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DISCRETIZATION ERROR OF STOCHASTIC INTEGRALS!

BY MASAAKI FUKASAWA
Osaka University

Limit distributions for the error in approximations of stochastic integrals
by Riemann sums with stochastic partitions are studied. The integrands and
integrators are supposed to be one-dimensional continuous semimartingales.
Lower bounds for asymptotic conditional variance of the error are given and
effective discretization schemes which attain the bounds are explicitly con-
structed. Two examples of their applications are given; efficient delta hedging
strategies under fixed or linear transaction costs and effective discretization
schemes for the Euler-Maruyama approximation are constructed.

1. Introduction. The present article studies the asymptotic distribution of
a sequence of continuous processes Z" = {Z}'};c[0,7) defined as

t o
(M Ztn :/0 X, dYs — ;}Xr]’?(yr_;lﬂm - Yrj’?m)
J:

for one-dimensional continuous semimartingales X = {X;, F;}, Y = {¥;, F;} and
sequences of {F;}-stopping times 7" = {rj’-’} with

2) O=‘L'6’<‘L'1”<---<t;7<---, lim 1']’.’=T a.s.,

J—>00

where T € (0, 0c] is fixed and the intervals 77, | — t7 are supposed to converge
to 0 as n — oo in a sense specified later. The stochastic integral is usually defined
as a limit of Riemann sums and naturally approximated by them in practices, so the
asymptotic behavior of Z" is of interest. This problem was studied by Rootzén [23]
in the case that Y is a Brownian motion and the asymptotic distribution of Z"
was specified in the case that ! = j/n and Xy = f(Ys, s) with a smooth func-
tion f. Jacod [10] treated a related problem on the condition that each interval

rj'.’ 1 r;’ 18 ]-'77 -measurable. Jacod and Protter [11] considered the case X =Y

and r]'.’ = j/n to derive the asymptotic error distribution of the Euler—Maruyama
approximation for stochastic differential equations. Hayashi and Mykland [8] dis-
cussed this problem again for the case fj’.’ = j/n in a financial context of discrete-
time hedging error. Geiss and Toivola [7] treated an irregular deterministic dis-

cretization scheme. The measurability condition that r;? 1 r}? is .7-};_1 -measurable
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for all j has played an indispensable role in those preceding studies. On the other
hand, Karandikar [13] constructed a stochastic discretization scheme t” such that
Z} converges to 0 almost surely. Since the almost sure convergence does not hold
in general for deterministic schemes, Karandikar’s scheme is more effective in a
sense. The scheme is constructed by using passage times of X and so does not sat-
isfy the measurability condition. Recently, Fukasawa [5] proved a limit theorem for
a class of discretization schemes including Karandikar’s one in the case X = Y and
Fukasawa [6] extended it to general discretization schemes. This article extends
those limit theorems to include general integrands X and presents lower bounds
for the asymptotic conditional variance of Z". Effective discretization schemes
which attain the bounds are explicitly constructed. Karandikar’s scheme is shown
to be superior to the deterministic scheme r}? = j/n also in terms of mean squared
error. An application to delta hedging under fixed or linear transaction costs is
given which can be directly used in practice. Another application is to construct an
alternative discretization scheme for the Euler—Maruyama approximation which
results in a one third asymptotic mean squared error. It remains a matter for further
research to extend the results to discontinuous semimartingales. The main results
are given in Section 2. Effective discretization schemes are constructed in Sec-
tion 3. The applications to hedging and the Euler—-Maruyama approximation are
presented in Sections 4 and 5, respectively.

2. Central limit theorem.

2.1. Notation and conditions. Here we give a rigorous formulation and con-
ditions on X, Y and t". Let (2, F, {F;};>0, P) be a filtered probability space.
The filtration {F;};>0 is assumed to satisfy the usual conditions. We denote by
F1 - F, the Stieltjes integral or the stochastic integral of Fj with respect to F>.
For a positive sequence §, and sequences of random variables E, or E; ,, we
write E, = 0,(8,) if 8;13,, is tight. We say E;, = O,(5,) uniformly in j if
sup; 8;1 |E x| is tight. We write B, = 0,(5,) if (Sn_] &, converges to 0 in proba-
bility as n — oo. We say & » = 0p(8,) uniformly in j if sup; |(Sn_1 & n| converges
to 0 in probability as n — oo.

Let us recall the definition of stable convergence.

DEFINITION 2.1. Let [E be a complete separable metric space, F" be a se-
quence of E-valued random variables defined on (€2, F, P) and F be an E-valued
random variable defined on an extension of (2, F, P). For a sub o-field G C F,
we say F" converges G-stably to F' if for all G-measurable random variable Fjp,
the joint distribution (F", Fy) converges to (F, Fp) in law.

Our main results stated in the next subsection are stable convergences of Z”"
defined by (1) with continuous semimartingales X and Y. Notice that a stable
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convergence is stable against, in particular, the usual localization procedure as well
as the Girsanov—Maruyama transformation.

Denote by P and Py the set of the predictable processes and the set of locally
bounded left-continuous adapted processes, respectively. Let T € (0, oo] be fixed.
Given a continuous semimartingale M and k € N, put

P, ={H eP;|H|"- (M), < oo forallt €0, T)}.

Denote by S the set of the continuous semimartingales (X, Y, M) satisfying the
following Condition 2.2.

CONDITION 2.2. There exist ¥, ¢,k € 731%,, and a locally bounded predictable
process y € P such that

X=Xo+¢-(M)+y-M, Y=Yo+¢ (M)+M"
on [0, T), where M Y is a continuous local martingale with
MYy =k - (M).

In addition, M is a continuous local martingale with E[{(M )6T] < 00.

The integrability of (M)r is not restrictive in light of the usual localization
procedure. In order to describe conditions on t”, we put

Gin=ElMy  —Myl|lFal. G, =E(My — M) |Fo]

for a given continuous local martingale M with E[{(M )6T] < o0 and k € N with
2 <k < 12. In addition, we put

3) N[t"]; =max{j > 0; 7} <7}

for a given stopping time 7. Denote by 7 (M) the set of the sequences of stopping
times {t”"} satisfying (2) and the following Condition 2.3.

