < 1 such that

‖Q+ν1 − Q+ν2‖TV ≤ η̄‖ν1 − ν2‖TV,

for any two probability measures ν1, ν2. This and the definition of αk immediately
implies that the second term in (5.11) is uniformly bounded by η̄αk−1. On the other
hand, it follows from (5.10) that the first term is bounded by C

k
αk , so that

αk ≤ C

k
αk + η̄αk−1,

for some fixed constant C. The claim now follows at once. �

Finally, the last estimate that we need is the following. Denote by τ the first
hitting time of the interface ∂Iη and fix an arbitrary smooth positive function ϕ

that is supported in the interval [1,2]. Set furthermore ϕ+
n (x) = n−2ϕ(n−1x1) and

ϕ−
n (x) = n−2ϕ(−n−1x1). Then we have the following lemma.

LEMMA 5.8. With the above notation, setting ϕ̄ = ∫ 2
1 ϕ(x)dx, we have∣∣∣∣Ex

∫ τ

0
ϕ±

n (X±(t)) dt − 2ϕ̄

D±
11

∣∣∣∣→ 0,

uniformly for all x ∈ {±n} × T
d−1 as n → ∞.

PROOF. Again, we only consider the expression for X+, the one for X− fol-
lows in the same way. It follows from standard homogenization results [4, 23] that
the law of n−1X+(n2t) converges weakly as n → ∞ to the law of Brownian mo-
tion with diffusion coefficient D+

11. It thus follows from [6], Corollary 8.4.2, that
the law of n−1X+(n2t), where X+ is stopped at the first hitting time of Iη con-
verges weakly as n → ∞ to the law of Brownian motion stopped when it reaches
the hyperplane I0.

Denoting this limiting process by X∞+ , an explicit calculation allows to check
that Ex

∫ τ
0 ϕ(X∞+ (t)) dt = 2ϕ̄

D±
11

when x1 = 1. Now, for any fixed T > 0, the map

�T :X �→ ∫ τ∧T
0 ϕ+

n (X(t)) dt is continuous, so that Ex

∫ τ∧T
0 ϕ+

n (X+(t)) dt con-
verges as n → ∞ to Ex

∫ τ∧T
0 ϕ(X∞+ (t)) dt . Letting T → ∞ concludes the proof.

�

We now have all the tools that we need to show that the exit probabilities from
the interface converge to the desired limiting values.

PROOF OF PROPOSITION 5.1. Similarly to the proof of Proposition 5.5 we use
a representation of the invariant measure μ in terms of an embedded Markov chain.
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This time, we consider the stopping times φ̃
(k)
0 = inf{t ≥ 0 : |X1(t)| = η} and then

σ̃
(k)
n = inf{t ≥ φ̃

(k)
n : |X1(t)| = k}, φ̃

(k)
n+1 = inf{t ≥ σ̃

(k)
n : |X1(t)| = η}. Denoting as

similar to before by π̃ (k) the invariant measure of the embedded Markov chain
Z̃

(k)
n = X(φ̃

(k)
n ) (which is now a Markov chain on ∂Iη), we set

μ̃(k)(B) =
∫
∂Iη

Ex

∫ φ̃
(k)
1

0
1B(X(s)) ds π̃ (k)(dx).(5.12)

Again, the measures μ̃(k) differ from μ purely through a scaling factor, so that
there are constants Ck such that μ̃(k)(B) = C̃kμ(B) for every measurable set B .

The idea now is to evaluate μ̃(k)(ϕ±
k ) in two different ways and to compare the

resulting answers. First, we note from Proposition 5.5 that

μ(k)(ϕ±
k ) = Ck

k

(
q±ϕ̄ + O(k−1)

)
.

On the other hand, combining Proposition 5.4 and Lemma 5.8 with the definition
(5.12), we see that

μ(k)(ϕ±
k ) = 2p

(k)
± ϕ̄

D±
11

+ o(1)(5.13)

as k → ∞. Combining these two identities, we see that

p
(k)
+

p
(k)
−

= D+
11q+

D−
11q−

+ o(1),

thus concluding the proof. �

6. Computation of the drift along the interface. This section is devoted to
the computation of the drift coefficients αj along the interface. Denote by τn the
first hitting time of ∂In by the process X. With this notation, recall that, by (4.4),
we have the identity

αj = lim
n→∞

1

n
Ex

∫ τn

0
bj (Xs) ds,(6.1)

provided that this limit exists and is independent (and uniform) over starting points
x ∈ Iη.

PROPOSITION 6.1. The expression on the right-hand side in (6.1) converges
to the expression given by (2.4), uniformly in x ∈ Iη.

