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MIXING TIME OF EXPONENTIAL RANDOM GRAPHS
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A variety of random graph models has been developed in recent years
to study a range of problems on networks, driven by the wide availability of
data from many social, telecommunication, biochemical and other networks.
A key model, extensively used in sociology literature, is the exponential ran-
dom graph model. This model seeks to incorporate in random graphs the
notion of reciprocity, that is, the larger than expected number of triangles and
other small subgraphs. Sampling from these distributions is crucial for pa-
rameter estimation hypothesis testing and more generally for understanding
basic features of the network model itself. In practice, sampling is typically
carried out using Markov chain Monte Carlo, in particular, either the Glauber
dynamics or the Metropolis–Hastings procedure.

In this paper we characterize the high and low temperature regimes of the
exponential random graph model. We establish that in the high temperature
regime the mixing time of the Glauber dynamics is �(n2 logn), where n is
the number of vertices in the graph; in contrast, we show that in the low
temperature regime the mixing is exponentially slow for any local Markov
chain. Our results, moreover, give a rigorous basis for criticisms made of
such models. In the high temperature regime, where sampling with Markov
chain Monte Carlo is possible, we show that any finite collection of edges
is asymptotically independent; thus, the model does not possess the desired
reciprocity property and is not appreciably different from the Erdős–Rényi
random graph.

1. Introduction. In the recent past there has been an explosion in the study
of real-world networks including rail and road networks, biochemical networks,
data communication networks such as the internet and social networks. This has
resulted in a concerted interdisciplinary effort to develop new mathematical net-
work models to explain characteristics of observed real world networks, such as
power law degree behavior, small world properties and a high degree of clustering
(see e.g., [1, 7, 15] and the citations therein).
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Clustering (or reciprocity) refers to the prevalence of triangles in a graph. This
phenomenon is most easily motivated in social networks, where nodes represent
people and edges represent relationship. The basic idea is that if two individuals
share a common friend, then they are more likely than otherwise to themselves
be friends. However, most of the popular modern network models, such as the
preferential attachment and the configuration models, are essentially tree-like and
thus do not model the reciprocity observed in real social networks.

One network model that attempts to incorporate reciprocity is the exponential
random graph model. This model is especially popular in the sociology commu-
nity. The model follows the statistical mechanics approach of defining a Hamil-
tonian to weight the probability measure on the space of graphs, assigning higher
mass to graphs with “desirable” properties. One justification for using this ap-
proach to defining a probability distribution is the so-called Maximum Entropy
Principle, introduced by Jaynes [11, 12]. The principle says to select from among
a set of candidate distributions the one with highest entropy, which then results
in an exponential distribution of the form below when the set of distributions in
question satisfies certain constraints. While deferring the general definition of the
model to Section 1.1, let us give a brief example. Fix parametric constants h,β > 0
and for every graph X on n labeled vertices with E(X) edges and T (X) triangles,
define the Hamiltonian of the graph as

H(X) = hE(X) + βT (X).

A probability measure on the space of graphs may then be defined as

pn(X) = eH(X)

Z
,(1)

where Z is the normalizing constant, often called the partition function. More gen-
erally, one can consider Hamiltonians in graphs which include counts Ti(X) of
different small subgraphs Gi ,

H(X) = ∑
i

βiTi(X).

For a nice discussion of the implications of the formulation of this model in statis-
tics, see [13].

Social scientists use these models in several ways. The class of distributions
(1) is an exponential family which allows for statistical inference of the parame-
ters using the subgraph counts (which are sufficient statistics for the parameters
involved). Sociologists carry out tests of significance hoping to understand how
prescription of local quantities, such as the typical number of small subgraphs in
the network, affects more global macroscopic properties. Parameter estimation can
be carried out either by maximum likelihood or, as is more commonly done, by
simply equating the subgraph counts. Both procedures generally require sampling,
in the case of maximum likelihood, to estimate the normalizing constants. Thus,
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efficient sampling techniques are key to statistical inference on such models. At
a more fundamental level, sociologists are interested in the the question of how
localized phenomena involving a small number people determine the large scale
structure of the networks [18]. Sampling exponential random graphs and observ-
ing their large scale properties is one way this can be realized. Sampling is almost
always carried out using local Markov chain Monte Carlo (MCMC) algorithms,
in particular, the Glauber dynamics or Metropolis–Hastings. These are reversible
ergodic Markov chains which eventually converge to the stationary distribution
pn(X). However, our results show that the time to convergence can vary enor-
mously depending on the choice of parameters.

Our results. It is surprising that, in spite of the practical importance of sampling
from exponential random graph distributions, there has been no mathematically
rigorous study of the mixing time of any of the various Markov chain algorithms
in this context. The goal of this paper is to fill this gap. We focus attention on
the Glauber dynamics, one of the most popular Markov chains. We provide the
first rigorous analysis of the mixing time of the Glauber dynamics for the above
stationary distribution and do so in a very general setup. In the process we give a
rigorous definition of the “high temperature” phase, where the Gibbs distribution
is unimodal and the Glauber dynamics converges quickly to the stationary distribu-
tion and the “low temperature” phase, where the Gibbs distribution is multimodal
and the Glauber dynamics takes an exponentially long time to converge to the sta-
tionary distribution. While a complete understanding of the Gibbs distribution in
the low temperature phase remains out of reach (see, however, the important work
of Chatterjee and Varadhan in the case of triangles [5]), we can nevertheless show
that the distribution has poor conductance, thereby establishing exponentially slow
mixing for any local Markov chain with the specified stationary distribution.

Our results, moreover, give a rigorous basis for criticisms made of such mod-
els. In the high temperature regime, where sampling with MCMC is possible, we
show that any finite collection of edges are asymptotically independent. Also, we
show that with exponentially high probability, a sampled graph is weakly pseudo-
random, meaning that it satisfies a number of equivalent properties (such as high
edge expansion) shared by Erdős–Rényi random graphs. Thus, the model does not
possess the desired reciprocity property and is not appreciably different from the
Erdős–Rényi random graph.

Related literature. There is a large body of literature, especially in the social
networking community, on exponential random graph models. We shall briefly
mention just some of the relevant literature and how it relates to our results (see
[3, 15, 18] and the references therein for more background). The pioneering article
in this area by Frank and Strauss [10] introduced the concept of Markov graphs.
Markov graphs are a special case of exponential random graphs where the sub-
graphs are stars or triangles. Extending the methodology of [10], Wasserman and
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Pattison [19] introduced general subgraph counts. However, from the outset a num-
ber of researchers noted problems at the empirical level for their Markov chain
algorithms, depending on parameter values. See [18] for a relevant discussion of
empirical findings as well as several new specifications of the model to circumvent
such issues.

On the theoretical side, Chatterjee and Varadhan [5], in their recent work char-
acterizing the large deviation properties of Erdős–Rényi random graphs, developed
mathematical techniques that can be used to study the distribution of these random
graphs. At the statistical physics (nonrigorous) level Newman and his co-authors
have studied the case where the subgraphs are triangles and 2-stars. In this set-
ting, using mean-field approximations, they predicted a phase transition between
a high-symmetry phase, with graphs exhibiting only a mild amount of reciprocity,
and a degenerate symmetry-broken phase with either high or low edge density (see
[16] and [17]).

