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GENERALIZED EXTREME VALUE REGRESSION FOR BINARY
RESPONSE DATA: AN APPLICATION TO B2B ELECTRONIC
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In the information system research, a question of particular interest is
to interpret and to predict the probability of a firm to adopt a new technol-
ogy such that market promotions are targeted to only those firms that were
more likely to adopt the technology. Typically, there exists significant differ-
ence between the observed number of “adopters” and “nonadopters,” which is
usually coded as binary response. A critical issue involved in modeling such
binary response data is the appropriate choice of link functions in a regres-
sion model. In this paper we introduce a new flexible skewed link function for
modeling binary response data based on the generalized extreme value (GEV)
distribution. We show how the proposed GEV links provide more flexible and
improved skewed link regression models than the existing skewed links, es-
pecially when dealing with imbalance between the observed number of 0’s
and 1’s in a data. The flexibility of the proposed model is illustrated through
simulated data sets and a billing data set of the electronic payments system
adoption from a Fortune 100 company in 2005.

1. Introduction. During the past three decades of information system (IS)
research, quite a rich but diverse body of theoretical and empirical work has ac-
cumulated on the adoption and diffusion of information technology (IT) based
innovations. Technological advances and widespread uses of the internet are al-
lowing businesses to automate a wide range of their business processes including
payments. Electronic payments system (EPS) is an integrated process, in which
payment data is sent and received electronically from accounts payable to accounts
receivable without human intervention, and is a critical component of the informa-
tion economy. Despite the tremendous benefits that EPS can offer, its adoption
in business-to-business (B2B) transactions remains a challenge. In 2004, checks
represented 81 percent of the typical organizations’ payments, according to the
Association for Financial Professionals (AFP) 2004 survey. A more recent survey
by AFP finds that, even though the payments are undergoing an unprecedented
period of change because of the decline of the check in favor of electronic pay-
ments, a majority of B2B payments continue to be made by check. The 2007 AFP
survey indicates that the typical organization is still making 74 percent of its B2B
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payments by check. Researchers have tested different proposed theories by show-
ing the causal mechanism and identifying influential factors. A number of barriers
have been identified that appear to obstruct the wider adoption of electronic pay-
ments [Stavins (2003); Chakravorti and Davis (2004)].

Though exploring association based on the past data is critical to understand
the technology adoption behaviors, the ultimate objective of EPS adoption stud-
ies would be accurate prediction as the field directly aims at studying and solving
practical problems. With no doubt, accurate prediction is a key concern for prac-
titioners since it is anticipated future behavior that guides managerial action. The
immediate motivation of Bapna et al. (2010)’s study, as quoted in their paper, was
a problem asked by the company, “. . .how can we predict the likelihood of a firm
to adopt EPS promoted by the company so that we can target EPS promotions to
only those firms that were more likely to adopt EPS for their payments?” Mod-
els with good prediction accuracy are also needed by theorists in the field since
accurate prediction can serve as a direct “reality check” for the relevance of the
theoretical models, thus providing a base for theory building, comparing and im-
proving [Shmueli and Koppius (2009)]. A good statistical model for EPS adoption
study needs to provide not only good fit to current data but also good prediction
for future observations.

Currently, the logistic regression model, with its convenient interpretation and
implementation, has been routinely employed to estimate and predict the EPS
adoption or other new technology adoption in the literature [Chau and Jim (2002);
Bapna et al. (2010); Gupta and Chintagunta (1994); Kamakura and Russell (1989);
Wedel and DeSarbo (1993)]. When the logistic regression model is employed, it is
assumed that the response curve between the covariates and the probability is sym-
metric. This assumption may not always be true, and it may be severely violated
when the number of observations in the two response categories are significantly
different from each other. This unbalance is not uncommon in the IS field, since in
many cases the adoption of a new technology may be a “rare event,” which happens
with only a small probability. Thus, the data in this area is usually complicated by
the nature of the response variable being analyzed: significant difference between
the number of firms adopting the technology and of those not adopting the technol-
ogy and high skewness in the response curve. Applying a nonflexible link function
to the data with this special feature may result in link misspecification.

Consequences of link misspecification have been studied by a number of au-
thors in the literature. In particular, for independent binary observations, Czado
and Santner (1992) show that falsely assuming a logistic link leads to a substantial
increase in the bias and mean squared error of the parameter estimates as well as
the predicted probabilities, both asymptotically and in finite samples. Moreover,
these undesirable effects are of greater magnitude when the misspecification in-
volves skewness than when it involves kurtosis (or tail weight). Wu, Chen and Dey
(2002) show that under certain conditions there exists linear relationships between
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the regression coefficients, though the choice of links is important for goodness of
fit.

There has been considerable work done in allowing flexibility in the link mod-
els used for categorical response data. The most intuitive approach to guard against
link misspecification is to embed the symmetric links into a wide parametric class
of links. Aranda-Ordaz (1981) introduces two separate one-parameter models for
symmetric and asymmetric departures from the logistic model. Guerrero and John-
son (1982) suggest a one-parameter Box–Cox transformation of the odds. Morgan
(1983) presents a one-parameter cubic logistic model to model symmetric depar-
tures from the logistic curve. It is a first-order approximation of the symmetric
Aranda-Ordaz model.

Stukel (1988) proposes a class of generalized logistic models for modeling bi-
nary data with a two-parameter family. Stukel’s models are general, and several
important and commonly used symmetric and asymmetric link models can be ap-
proximated by members of this family. However, in the presence of covariates,
Stukel’s models yield improper posterior distributions for many types of nonin-
formative improper priors, including the improper uniform prior for the regres-
sion coefficients [Chen, Dey and Shao (1999)]. Using a latent variable approach
of Albert and Chib (1993), Chen, Dey and Shao (1999) propose another class of
skewed links, which can lead to proper posterior distributions for the regression
parameters using standard improper priors. However, the model has the limitation
that the intercept term is confounded with the skewness parameter. This problem
was overcome in Kim, Chen and Dey (2008) by a class of generalized skewed t-
link models (GT-link), though the constraint on the shape parameter δ as 0 < δ ≤ 1
greatly reduces the possible range of skewness provided by this model.