In order to show this, we will use the same construction as in the proof of Propo-
sition 5.1. In particular, recall the definition (5.12) of the measures μ̃(k), which are
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nothing but multiples of the invariant measure μ, as well as the sequence of stop-
ping times φ̃

(k)
n and σ̃

(k)
n . Denote furthermore by π̃

(k)
n the invariant measure for the

process on ∂Iη with transition probabilities P(x,A) given by

P(x,A)
def= Px

(
X
(
φ̃

(k)
1

) ∈ A|τn > φ̃
(k)
1

)
.(6.2)

Our proof will proceed in two steps. First, we show that the limit (6.1) exists
and is equal to the value (2.4) given in the interface, provided that we start the
process X in the stationary measure π̃

(k)
n and let k → ∞. In the second step, we

then show by a coupling argument similar to the proof of Proposition 5.4 that the
expression in (6.1) depends only weakly on the initial condition as n gets large,
thus concluding the proof.

Before we proceed with this program, we perform the following preliminary
calculation.

LEMMA 6.2. One has the normalization

lim
k→∞k−2μ̃(k)([−k, k] × T

d−1) = 2
(

p+
D+

11

+ p−
D−

11

)
def= β,

where the coefficients p± are as in (2.2). In particular, if μ is normalized as in the
Introduction, then one has k−1μ̃(k) ≈ βμ for large values of k.

PROOF. We know from Proposition 5.5 that μ(dx) → μ±(dx) at exponential
rate as x1 → ±∞, so that on large scales μ behaves like a multiple of Lebesgue
measure on either side of the interface. Furthermore, we know from Proposition 5.1
that the corresponding normalization constants satisfy the relation (2.2). Combin-
ing this with the fact that μ̃(k) is just a multiple of μ, the result then follows from
(5.13). �

Using this result, we obtain the following proposition.

PROPOSITION 6.3. The limit

αj = lim
k→∞ lim

n→∞
1

n
E

π̃
(k)
n

∫ τn

0
bj (Xs) ds,

exists and is equal to

β

∫
R×Td−1

(
bj (x) + Lgj (x)

)
μ(dx),(6.3)

where g is the function fixed in Section 3 and the constant β is as in Lemma 6.2.

REMARK 6.4. Note that if φ is any smooth compactly supported function,
then the identity

∫
Lφ(x)μ(dx) = 0 holds. As a consequence, the expression (6.3)

is independent of the choice of the compensator g.
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PROOF OF PROPOSITION 6.3. It follows from the definition of π̃
(k)
n and the

strong Markov property of X that one has the identity

E
π̃

(k)
n

∫ τn

0
b̃j (Xs) ds

= ∑
m≥0

(
P

π̃
(k)
n

(
φ̃

(k)
1 < τn))m

E
π̃

(k)
n

∫ φ̃
(k)
1 ∧τn

0
b̃j (Xs) ds(6.4)

=
E

π̃
(k)
n

∫ φ̃
(k)
1 ∧τn

0 b̃j (Xs) ds

P(φ̃
(k)
1 > τn)

.

Note now that it follows from Lemma 5.3 that

P
(
φ̃

(k)
1 > τn)= k/n + O(1/n).(6.5)

Since limn→∞ gj (X(τn))/n = 0 and furthermore, using the same argument as in

(5.9), we have limn→∞ ‖π̃ (k)
n − π̃ (k)‖TV = 0 for every k > 0, so that

lim
n→∞

1

n
E

π̃
(k)
n

∫ τn

0
bj (Xs) ds = lim

n→∞
1

n
E

π̃
(k)
n

[∫ τn

0
bj (Xs) ds + gj (X(τn))

]

= lim
n→∞

1

n
E

π̃
(k)
n

∫ τn

0
b̃j (Xs) ds

= lim
n→∞

1

k
Eπ̃ (k)

∫ φ̃
(k)
1 ∧τn

0
b̃j (Xs) ds(6.6)

= 1

k
Eπ̃ (k)

∫ φ̃
(k)
1

0
b̃j (Xs) ds

= 1

k

∫
R×Td−1

b̃j (x)μ̃(k)(dx).

Here, we used (6.4) and (6.5) to go from the second to the third line and we used
the definition of the μ̃(k) to obtain the last identity. The claim now follows from
Lemma 6.2. �

We can now complete the proof.