1.1. Definitions and notation. This section contains a precise mathematical
definition of the model and the Markov chain methodology used in this paper. We
work on the space Gn of all graphs on n vertices with vertex set [n] := {1,2, . . . , n}.
The edges are assumed to be undirected. We shall use X = (xe) to denote a graph
from Gn where for every (undirected) edge e = (i, j), xe is 1 if the edge between
vertex i and j is present and 0 otherwise. For simplicity, we shall often write X(e)

for xe. Here and occasionally later in the paper, the term “edge” is used to mean
a pair of vertices, with xe encoding whether the edge is actually present in the
graph. The exponential random graph model is defined in terms of the number of
subgraphs G (e.g., triangles or edges) contained in X. It will be convenient to de-
fine these subgraph counts as follows. Fix a graph G on the vertex set 1,2, . . . ,m.
Let ([n])m denote the set of all m tuples of distinct elements,

([n])m := {(v1, . . . , vm) :vi ∈ [n], v1 �= v2 �= · · · �= vm}.
We shall denote such an m tuple of distinct vertices by vm. In a graph X, for any
m distinct vertices vm, let HX(vm) denote the subgraph of X induced by vm. Say
that HX(vm) contains G, denoted by HX(vm) ∼= G, if whenever the edge (i, j) is
present in G, then the edge (vi, vj ) is present in HX(vm) for all {1 ≤ i �= j ≤ m}.
For a configuration X ∈ Gn and a fixed graph G, define the count

NG(X) = ∑
vm∈([n])m

1{HX(vm) ∼= G}.(2)

This definition is equivalent to the usual exponential random graph model up to
adjustments in the constants β by multiplicative factors. It counts subgraphs mul-
tiple times; for instance, a triangle will be counted 6 times and in general a graph
G with k automorphisms will be counted k times. By dividing the parameters βi

by this multiplicative factor we reduce to the usual definition.
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In our proof we shall also need more advanced versions of the above counts
which we define now. Fix an edge e = (a, b) ∈ X. The subgraph count of G in
X ∪ {e} containing edge e is defined as

NG(X, e) = ∑
vm∈([n])m,vm�a,b

1
{
HX∪{e}(vm) ∼= G

}
.

Here, notation is abused slightly, with vm � a, b indicating that the tuple vm =
(v1, . . . , vm) has vi = a and vj = b for some 1 ≤ i, j ≤ m. Similarly, for two
edges e = (a, b) and e′ = (c, d), define the subgraph counts of G in X ∪ {e, e′}
and containing edges e, e′ by

NG(X, e, e′) = ∑
vm∈([n])m,vm�a,b,c,d

1
{
HX∪{e,e′}(vm) ∼= G

}
.

Gibbs measure. We now define the probability measure on the space Gn. Fix
s ≥ 1 and fix graphs G1,G2, . . . ,Gs with Gi a graph on |Vi | labeled vertices, with
|Vi | ≤ L and with edge set Ei . For simplicity we shall think of Gi as a graph
on the vertex set 1,2, . . . , |Vi |. By convention we shall always let G1 denote the
edge graph consisting of the graph with vertex set 1,2 and edge set (1,2). In
this notation, for any configuration X ∈ Gn, the quantity NG1(X) will be twice
the number of edges in X. With this convention, fix constants β1, β2, . . . , βs with
βi > 0 for i ≥ 2 and β1 ∈ R. The exponential random graph probability measure
is defined as follows.

DEFINITION 1. For G1, . . . ,Gs and constants β = (β1, . . . , βs) as above, the
Gibbs measure on the space Gn is defined as the probability measure

pn(X) = 1

Zn(β)
exp

(
s∑
1

βi

NGi
(X)

n|Vi |−2

)
, X ∈ Gn.(3)

Here Zn(β) is the normalizing factor and is often called the partition function.
For simplicity we have suppressed the dependence of the measure on the vector β .
We note that since β is constant, the number of edges is of the order n2 and in
general, the subgraph count NGi

(X) is of the order n|Vi |. Thus, the subgraph count
NGi

is normalized by the factor n|Vi |−2 so that the contribution of each factor scales
properly and is of order n2 in the large n limit. Setting βi ≥ 0 for i ≥ 2 makes the
Gibbs measure a monotone (also ferromagnetic) system which will be important
for our proof. The term β1 does not affect the interaction between edges and plays
the role of an external field in this model; adjusting β1 makes it more or less likely
for edges to be included.

The term in the exponent is often called the Hamiltonian and we shall denote it
by

H(X) =
s∑
1

βi

NGi
(X)

n|Vi |−2 .
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Note that H(X) : {0,1}(n
2) → R

+ is a function of
(n
2

)
Boolean variables X(e)

and has an elementary Fourier decomposition in terms of the basis functions∏
e∈S X(e), where S runs over all possible subsets of edges. Thus, with respect

to any fixed edge e, we can decompose the above Hamiltonian as

H(X) = Ae(X) + Be(X),

where Ae consists of all terms dependent on edge e and Be(X) denotes all terms
independent of edge e. Let Xe+ denote the configuration of edges which coincides
with X for edges e �= f and has Xe+(e) = 1. The partial derivative with respect to
the edge e of the Hamiltonian H , evaluated at a configuration X, is defined by the
formula

∂eH(X) = Ae(Xe+).

The higher derivatives ∂e ∂e′ for e �= e′ are defined similarly by iterating the above
definition.

Partial ordering on configurations. We note that the configuration space Gn of
simple graphs on n vertices can be partially ordered in the sense that for two con-
figurations X,Y ∈ Gn, say that X ≤ Y is every edge in X is also in Y .

In passing, we note that in the above model specification, the parameters βi are
kept fixed and nonvarying in n so that the Gibbs measure in equation (3) results in
graphs which are dense in the sense that they typically tend to have �P (n2) edges.
One could formulate models where the βi = βi(n) are functions of n and, for ex-
ample, taking β1 → −∞ as n → ∞ at an appropriate rate, end up with sparse
random graph models [models which have �P (n) edges]. We shall not pursue this
line of inquiry in this article and defer this to a later study.

Glauber dynamics and local chains. The Glauber dynamics is an ergodic re-
versible Markov chain with stationary distribution pn(·), where at each stage ex-
actly one edge is updated. It is defined as follows:

DEFINITION 2. Given the Gibbs measure stated above, the corresponding
Glauber dynamics is a discrete time ergodic Markov chain on Gn. Given the current
state X, the next state X′ is obtained by choosing an edge (i.e., pair of vertices) e

uniformly at random and letting X′ = Xe+ with probability proportional pn(Xe+)

and X′(e) = Xe− with probability proportional to pn(Xe−). Here Xe+ is the graph
which coincides with X for all edges other than e and Xe+(e) = 1. Similarly, Xe−
is the graph which coincides with X for all edges other than e and Xe−(e) = 0.