To build an appropriate and extremely flexible model for the binary data and to
overcome the constraint for the skewed generalized t-link models, we propose the
generalized extreme value (GEV) distribution as a link function. We would first
distinguish our GEV model from a line of research on the discrete choice behavior
initiated by McFadden (1978). Although their model is also termed as generalized
extreme value models, it is totally different from the model we introduce here. In
their definition, GEV distribution is a family of multivariate distribution functions
whose marginal distribution is Type I extreme value distribution or Gumbel dis-
tribution [McFadden (1978)], which is a special case of the GEV distribution we
use in (3.2) with the shape parameter ξ → 0. Without a flexible shape parameter,
their model does not incorporate the skewness of the response curve but mainly
estimates the perceived similarity among alternatives [McFadden (1978)]. The ad-
vantage of the GEV link model we discuss here is that it incorporates a wide range
of skewness with the unconstrained shape parameter. In fact, the complementary
log–log (Cloglog) link, based on the Gumbel distribution as discussed in Section 3,
is a special case of the proposed GEV link.

For model comparison, we use measures which have been suggested as a crite-
rion when the goal is to select a model with best out-of-sample predictive power,
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including Deviance Information Criterion (DIC) [Spiegelhalter et al. (2002)],
Bayesian Information Criterion (BIC) [Kass and Raftery (1995)] and marginal
likelihood [Chib and Jeliazkov (2001); Chib (1995)]. These three measures are
all in-sample predictive measures, which are computed using current data. Shmueli
and Koppius (2009) suggest that it is more general to construct predictive accuracy
measures based on out-of-sample metrics. Thus, we also calculate posterior pre-
dictive deviance based on the hold-out sample approach. Comparison of predictive
performance also guards against overfitting. Overfitting is a concern when building
a complicated and flexible model. Since an overfitting model accommodates more
of random fluctuations instead of the underlying relationship, it will generally pro-
vide good fit to current data but have poor predictive accuracy for new data. Good
prediction results provide evidence that overfitting has not occurred.

The rest of the paper is organized as follows. Section 2 describes the data set
concerning the electronic system adoption of the customers of a Fortune 100 com-
pany, where the dominance of nonelectronic payment methods is particularly evi-
dent. Section 3 describes the GEV model and discusses its posterior propriety with
Bayesian methodology. Section 4 demonstrates the flexibility of the GEV model
by simulated data sets and the EPS data set described in Section 2. It concludes
with a discussion in Section 5. The proof of the theorem and detailed results on
simulated data examples are given in the Appendix. The computation for the GEV
link described in this paper has been implemented in R. A sample code [Wang
(2010)] is included as supplementary material.

2. The electronic payment system data set. To illustrate how the proposed
GEV model may flexibly be used to model and to predict the EPS adoption, we
consider a billing data set from a Fortune 100 companies (hereafter called the
“vendor”). It provides information on individual transactions with firms who have
financed purchases of large commercial equipment with the vendor before 2005.
With a large amount to pay for the expensive commercial equipment, firms usu-
ally finance the purchases with the vendor by lease or loan ranging from a few
months to more than 20 years. This brings in subsequently recurring payments
every month. The vendor provides all client firms a voluntary free service of Auto-
mated Clearing House (ACH) debits. Firms have the option to make their payments
using ACH or using conventional payment methods (such as a check). The data
contains payments choices of each transaction in the first quarter of 2005 as well
as firm-specific and transaction-specific information, including firm size, payment
amount from the last bill, credit risk in terms of PayDex, finance option, geographi-
cal regions and industries. Firm size is measured by the total number of employees.
The firm’s credit risk is based on a PayDex score, which is an indictor of a busi-
ness’ payment performance evaluated on the total number of payment experiences
over the past year. Higher PayDex scores indicate better payment performance. For
each transaction, the firm has a financing option between lease and loan. Region
is a geographic variable, while industry is a measure of firm demographics. Since
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TABLE 1
Summary statistic for continuous variables

Variable Min Mean Max

# of employees 1 4142 355000
Payment amount 11.4 17351.0 9520298.4
PayDex 5 71.83 89

these variables are easy to observe and often associated with usage behavior, they
have been constantly used in marketing literature [Bapna et al. (2010)]. EPS is the
electronic payment methods adopted by the firm, with EPS = 0 for ACH methods
and EPS = 1 for traditional methods such as check. We have a total of 15,175 ob-
servations, with EPS = 1 for 10,784 observations. That is, more than 70% of the
transactions used traditional methods (EPS = 1).

Summary statistics for this data set are reported in Tables 1 and 2. It provides
a group of firms of different sizes, from different industries and regions, and var-
ious credit risk levels with different transaction amounts. As seen in Table 2, the

TABLE 2
Summary statistic for categorical variables

Variables EPS = 1 Counts % EPS = 1

Finance option
Lease 7857 10300 76.28%
Loan 2927 4876 60%

Region
Midwest 3107 4608 67.43%
Northeast 1466 2564 57.18%
South 3688 4621 79.81%
West 2523 3383 74.58%

Industry
Agriculture 127 256 49.61%
Construction 982 1556 63.11%
Finance 308 416 74.04%
Manufacturing 3340 4959 67.35%
Mining 246 305 80.66%
Public administration 318 327 97.25%
Retail trade 396 69 84.44%
Services 1599 2127 75.18%
Transportation 2320 3253 71.32%
Wholesale trade 1148 1508 76.13%

EPS 10784 15175 71.06%
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proportions of EPS = 1, which are almost all higher than 50%, vary within the
subgroups based on finance option, region or industry.

We focus on a reduced sample to show the motivation of our proposed model.
The subset is selected from all transactions that involved Midwest firms in the
manufacturing industry with lease as the financing option. This results in 1618
transactions. Out of these transactions, 1222 transactions have EPS = 1. We model
the probability of EPS = 1 with the normalized logarithm of firm sizes as the only
convariate. This type of model would facilitate showing the response curves un-
der different link models in graphs. Figure 1(a) shows the original data and the
fitted probability of the logit, probit and Cloglog model, respectively. To view it
more clearly, we collapse firm sizes into 7 categories as shown in Table 3. Also
shown in Table 3 are the estimated number of EPS = 1 under different link mod-
els. Figure 1(b) shows the observed values and the fitted values under different
link models. The positively skewed Cloglog link fits the data better than the two
symmetric links, though there is still large discrepancy between the observed val-
ues and the estimated ones. This is because the skewness inherited in the data is
much higher than that which can be provided by the Cloglog link, whose skew-
ness is fixed as a constant. A link model that can automatically change its shape
of the response curve based on the data would greatly improve the estimation and
prediction power of the model.