PROOF OF PROPOSITION 6.1. In view of Proposition 6.3, it remains to show
that

lim
n→∞

1

n

∣∣∣∣Ex

∫ τn

0
b(Xs) ds − Ey

∫ τn

0
b(Xs) ds

∣∣∣∣= 0,

uniformly over x, y ∈ Iη. Fix an arbitrary value of k > η and consider again the
transition probabilities P given by (6.2). Since they arise as exit probabilities for
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an elliptic diffusion, we can show again by the same argument as in the proof of
Proposition 5.5 that P satisfies the Doeblin condition for some constant η, namely
‖Pν1 − Pν2‖TV ≤ (1 − η)‖ν1 − ν2‖TV, uniformly over probability measures ν1
and ν2 on ∂Iη. Note now that one has the identity

Ex

∫ τn

0
b(Xs) ds = ∑

m≥0

( ∏
0≤�<m

P
x
�

(
φ̃

(k)
1 < τn))

E
x
m

∫ φ̃
(k)
1 ∧τn

0
b(Xs) ds

(6.7)

= ∑
m≥0

Px

(
φ̃(k)

m < τn)
E

x
m

∫ φ̃
(k)
1 ∧τn

0
b(Xs) ds,

where we denote by Pm (resp., Em) the probability (resp., expectation) for the
process X started at P m(x, ·).

Note now that we have the identity

Px

(
φ̃(k)

m < τn)= Px

(
φ̃

(k)
� < τn)+ PP �(x,·)

(
φ̃

(k)
m−� < τn).

Also, by choosing k sufficiently large (but independent of n), we can ensure that
there exist constants c,C > 0 such that

1 − C

n
≤ Px

(
φ̃

(k)
1 < τn)≤ 1 − c

n
,

uniformly for x ∈ Iη and for n sufficiently large. It also follows from the contrac-
tion properties of P that∣∣Px

m

(
φ̃

(k)
1 < τn)− P

y
m

(
φ̃

(k)
1 < τn)∣∣≤ 2(1 − η)m,

uniformly over x, y ∈ Iη.
Combining these bounds, we obtain for every � ≤ m ∧ n the estimate

∣∣Px

(
φ̃(k)

m < τn)− Py

(
φ̃(k)

m < τn)∣∣≤ K�

n
+ 2(1 − η)�.

In particular, there exists a constant K , such that we have the uniform bound

∣∣Px

(
φ̃(k)

m < τn)− Py

(
φ̃(k)

m < τn)∣∣≤ K√
n

∧ Km

n
∧
(

1 − c

n

)m

,

valid for every m > 0 and every n sufficiently large. Summing over m, it follows
that ∑

m≥0

∣∣Px

(
φ̃(k)

m < τn)− Py

(
φ̃(k)

m < τn)∣∣≤ K
√

n,

for a possibly different constant K .
On the other hand, it is possible to check that there exists a constant C (depend-

ing on k) such that ∣∣∣∣Ex

∫ φ̃
(k)
1 ∧τn

0
b(Xs) ds

∣∣∣∣≤ C,
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uniformly over x ∈ Iη, so that

∣∣∣∣Ex
m

∫ φ̃
(k)
1 ∧τn

0
b(Xs) ds − E

y
m

∫ φ̃
(k)
1 ∧τn

0
b(Xs) ds

∣∣∣∣≤ 2C(1 − η)m.

Inserting these bounds into (6.7), we obtain∣∣∣∣Ex

∫ τn

0
b(Xs) ds − Ey

∫ τn

0
b(Xs) ds

∣∣∣∣≤ 2C
∑
m≥0

(1 − η)m + C
√

n,

so that the requested bound follows at once. �

6.1. Bound on the second moment. In order to conclude the verification of
the assumptions of Theorem 2.4, it remains to show that the second bound holds
in (4.4). For the nonrescaled process, we can reformulate this as a proposition.

PROPOSITION 6.5. For every η̄ > 0, there exists a constant C > 0 such that
the bound

Ey‖Y(τn) − y‖2 ≤ Cn2,

holds for every n ≥ 1 and every initial condition y ∈ Iη̄.

PROOF. It follows from (3.1) that

Ey‖Y(τn) − y‖2 ≤ 2Ey

∥∥∥∥
∫ τn

0
b̃(Xs) ds

∥∥∥∥
2

+ 2Ey

∥∥∥∥
∫ τn

0
σ̃ (Xs) dW(s)

∥∥∥∥
2

.(6.8)

It follows from Itô’s isometry that the second term is bounded by CEτn, which in
turn is bounded by O(n2) by a calculation virtually identical to that of Lemma 4.5.