There are various other chains that can also be used to simulate the above Gibbs
measure. Call a chain on Gn local if at most o(n) edges are updated in each step.
The transition rates for the Glauber dynamics satisfy the following relation:
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LEMMA 3. Given that we chose edge e to update, the probability of the tran-
sition X ↪→ Xe+ is exp(∂eH(X))

1+exp(∂eH(X))
and the probability of the transition X ↪→ Xe−

is 1
1+exp(∂eH(X))

.

Mixing time. We will be interested in the time it takes for the Glauber dynamics
to get close to the stationary distribution given by the Gibbs measure (3). The
mixing time τmix of a Markov chain is defined as the number of steps needed in
order to guarantee that the chain, starting from an arbitrary state, is within total
variation distance e−1 from the stationary distribution.

We mention the following fundamental result which draws a connection be-
tween total variation distance and coupling. It allows us to conclude that if we can
couple two versions of the Markov chains started from different states quickly, the
chain mixes quickly. The following lemma is well known (see e.g., [2]).

LEMMA 4 (Mixing time lemma). For a Markov chain X, suppose there exist
two coupled copies, Y and Z, such that each is marginally distributed as X and

max
y,z

P(Yt0 �= Zt0 |Y0 = y,Z0 = z) ≤ e−1.

Then the the mixing time of X satisfies τmix ≤ t0.

Recall from Section 1.1 that the configuration space of graphs Gn can be par-
tially ordered. Since the exponential random graph model is a monotone sys-
tem, we can couple the Glauber dynamics so that if X(0) ≤ Y(0), then for all t ,
X(t) ≤ Y(t). This inequality is a partial ordering meaning that the edge set of X

is a subset of the edge set of Y . This is known as the monotone coupling and, by
monotonicity, Lemma 4 reduces to bounding the time until chains starting from
the empty and complete graphs couple.

With the above definitions of the Gibbs measure, the following functions de-
termine the properties of the mixing time. Define for fixed β ∈ R × (R+)s−1 the
functions

�β(p) =
s∑

i=1

2βi |Ei |p|Ei |−1,

where we recall that Ei are the fixed graphs in the definition of the Gibbs measure.
Now define the function

ϕβ(p) = exp(�β(p))

1 + exp(�β(p))
.

Note that �β is a smooth, strictly increasing function on the unit interval.
Since ϕβ(0) > 0 and ϕβ(1) < 1, the equation ϕβ(p) = p has at least one solu-
tion, denoted by p∗. If this solution is unique and not an inflection point, then
0 < ϕ′

β(p∗) < 1. The function ϕ(p) has the following loose motivation: if X is a
graph chosen according to the Erdős–Rényi distribution G(n,p), then, with high
probability, all edge update probabilities exp(∂eH(X))

1+exp(∂eH(X))
are approximately ϕ(p).
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Phase identification. We now describe the high and low temperature phases of
this model. Recall that our parameter space is B = R× (R+)s−1. We call p ∈ [0,1]
a fixed point if ϕβ(p) = p.

High temperature phase. We say that a β ∈ B belongs to the high temperature
phase if ϕβ(p) = p has a unique fixed point p∗ which satisfies

ϕ′
β(p∗) < 1.(4)

Low temperature phase. We say that a β ∈ B belongs to the low temperature phase
if ϕβ(p) = p has at least two fixed points p∗ which satisfy ϕ′

β(p∗) < 1.
Values of β not in either phase are said to be in the critical points. They occur

when one of the fixed points is an inflection point of ϕβ . These critical points form
an s−1 dimensional manifold which is in the intersection of the closure of the high
and low temperature phases. We do not consider the critical points in this paper.
For simplicity, in the proof we shall suppress the dependence of the functions on
β and write ϕ for ϕβ and � for �β . The dependence on β is implicit also in the
O(·) and �(·) notation for the mixing times.

1.2. Results. The first two results show that the high and low temperature
phases determine the mixing time for local Markov chains.

THEOREM 5 (High temperature). If ϕ(p) is in the high temperature regime
then the mixing time of the Glauber dynamics is �(n2 logn).

THEOREM 6 (Low temperature). If ϕ(p) is in the low temperature regime then
the mixing time of the Glauber dynamics is e	(n). Furthermore, this holds not only
for the Glauber dynamics but for any local dynamics on Gn.

The next theorem shows that the exponential random graph model is not appre-
ciably different from Erdős–Rényi random graph model in the high temperature
regime where sampling is possible.

THEOREM 7 (Asymptotic independence of edges). Let X be drawn from
the exponential random graph distribution in the high temperature phase. Let
e1, . . . , ek be an arbitrary collection of edges with associated indicator random
variables xei

= 1(ei ∈ X). Then for all (a1, . . . , ak) ∈ {0,1}k , the random vari-
ables xe1, . . . , xek

satisfy∣∣P(x1 = a1, . . . , xk = ak) − (p∗)
∑

ai (1 − p∗)k−∑
ai

∣∣ → 0

as n → ∞. Thus, the random variables xe1, . . . , xek
are asymptotically indepen-

dent.
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A consequence is that a graph sampled from the exponential random graph dis-
tribution is with high probability weakly pseudo-random (see [14] or [6]). This
means that it satisfies a number of equivalent properties, including large spectral
gap and correct number of subgraph counts, that make it very similar to an Erdős–
Rényi random graph.

COROLLARY 8 (Weak pseudo-randomness). With probability 1 − o(1) an ex-
ponential random graph is weakly pseudo-random.

1.3. Idea of the proof. We give a summary of the main ideas of the proof:

1. Consider first the high temperature phase. A natural approach to bounding the
coupling time and hence, the mixing time by Lemma 4, is to use the technique
of path coupling [4]. In path coupling, instead of trying to couple from every
pair of states, we try to show that for any pair of states x and y that differ in a
single edge there exists a coupling of two copies of the chain started at x and y

such that

E
(
dH (X(1), Y (1))|X(0) = x,Y (0) = y

) ≤ (1 − γ )(5)

for some γ = γ (n), where dH is the Hamming distance. However, this
approach fails for some ϕβ in the high temperature regime when
sup0≤p≤1 ϕ′(p) > 1.