CONDITION 2.3. There exist a sequence &, with &, — 0 and a, b € Py such
that

Gl Gin=azentop(en).  Gj,/GF,=buen+op(en)
and
GS,/G2, =0, GP2/GE, =0,

uniformly in j =0, 1, ..., N[t"]; forall r € [0, T'). Here 0/0 is understood as O.
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Condition 2.3 is slightly stronger than [6], Condition 3.5; nevertheless, all ex-
amples given by Fukasawa [6] also satisfy this condition. Here, ¢, serves as a scale
of increments of M. Note that G‘]‘.’n/Gin =0, (8%) implies G;’n/Gin = 0p(&n)
by Lemma B.2. In usual cases, we have G%kn =0, (eﬁk), which in fact holds, for
example, if d(M ), /dt exists and is bounded and if IJ’-‘ - t}“ isof O (8,%) uniformly.
Condition 2.3 is, therefore, a quite mild condition in the context of high-frequency
asymptotics. It is often easily verified by using the Dambis—Dubins—Schwarz time-
change technique for martingales when t” is a function of the path of M. Once it
reduces to the Brownian motion case by the time-change, one can then utilize
many results on Brownian stopping times. See [6] for examples. In light of the
Skorokhod stopping problem, the distribution of an increment can be any centered
distribution with a suitable moment condition. The left-continuity of a2 and b cor-
responds to a local homogeneity property of the distributions of the increments.
It should be noted that sup; |rj’.‘ N — r}‘ A t| — 0 does not follow from Condi-
tion 2.3 nor needed for our main results.

Denote by 71 (M), To(M) the subsets of 7 (M) satisfying the following Condi-
tions 2.4 and 2.5, respectively.

CONDITION 2.4. In addition to Condition 2.3, there exists ¢ € Py such that

¢7lePo,  €aG,/Glu=C +op()

uniformly in j =0, 1,..., N[t"]; forall r € [0, T). Here 0/0 is understood as 0.

CONDITION 2.5. In addition to Condition 2.3, there exists g € Py such that
g 'ePy. G5,= q%;s% +0,(e2)

uniformly in j =0, 1, ..., N[t"]; forall r € [0, T'). Here 0/0 is understood as 0.

Finally, for t” with (2) and # € [0, T'), put

(4) [M]S,n = <M>rj’?+1/\t - <M>rj'-lAt~

2.2. Main results. Here we state main results on the limit distribution of Z".
The proofs are deferred to Section 2.3.

THEOREM 2.6. Let (X, Y,M) e S, 1" € T(M) and Z" be defined by (1).
Assume one of the following two conditions hold:

(i) M is the local martingale part of X, that is,

(®)] y=1.
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(i) Forallt€[0,T),
(6) E[Z |[M];,n|k} = 0(2*=D)
j=0

forke{1,2,3,4,5}, where [M];-’n is defined by (4).
Then, Z" /&, converges F-stably to
1 1 /

(7 3y) Y + 7ley) - Y
as a C[0, T)-valued sequence, where
(8) A=a*-3, Y =Wy
and W is a standard Brownian motion which is independent to JF .

Note that the asymptotic distribution (7) is an F-conditionally Gaussian pro-
cess, so that the marginal law is a mixed normal distribution. The following theo-

rems give lower bounds for the conditional variance of the mixed normal distribu-
tion.

THEOREM 2.7. Let (X,Y, M) € S, 1" € T1(M) and Z" be defined by (1). Let
u € Py and put

o0
Ul = lugrl|Mep, nn = Mot
j=0

Then, it holds that
) enUl' = U = (|ult) - (M),

in probability for all t € [0, T). Moreover, if (5) or (6) holds, then U™ Z" converges
F-stably to UZ as a C|0, T)-valued sequence, where Z is defined by (7). The
asymptotic conditional variance V; of U]'Z} with t € [0, T) satisfies

(10) Vi =ten)® - ()l (ule) - (M) ? = Luy PP By - m) P as.

THEOREM 2.8. Let (X,Y, M) e S, 1" € To(M) and Z" be defined by (1).
Then, it holds that
(11) e N[T"), = Ny:=q 7% (M),

in probability for all t € [0, T). Moreover, if (5) or (6) holds, then /N[t"|Z"
converges F-stably to /N Z as a D|0, T)-valued sequence, where Z is defined by
(7). The asymptotic conditional variance V; of 5/ N[t"]; Z} with t € [0, T) satisfies

(12) Vi=Lep)t (Vg2 (M) = HyIve) - (M) as.
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Note that the right-hand sides of (10) and (12) do not depend on z". In Section 3,
we construct schemes t" € 7;(M) N 7,(M) which attain the lower bounds (10)
and (12). Its practical meaning is discussed in Sections 4 and 5.

Condition (6) will be easily verified especially if M is a Brownian motion. Con-
dition 2.3 is then also easily verified if, in addition, t” satisfies the condition that
each interval t” T J” is }}}z measurable. It is, therefore, not difficult to recover
the preceding results from Theorem 2.6. An irregular scheme treated in [7] is an
example.

2.3. Proof for theorems. Here we give proofs for main results stated in the
previous subsection.

LEMMA 2.9. Let M be a continuous local martingale with E[{(M )T] < Q.
Let ™ eT (M), He Py and y be a locally bounded predictable process. Put
=y - M and define H", M" as

(13) H! =H,Jr;, M =MT}‘ forjiOwithse[r",rﬁ_Q.
If (5) or (6) holds, then it holds that

. ey \((M — M™H") - (M), — L(bHy) - (M),,
e, (M — M™?2H") - (M), — L(@*Hy?) - (M),

uniformly in t on compact sets of [0, T) in probability. Moreover,
(15) £, (M — M"Y* H") - (M), = 0,(1)
forallt €[0,7).

PROOF. By the usual localization argument, we can assume H, y, a, b, M
and (M) are bounded without loss of generality. Let us suppose y = 1. Then, for
anyl € Z,

ey (M — M™'H") - (M),

00 T AL
-1 1+2 J+l I+1
=&, E:Hr'?{az(Mﬂ o Mo )4 By (My — Mn)'™* dMs}
0 J J+ J AL J
J=

by Itd’s formula, where oy, §; are constants only depending on / and, in particular,
a1 =1/3,ap =1/6. Since

N[t"]

o= Z H? [/ (My = My 2 d(M), | For ]

N[z"]:
=¢; 210[214—2 Z HZ G2H—4_)0
j=0
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in probability for / € {1 2,4} by Condition 2.3, we have

in probability, as well as

.¢]
— - l
8nl Z H‘[;’ (Mr}’HAt - Mr;’m)H_z l Z H G +2

Jj=0 ‘
in probability by Lemmas A.2 and A.4. The result then follows from the last as-
sertion of Lemma A 4.