3. Generalized extreme value link model. We first specify the notation we
use through the paper. Let y = (y1, y2, . . . , yn)

′ denote an n × 1 vector of n in-
dependent binary random variables. Also, let xi = (xi1, xi2, . . . , xik)

′ be a k × 1
vector of covariates, i = 1, . . . , n. Suppose X denotes the n× k design matrix with
rows x′

i , and β = (β1, β2, . . . , βk)
′ is a k × 1 vector of regression coefficients. As-

sume that yi = 1 with probability pi and yi = 0 with probability 1 − pi . In the
generalized linear model framework,

pi = Probability(yi = 1) = F(x′
iβ),(3.1)

where F is a cumulative distribution function (cdf) and F−1 determines the link
function. The function F−1(pi) = log{pi/(1 − pi)} gives the logit link, which is
a symmetric link for binary response model. Another symmetric link model, the
probit link, is achieved by setting F−1(pi) = �−1(pi), where �−1 is the inverse
of N(0,1) distribution. The asymmetric Cloglog link is specified as F−1(pi) =
− log{− log(pi)}.

3.1. The generalized extreme value distribution. The GEV link models use
the Generalized Extreme Value (GEV) distribution for F . Extreme value theory
begins with a sequence of independent and identically distributed random variables
Y1, Y2, . . . and, for a given n asks about parametric models for its maximum Mn =
max{Y1, . . . , Yn}. If the distribution of the Yi is specified, the exact distribution of
Mn is known. In the absence of such specification, extreme value theory considers
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FIG. 1. Model fitting using the logit (solid), probit (dashed) and Cloglog (dotted) link models to the
subset of the EPS adoption data (circle) with the normalized logarithm of firm sizes as a covariate:
(a) The original data; (b) collapse the firm sizes into 7 categories.
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TABLE 3
The estimated number of EPS = 1 in the transactions with Midwest manufacturing firms using lease

as financing option under different link models

Normalized log(Firm size) < −1.5 (−1.5,−0.5) (−0.5,0) (0,1.5) (1.5,2) (2,2.5) > 2.5

# of EPS = 1 2 90 152 410 501 47 20
Logit 0.84 76.40 139.73 471.90 468.56 44.83 19.64
Probit 0.85 76.90 139.00 470.89 473.85 45.39 19.84
Cloglog 1.02 77.49 133.36 462.61 482.75 46.21 19.98

the existence of limn→∞ P [{(Mn − bn)/an} ≤ y] ≡ F(y) for two sequences of
real numbers an > 0 and bn. If F(y) is a nondegenerate distribution function, it
belongs to either the Gumbel, the Fréchet or the Weibull class of distributions,
which can all be usefully expressed under the umbrella of the GEV distribution
with a cumulative distribution function as follows:

G(x) = exp
[
−

{
1 + ξ

(x − μ)

σ

}−1/ξ

+

]
,(3.2)

where μ ∈ R is the location parameter, σ ∈ R+ is the scale parameter, ξ ∈ R is the
shape parameter and x+ = max(x,0). A more detailed discussion on the extreme
value distributions can be found in Coles (2001) and Smith (2003). Extreme value
analysis finds wide application in many areas, including climatology [Coles, Per-
icchi and Sisson (2003); Sang and Gelfand (2009)], environmental science [Smith
(1989); Thompson et al. (2001)], financial strategy of risk management [Dahan
and Mendelson (2001); Morales (2005)] and biomedical data processing [Roberts
(2000)].

Its importance as a link function arises from the fact that the shape parameter ξ

in model (3.2) purely controls the tail behavior of the distribution (see Figure 2).
When ξ → 0, it gives the Gumbel distribution with G(x) = exp[− exp{−(x −
μ)/σ }], which is the least positively skewed distribution in the GEV class when ξ

is nonnegative.

3.2. The generalized extreme value link model. In model (3.1) we assume that
F involves the GEV distribution as follows:

pi = p(yi = 1) = 1 − exp{(1 − ξx′
iβ)

−1/ξ
+ } = 1 − GEV(−x′

iβ; ξ),(3.3)

where GEV(x; ξ) represents the cumulative probability at x for the GEV distribu-
tion with μ = 0, σ = 1, and an unknown shape parameter ξ .

Since the usual definition of skewness in (3.2) and (3.3) as μ3 = {E(x −
μ)3}{E(x − μ)2}−3/2 does not exist for large positive values of ξ ’s, we extend
Arnold and Groeneveld (1995)’s skewness measure in terms of the mode to the
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FIG. 2. Probability density function plots of Weibull distribution (ξ = −0.5, dashed), Gumbel dis-
tribution (ξ = 0, solid) and Fréchet distribution (ξ = 0.5, dotted). The symbols �,� and ♦ are the
90th percentile of Weibull, Gumbel and Fréchet, respectively.

GEV distribution for skewness definition and comparison. Under certain condi-
tions, the skewness of a random variable X is defined as γM = 1−2F(Mx), where
F(·) is the cumulative distribution of X and Mx is the mode of X. Thus, the skew-
ness of the link function (3.3) can be found explicitly as γM = 1 − 2F(Mx) =
2 exp{−(1 + ξ)} − 1, while ξ > −1. Based on this skewness definition and on the
fact that for ξ ≤ −1, ∂p/∂x monotonically decreases with respect to x in (3.3),
we can show that the GEV link model specified in (3.3) is negatively skewed for
ξ < log 2 − 1, and positively skewed for ξ > log 2 − 1.

Figure 3(a) shows the response curves with ξ equal to −0.5,0 and 0.5. The
solid line is the response curve corresponding to the Cloglog link for ξ → 0. As
the values of the shape parameter change, so does the approaching rate to 1 and 0.
A much wider range of skewness can be fitted compared to the commonly used
Cloglog link. Figure 3(b) shows the distribution function of the skewed general-
ized t-distribution of δzi + εi with v1 = 1.2, δ = 1/v2 = 1 [Kim, Chen and Dey
(2008)]. The distribution G in the GT link is chosen as the standard exponen-
tial distribution (E ) and the negative standard exponential distribution (N E ). The
skewness of the GT-link model is determined jointly by the constrained δ and the
preassumed G. Since δ = 1 is the maximum possible value for the shape parame-
ter, Figure 3(b) in fact shows the two extreme cases of the GT-link with G = E or

N E , whose skewness is 0.4339 for the GT (E ) case and −0.4339 for the GT (N E )

case by Arnold and Groeneveld (1995)’s measure. The range of skewness pro-
vided by the GEV link models is not constrained. As shown in Figure 3(a), even
with ξ ∈ [−0.5,0.5], the range of skewness provided by the GEV links is much
wider than that provided by the GT links with a specified G.
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FIG. 3. Cumulative distribution function plots of (a) the GEV link with ξ = −0.5 (dashed),
0 (solid) and 0.5 (dotted), and (b) the GT link of δzi + εi with v1 = 1.2, δ = 1/v2 = 1, and G = E
(dotted) and G = N E (dashed), and the solid curve is for G = �(0).