2. It turns out that the configurations in the high temperature regime where path
coupling fails are very rare under the Gibbs measure. We therefore define a set
[a neighborhood of the unique fixed point ϕ′

β(·) < 1] in which path coupling
does give a contraction. More precisely, for a configuration X, define

rG(X, e) =
(

NG(X, e)

2|E|n|V |−2

)1/(|E|−1)

.(6)

This is (asymptotically) the maximum likelihood choice for the parameter p

of the Erdős–Rényi random graph on n vertices, G(n,p), having observed
NG(X, e) subgraphs G containing the edge e. Let GL denote the class of all
graphs with at most L vertices, where L is some integer greater than or equal
to maxi |Vi |, that is, the maximum number of vertices in the graphs fixed in the
definition of the Gibbs measure. What we prove is that for ε small enough, if
the two configurations x and y belong to the set

G :=
{
X : max

G∈GL
e∈E

|rG(X, e) − p∗| < ε
}
,

then equation (5) holds for γ (n) = δ/n2 for some δ > 0. Thus, starting from any
state x, if we can show that in a small number of steps [O(n2) is enough] we
reach G, then a variant of path coupling proves rapid mixing. This preliminary
stage where we run the Markov chain for some steps so that it reaches a “good
configuration” is termed the burn in phase. This approach has been used before,
particularly in proving mixing times for random colorings, for example, in [8].
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3. To show that we enter the good set G quickly, we control all the rG(X, e) for
all subgraphs G ∈ GL simultaneously and via a coupling with biased random
walks show that with exponentially high probability for large n, within O(n2)

steps we reach the set G. We crucially make use of the monotonicity of the
system here by writing the drifts in terms of the rG(X, e) and bounding them
by their maximum. This completes the proof for the rapid mixing in the high
temperature phase. This also shows how in the high temperature phase, most
of the Gibbs measure of the exponential random graph model is concentrated
on configurations which are essentially indistinguishable from the Erdős–Rényi
G(n,p∗) random graph model.

4. In the low temperature phase we use a conductance argument to show slow
mixing for any Markov chain that updates o(n) edges per time step. The argu-
ment makes use of the same random walk argument used in the burn in stage to
bound the measure of certain sets of configurations under the Gibbs measure.
Specifically, we show that for every fixed point p∗ of the equation ϕ(p) = p

with ϕ′(p) < 1, the Glauber dynamics allows an exponentially small flow of
probability to leave the set of configurations that are nearly indistinguishable
from an Erdős–Rényi random graph with parameter p∗. Because the station-
ary distribution of the Glauber dynamics is the Gibbs measure, this allows us
to bound the relative measure of the sets under consideration thereby show-
ing that if we have two or more fixed points p∗, then it takes an exponentially
long time for configurations to leave the set of configurations indistinguishable
from an Erdős–Rényi random graph with parameter p∗. Thus, mixing takes an
exponentially long time.

2. Proof of the main results.

2.1. Subgraph counts. Before starting the proof we need a couple of simple
lemmas on the subgraph counts. For a graph X ∈ Gn recall the subgraph counts
NG(X) of a predefined graph G on m nodes as well as the counts in X of the sub-
graphs containing edges, namely, NG(X, e) and NG(X, e, e′) as defined in Sec-
tion 1.1.

The following lemma records the quantities NG(X), NG(X, e) and NG(X, e, e′)
for the complete graph X = Kn.

LEMMA 9. Consider the complete graph on n vertices Kn and let NG(Kn),
NG(Kn, e) and NG(Kn, e, e

′) be defined as above. Then:

(a)

NG(Kn) =
(

n

|V |
)

|V |! ∼ n|V |.

(b)

NG(Kn, e) = 2|E|
(

n − 2
|V | − 2

)
(|V | − 2)! ∼ 2|E| · n|V |−2.
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(c) For a fixed edge e we have∑
e′ �=e

NG(Kn, e, e
′) = (|E| − 1)NG(Kn, e) ∼ 2|E|(|E| − 1)n|V |−2.

LEMMA 10. For an edge α in the graph G, denote by Gα the graph obtained
from G by removing the edge α. Then∑

e′ �=e

NG(X, e, e′) = ∑
α∈E(G)

α �=e

NGα(X, e).(7)

PROOF. The sum on the left-hand side of 7 counts the total number of iso-
morphic embeddings of G that contain the edge e in the configuration X ∪ {e′},
for some e′ with the edge e′ marked. Now, each isomorphism with marked edge e′
is counted on the right-hand side of 7 for the choice α equal to the marked edge
in the graph G, with the same isomorphism restricted to Gα . Conversely, for each
α ∈ E(G) and each subgraph embedding, the same embedding is counted on the
left-hand side with the edge e′ situated at the location α. �

2.2. Burn-in period. In this section we show that after a suitably short “burn-
in” period, the Markov chain is in the good set G. We first define the following
important construct. Recall that GL was the set of all graphs with less than L

vertices.

DEFINITION 11. For any graph X ∈ Gn, define

rmax(X) = max
e,Gλ∈GL

rGλ(X, e)

and similarly define rmin(X) = mine,Gλ∈GL
rGλ(X, e).

Lemma 12 bounds the expected drift of rmax(X).

LEMMA 12. The expected change in NG(X, e) after one step of the Glauber
dynamics, starting from the configuration X, can be bounded as

E
[
NG(X(1), e) − NG(X(0), e)

n|V |−2

]

≤ (
1 + o(1)

) 2(
n
2

) |E|(|E| − 1)
[−rG(X, e)|E|−1 + ϕ(rmax)(rmax)

|E|−2]
,

where for ease of notation we have used rmax = rmax(X) and have suppressed the
dependence of this object on the configuration X.



MIXING TIME OF EXPONENTIAL RANDOM GRAPHS 2157

PROOF. The expected change, after one step of the Glauber dynamics, in the
number of isomorphisms from G to subgraphs of X containing the edge e can
be counted by first negating the expected loss in number when removing a random
edge e′ (leaving the configuration unchanged if e′ was not present) and then adding
the expected number of graphs created by including a random edge e′. This gives

E
[
NG(X(1), e) − NG(X(0), e)

n|V |−2

]

= 1

n|V |−2

[
−

(
n

2

)−1
(|E| − 1)NG(X, e)(8)

+
(

n

2

)−1 ∑
e′ �=e

NG(X, e, e′)P
(
Xe′(1) = 1|e′ updated

)]
.

Now, we may upper bound the probability of including an edge using Lemma 3
and the definition of rmax:

P
(
Xe′(1) = 1|e′ updated

)
= exp(∂e′H(X))

exp(∂e′H(X)) + 1

= exp
(∑

i

βi

NGi
(X, e′)

n|V |−2

)/(
exp

(∑
i

βi

NGi
(X, e′)

n|V |−2

)
+ 1

)
(9)

≤ exp
(∑

i

βi

NG(Kn, e
′)(rmax)

|Ei |−1

n|Vi |−2

)

/(
exp

(∑
i

βi

NG(Kn, e
′)(rmax)

|Ei |−1

n|Vi |−2

)
+ 1

)

= ϕ(rmax).

Next, by Lemmas 9 and 10 and the definition of rmax, we have∑
e′

NG(X, e, e′) = ∑
α

NGα(X, e)

≤ ∑
α

NGα(Kn, e)(rmax)
|E|−2

(10)
= ∑

e′ �=e

NG(Kn, e, e
′)(rmax)

|E|−2

= |E|(|E| − 1)2n|V |−2(rmax)
|E|−2(

1 + o(1)
)
.
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Using the estimates (9) and (10), equation (8) gives

E
[
NG(X(1), e) − NG(X(0), e)

n|V |−2

]

≤ (
1 + o(1)

) 1

n|V |−2
(

n
2

)[−(|E| − 1)NG(X, e)

+ ϕ(rmax)2|E|(|E| − 1)n|V |−2(rmax)
|E|−2]

= (
1 + o(1)

) 1

n|V |−2
(

n
2

)[−(|E| − 1)2|E|n|V |−2rG(X, e)|E|−1

+ ϕ(rmax)2|E|(|E| − 1)n|V |−2(rmax)
|E|−2]

= (
1 + o(1)

) 2(
n
2

) |E|(|E| − 1)
[−rG(X, e)|E|−1 + ϕ(rmax)(rmax)

|E|−2]
.