Next, let us suppose (6) and y = 1. Note that for all § > 0, there exists a bounded

left-continuous process y° such that

Elly —y°[*-(M)1<$
for any k € {4, 6, 8,10, 12} by Lemma A.3. Notice that for £ € N, n € Z, and
p,qg,r>1withl/p+1/g+1/r=1,
& rs
I
‘L'j VaVa

[Zf MM/ Yu = Ve

S s
< E[Z sup f Vu — S
=0 se[r}’/\t,tj'fH/\t] 7-'}1/\’
[,
X sup 2
seltf ATl Al TiAL

]
0 At
<CG, n){E[Z / T =y dim,

pé/ZHVP
j=0""TN
00 1/q 1/r
x!E[D[M];,”l‘”/Z“ ! {D[M}f “
=0

by the Holder and the Burkholder—Davis—Gundy inequalities, where C (&, n) is a
constant. Furthermore,
péﬂ}

00 t;'_H/\t 52
E E:f Vi — v d(M),
T
TN 5\2p€ t o pE—1
L = Pt o,
T

j=0 Nt
n
ki At

n
u d<M>s:|

>

1/2
=0 ]
e[ it aon. }I/ZHE |[M]’,-,n|ps—1”1/2.
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For each (§,7n) € {(1,0), (1, 1), (2,0), (1, 3), (2,2), (3, 1), (4,0)}, one can find
suitable (p, g, r) such that it follows from the assumption (6) that

00 1/2p) 00 1/q 1/r
(e[S [} e S| e S]]
=0 =0

is of O(s,g,ﬂ). For example, take (p,q.r) = (5/4,00,5) for (§,n) = (4,0).
Since § can be arbitrarily small, this estimate ensures that one can replace M and y
by y® - M and y?, respectively, in (14) and (15). Put

(S,I’l _ ) n n
Vs = Vo fors € [t}, 7).

By the same argument, one can estimate

/n Vi =V

in order to replace (M — M"™) with y‘s’"(M — M™) in (14) and (15), where M" is
defined as

n
u d<M)s]

M;‘:Mr;y for j > 0 with s € [t} T/} ).
The rest of the proof is to repeat the argument for the case y = 1 by replacing H
with Hy%. O
PROOF OF THEOREM 2.6. Put M =y - M, A= - (M) and define A", M"
as (13) with H = A. Then we have
Z"=(A—-A") Y +((M—M"p) - (M)+(M—M")-M".
We shall prove that
e (A=A Y, >0, & (M —M"p)- (M)~ 5(bp) - (M)
in probability uniformly in # on compact sets of [0, T') and that
(16) D" =g, ' (M —M")-M*
converges J-stably to
3by) MY+ E(ey) Y.
Step (a). Let us show
(17) el (A—A") .Y, =0

uniformly in v € [0, ] in probability. We shall first see that

(18) g7 (A= AM)g) - (M), — 0
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uniformly in v € [0, ¢] in probability. Fix 81, §2 > 0 arbitrarily and take a bounded
left-continuous process 1/° such that

Py —y°)2 - (M), > 811 < &>

by Lemma A.3. Observe that for any v € [0, 7],

e ((A— A")p) - (M),

1y / T wedi g i,
(19) T
_e'Y / P i,
j=0 vy
- Z / / ) d(M)y gy d(M)s
and that

‘12/ " el aon,

_ N
<Cle 1Z[M,nf’ ol d(M),
20 N

1/2

5. —1 P TN
<ot S i, L e au,
]:0 'L'j/\t

_C“{e;zgmr } {/ pal2a(m }1/2

for a constant C°. Using Lemmas A.2, A.4 and the Burkholder—Davis—Gundy in-
equality, we have

(20) £, 2 Y IIMT; 1P = 0p(en)
j=0

since

N[t"); N[t"]:

£’ Z GS,=0,6). et Y GP—
j=0
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in probability by Condition 2.3. Hence, the first term of the right-hand side of (19)
converges to 0 uniformly in v € [0, ¢] in probability. For the second term, we have

_1 ]HAI s s
ZO I /f_;zA,"”" VM)l (M)

N3

_ A Tt

Gy [ oy [ Il an
] —0 T VaVs Tj/\l

1/\[

<l —vop —IZ\/ j/ 5] (M),
<l — v —12{ ,n|f gy P dim >}1/2

< Iy -y (M {Zs—zqun } {/ s P diM }1/2.

Again using Lemmas A.2, A.4 and the Burkholder—-Davis—Gundy inequality, we
have

e Y IIMT; 17 = 0,(1).

j=0

Since 81, §2 can be arbitrarily small, this implies (18). Next, we shall prove
e [ (A— A" -MY -0
uniformly in v € [0, ¢] in probability. By the Lenglart inequality
P[ sup le;'(A—am-M)|> 8] < 2 Pl (A=A M), > 8]
vel0,1] o

for any §1, 8> > 0, it suffices to see
(1) e (A= A" -MY), =2 ((A— A"k) - (M); — 0
in probability. Observe that

En” th ;]MU{:M Yu d<M)u}2st(M)s

j=0

-2 t;l+1 t
<2 Y [ o, Ay
j=0 ‘L’j/\l‘

T AL V2 1/2
<sup Y| d(M {—4Z|[M] } {[Oxfdwn}

. n
j=0 ‘[j Nt
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and that
r}’H/\t
sup [ 7 |yul?d(M), >0
=0/t

in probability by Lemma A.4. Then (21) follows from (20).
Step (b). Let us show that

(22) ey (M = M™)p) - (M)y — L(bpy) - (M),

uniformly in v € [0, ¢] in probability. Fix §, §> > 0 arbitrarily and take a bounded
left-continuous adapted process ¢? such that

Pllp — ¢’ - (M) > 811 < 8
by Lemma A.3. Notice that

e L((M — M"Y (9 — ¢%)) - (M), ]
(23)

<V1o — @7 - (M) e (V1 — 7Y - (M),
and
£, (M — M")? - (M); = 0,(1)

by Lemma 2.9. Also note that

Q4)  1(bg) - (M), — (bg®) - (M), < B2 (M)l — @2 - (M),

Since 81, 87 can be arbitrarily small, the estimates (23) and (24) ensure that we can
suppose ¢ is a bounded left-continuous adapted process without loss of generality.
Then, putting

(p;l = q)r.;; fOI’j >0 withs € [T;l, T;l_l_]),

we also have that

e (W — W™ — ™)) - (M),] <\l — @2+ (M) e 2(8 — #17)2 - (M),
Note that
lp— "> (M) >0

in probability as n — oo because ¢ is now assumed to be bounded and left-
continuous. Then we obtain (22) by applying Lemma 2.9.
Step (¢). Let us study the asymptotic distribution of D" defined by (16). Put

D"=D" - Ly)-M".
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In light of Theorem A.1, it suffices to show the following convergences in proba-
bility:

(1) (D", M¥); — 0,
(2) (D"); — L(c*y?k) - (M),
(3) (D", M); — 0

forall ¢t € [0, T) and for all bounded martingale M orthogonal to MY . The last one
is trivial. In order to see the first convergence, it suffices to see

(D", M), = e, (M — M")k) - (M) — £(byk) - (M),

in probability. This is shown in the same manner as (22). In order to see the sec-
ond convergence, fix 81, §2 > 0 arbitrarily and take a bounded left-continuous pro-
cess k% such that

Pllc —k°12 - (M), > 811 < 8>
by Lemma A.3. Notice that
(25) (D"y=¢,2((M — M™*%) - (M) 4,2 (M — M™)*(k — °)) - (M)

and the second term is negligible since

e 2((H — F™2 ke — kP1) - (M), < e (8 — Fmyd - (M)l — k22 (M),
in light of Lemma 2.9 and the fact that §;, §, can be arbitrarily small. Furthermore,
putting

én _ 68
Ks _Kr.

: for j > O with s € [z}, 7}, )),

we can replace x with k%" in the first term of (25) by the same argument. Then,
we have from Lemma 2.9 that
(D"); — g(a®y*) - (M),

in probability. Since

((by) - M") = ®y?) - (M),
it remains only to show

(D", (by) - M) — 5(0%y%) - (M),

in probability. Since the left-hand side is

e (M — M"Mbyx) - (M),

the convergence follows from the same argument as for (22). O
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PROOF OF THEOREM 2.7. The convergence (9) follows from Condition 2.4
and Lemma A.4. The convergence of U"Z" in C[0, T) is a consequence of the
fact that the convergence of Z" /¢, is stable. To show (10), we first notice that

4 2 313 2 2 2 1 2
Gj,n/Gj,n—ZlGj7n/Gj,n| Z|Gj,n/Gj,n| a.s.,
which follows from Lemma B.3. In light of Lemma A.4 and Condition 2.4, this
inequality implies

(H?) - (M) = 5(HD) - (M) + (HE™) - (M) > (HE ™) - (M) as.
for any H € P}W with H > 0. Thus, we have
Vi = 5Py - (V)] (ulg) - (M),

> L2y D) () ulg) - (M) 1* = L (luy 1P 3) - (1), |
by Holder’s inequality. [

3

PROOF OF THEOREM 2.8. The convergence (11) follows from Condition 2.5
and Lemma A.4. The convergence of /N[t"]Z" in D[0, T) is a consequence of
the fact that the convergence of Z" /¢, is stable. To show (12), we first notice that

Gj,./G;,—1G3,/G;,?>=G3,  as,
which follows from Lemma B.2. In light of Lemma A.4 and Condition 2.5, this
inequality implies
(Hc?) - (M) = $(HD*) - (M) + (Hq?) - (M) > (Hqg®) - (M) as.
for any H € 77[{,, with H > 0. Thus, we have
Vi=$(PyD) - (Y)ig™? - (M),

_ 2
> 4@y - (V)ig ™2 (M) = E|(1y Vi) - (M),
by the Cauchy—Schwarz inequality. [J

3. Effective schemes. Here we give effective discretization schemes. Let
(X, Y, M) € S. For the sake of brevity, we suppose T is finite in this section. Then,
by a localization argument, we can suppose without loss of generality that there
exists § > 0 such that (M) is strictly increasing a.s. on [T — §, T'). In fact, we can
consider a sequence MX instead of M defined as, for example,

ME = Minoy + Wi = Winog,  ox =inf{t > 0; (M), = K} A(T = 1/K)
with K — oo, where W is a Brownian motion defined on an extension of
(S2, F, P). Recall that stable convergence is stable against such a localization pro-

cedure. Then, for any positive sequence &, with ¢, — 0 and for any positive g € Py
with g~! € Py, the sequence of stopping times 7" defined as

(26) y =0, tJ'-’+1 = AJ'7+1 AT, 1?;-’“ =inf{t > 7 |M, — M,;z| = Sngtjr}}
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satisfies Conditions 2.4 and 2.5 with
bS :O, a?:qszzé's_Zzg?
This is because it holds uniformly in j =0, 1, ..., N[t"]; witht < T that
Gl = El(Mzr,, — M) | For]

— E[(Mar,, — Mo Lien )| Fen ]+ E[(Mr — Mo Ln - py|Fos ]

‘L'j+
= 3(1+ (=D )engrs + Op(en) PIE}yy > T1F2]

(1+ (=1 )engrs + 0p(ep)-

N —

Here we have used the fact that
E[(Msr = M) | Frl = 5(1+ (=D )k gh,
J J
which follows from a consequence of the optional sampling theorem
P[Mer =M+ engon|Fonl = P[Men = Myr — engon|Fonl = 3
Also, we have used that

sup |M; — Mrj’.’| < engy

n ~n
t<t<tf,

and that for g € Py,

sup gy <00 a.s.
0<s<t

to see that
k k
E[=(Mzn = M) Ler sy + (Mr — Mo)"Lgn o1y Forl
P[fj+1 > T|.7:,;!]

= 0,(5).

To see P[fl’.’+] > T|]-'Tjr;] = 0,(1) uniformly in j =0,1,..., N[t"];, recall that
(M) is strictly increasing on [T — 8, T') so that lim,,_, oo SUp; f}ﬂr] <(T -=96)Vvt.

PROPOSITION 3.1. Let (X,Y, M) € S and u € Py. The lower bound (10) is
attained by T defined by (26) with g = |u|'3|y%k|713 if g, g7 € Py.

PROPOSITION 3.2. Let (X,Y, M) € S. The lower bound (12) is attained by
" defined by (26) with g = |y|~'V/ 2« 1/* if g, g1 € Py.

Recall that the lower bound (12) was derived from a combined use of
Lemma B.2 and the Cauchy—Schwarz inequality. Karandikar [13] studied a scheme
which is defined by (26) with g = 1 and X instead of M to show the almost sure
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convergence of Z". In case that i appeared in Condition 2.2 is locally bounded
and y = 1, we can suppose X = M in light of the Girsanov—Maruyama theo-
rem. Then, we can conclude that Karandikar’s scheme is superior to the usual
time-equidistant one in that it yields increments of the integrand which attain the
equality in Lemma B.2. It is in fact optimal if X =Y.

Note that Lemma B.2 gives a more precise estimate

- (Y) = (a® = 5b%) - (Y), = (3b° +¢7) - (Y)s.

The following proposition, for example, is easily shown by this estimate.