The class of the GEV links also includes the symmetric link as a special case.
For example, by matching the first 3 moments, the standard normal distribution
can be approximated by the GEV distribution with μ ≈ −0.35579, σ ≈ 0.99903,
and ξ ≈ −0.27760. Figure 4 shows the quantile plots between the GEV model and
the probit model. The plot is approximately a straight line between 0.02 and 0.98
quantiles. The discrepancy lies mainly in the tail area.

3.3. Prior and posterior distributions for the generalized extreme value link
model. It is possible to estimate the shape parameter ξ in the GEV link by the

FIG. 4. Plot of GEV quantiles with μ ≈ −0.35579, σ ≈ 0.99903, and ξ ≈ −0.27760 against probit
quantiles for probabilities between 0.001 and 0.999. The solid line is the quantile plot, and the dotted
line is the 45◦ reference line.
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maximum likelihood method. However, there are a number of nonregular situa-
tions associated with ξ in using likelihood methods which requires conditions for
usual asymptotic properties associated with the maximum likelihood estimator to
be valid. Smith (1985) studied the maximum likelihood estimation in nonregular
cases in detail and obtained that when ξ < −0.5 the regularity conditions are not
satisfied by GEV models. This violation of the usual regularity conditions means
that the standard asymptotic likelihood results are not automatically applicable.
This is one of the reasons for favoring a Bayesian analysis since Bayesian meth-
ods do not depend on the regularity assumptions required by the asymptotic theory
of maximum likelihood. In particular, in the unusual situation where ξ < −0.5 and
the classical theory of maximum likelihood breaks down, Bayesian inference pro-
vides a viable alternative. Thus, here we follow the Bayesian methodology and fit
the GEV link model in a general setting.

Let Dobs = (n,y,X) denote the observed data. We assume that the prior of ξ ,
π(ξ), is proper. Then the joint posterior distribution of (β, ξ) based on Dobs is
given by

π(β, ξ |Dobs) ∝ p(y|X,β, ξ)π(β|ξ)π(ξ),(3.4)

where p(y|X,β, ξ) = ∏n
i=1{1 − GEV(−x′

iβ; ξ)}yi {GEV(−x′
iβ; ξ)}1−yi and

π(β|ξ) is the conditional prior of β given ξ . In Sections 4.2–4.4 we choose nor-
mal priors for β with βj ∼ N(0, σ 2

βj
), j = 1, . . . , k, and for ξ with ξ ∼ N(0, σ 2

ξ ),
where priors on β and ξ are assumed independent.

Unlike Stukel’s generalized logistic regression model with covariates, the pos-
terior distributions under the GEV link are proper for many noninformative priors,
including the Jeffreys’ prior and the improper uniform prior for the regression co-
efficients β .

Jeffreys’ prior for this model has the form π(β|ξ) ∝ |I(β|ξ)|1/2, where the
Fisher information matrix I(β|ξ) is X′�X, with � = diag(ω1, . . . ,ωn), ωi =
{(1 − ξηi)

−2/ξ−2}[exp{(1 − ξηi)
−1/ξ }− 1]−1, and ηi = x′

iβ, for i = 1, . . . , n. The
joint posterior is then given by

π(β, ξ |Dobs) ∝
n∏

i=1

{1 − GEV(−x′
iβ; ξ)}yi {GEV(−x′

iβ; ξ)}1−yi |I(β|ξ)|1/2π(ξ).

The posterior propriety under the uniform prior established in Theorem 1 be-
low implies that the proposed GEV link model is identifiable and the estima-
tion of the regression coefficients can contain little subjective information in
the Bayesian estimation. Let τi = −1 if yi = 0 and τi = 1 if yi = 1. Define
X∗

l,m = (τix′
i , l < i ≤ m) as the (m − l) × k matrix with rows τix′

i , l < i ≤ m,
where 0 ≤ l < m ≤ n. We are led to the following theorem concerning the pro-
priety of the posterior distribution in (3.4) when π(β) ∝ 1, which is an improper
uniform prior and π(ξ) = 0.5, for −1 ≤ ξ < 1, which corresponds to the uniform
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distribution U [−1,1). Even with this constraint, the GEV links are still fairly flex-
ible with skewness lying in the interval [−0.7293,1). The proof of Theorem 1 is
given in the Appendix.

THEOREM 1. Suppose that there exist p > k, 0 = m0 < · · · < mp ≤ n, and
positive vectors a1, . . . ,ap such that X∗

ml−1,ml
is of full rank and a′

lX
∗
ml−1,ml

= 0 for
l = 1, . . . , p and with 0 a k-dimension zero vector. Under the improper uniform
prior π(β) ∝ 1, the posterior (3.4) is proper.

4. Applications of generalized extreme value link models.

4.1. Model comparison criterion. To assess models under different links, we
employ four measures, including Deviance Information Criterion (DIC), marginal
likelihood, Bayesian Information Criterion (BIC) and posterior predictive deviance
methods. The first three can be deemed as model adequacy measures penalized by
model complexity. Also, they measure the expected loss on replicated data and can
be used as model predictive power measures. However, they are constructed based
on current data [Shmueli and Koppius (2009)]. Posterior deviance measures the
prediction accuracy directly based on hold-out samples. We briefly discuss their
computation and interpretation below.