We have the following analogous result for rmin. The proof is identical so we do
not give the proof. �

LEMMA 13. The expected change in NG(X, e) after one step of the Glauber
dynamics, starting from the configuration X, can be lower bounded as

E
[
NG(X(1), e) − NG(X(0), e)

n|V |−2

]

≥ (
1 + o(1)

) 2(
n
2

) |E|(|E| − 1)
[−rG(X, e)|E|−1 + ϕ(rmin)(rmin)

|E|−2]
,

where for ease of notation we have used rmin = rmin(X) and have suppressed the
dependence of this object on the configuration X.

The following lemma shows that if we start from a configuration where rmax(X)

is significantly different from p∗ (a solution of the fixed point equation) but
bounded away from any other solution of this fixed point equation, then there is a
drift of the Glauber dynamics toward a configuration where rmax(X) is closer to
p∗ than the starting state.

LEMMA 14. Let p∗ be a solution of the equation ϕ(p) = p with ϕ′(p∗) < 1
and let p̄ be the least solution greater than p∗ of the equation ϕ(p) = p if such a
solution exists or 1, otherwise. Let the initial configuration be X(0) with p∗ +μ ≤
rmax(X(0)) ≤ p̄ − μ for some μ > 0. Then there is a δ, c > 0 depending only on
μ,L and ϕ, so that after T = cn2 steps of the Glauber dynamics, it holds that
rmax(X(T )) ≤ rmax(X(0)) − δ with probability 1 − e−	(n).
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PROOF. The lemma is proved using a moment generating function argument;
it is shown that in the relevant regime, each of the random variables NG(X(t), e)

(one for each edge e and graph G) behaves like a biased random walk.
Choose ε, δ > 0 so that for any r ∈ [p∗ + μ, p̄ − μ − δ],

(r − 2δ)|E|−1 > ϕ(r + δ)(r + δ)|E|−2 + ε.(11)

It follows by Lemma 12 that if rG(X(t), e) ≥ rmax(X(0)) − 2δ and rmax(X(t)) ≤
rmax(X(0)) + δ, then for sufficiently large n,

E
[
NG(X(t + 1), e) − NG(X(t), e)

n|V |−2

]
≤ −γ /n2

for some γ > 0 depending only on ϕ, δ and ε. Using this negative drift, we bound
the probability that any of the random variables rG(X(t), e) exceed rmax(X(0))+δ

before time T .
Define the event

At(δ) = ⋂
e,G

{rG(X(t), e) ≤ rmax(X(0)) + δ}

and put

Dt(e,G, δ) = At ∩ {rmax(X(0)) − 2δ ≤ rG(X(t), e) ≤ rmax(X(0)) + δ}
and

Bt1,t2(e,G, δ) =
( ⋂

t1≤t<t2

Dt

)
∩ {rG(X(t2), e) − rG(X(t1), e) > δ/2}.

Bt1,t2(e,G, δ) is the event that all the edge statistics rG′(X(t), e′) behave well start-
ing at time t1 up to and including time t2 −1 and the statistic rG(X(t), e) increases
by at least δ/2 in the time period from t1 to t2.

The event that some rG(X(τ), e) exceeds rmax(X(0)) + δ at some time τ , 1 ≤
τ ≤ T is contained in the event

⋃
e,G

⋃
0≤t1<t2≤T Bt1,t2(e,G, δ). The next claim

bounds the probability of the bad event for a particular choice of edge e and graph
G and the proof of this lemma follows.

CLAIM 15. The probability of the event
⋃

0≤t1<t2≤T Bt1,t2(e,G, δ) is bounded
as

P
( ⋃

0≤t1<t2≤T

Bt1,t2(e,G, δ)

)
≤ e−	(n).(12)

PROOF. For all X we have NGi
(X, e, e′) ≤ NGi

(Kn, e, e
′). The term NGi

(Kn,

e, e′) is the number of graphs Gi in the complete graph containing both e and e′.
In the case that the two edges e and e′ share a vertex, they define 3 vertices
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which leaves at most |Vi | − 3 remaining vertices to be chosen. It follows that
NGi

(Kn, e, e
′) ≤ O(n|Vi |−3) and so

NGi
(X, e, e′)

n|Vi |−2 = O(n−1).(13)

Note that an adjacent edge e′ is only chosen with probability O(n−1). When e and
e′ do not share an edge, then

NGi
(X, e, e′)

n|Vi |−2 = O(n−2).(14)

Although the claim concerns the random variable rG(X, e), we will work with
the related random variable

Yt = NG(X(t), e)

n|V |−2 .

The first step is to compute a bound on the moment generating function of

St1,t2 =
t2∑

t=t1+1

(
Yt − Yt−1 + γ

2n2

)
1(Dt−1(e,G, δ)).

The random variable St1,t2 is the change in Yi from time t1 to t2 while all the edge
statistics are within the appropriate interval, shifted by γ

2n2 per time step. Clearly,
we have the containment

Bt1,t2(e,G, δ) ⊆ {St1,t2 ≥ δ/2}.(15)

We have

E[eθSt1,t2 ] = E
[
eθSt1,t2−1E

(
eθ(Yt2−Yt2−1+γ /(2n2))1(Dt−1(e,G,δ))|Ft2−1

)]
.

From Lemma 12 and equation (11) it follows that E(Yt − Yt−11(Dt−1(e,G,

δ))|Ft−1) ≤ −γ /n2. Recalling that with probability 1 − O(n−1), it holds that
|Yt − Yt−1| = O(n−2) and it always holds that |Yt − Yt−1| = O(n−1), we have

E
(
eθ(Yt2−Yt2−1+γ /(2n2))1(Dt−1(e,G,δ))|Ft2−1

)
=

∞∑
k=0

E
[
θ(Yt2 − Yt2−1 + γ /(2n2))k

k! 1(Dt−1(e,G, δ))k
∣∣Ft−1

]

≤ 1 − 1(Dt−1(e,G, δ))
γ θ

2n2

+ 1(Dt−1(e,G, δ))θ2

× E

[
(Yt − Yt−1)

2
∞∑

k=2

(θ(Yt − Yt−1 + γ /(2n2)))k−2

k!
∣∣∣Ft−1

]

= 1 − 1(Dt−1(e,G, δ))

(
γ θ

2n2 + O

(
θ2

n3

))
.
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Thus, when we take θ = cn for sufficiently small c, we have that

E
(
eθ(Yt2−Yt2−1+γ /(2n2))1(Dt−1(e,G,δ))|Ft−1

) ≤ 1

and so

E[eθSt1,t2 ] ≤ E[eθSt1,t2−1] ≤ 1,

where the second inequality follows by iterating the argument leading to the first
inequality. We can choose α > 0 depending only on L and δ such that for any
graph in {GL},

α < sup
x∈[p∗,1]

{
(x + δ/2)|E|−1 − (x)|E|−1}

.