PROPOSITION 3.3. Let (X,Y,M) € S, Z" be defined by (1) and 8,6 € Py.
Denote by T (B, §) the set of sequences of schemes t"* which satisfies Condition 2.5
withb = B and g* = 8. Then, forall t € [0, T), Z}' /&, converges to a mixed normal
distribution with the asymptotic conditional mean

3(BY) - Y
and the asymptotic conditional variance V; satisfying
Vi= 5@y -z g{GA+ 2 (N as.
The equality is attained by t" € Ty (M) N T,(M) defined as
‘[;l+1 = inf{r > r]’-’; M, — M,;; > enkf}z /6,}1 or M; — MT;; < —Snk;}} 5,;;}

with t§ =0, where

BB 4

s 2

4. Conservative delta hedging. This section treats the conservative delta
hedging of [20] as an example of financial applications. This framework includes
the usual delta hedging for the Black—Scholes model; even for this classical model,
results presented in this section give a new insight and a new practical technique
for hedging derivatives. Let S stand for an asset price process and assume that it is
a positive continuous semimartingale satisfying

dsS; = S;(u, dt + o, dWy)

with predictable processes u and o and a standard Brownian motion W. Consider
hedging a European contingent claim f(S7) for a convex function f of polynomial
growth. Define a function p as

p(S,R, ) =¢F /]1; f(Sexp{R—X/2+ «/EZ})¢(Z) dz,
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where ¢ is the standard normal density. Changing variable, it can be shown that

B 1,92 3 d
Put
ng = inf{r > 0; (log($)); > K}
for K>0,V,=e "V, S, =e"'S, and
2K =K — (102(8)) i ank Vi =p(S;,r(T —1), 25),

_9p
9

where r > 0 is a risk-free rate. Then, 1t6’s formula and (27) yield

. (Si, 7(T — 1), £,

~ IANK ~
VZAUK :\/(; jTudSu

for t € [0, T'], that is, the portfolio strategy (JTO, ) with rr,o =e "NV, — 7 S;) is
self-financing up to nx A T. Moreover, the convexity of f and (27) imply that p
is increasing in X, so that

Vr = p(87,0,0)= f(Sr)  on{ng =T}

Note that p is the Black—Scholes price with cumulative volatility K and that &
is the corresponding delta hedging strategy. The above inequality ensures that the
delta hedging super-replicates any European contingent claim with convex payoff
ontheset {ng > T}. As K — oo, P[nx > T]— 1, so that a hedge error due to the
incompleteness of market converges to 0. Contracts such as variance swaps serve
as insurance against the event ng < T for predetermined K which is not so large.
See [21] for an improvement of this conservative delta hedging. The purpose here
is, however, not to treat such a hedge error due to the incompleteness but to treat
a hedge error due to the restriction that trades are executed finitely many times in
practice. Note that the rebalancing of a portfolio is usually executed a few times
per day while observation of S is almost continuous. Hence, the estimation error
of (log(S)); appeared in X; is negligible compared to the discrete hedging error.
Suppose for brevity that ng > T a.s. A natural approximation 7" of the strategy
is defined as

n

— n n
Ty =T fors e[z, 774 )

for a discretization scheme t”. In this context, N[t"], is the number of transactions
up to time ¢ < T. The discounted replication error is given as

l ~
Zl ="V, = V] =/0 (my — 7)) dS,.
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Notice that after a Girsanov—Maruyama transformation, X = m is a local mar-
tingale and (X, Y, X) = (7, S, w) € S. According to our results in the preceding
section, the lower bound of the asymptotic variance of v/N[t"];Z] is attained by
the scheme

=0, T =inflr> ) m — P =g I T} AT,
where
82p
I'y=—=(S,r(T —1), ).
t aSz( t ( ) t)

Note that I is what is called gamma in financial practice. In this case, t” € 75(X)
with

— erSFs

1/t 172
Z{—f e‘”‘r‘ud<S)u}
6 Jo

as the asymptotic distribution of Z}'/¢,, where Z is an independent standard nor-
mal variable. This scheme is efficient in that it asymptotically minimizes the mean
squared replication error for a conditionally given number of transactions. The
number of transactions N [t"]; is, of course, random,; it is large if the path of I" is of
high level because |7, — T 12/ FT}’ ~|S; — Sf}z |2FT}1. This property is intuitively

and so we have

expected in practice. Note that &, controls the expected number of transactions.
The asymptotic distribution of \/N[t"];Z}' is given by

7 t
%/0 e_mru d(S)u

In the equidistant case rj’-’ = j/n, we can apply Theorem 2.6 to &, = 1//n,

M=W,y=TocS,Y =S§ with
by=0, ¢>=1, a’=c*=3,  N[t"],=[nt]

S N

to have that «/N[t"]; Z} converges F-stably to

t ot 1/2
z{—/ e_Z’“anzSzd(S)u} .
0

2 u-u-u

The inequality for the asymptotic conditional variance

[ - 2tt72ru222
8{‘/0 e Fud<S>u} SE_/(‘) e FMGMSL¢d<S>M

follows directly from the Cauchy—Schwarz inequality.
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Karandikar’s scheme is defined as

n

n __ n I
7y =0, T =inf{r > 7;

;|7Tl‘_77r;'|=8n}/\T-

After the Girsanov—Maruyama transformation, we apply Theorem2.6to X = M =
7 with

by =0, af:cf:q?:l
to have that {/N[t"];Z]'} converges F-stably to

! 2 }1/2{1 ! —2ru }1/2
z{/o r2d(s), 6/0 eTA(S)t

The inequality for the asymptotic conditional variance

Ul e <[ [ r2as{} [ as)

follows again directly from the Cauchy—Schwarz inequality.

Taking the purpose of hedging into consideration, it might be preferable to use
such a scheme t” that the asymptotic mean of Z' /¢, is negative. Proposition 3.3
presents an effective scheme for a given asymptotic conditional mean and a given
asymptotic conditional number of transactions.