Let θ denote the set of all parameters contained in the model under consid-
eration. For example, θ = (β, ξ) in the GEV model. The deviance is defined
as −2 times the log-likelihood, that is, D(y, θ) = −2 logp(y|θ). The posterior
mean deviance D̂avg serves as a Bayesian measure of fit or “adequacy” of a model
[Spiegelhalter et al. (2002)], where D̂avg(y) = {∑L

l=1 D(y, θ l)}/L is the estimated
average discrepancy for L sampling points and θ l is the lth sampling value for the
parameter θ . The DIC measure, which is proposed by Spiegelhalter et al. (2002), is
then calculated as DIC = D̂avg(y) + pD , where pD is the effective number of pa-
rameters of a Bayesian model. We calculated pD as p̂ = D̂avg(y) − D

θ̂
(y), where

D
θ̂
(y) = D(y, θ̂) and θ̂ is the posterior mean of the Markov chain Monte Carlo

(MCMC) simulation. The smaller the DIC value, the better the model fits the data.
The marginal likelihood method is closely related to the Bayes factor, which is

given by m(y|M2)/m(y|M1) with m(y|Mi) the marginal likelihood under model
Mi , i = 1,2. The calculation of the marginal likelihoods can be obtained by the
MCMC method as presented in Chib (1995) and Chib and Jeliazkov (2001). Chib
and Jeliazkov (2001)’s approach is more relevant here since our models involve
the Metropolis–Hastings algorithm.

The calculation of marginal likelihood is sensitive to the choice of priors [Kass
and Raftery (1995)], which may bring in potential problems when the priors pro-
vide little information relative to the information contained in the data. Under this
situation, BIC is usually applied as an approximation and it does not require eval-
uation of the prior distributions [Kass and Raftery (1995)]. For a model with k pa-
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rameters and n observations, BIC is given by BIC = −2 log{p(y|θ̂)} + k log(n) =
D

θ̂
(y) + k log(n).

To assess the predictive power of the model, we aim at evaluating the posterior
predictive density p(ỹ|θ̂), where ỹ is the future response data (the holdout data set)
and θ̂ are the posterior mean of the MCMC sampling from the training data. The
posterior predictive density can then be evaluated by posterior deviance (D̂post) as
D(ỹ, θ̂) = −2 logp(ỹ|θ̂).

4.2. Simulated data examples. In the simulated data examples, we consider
data sets simulated from the Cloglog and probit regression models. Our primary
aim is to show the flexibility of the GEV link in fitting the data generated from
various models with unbalanced number of 0’s and 1’s. The true parameters are
set such that the proportion of 1’s in the simulated data sets is around 70%, similar
to the proportions in the AFP surveys and the EPS data set. We perform Bayesian
analysis for a given simulated data set and assess the models using criteria stated
in Section 4.1.

To match data scenario close to the EPS data, we generate 5 covariates in our
model, including the intercept. The types of covariates represent those that oc-
curred in the real data. It includes one intercept (x1), one continuous covariate
generated from a standard normal distribution (x2) and three discrete covariates.
Among the three discrete covariates, two are dummies for nominal categorical data
with 3 groups (x3 and x4) and the other is binary categorical data (x5). All covari-
ates are generated for sample sizes n = 200,1000 and 5000, respectively. Then
we generate two simulated data sets with n independent Bernoulli response vari-
ables, yi , respectively from (a) the Cloglog regression model as Simulation �1, and
(b) the probit regression model as Simulation �2. The linear components of all the
above regression models are x′

iβ = β1 +x2iβ2 +x3iβ3 +x4iβ4 +x5iβ5, where i =
1, . . . , n,β = (0,1,1,0.5,−0.5) for the Cloglog model and (0,1,1,1.25,−0.25)

for the probit model. For all the link models, we employ the Metropolis–Hasting
algorithm with normal jumping kernels for the MCMC sampling. The convergence
of all results is examined by the Bayesian Output Analysis (BOA) package in R.

Results are discussed in detail in the Appendix (Simulated Data Examples). The
GEV link performs better than the symmetric logit link even with small sample
size (n = 200) under Simulation �1. The estimated ξ includes the true value 0
in its 95% high posterior density (HPD) intervals. With increasing sample size,
the variance of ξ decreases, which provides more precise estimation of the shape
parameter. In Simulation �2, the GEV link approximates the symmetric probit link
well, especially with large sample size. The impact of sample size on fitting the
GEV link model is also reflected by model selection based on BIC and marginal
likelihood methods. These two criteria tend to select a simpler model and the GEV
link beats the logit link only when n = 5000 based on these two criteria under
Simulation �2.
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By the simulated examples, we also emphasize that the number of 1’s and 0’s is
only an indicator of the possible skewness in the response curve, though unbalance
is not unusual even with a symmetric link model, such as the probit link we used in
Simulation �2. As suggested in Chen, Dey and Shao (1999), many factors, such as
the distribution of covariates, may affect the choice of links of a given data set. This
complexity is exactly why we propose a flexible link function like the GEV link,
such that the link function itself can automatically detect and fit the symmetry or
asymmetry in the response curve along with parameter estimation. The probability
of link misspecification is reduced compared to applying a link model with a fixed
skewness parameter.

4.3. The motivation subset of the electronic payments system data. We first fit
the GEV model to the subset we discussed in Section 2. Figure 5 shows (a) the
fitted response curve and (b) the fitted probability for the 7 categories based on
the firm’s size. It is similar with Figure 1 but with the GEV link added. As shown
in Figure 5, the response curve under the GEV link stretches significantly to fit
the observed values. Table 4 shows the estimated number of EPS = 1, where we
can see that the GEV model provides estimated values that are very close to the
observed ones. Also, we carry out the cross validation analysis with randomly se-
lected 10% of the data as the holdout part and the remaining data as the training
part. The holdout part has 173 transactions with 135 transactions EPS = 1. The
number of observed EPS = 1 in each of the 7 categories based on firm sizes is
shown in Table 5. Here we can predict the number of EPS = 1 in each category us-
ing the posterior mean estimates obtained from the training part. It enables us to tell
the predictive power of different models more directly than the posterior deviance
measure. The GEV link still outperforms the other models and provides very good
prediction for those firms with normalized logarithm sizes greater than 0.

4.4. The electronic payment system data set. To further illustrate the flexibility
of the proposed GEV link models, we apply the model to analyze the whole EPS
data. The aims of the analysis are to examine the effects of various factors on
EPS adoption and to evaluate the fitness of regression models under different link
functions. The continuous variables, firm size and the payment amount, are very
skewed to the right. We take the logarithm and standardize them by the sample
mean and standard deviation. The credit risk by Paydex is simply standardized.
Financing option is a binary variable with 1 indicating that the firm uses lease for
financing its purchase and 0 indicating loan. We have three dummy variables for
the four regions, and 9 dummy variables for the 10 industries, taking the values 0
and 1. Thus, there are a total of 16 covariates in the data for the response EPS.