It remains to bound the first term, which we will do with the help of a decompo-
sition similar to that used in the proof of Proposition 5.1. For two constants c > 0
and a > 0 to be determined, we set φ0 = 0, σn = inf{t ≥ φn : |X1(t)| = c + a} and
φn = inf{t ≥ σn−1 : |X1(t)| = c}. Define furthermore

N = inf{k ≥ 0 :σk ≥ τn}.
Since b̃ is supported in a bounded strip around I0, we can make c sufficiently
large so that the first term in (6.8) is bounded by some multiple of

Ey

(
N∑

k=0

(σk − φk)

)2

≤
√√√√

EyN3Ey

N∑
k=0

(σk − φk)4

≤
√√√√EyN3

∞∑
k=0

Ey

(
(σk − φk)4|N ≥ k

)
Py(N ≥ k).
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Note now that since σk is the exit time from a compact region for an elliptic dif-
fusion, there exists a constant C such that Ey((σk − φk)

4|N ≥ k) ≤ C, uniformly
in y. Furthermore, it follows from Lemma 5.3 that if a is sufficiently large, then

Py(N > 1) ≤ 1 − c

n
,

for some constant c > 0, uniformly in y. The strong Markov property then imme-
diately implies that Py(N > k) ≤ (1 − c

n
)k , so that N is stochastically bounded by

a Poisson random variable with parameter O(n) and the claim follows. �

7. Well-posedness of the martingale problem and characterization of the
limiting process. The aim of this section is to show that the martingale problem
associated to the operator L̄ as defined in Theorem 2.4 is unique and to characterize
the corresponding (strong) Markov process. Our main tool is the following general
result by Ethier and Kurtz [11], Theorem 4.1.

THEOREM 7.1. Let E be a separable metric space, and let A :D(A) →
Bb(E) be linear and dissipative. Suppose there exists λ > 0 such that

C def= R(λ − A) = D(A),(7.1)

and such that C is separating. Let μ ∈ P(E) and suppose X is a solution of the
martingale problem for (A,μ). Then X is a Markov process corresponding to
the semigroup on C generated by the closure of A, and uniqueness holds for the
martingale problem for (A,μ).

See also [7] for a more general result on the well-posedness of a martingale
problem with discontinuous coefficients. This allows us to finally give the proof of
Theorem 2.4.

PROOF OF THEOREM 2.4. Since we already know from the results in the pre-
vious two sections that limit points of Xε solve the martingale problem associated
to L̄, it suffices to show that this martingale problem is well-posed and that its
solutions are of the form (2.6).

For this, we somehow take the reverse approach: first, we construct a solution
to (2.6) and we show that this is a Markov process solving the martingale problem
associated to L̄. We then show that this Markov process generates a strongly con-
tinuous semigroup on C0(R

d), whose generator is the closure of L̄ in C0. Since C0
is separating and since generators of strongly continuous semigroups are dissipa-
tive and satisfy (7.1) by the Hille–Yosida theorem, the claim then follows.

In order to construct a solution to (2.6), let M± be matrices satisfying M±MT± =
D± and such that

M± =
(√

D±
11 0

v± M̃±

)
,
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for some vectors v± ∈ R
d−1 and some (d − 1) × (d − 1) matrices M̃±. (This

is always possible by the QR decomposition.) We then first construct a Wiener
process W1 and a process X̄1 such that

dX̄1 = (1X̄1≤0

√
D−

11 + 1X̄1>0

√
D+

11

)
dW(t) + (p+ − p−) dL(t),

where L is the symmetric local time of X̄1 at the origin. This can be achieved, for
example, by setting X̄1 = g(Z), where

g(x) =
⎧⎨
⎩
√

D+
11, if x > 0,√

D−
11, otherwise,

Z is a skew-Brownian motion with parameter

p = p+
√

D−
11

p+
√

D−
11 + p−

√
D+

11

,

and W is the martingale part of Z. Given such a pair (X̄1,W), we then let W̃

be an independent d − 1-dimensional Wiener process and we define pathwise the
R

d−1-valued process X̃ by

X̃(t) =
∫ t

0
(1X̄1≤0M̃− + 1X̄1>0M̃+) dW̃ (t) +

∫ t

0
(1X̄1≤0v− + 1X̄1>0v+) dW(t)

+ α̃

∫ t

0
dL(t),

where α̃j = αj+1. Since we know that skew-Brownian motion enjoys the Markov
property, it follows immediately that X̄1 is Markov, so that X̄ = (X̄1, X̃) is also a
Markov process. Applying the symmetric Itô–Tanaka formula to f (X̄) it is further-
more a straightforward exercise to check that X̄ does indeed solve the martingale
problem for L̄.

The corresponding Markov semigroup {Pt }t≥0 maps C0(R
d) into itself as a con-

sequence of the Feller property of skew-Brownian motion [19]. Furthermore, as a
consequence of the uniform stochastic continuity of X̄, it is strongly continuous,
so that its generator must be an extension of L̄. Since the range of L̄ contains
C∞

0 (Rd), which is a dense subspace of C0(R
d), the claim follows. �
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