This gives the estimate

P(St1,t2 ≥ α) ≤ e−cαn
E

[
eθ(Yt−Y0)

] = e−	(n)(16)

and so

P
(
rG(X(t2), e) − rG(X(t1), e) > δ/2

) = e−	(n).(17)

We may now apply (17) to equation (15), resulting in

P
( ⋃

0≤t1≤t≤t2≤T

Bt1,t2(e,G, δ)

)
≤ T 2e−	(n)(1 + o(n)

) = e−	(n),(18)

which proves the claim. �

Next, we argue that if all of the random variables rG(X(t), e) remain below
rmax + δ, then each random variable actually ends below rmax − δ with exponen-
tially high probability. We prove this by showing that each random walk actually
reaches rmax − 2δ and then by the claim has exponentially small probability of
increasing to rmax − δ. Suppose that for some e,G, rG(X(0), e) ≥ rmax − 2δ. Then
for T = cn2,

P
(
rG(X(t), e) ≥ rmax − 2δ for 1 ≤ t ≤ T

)
≤ P

(
rG(X(t), e) ≥ rmax − 2δ for 1 ≤ t ≤ T ,

⋂
1≤t≤T

At (δ)

)
+ e−	(n)

≤ P
(
rG(X(t), e) ≥ rmax − 2δ for 1 ≤ t ≤ T ,

⋂
1≤t≤T

Dt(e,G, δ)

)
+ e−	(n)

≤ P
(
S1,T ≥ −1 + γ c

2

)
+ e−	(n),

where the last step follows since each of the T increments in S1,T contribute γ /2n2

on the event
⋂

1≤t≤T Dt(e,G, δ). Choosing c ≥ 3/γ and using the estimate on the
deviation of St1,t2, (17) gives

P
(
rG(X(t), e) ≥ rmax − 2δ for 1 ≤ t ≤ T

) ≤ e−	(n).
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Finally, we have

P
(
rG(X(T ), e) ≥ rmax − δ

)
≤ P

(
rG(X(T ), e) ≥ rmax − δ, rG(X(t), e) < rmax − 2δ for some t ∈ [1, T ])

+ e−	(n)

≤ P
( ⋃

1≤t1≤T

Bt1,T (e,G, δ)

)
+ e−	(n) ≤ e−	(n).

The union bound on probabilities applied over the set of edges e and graphs G

completes the proof of Lemma 14. �

Our results on rmax can trivially be transferred into the analogous results
for rmin. The following lemmas follow immediately from iterating Lemma 14.

LEMMA 16. In the high temperature phase for any ε > 0 there is c > 0 such
that for any initial configuration X(0) = x, when t ≥ cn2 we have

P
(
rmax(X(t)) ≥ p∗ + ε|X(0) = x

) ≤ e−	(n),

P
(
rmin(X(t)) ≤ p∗ − ε|X(0) = x

) ≤ e−	(n).

LEMMA 17. In the low temperature phase suppose that p∗ is a solution to
p = ϕ(p) and ϕ′(p∗) < 1. There exists an ε > 0 such that if for some initial con-
figuration X(0), we have that rmax(X(0)) ≤ p∗ + ε and rmin(X(0)) ≥ p∗ − ε then
for some α > 0

P
(

sup
0<t<eαn

rmax(X(t)) ≥ p∗ + 2ε
)

≤ e−	(n),

P
(

inf
0<t<eαn

rmin(X(t)) ≤ p∗ − 2ε
)

≤ e−	(n).

2.3. Path coupling.

LEMMA 18. Let p∗ ∈ [0,1] be a solution of the equation ϕ(p) = p and sup-
pose 0 < ϕ′(p∗) < 1. There exists ε, δ > 0 sufficiently small and such that the
following holds. Suppose that X+(0) ≥ X−(0) are two configurations that differ
at exactly one edge e. Suppose further that for all graphs G with at most L vertices
and all edges e′

|r(G, e′) − p∗| < ε.(19)

Then for sufficiently large n, a single step of the Glauber dynamics can be coupled
so that

EdH (X+(1),X−(1)) ≤ 1 − δn−2.
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PROOF. We take the standard monotone coupling. Suppose that an edge e′ �= e

is chosen to be updated by the Markov chain. Then

P
(
X±

e′ (1) = 1
) = exp(∂e′H(X±(0)))

1 + exp(∂e′H(X±(0)))
.(20)

Since

∂e′H(X±(0)) =
s∑

i=1

βiNGi
(X±(0), e′)

n|Vi |−2

by Lemma 9 and equation (19), we have that for large enough n,

∂e′H(X±(0)) ≤
s∑

i=1

βi(p
∗ + ε)|Ei |−1NGi

(Kn, e
′)

n|Vi |−2 = �β(p∗ + ε).(21)

Similarly,

0 ≤ (
1 − o(1)

)
�(p∗ − ε) ≤ ∂e′H(X±(0))

and so it follows that for any ε′ > 0, for large enough n and for small enough ε we
have that

d

dx

ex

1 + ex

∣∣∣∣
∂e′H(X+(0))

≤ (1 + ε′) d

dx

ex

1 + ex

∣∣∣∣
�(p∗)

.(22)

We now bound the sum of the ∂e ∂e′H(X+(0)) terms

∑
e′ �=e

∂e ∂e′H(X+(0)) = ∑
e′ �=e

s∑
i=1

βiNGi
(X+(0), e, e′)
n|Vi |−2

=
s∑

i=1

βi

∑
α∈E(Gi )

α �=e

N(Gi)α (X
+(0), e)

n|Vi |−2

≤
s∑

i=1

βi

∑
α∈E(Gi )

α �=e

(p∗ + ε)|Ei |−2N(Gi)α (Kn, e)

n|Vi |−2

=
s∑

i=1

∑
e′ �=e

βi(p
∗ + ε)|Ei |−2NGi

(Kn, e, e
′)

n|Vi |−2 ,

where the second and fourth lines follow from Lemma 10 and the inequality fol-
lows from equation (19). By Lemma 9 we have that

∑
e′ �=e

∂e ∂e′H(X+(0)) ≤ (
1 + o(1)

) s∑
i=1

2|Ei |(|Ei | − 1)(p∗ + ε)|Ei |−2

(23)
= (

1 + o(1)
)
� ′(p∗ + ε).
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By the Taylor series for small h we have that

ex+h

1 + ex+h
− ex

1 + ex
≤ d

dx

ex

1 + ex

∣∣∣∣
x

(
h + O(h2)

)
and so using equation (20),

P
(
X+

e′ (1) = 1
) − P

(
X−

e′ (1) = 1
)

= d

dx

ex

1 + ex

∣∣∣∣
∂e′H(X+(0))

· (
∂e ∂e′H(X+(0)) + O(∂e ∂e′H(X+(0))2)

)
(24)

≤ (1 + ε′)
(
1 + o(1)

)
∂e ∂e′H(X+(0))

d

dx

ex

1 + ex

∣∣∣∣
�(p∗)

,

using equations (22) and the fact that by equation (13) we have that

∂e ∂e′H(X+(0)) = O(n−1).