More importantly, we can incorporate linear transaction costs. Suppose that the
total cost of the delta hedging with a discretization scheme 7" up to time t < T is
proportional to

o0
C = Z |7Tr;’+1/\t - ”r_;l/\t|Sr}’+lAt-
j=0
Let us study the asymptotic distribution of C;'Z}'. After the Girsanov—Maruyama
transformation, 7 is a local martingale as before. Notice that

o0
enCy =& Z Srj’?|7TrJf’+lAt - 7[‘[]’"/\t| +0,(1)
j=0

if 7 € T;(M) with M = . Apply Theorem27to X =M =n,Y =Sandu = S
to have that {C[' Z}'} converges JF-stably to

(S¢) - (S){3b- S+ Zy/ g - (S)}

and that the asymptotic conditional variance of {C}'Z]'} has a lower bound

9

1 ! —ru 2,2/3 :
6’/0 e S, T2 23 d(S)

which is attained by t” defined as

. 2t
75 =0, r}’H =inf{t > t%; |7 — nr}1|3 = sf’le " S,}«F%,} AT.
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This scheme is efficient in that it asymptotically minimizes the mean squared repli-
cation error for a conditionally given amount of linear transaction costs. In other
words, denoting by L, the mixed normal limit distribution of C}' Z}!, the asymptotic
conditional variance of Z}' ~ L;/C}' is minimized by the above scheme subject to
the same amount of the linear transaction costs in a conditional sense. For the
Black—Scholes model, a hedging strategy under the linear transaction costs was
given by Leland [19]. It is designed to absorb the costs by an adjustment of volatil-
ity parameter in the delta hedging strategy and is validated only for determinis-
tic trading times under the particular model. An L? analysis of the Leland—Lott
strategy with nonequidistant deterministic trading times is given by Denis and Ka-
banov [4]. Our strategy leaves the costs unabsorbed but is an optimal discretization
scheme being valid in a model-free framework.

5. The Euler-Maruyama approximation. Here we propose alternative dis-
cretization schemes for the Euler—Maruyama approximation which outperform the
usual time-equidistant scheme. Let us consider the stochastic differential equation

dg; = u(8s, n)dt + o (&, ny) dWs,
dn, =0(n,) dt,

where W is a one-dimensional standard Brownian motion and i, o, 6 are contin-
uously differentiable functions. Since it is rarely possible to generate a path of E
fast and exactly, the Euler—Maruyama scheme is widely used to approximate to =
in simulation. For sequences t" = {t}-’} with (2), the Euler—Maruyama approxima-
tion E" of E is given as

dny =0 (i7;) dt,

mn o omn ono__ n ; : n .n .
where B} = S n = nrj,; for j > 0 with 1 € [‘Ej , rj+1). The standard choice

is rj’.’ = j/n. The convergence rate of the approximation has been extensively in-
vestigated; see, for example, [15] for a well-known strong approximation theorem
and [1, 2, 16, 17] for weak approximation theorems. Newton [22] treated pas-
sage times. Cambanis and Hu [3] studied efficiency of deterministic nonequidis-
tant scheme. Hofmann, Miiller-Gronbach and Ritter [9] treated a class of adaptive
schemes. Here we exploit a result of [11, 18] to deal with the asymptotic distribu-
tion of pathwise error. Our aim here is to construct discretization schemes which
are more efficient than the usual equidistant sampling scheme.

With the aid of localization, we can suppose that i, o, 1/0, 6 and their deriva-
tives are bounded without loss of generality. Suppose that t"* € 7 (W). By applying
Theorem 2.6 to X =Y = W, we have that e, ' (W — W") - W converges F-stably
to

Z= b-W+%c-W/,

W[—
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where W' = W,jz; for j >0 witht € [rj’.“, rj’.’ 1) and W’ is an independent standard
Brownian motion. Put L” = ¢! (E" — E). Then, applying [18], we have that L"
converges to a process L which satisfies

dL; = 01 u(Es, n) Ly dt + 010 (Er, ne)[Le AW, — 0 (&, r) dZ4],

where 01 refers to the differential operator with respect to the first argument. Solv-
ing this stochastic differential equation, we obtain

1
L= _et/() es_la(ESa ns) 010 (85, ng)[dZs — 910 (Ey, ns) d(Z, W),

where

t t 1 t
er=exp| [ nyas+ [[no@noaw, -3 [Cao(@.nas)

Therefore, the distribution of L, is mixed normal with conditional mean
1 o _ -
—zer [ €10 (2000 010 (B )b, [AWs = 010 (B, ) ds)
and conditional variance
1 ros ~
(28) g6 |, & o (Ben)? o (o) e ds.

PROPOSITION 5.1.  For any T > 0, the space-equidistant scheme tg, defined
by (26) with M = W, &, =n~'/2, g = 1 is three times more efficient than the usual
time-equidistant scheme t{}, = {j/n} in the following sense. For any t € [0, T):

e E[N['] <nt and N]'/n — t in probability as n — oo for both N"" = N[fs”p] and

N" = N[t].];

e the asymptotic conditional mean of L} is O for the both schemes;

e the asymptotic conditional variance of L} for r;;) is one-third of that for t(},.

PROOF. For the space-equidistant case,

N'—1
_ 2_ 2 _ _ 2
bs =0, a;=ci =1, E[Ntn]_nE|:Z IWTJ"1+1_ ’7| i|§m’
j=0

while
by=0, a’=c?=3, N'=[n]
for the time-equidistant case. [J
Newton [22] studied this space-equidistant sampling scheme; the superiority of

this scheme is more-or-less known. The above simple fact of asymptotic condi-
tional variance, however, has not been recognized so far. The assumption that W
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is one-dimensional is a serious restriction. Nevertheless, for a stochastic volatility
model

dE; = fu(r, B dr + 6 (2, V) [p(r, V) AW, +/1 — p(z, V,)2dW?],
AV, = u(t, V) dt + o (t, V;) dw}

with a two-dimensional standard Brownian motion ( wt, W2), a scheme defined
by (26) with M = W! and g = 1 results in a one-third conditional asymptotic
variance of the Euler—Maruyama approximation error for E. This is because, in
light of Theorem 2.6, the discretization error is determined by only the conditional
moments of the increments of integrand, which is a function of V independent
of W2 in this example.

Next, let us consider to minimize (28) in case that 10 is nondegenerate. De-

fine " as

(29) 75 =0, Tiy =inf{t > T} |W; — err}|2 =TT,
where
2/\
gn€en
e(r]’?) = i
o (" "777 n)310’(u na77 n)
and
j—1
log(éxr) = Z{am(E’ﬁin, Wen) (@1 = ) + 010 (Egn, W) Wen | — Wen)
i=0

1
o (@ e - >}

Then, Condition 2.5 is satisfied with

e
by =0, ad=ct=q¢>= : .
* ST T 6 (8y. 1) 010 (B, 1)

Proposition 3.2 implies that this adaptive scheme attains a lower bound for (28)
among t" € 7(W). In this sense, this scheme is optimal. A disadvantage of this
scheme is the difficulty in estimating the expected number of data. In other words,
we cannot answer how to choose ¢, so that the expected number of data is less
than n. In practice, it would be better to use

2
7§ =0, Tiy = inf{t > 7f5 W, — Wen|® = e(@) Ve InT

for &), > 0 in order to ensure that a simulation is done in a finite time.
We conclude this section by a remark on generating the random variable (z, W;)
satisfying

T =inf{z > 0; |W; — Wy| = ¢}
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on a computer for a given ¢. It is sufficient that the distribution function F; of 7 is
available because

PIW,=Wyte]=1/2

and 7, W; are independent. In fact, for a random variable U uniformly distributed
on (0, 1),

(1. We — Wo) ~ (F ' QU — [2U]), e(2[2U ] — 1)).