Table 6 shows the parameter estimation, its standard deviation (SD), the average
covariate effects (ACE), marginal likelihood, BIC-16000, DIC-16000 and p̂ for
different link functions using the normal priors. The prior variances for β’s and ξ
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FIG. 5. Model fitting using the logit (solid), probit (dashed), Cloglog (dotted) and GEV (dotdash)
link functions to the subset of the EPS adoption data (circle) with the normalized logarithm of firm
sizes as a covariate. (a) The original data; (b) categorize firm sizes into 7 categories.
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TABLE 4
The estimated number of EPS = 1 in the transactions with Midwest manufacturing firms using lease

as financing option under different link models

Standardized log(Firm size) < −1.5 (−1.5,−0.5) (−0.5,0) (0,1.5) (1.5,2) (2,2.5) > 2.5

# of EPS = 1 2 90 152 410 501 47 20
Logit 0.84 76.40 139.73 471.90 468.56 44.83 19.64
Probit 0.85 76.90 139.00 470.89 473.85 45.39 19.84
Cloglog 1.02 77.49 133.36 462.61 482.75 46.21 19.98
GEV 2 102.96 140.76 407.10 500.41 47.00 20.00

are equal to 104. A factor of 10 changes in these variance settings led to almost
identical posterior results.

We obtain ξ̂ = 1.40 with a standard deviation of 0.079 for the GEV link model,
which indicates that ξ is significantly above 0. In fact, the value of DIC-16000 of
the GEV link model is 446.68 with the effective dimension p̂ = 17.30, which is
lower than 660.79 of the Cloglog link model with p̂ = 16.91. Both skewed link
models are better than the symmetric logit and probit link models. The consistent
model comparison results are obtained by using the marginal likelihood and BIC
criteria.

A closer look at the results from the widely used logit link regression model
in the IS research and our GEV regression model reveals some difference in the
estimation of the covariates’ effects on EPS adoption. The changes in covariates
include doubling the firm size, doubling the payment amount, 10 points decrease in
the paydex measure, or moving from 0 to 1 for all the discrete covariates. The av-
erage covariate effects are calculated based on Chib and Jeliazkov (2006). A point
to clarify is that the changes in the firm size, payment amount and the credit risk
are on their original levels, while the regression itself has been run with these co-
variates standardized. The logit model suggests that transactions by firms in the
southern region may have a lower probability employing EPS compared to those

TABLE 5
The predicted number of EPS = 1 for transactions with Midwest manufacturing firms using lease as

financing option under different links in the holdout part

Standardized log(Firm size) < −1.5 (−1.5,−0.5) (−0.5,0) (0,1.5) (1.5,2) (2,2.5) > 2.5

# of transactions 0 18 22 64 62 6 1
# of EPS = 1 — 5 19 42 62 6 1
Logit — 7.20 12.20 49.71 57.93 5.74 0.97
Probit — 7.23 12.13 49.57 58.58 5.81 0.98
Cloglog — 7.23 11.63 48.64 59.73 5.91 1.00
GEV — 9.37 12.25 42.92 61.94 6.00 1.00
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TABLE 6
Model comparison under logit, probit, Cloglog and GEV links

Logit Probit Cloglog GEV

Variables est. SD ACE est. SD ACE est. SD ACE est. SD ACE

Intercept 0.97 0.08 0.60 0.05 0.24 0.04 0.13 0.03
Firm size 0.34 0.02 0.021 0.21 0.01 0.020 0.23 0.01 0.023 0.17 0.01 0.024
Payment amount −0.17 0.02 −0.003 −0.11 0.01 −0.003 −0.11 0.01 −0.003 −0.06 0.01 −0.002
Credit risk 0.12 0.02 −0.029 0.07 0.01 −0.028 0.08 0.01 −0.034 0.07 0.01 −0.039
Financing option

Lease 0.44 0.04 0.086 0.27 0.03 0.086 0.27 0.03 0.088 0.22 0.02 0.095
Region

Mid west −0.57 0.06 −0.109 −0.34 0.03 −0.109 −0.32 0.03 −0.103 −0.13 0.02 −0.059
North east −0.85 0.06 −0.177 −0.53 0.03 −0.173 −0.54 0.04 −0.181 −0.42 0.03 −0.162
South 0.15 0.06 0.024 0.08 0.03 0.028 0.06 0.03 0.019 −0.01 0.01 −0.005

Industry type
Agri., forest, fish −1.15 0.14 −0.243 −0.70 0.09 −0.242 −0.80 0.10 −0.261 −0.99 0.18 −0.272
Consturction −0.16 0.08 −0.029 −0.09 0.05 −0.030 −0.10 0.05 −0.033 −0.17 0.03 −0.071
Fin., ins., reale. −0.07 0.13 −0.011 −0.03 0.08 −0.014 −0.04 0.07 −0.012 −0.05 0.04 −0.023
Manufacturing −0.25 0.07 −0.044 −0.14 0.04 −0.047 −0.13 0.04 −0.041 −0.08 0.02 −0.034
Mining 0.42 0.16 0.057 0.20 0.09 0.070 0.10 0.08 0.031 −0.06 0.04 −0.024
Public adm. 2.58 0.36 0.255 1.38 0.16 0.257 1.10 0.12 0.248 0.48 0.05 0.194
Retail trade 0.43 0.15 0.069 0.24 0.08 0.073 0.18 0.07 0.054 0.02 0.03 0.007
Service 0.25 0.08 0.045 0.15 0.05 0.045 0.13 0.04 0.041 0.04 0.02 0.017
Trans., ele., gas 0.14 0.07 0.027 0.09 0.05 0.025 0.09 0.04 0.028 0.01 0.02 0.003

Shape parameter (ξ ) 1.40 0.08

Marginal likelihood −8489.2 −8485.2 −8450.14 −8359.24
BIC-16000 888.71 862.63 790.64 585.38
DIC-16000 759.45 732.84 660.79 446.68

p̂ 17.21 16.94 16.91 17.30

by firms in the western region with 1.9–2.8% changes in the probability, but the
estimation from the GEV model implies that there is no significant difference in
these two regions with covariate effect approximately equal to a 0.54% increase
in the probability. Also, the GEV model indicates that transactions by firms in
the construction industry are significantly more likely to use EPS (7% higher in
probability) compared with those by firms in the wholesale trade industry, while
the logit model suggests that it is not a statistically significant factor with the esti-
mated average covariate effects around 3%. Even when a parameter is significant
in both models, the impact of changes in the covariate may be quite different. For
example, firms in the Midwest are approximately 11% more likely to use check
compared to those in the west based on the logit model, while the probability is
only around 6% as estimated by the GEV model.