Each edge e′ has probability
(n

2

)−1 of being updated and if edge e is chosen to
be updated then the number of disagreements is 0. It follows by equations (24) and
(23) that for any ε′′ > 0

EdH (X+(1),X−(1))

≤ 1 −
(

n

2

)−1 [
1 − ∑

e′ �=e

(1 + ε′)
(
1 + o(1)

)
∂e ∂e′H(X+(0))

d

dx

ex

1 + ex

∣∣∣∣
�(p)

]

≤ 1 −
(

n

2

)−1 [
1 − (1 + ε′)

(
1 + o(1)

)
� ′(p∗ + ε)

d

dx

ex

1 + ex

∣∣∣∣
�(p∗)

]

≤ 1 −
(

n

2

)−1 [
1 − (1 + ε′′)

(
1 + o(1)

)
ϕ′(p∗)

]
provided that ε, ε′ are sufficiently small. The result follows, since ϕ′(p∗) < 1. �

PROOF OF THEOREM 5. We begin by proving the high temperature phase
using a coupling argument. Let X+(t) and X−(t) be two copies of the Markov
chain started from the complete and empty configurations, respectively, and cou-
pled using the monotone coupling. Since this is a monotone system, it follows that
if P(X+(t) �= X−(t)) < e−1, then t is an upper bound on the mixing time. The
function ϕ satisfies the hypothesis of Lemma 18, so choose ε and δ according to
the lemma. Let property At be the event that for all graphs G ∈ GL and all edges e

|rG(X, e) − p∗| < ε(25)

for both X+(t) and X−(t). By Lemma 16 we have that if t ≥ cn2, then P(At ) ≥
1 − e−αn.
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Since X+(t) ≥ X−(t), there exists a sequence of configurations X−(t) = X0 ≤
X1 ≤ · · · ≤ Xd = X+(t), where d = dH (X+(t),X−(t)), each pair Xi,Xi+1 differ
at exactly one edge and each Xi satisfies equation (25). Such a sequence is con-
structed by adding one edge at a time to X−(t) until X+(t) is reached. Further,
since the subgraph counts NG(X, e) are monotone in X, if both X+(t) and X−(t)

satisfy (19), each of the configurations Xi also satisfies this equation. Applying
path coupling to this sequence, we have that by Lemma 18

E
[
dH

(
X+(t + 1),X−(t + 1)

)
1(At )|X+(t),X−(t)

]
≤ (1 − δn−2)dH (X+(t),X−(t)).

Since dH (X+(t),X−(t)) ≤
(

n
2

)
, we have the inequality

E
[
dH

(
X+(t + 1),X−(t + 1)

)]
≤ (1 − δn−2)E[dH (X+(t),X−(t))] +

(
n

2

)(
1 − P(At )

)

≤ (1 − δn−2)E[dH (X+(t),X−(t))] +
(

n

2

)
e−αn.

Iterating this equation, we get that for t > Cn2,

E[dH (X+(t),X−(t))]

≤ (1 − δn−2)t−Cn2
(

n

2

)
+ e−αn

(
n

2

) t∑
j=C′n2

(1 − δn−2)t−j

≤ exp
(−δn−2(t − Cn2)

)
n2 + e−αn 1

δ

(
n

2

)
n2.

Then for any ε′ > 0, when t > C+2+ε′
δ

n2 logn, we have that for large enough n,

E[dH (X+(t),X−(t))] = o(1).

It follows by Markov’s inequality that P(X+(t) �= X−(t)) = o(1), which estab-
lishes that the mixing time is bounded by C+2+ε′

δ
n2 logn.

To establish a lower bound of order n2 logn, we note that at time t� := 1
2n2 logn

by a coupon collecting argument there are of order n3/2 edges which have not yet
been updated. Now let G AP denote the spectral gap of the Glauber dynamics, that
is, the difference of the largest and second largest eigenvalues by absolute value. It
is well known that for a Markov chain with state space 	, transition matrix P and
stationary distribution π that

G AP = inf
f :Ef �=0

∑
s,s′∈S(f (s) − f (s′))2P(s, s′)π(s)

varf
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and that G AP −1 ≤ τmix (see, e.g., [2]). Let X be chosen according to the stationary
distribution and take Y = Y(X) to denote the number of edges in the graph. Since
at most one edge is changed in each step of the Markov chain we have that

varY ≤ G AP −1 ≤ τmix = O(n2 logn).

[Actually, it can be shown that G AP −1 = O(n2) but we do not need it for this
argument.] By Chebyshev’s inequality we have that

P(|Y − EY | ≤ n4/3) = O(n−2/3 logn).

On the other hand, we know that with high probability Y(X+(t�))−Y(X−(t�)) >

cn3/2, so at most one of Y(X+(t�)) or Y(X−(t�)) can be close to EY . Hence, we
have that

max
{
P

(|Y(X+(t�)) − EY | ≤ n4/3)
,P

(|Y(X−(t�)) − EY | ≤ n4/3)} ≥ 1
2 − o(1).

This, in particular, means that either Y(X+(t�)) or Y(X−(t�)) (and actually it can
be shown that both) is not within e−1 in total variation distance from the stationary
distribution. Hence, the mixing time is at least t� = 1

2n2 logn when n is large which
completes the proof. �

2.4. Slow mixing for local Markov chains in low temperature regime. We will
use the following conductance result, which is taken from [9], Claim 2.3:

CLAIM 19. Let M be a Markov chain with state space 	, transition matrix P

and stationary distribution π . Let A ⊂ 	 be a set of states such that π(A) ≤ 1
2 and

B ⊂ 	 be a set of states that form a “barrier” in the sense that Pij = 0 whenever
i ∈ A \ B and j ∈ Ac \ B . Then the mixing time of M is at least π(A)/8π(B).

Using this result we prove slow mixing for any local Markov chain.

PROOF OF THEOREM 6. Suppose p1 and p2 are solutions of the equation
ϕ(p) = p with ϕ′(p1) < 1, ϕ′(p2) < 1 and choose ε > 0 sufficiently small so that
ϕ(p) < p for p ∈ (pi,pi + 3ε] and ϕ(p) > p for p ∈ [pi − 3ε,pi), for i = 1,2.
Let

Ai = {X : rmax(X) ≤ pi + ε and rmin(X) ≥ pi − ε}, i = 1,2

and suppose the set A1 has smaller probability (switching the labels p1 and p2 if
necessary), so π(A1) ≤ 1

2 . We note that for large enough n, π(Ai) > 0 since with
high probability an Erdős–Rényi random graph G(n,pi) is in Ai . In the remainder
of the proof we will omit the subscript, that is, let A = A1 and p = pi . Now, clearly
the set

B = {X :p + ε < rmax(X) ≤ p + 2ε or p − ε > rmin(X) ≥ p − 2ε}
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forms a barrier (for sufficiently large n) between the sets A and Ac for any Markov
chain that updates only o(n) edges per time-step, since each edge update can
change each of rmax and rmin by at most O( 1

n
).