Here we use the fact that 2U — |2U | is a uniform random variable on (0, 1) in-
dependent to |2U | and P[|2U ]| =0] = P[|2U] = 1] = 1/2. It is known that the
density of 7 is given by

{ (4n + 1)282}.

2
4 1
Z (4n + 1)eexp o

V2ot n=-—00
(See [14], Exercise 2.8.11.) Using the fact that

t o ey 00
/ e/ dt=2/ ¢ (x)dx
0 G

2713

for a > 0, we obtain F,(t) = G(g/+/t), where

Gx)=4 Z ((4n +3)x) — @((4n + Dx)).
n=0

According to our numerical study, G(x) & 1 for 0 < x < 0.1. This is not surprising
because G(0+) = 1, G'(0+) = G”(0+) = 0. Note that if x > 0.1, the speed of
convergence of the infinite series is very fast. We can, therefore, use

[N/x]
G(x)~ 42 ((4n+3)x) — ®(@n+ Dx)),  x>0.1,

1, 0<x<0.1

for, say, N = 3 as a valid approximation of G. It is noteworthy that G is indepen-
dent of &, so that once we obtain the inverse function of G numerically, it is done
very fast to generate t repeatedly even if & changes adaptively as in (29). Also note
that

Gx)<4(1-2), G 'MH=o '(1—y/4.

These inequalities will be useful in numerical calculation of G~ for sufficiently
small y (large x). Besides, if x > 3, G(x) #4(1 — ®(x)) and G~ (y) = &~ (1 —
y/4).
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APPENDIX A: AUXILIARY RESULTS

Here we give auxiliary results for the proof of our theorems. The following
limit theorem, which plays an essential role in this article, is a simplified version
of a result of [10] and [12], Theorem IX.7.3, which extends a result of [23]. Let
M ={M;, F;,0 <t < oo} be a continuous local martingale defined on (2, F, P)
and M be the set of bounded {F;}-martingales orthogonal to M.

THEOREM A.1. Let{Z"} be a sequence of continuous {F;}-local martingales.

Suppose that there exists an {F;}-adapted continuous process V = {V;} such that
forall M € M*, 1t €0, 00),

(Z". M), -0,  (Z".M);—0, (Z") -V,

in probability. Then, the C|[0, 0o)-valued sequence {Z"} converges F-stably to the
distribution of the time-changed process Wy, where W' is a standard Brownian
motion independent of F .

The following lemma is repeatedly used in our proofs.

LEMMA A.2. Consider a sequence of filtrations
'H?C'H'}_H, jneZy=1{0,1,2,...}

and random variables {Un}jGN with U" being H” measurable. Let N"(\) be a
{H” }-stopping time for each nezy and A Wthh is an element of a set A. If it
holds that there exists Lo € A such that

N"(ho)
N"(0) <N"(w)  as.forallieAand Yy PIU}PIHI_1—0
Jj=1
as n — oo, then
N"(3) N"(1)
sup ZU” ZPU”IHJ J—0
reEA _] 1
in probability as n — oo.
PROOF. Note that
N"()) N"()) k
sup Z Uj — Z E[U}H;_y]1| < sup ZVJ’-’ ,
AEA j=1 keN j=1

where

V= (U} — EIUSH_1D1j<nnG)-
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By the Lenglart inequality, we have

[supZV” >s}<—+P[ZE[|V"I 1= ]
keN

j=1
for any ¢, > 0. The result then follows from the convergence

00 N"(ro)
STENVIAIHI_ < Y. ENUTPH_1—0
j=1 j=1

in probability. [J

The following lemma is proved by a simple application of the monotone class
theorem, so its proof is omitted.

LEMMA A.3. Let K CN be a finite set. For all H € (g Phy, t €10,T)

and 81,63 > 0, there exists a bounded adapted left-continuous process H with
|H| < |H| such that

P[ZHH —HF My )V > 31] < 5.

keK

The following lemma is taken from [6].

LEMMA A.4. Let M be a continuous local martingale with E[(M)GT] < 0
and suppose that t" € T (M). Then, forallt € [0, T),

(30) sup IM rons — Mo sl =o0p(&n),
0<j=<NI[t"];,s>0

as well as

(31) sup  [(M)en, — (M)erl =0 (en),

0<j=<NI[t"];
where N|[t"]; is defined by (3). In particular,
(32) N[t"]; = o© a.s.

as n — 00. Moreover, for all locally bounded adapted left-continuous process f,
it holds

N[z"];

(33) Z fer G — / fs

in probability, uniformly in t on compact sets of [0, T).
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PROOF. Note that
N[t"];

> Gjn =0,(1)
j=0

since E[(M)1] < co. To show (30), we use Doob’s maximal inequality to have
2k 2 k
E[o;“fw Mer pe = Mo i 2 Fen |/ G = 0p(e6)
for k = 3, 6. Using Lemma A.2, we obtain

N[z"]; 6 3
Z sup |M‘[j'-1+l/\S_M‘[;l/\S| =0p(8n),

=0 0<s<oo

which implies (30) since

N[z"]; 1/3
2 6
sup |MTJ'-1+]/\S _Mrj’.’/\sl = Z sup |MT;'+1/\S _Mr}’/\s| .
0<j=<NI[t"];,5>0 j=0 O=s<oo

Using the Burkholder-Davis—Gundy inequality and Doob’s maximal inequality,
we also have

N[z"]

> ElM)e — (M) | Fal = 0p(ep)
= Al

for k = 3, 6, which implies (31) in the same manner. Note that (32) follows from
(M),

SUPg< <nizn), (M)

N[t"];+1> _<M)rj”|

To see (33), again in light of Lemma A.2, it suffices to observe that

N[z"];

t
T fyiitg, = ()~ [ fdom,

and
N[<"1 (="

N
2 ~4 2 § : 2 2 ~2 2
f.L_{l Gj,n =&, f_[(zar(LGj,n + Op(gn) — 0.
=0 J =0 J J D

APPENDIX B: KURTOSIS-SKEWNESS INEQUALITY

DEFINITION B.1. For a random variable X (resp., distribution ), we say X
(resp., w) is Bernoulli if the support of X (resp., ;) consists of at most two points.
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LEMMA B.2. Let X be a random variable with E[X] =0 and E[X*] < oc.
Then,

(34) EIXMEIX?] = |EIX))? = |[EIX°)P.
The equality is attained if and only if X is Bernoulli.