To calculate the posterior deviance of the four different link models, we ran-
domly divide the data into training and hold-out parts, with 10% or 1501 observa-
tions as the hold-out part and we calculate the posterior deviance (D̂post), which
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are 1653.40, 1643.04, 1637.92 and 1618.73 for logit, probit, Cloglog and GEV
links, respectively. The GEV link model, with the lowest D̂post, outperforms the
other three commonly used models in prediction. Thus, there is no indication of
overfitting in the proposed model.

Since the assignment of 0 and 1 to the response variable is arbitrary, we can
reverse the role of 0 and 1. It does not affect the fitness of the symmetric links,
but it changes the asymmetry in the data. If we now define EPS = 1 if the trans-
action used the ACH service and 0 if it used the conventional payment method,
we expect that a positively skewed link model like the Cloglog link is not ap-
propriate anymore. In fact, we fitted the data using the same MCMC sampling
method, and the values of DIC-16000 for the logit, the probit, the Cloglog and the
GEV link are 759.03, 733.1, 815.49 and 516.66, respectively. The Cloglog fits the
data poorly, just as expected, since it is a positively skewed link function and the
response function is now negatively skewed. This result shows that the determi-
nation of links should not just be a matter of choosing between a symmetric link
and a skewed link, and that the direction of a skewed link indeed plays a more
important role, since a wrong choice of direction gives an even worse fit than a
wrong choice between symmetric and asymmetric. The flexibility of the GEV link
models is apparent here as it includes the shape parameter as a model parameter to
be estimated through the data, instead of preassuming any direction of it. With the
redefined 0 and 1 in the response variable, the GEV link model has a negatively
significant shape parameter of −1.11 with a standard deviation of 0.05.

5. Conclusion and discussion. This paper introduced a new flexible skewed
link model for analyzing binary response data with covariates in the EPS adoption
setup. The proposed GEV link model provided great flexibility in fitting skewness
in the response curve. Although theoretically the GT link models in Kim, Chen
and Dey (2008) would be rich enough to have similar flexibility, it is not easily
implementable from a computational perspective. Moreover, the computation bur-
den is much less for the GEV link. For a simulated data with 2 covariates, it took
approximately 2 minutes to fit the GEV model in R, while it took approximately
8 hours to fit the GT model with codes in FORTRAN 95.

One existing problem in the GEV link is that the shape parameter ξ also affects
the heaviness of the tail in the distribution. Its flexibility would be further improved
if we can design a mechanism to modify the GEV distribution such that one pa-
rameter would purely serve as skewness parameter while the other could purely
control the heaviness of the tails.

APPENDIX

Proof of Theorem 1. Let u,u1, . . . , un be independent random variables
with common distribution function F , which is a GEV distribution with μ =
0, σ = 1, and a shape parameter ξ . For 0 < a < 1, it can be shown that
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E|u|a < ∞ for −1 ≤ ξ < 1. Observing that 1 − F(−x) = EI (u > −x) and
F(−x) = EI {−u ≤ −(−x)}, here I is an indicator function. Now, we have
{1 − F(−x′

iβ)}yi {F(−x′
iβ)}1−yi ≤ EI {τiui ≥ τi(−x′

iβ)} and {1 − F(−x′
iβ)}yi ×

{F(−x′
iβ)}1−yi ≥ EI {τiui > τi(−x′

iβ)}. Let u∗ = (τ1u1, . . . , τnun). Using Fu-
bini’s theorem, we obtain

∫ 1

−1

∫
Rk

p(y|X,β, ξ) dβ dξ

=
∫ 1

−1

∫
Rn

E

[∫
Rk

I {−τix′
iβ < τiui,1 ≤ i ≤ n}dβ

]
dF(u) dξ(A.1)

=
∫ 1

−1

∫
Rn

E

{∫
Rk

I (X∗β < u∗) dβ

}
dF(u) dξ.

Under the condition of Theorem 1, it follows directly from Lemma 4.1
of Chen and Shao (2000) that there exists a constant K such that ‖β‖ ≤
K min1≤l≤p(maxml−1<i≤ml

|wi |) whenever X∗β ≤ w, where w = (w1, . . . ,wn).

Hence, from (A.1), we have
∫ 1

−1

∫
Rk

p(y|X,β, ξ) dβ dξ

≤ K

∫ 1

−1

∫
Rn

k∏
l=1

E
(

max
ml−1<i≤ml

|u∗|k/p
)
dF(u) dξ < ∞.

Simulated data examples. We fit Cloglog, GEV and logit models for Sim-
ulation �1. The GEV model gives almost identical estimates of the regres-
sion coefficient β = (β1, β2, β3, β4, β5) as the true Cloglog regression model.
The estimated shape parameter and its 95% high posterior density intervals are
0.402(−0.199,1.193),0.058(−0.269,0.175) and −0.034(−0.136,0.073) as n =
200,1000 and 5000. The true value of ξ is already contained in the 95% HPD
interval when n = 200. However, the variance in the estimation of the ξ becomes
smaller as the sample size increases, which implies that the GEV links do require
enough information contained in the data set for more efficient estimation of the
shape parameter.