It remains only to bound the relative probabilities of the sets A and B . Let
C = Ac \ B and let t = cn2 such that Lemma 14 holds. Then

P
(
X(t) ∈ C|X(0) ∈ B

) = e−	(n)(26)

and

P
(
X(t) ∈ B|X(0) ∈ A ∪ B

) = e−	(n).(27)

Let the configuration X(0) be drawn according to the Gibbs measure π = pn de-
fined in equation (3) and let X(t) be the configuration resulting after t steps of the
Glauber dynamics. Because the Glauber dynamics has stationary distribution π ,
X(t) has the same distribution as X(0). By the reversibility of the Glauber dynam-
ics and the estimate (26), we have

P
(
X(t) ∈ B,X(0) ∈ C

) = P
(
X(t) ∈ C,X(0) ∈ B

)
= P

(
X(t) ∈ C|X(0) ∈ B

)
P

(
X(0) ∈ B

)
(28)

= e−	(n)P
(
X(0) ∈ B

)
.

Similarly, using (27),

P
(
X(t) ∈ B,X(0) ∈ A ∪ B

)
= P

(
X(t) ∈ B|X(0) ∈ A ∪ B

)
P

(
X(0) ∈ A ∪ B

)
(29)

≤ e−	(n)P
(
X(0) ∈ A ∪ B

)
= e−	(n)(P(

X(0) ∈ A
) + P

(
X(0) ∈ B

))
.

Combining (28) and (29), we have

π(B) = P
(
X(t) ∈ B

)
= P

(
X(t) ∈ B,X(0) ∈ C

) + P
(
X(t) ∈ B,X(0) ∈ A ∪ B

)
(30)

≤ e−	(n)(P(
X(0) ∈ A

) + 2P
(
X(0) ∈ B

))
= e−	(n)(π(A) + 2π(B)

)
,

which, upon rearranging, gives

π(B) ≤ e−	(n)

1 − 2e−	(n)
π(A).(31)

Applying Claim 19 completes the proof. �
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3. Independence of edges and weak pseudo-randomness. Here we shall
prove Theorem 7. Note that our burn-in proof in the high temperature regime
shows that with high probability all the rG(X, e) are close to p∗, the fixed point
of ϕ(p) = p. A consequence is that for any collection of edges e1, . . . , ej the
events xei

are asymptotically independent and distributed as Bernoulli(p∗). A con-
sequence of the asymptotic independence of the edges is that with high probability
a graph sample from the exponential random graph distribution is weakly pseudo-
random, as defined in [14]. As such, the exponential random graph model (in the
high temperature case) is similar to the basic Erdős–Rényi random graph. Since ex-
ponential random graphs were introduced to model the phenomenon of increased
numbers of small subgraphs like triangles, this result suggests that in the high tem-
perature case, this model does not quite achieve its goal.

PROOF OF THEOREM 7. Fix ε > 0. Let S ⊆ [k] and let xS = {xei
: i ∈ S} and

xSc = {xei
: i ∈ [k] \ S}. Then, by the inclusion-exclusion principle, we have

P(xS = 1, xSc = 0) = ∑
T ⊆[k] : S⊆T

(−1)|T |−|S|P(xT = 1).(32)

Hence, it suffices to show that asymptotically each probability in the preceding
sum satisfies P(xT = 1) = (1 + o(1))(p∗)|T |. Define

A = {X : rmax(X) ≤ p∗ + ε and rmin(X) ≥ p∗ − ε}.
Consider the subgraph GT formed by the edges in the set T . Conditional on X ∈ A,
|rGT

(X, e) − p∗| ≤ ε, which gives∣∣NGT
(X, e) − (p∗)|E|−12|E|n|V |−2∣∣ = O(ε),(33)

where V is the number of vertices and |E| = |T | is the number of edges of GT . By
considering the graph consisting of two disjoint edges, we have that the number of
edges in a configuration X ∈ A satisfies∣∣∣∣Nedge(X) − p∗

(
n

2

)∣∣∣∣ = O(ε).(34)

Note that ∑
e∈X

NG(X, e)1(ei ∈ X) = |E|NG(X)

and summing equation (33) over the edges in X and using (34) gives∣∣NGT
(X) − (p∗)|E|n|V |∣∣ ≤ O(ε)(35)

for sufficiently large n. By symmetry, each of the subgraphs GT is equally likely
to be included in the configuration X and there are n|V | possible such subgraphs,
so

P(xT = 1|X ∈ A) = NGT
(X)

n|V | = (p∗)|E| + O(ε).

Recall that P(A) = 1 − o(1) in the high temperature phase (as argued in the proof
of Theorem 5 using Lemma 16). Thus, for any set of edges T ⊆ [k], we have that
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P(xT = 1) = (p∗)|T | + O(ε) where we used the fact that |E| = |T |. Plugging this
into (32) and using the fact that

∑
T ⊆[k]:S⊆T

(−1)|T |(p∗)|T | = (p∗)|S|
k−|S|∑
q=0

(
k − |S|

q

)
(−p∗)q

= (p∗)|S|(1 − p∗)k−|S|,
we have that for large n∣∣P(x1 = a1, . . . , xk = ak) − (p∗)

∑
ai (1 − p∗)k−∑

ai
∣∣ ≤ O(ε),

which completes the proof by taking ε to 0. �

We can also show that an exponential random graph is weakly pseudo-random
with high probability. This means that a collection of equivalent conditions are
satisfied; we briefly mention only a few of them (see the survey on pseudo-random
graphs [14]). We will use a different subgraph count than before: for a graph G

let N∗
G(X) be the number of labeled induced copies of G in X. This is different

than the counts NG(X) in that it requires edges missing from G to also be missing
in the induced graph in X. A graph X is weakly pseudo-random if it satisfies one
of the following (among others) equivalent properties:

1. For a fixed l ≥ 4 for all graphs G on l vertices,

N∗
G(X) = (

1 + o(1)
)
nl(p)|E(G)|(1 − p)

(
l
2

)
−|E(G)|

.

2. Nedges(X) ≥ n2p
2 + o(n2) and λ1 = (1 + o(1))np, λ2 = o(n), where the eigen-

values of the adjacency matrix of X are ordered so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
3. For each subset of vertices U ⊂ V (X) the number of edges in the subgraph of

X induced by U satisfies E(HX(U)) = p
2 |U |2 + o(n2).

4. Let Cl denote the cycle of length l, with l ≥ 4 even. The number of edges

in X satisfies Nedges(X) = n2p
2 + o(n2) and the number of cycles Cl satisfies

NCl
(X) ≤ (np)l + o(nl).

By Theorem 7, for any configuration in the good set, X ∈ G, the fourth condition
is satisfied. This gives the following corollary.

COROLLARY 20 (Weak pseudo-randomness). With probability 1 − o(1), an
exponential random graph is weakly pseudo-random.
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