PROOF. This is called Pearson’s inequality and shown easily as follows:
E[X3? = E[X(X? - E[X2])]2 < E[X*E[|X? - E[X*])?]
= E[X*I(E[X" - |E[X?1]%).

This also implies that if the equality holds, then X and X* — E[X?] must be linearly
dependent, so that X must be Bernoulli. It can be directly checked that the equality
is attained if X is Bernoulli. [J

The following lemma gives a similar inequality to Lemma B.2. The proof is,
however, rather different and the result itself is seemingly new.

LEMMA B.3. Let X be a random variable with E[X] = 0 and E[X*] < co.
Then,

(35) EIXYNEXPNENXN? = 2IEIXCIPIENX N1 = |E[X?]%.

The equality is attained if and only if X is Bernoulli.

PROOF. We divide the proof into four steps:

Step (a). It is straightforward to see that the equality holds if X is a Bernoulli
random variable with E[X] = 0.

Step (b). Let us show if E[X] =0 and the support of X is a finite set, then the
distribution PX of X is a finite mixture of Bernoulli distributions with mean 0.
First, consider the case n = 3. Suppose without loss of generality that

P[X=al=p, P[X=bl=q, P[X=cl=r, p+qg+r=1

witha > b >0 > c. Put

e ) B
Plw=,—o h@=,", hO=p—.  hO=;7"

Then P; and P, define Bernoulli distributions with mean 0 and support {a, c} and
{b, c}, respectively. Putting L = (c —a)p/c = PX(a)/P1(a), we have

AP1(a) = p, (I =2 P(b) =q, AP (c) + (1 =A)Pr(c) =,
which means

PX=1P, +(1—=))Ps.
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Now, let us treat the general case by induction. Suppose that the claim holds for
the case of n and consider the case of n + 1. Without loss of generality, we suppose

P[X =ajl=pj, j=0,1,....n,po+p1+-+p.=1
with
ap>ar>-->ar>0>ar41 > >ay
for an integer k,2 <k <n — 1. Put

- appo +aipi ~
aqg=———

o+ pr P1=po+ pi1,
aj=aj,  pj=pj, 2=j=n
and
P@j=pj. j=l....n
Notice that P defines a distribution with mean 0 and supports {ar, az, ..., an}. By

the assumption of induction, there exist A; i >0,1<i<k, k< j<n such that

~ ~ - o~ - —a; L a;
> hij=1, P=>Y kP, Pij@a) = —2~-, Pij(aj) = ——.
i i

a,-—a‘,- a[—aj

Here P; ;j defines a Bernoulli distribution with mean 0 and supports {a;, d;}. Now
consider a distribution Q ; defined as

po 5 - P1
Pyj(ar), Qjla1) =
po+pi 7 ! Po+ pi
Qj(aj) = P1j@aj)
for k < j < n. Notice that Q; is a distribution with mean 0 and supports

{ao, a1, aj}. As seen above for the case n =3, putting u; = Q(ao)/Poj(ap), we
have

Qjlao) = Pyj(an),

Qj=ujPoj+ (1 —p;)Pj,

where we define

—a: a:
Pja)=—"—,  Pjlap=——""o  0=izkk<j=n
i—daj i—4aj
Putting
Aoj = Wik, A== iy, Aij = Aij, 2<i<kk<j<n,
we have

Y ohij=1, PX =3Py,
i) '

<.
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which completes the induction.
Step (c). Let us show that the function f(u, v, w, y) defined as

(36) f(u,v,w,y):u—%1)2/11)—11)3/y2

is a concave function. Note that the inequality (35) follows from steps (a)—(c) since
every distribution can be approximated arbitrarily close by a distribution supported
by a finite set and by the concavity of f,

f(ijEjKX“, X3, X2, |X|>]) > a FEIXY, X2, X2 1XDD)
J J

for any mixture distribution E =3 _; A; E;. By a straightforward calculation, the
Hessian matrix of f is given by

0 0 0 0
3 3v
0 —— — 0
2w 2w?
(37) H — 3v 302 6w 6w?
0o — - _ = =
2w?2 2w3 y2 3
6w? 6w?
o0 oo
y y

Again, by a straightforward calculation, the determinant of H — x/ is of form
2(x+a)(x+ B) with ¢ > 0, 8 > 0, which means that H is negative semidefinite.

Step (d). It remains to show that the equality holds only if X is Bernoulli. Sup-
pose that there exists a random variable X with E[X] = 0 such that the equality
holds in (35) which is not Bernoulli. Recall that the equality holds in (34) only
if X is Bernoulli. It implies that the vector of the first four moments of X does not
coincide with that of a Bernoulli random variable.

Note that there exists a random variable X of which the support is a finite set,
such that

E[X1=E[X], E[X|1=E[X]], E[X*)=E[X?,
E[X3] = E[X?], E[X*] = E[X*].

This can be proved by the Hahn—Banach theorem. Hence, we assume the support
of X is a finite set without loss of generality. Then, by steps (b) and (c), there exist
Bernoulli distributions P; and P> and A € (0, 1) such that P; # P, and

(38) Fmy + (1 =1ma) =0=1rf(m1) + (1 — 1) f(m2),
where f is defined by (36) and

m; = </a4P,-(da),/a3P,-(da),/a2P,-(da),/|a|P,-(da))/, i=1,2.
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Here 7 means the transpose of matrix. By the concavity of f, (38) holds for all
A € (0,1). By (37), the eigenvectors of the Hessian matrix H associated to the
eigenvalue O are

hy = (1,0,0,0), hy=(0,v,w,y).

Therefore, (38) implies that there exists a constant ¢ such that m, = cm|, where

m; = (/a3Pi(da),/a2Pi(da),/|a|P,~(da))/, i=1,2.

It suffices then to show that my = c¢m implies ¢ = 1 and that m| uniquely deter-
mines a Bernoulli distribution. Set

P>(a) = p, P»(—b) =g, p+qg=1, ap =bq, my =, w,y)
and
a3p—b3q =cv, a2p+b2q=cw, ap +bg =cy.

Then we obtain that
2w 2w
a = _q’ b= _p’
y y

so that

2v 2 2 4w?
—=a"—b"=—(-2p).
y y

Therefore, a, b, p, g are uniquely determined independently of c¢. The proof is
complete. [
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