Czado and Santner (1992) emphasized that it is more appropriate to study the
link misspecificaiton effects on the estimated probabilities since estimation of β
heavily depends on the chosen link function. They suggested that different link
models can only be unambiguously compared in their estimation of event proba-
bilities. Table 7 shows the average covariate effects. These effects are calculated
by the method suggested in Chib and Jeliazkov (2006), where they marginalize
out the covariates as a Monte Carlo average using their empirical distributions and
integrate out the parameter θ by their posterior distribution. The third column in
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TABLE 7
Simulation �1 based on the Cloglog regression model: average covariate

effect comparison

Covariate
Sample size Parameter change Cloglog GEV Logit

n = 200 β2 double 0.2071 0.2033 0.1985
β3 0 → 1 0.2409 0.2533 0.2191
β4 0 → 1 0.1100 0.1150 0.0894
β5 0 → 1 −0.1332 −0.1428 −0.1300

n = 1000 β2 double 0.1902 0.1889 0.1826
β3 0 → 1 0.1771 0.1737 0.1624
β4 0 → 1 0.0861 0.0844 0.0807
β5 0 → 1 −0.1306 −0.1330 −0.1460

n = 5000 β2 double 0.1925 0.1924 0.1875
β3 0 → 1 0.2082 0.2096 0.2152
β4 0 → 1 0.1016 0.1021 0.1024
β5 0 → 1 −0.1122 −0.1115 −0.1067

Table 7 indicates that the average covariate effect is measured as x2 doubled, or
x3,x4 or x5 moving from 0 to 1. The values from the Cloglog model are in bold
font. The average covariate effects estimated by the GEV model are closer to those
estimated by the Cloglog model than the logit model.

Table 8 shows the model comparison results. We also include the effective num-
ber of parameters to show model complexity. To test the predictive power of dif-
ferent link models, for each simulated data set, we generate another data set of the
same size n (= 200,1000,5000) with the same β’s as the hold-out part and the
originally simulated data set as the training part. Based on the deviance in Table 8,
the GEV link outperforms both the Cloglog model and the logit model. The DIC
measure allows us to take the model complexity into account. The DIC values for
the GEV model are very close to the Cloglog model and both the GEV model and
the Cloglog model provide better fit than the logit model based on the DIC mea-
sure. This result is consistent with the fact that the Cloglog model is a special case
of the GEV model. Simulation �1 is in fact based on a GEV regression model with
ξ → 0. The comparison is consistent also in the aspect of the predictive power.
In Table 8 the GEV model has almost the same posterior deviance as the Cloglog
model, while the logit model is worse than both models for different sample sizes.
Comparison based on the marginal likelihood and BIC is only consistent with the
above results when n = 5000, which may suggest that benefits applying a GEV
model are more prominent with large sample size. The better predictive perfor-
mance of the GEV model suggests that there is no overfitting by the proposed
model.
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TABLE 8
Simulation �1 based on the Cloglog regression model: model comparison

Cloglog GEV Logit

n = 200 D
θ̂

176.57 175.64 181.38
DIC 186.24 186.98 191.47
p̂ 4.84 5.67 5.05

marginal likelihood −119.34 −120.96 −118.31
BIC 203.06 207.43 207.87
D̂post 168.65 169.13 173.34

n = 1000 D
θ̂

890.96 890.69 896.78
DIC 901.06 902.62 906.99
p̂ 5.05 5.96 5.10

marginal likelihood −481.02 −486.37 −481.17
BIC 925.50 932.14 932.32
D̂post 863.69 863.81 872.52

n = 5000 D
θ̂

4388.53 4388.19 4427.16
DIC 4398.52 4399.88 4436.85
p̂ 5.00 5.85 4.84

marginal likelihood −2233.73 −2240.97 −2250.31
BIC 4431.11 4439.29 4469.75
D̂post 4418.96 4419.69 4473.86

The results from Simulation �2 are summarized in Tables 9 and 10. The main
objective of Simulation �2 is to show that the GEV model can approximate a sym-
metric probit link model. The 95% HPD intervals of the estimated shape parame-
ter ξ are (−0.8,0.17), (−0.36,−0.03) and (−0.31,−0.13) for n = 200,1000 and
5000, which all include the value ξ ≈ −0.27760 at which the GEV distribution ap-
proximates the standard normal distribution. A more precise estimation of ξ does
require larger sample size. The sample size also has impact on how the GEV model
compares with the other models. As shown in Table 10, only at n = 5000 all the
model comparison criteria except the marginal likelihood method agree that the
more complex GEV link model exhibits some advantages compared to the logit
and Cloglog links. The marginal likelihood method is affected by the flat priors on
parameters. It requires an even larger sample size to select the GEV link as a better
model.
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TABLE 9
Simulation �2 based on the probit regression model: average covariate effect

comparison

Covariate
Sample size Parameter change Probit Logit Cloglog GEV

n = 200 β2 double 0.1757 0.1752 0.1757 0.1727
β3 0 → 1 0.1619 0.1636 0.15443 0.1579
β4 0 → 1 0.2867 0.2861 0.2871 0.2821
β5 0 → 1 −0.0328 −0.03478 −0.0123 −0.0285

n = 1000 β2 double 0.1892 0.1882 0.1925 0.1906
β3 0 → 1 0.1756 0.1766 0.1838 0.1778
β4 0 → 1 0.2630 0.2641 0.2512 0.2583
β5 0 → 1 −0.0683 −0.0650 −0.0689 −0.0703

n = 5000 β2 double 0.1871 0.1862 0.1866 0.1877
β3 0 → 1 0.2254 0.2253 0.2253 0.2259
β4 0 → 1 0.2859 0.2858 0.2825 0.2858
β5 0 → 1 −0.0420 −0.0417 −0.0403 −0.0417

TABLE 10
Simulation �2 based on the probit regression model: model comparison

Probit Logit Cloglog GEV

n = 200 D
θ̂

154.74 155.13 156.25 154.63
DIC 164.56 164.90 166.10 165.96
p̂ 4.91 4.89 4.92 5.67

marginal likelihood −108.23 −105.73 −109.25 −114.48
BIC 181.23 181.62 182.74 186.42
D̂post 199.80 200.45 201.69 199.67

n = 1000 D
θ̂

861.44 862.70 865.28 861.02
DIC 871.17 872.64 875.31 872.68
p̂ 4.86 4.97 5.01 5.83

marginal likelihood −466.17 −463.97 −468.05 −472.90
BIC 895.98 897.23 899.82 902.46
D̂post 843.24 844.42 851.27 844.60

n = 5000 D
θ̂

4219.46 4226.72 4238.51 4217.05
DIC 4229.43 4236.51 4248.40 4228.71
p̂ 4.99 4.89 4.94 5.83

marginal likelihood −2149.16 −2149.96 −2158.67 −2155.75
BIC 4262.04 4269.31 4281.09 4268.15
D̂post 4190.66 4196.77 4228.71 4195.57
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SUPPLEMENTARY MATERIAL

R codes for GEV models with covariates (DOI: 10.1214/10-AOAS354SUPP;
.txt). The computation for the GEV link described in this paper has been imple-
mented in R which is available in this supplementary material.
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