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ON THE ERGODICITY OF THE ADAPTIVE METROPOLIS
ALGORITHM ON UNBOUNDED DOMAINS

BY EERO SAKSMAN1 AND MATTI VIHOLA2

University of Helsinki and University of Jyväskylä

This paper describes sufficient conditions to ensure the correct ergodicity
of the Adaptive Metropolis (AM) algorithm of Haario, Saksman and Tammi-
nen [Bernoulli 7 (2001) 223–242] for target distributions with a noncompact
support. The conditions ensuring a strong law of large numbers require that
the tails of the target density decay super-exponentially and have regular con-
tours. The result is based on the ergodicity of an auxiliary process that is
sequentially constrained to feasible adaptation sets, independent estimates of
the growth rate of the AM chain and the corresponding geometric drift con-
stants. The ergodicity result of the constrained process is obtained through
a modification of the approach due to Andrieu and Moulines [Ann. Appl.
Probab. 16 (2006) 1462–1505].

1. Introduction. The Markov chain Monte Carlo (MCMC) method, first pro-
posed by [11], is a commonly used device for numerical approximation of integrals
of the type

π(f ) =
∫

f (x)π(x) dx,

where π is a probability density function. Intuitively, the method is based on pro-
ducing a sample (Xk)

n
k=1 of random variables from the distribution π defines. The

integral π(f ) is approximated with the average In := n−1 ∑n
k=1 f (Xk). In particu-

lar, the random variables (Xk)
n
k=1 are a realization of a Markov chain, constructed

so that the chain has π as the unique invariant distribution.
One of the most commonly applied constructions of such a chain in R

d is to let
X0 ≡ x0 with some fixed point x0 ∈ R

d , and recursively for n ≥ 1:

1. simulate Yn = Xn−1 +Un, where Un is an independent random variable distrib-
uted according to some symmetric proposal distribution q , for example, a zero-
mean Gaussian, and
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2. with probability min{1, π(Yn)/π(Xn−1)}, the proposal is accepted and Xn =
Yn; otherwise the proposal is rejected and Xn = Xn−1.

This symmetric random-walk Metropolis algorithm is often efficient enough, even
in a relatively complex and high-dimensional situation, provided that the proposal
distribution q is selected properly. Finding a good proposal for a particular problem
can, however, be a difficult task.

Recently, there has been a number of publications describing different adapta-
tion techniques aiming to find a good proposal automatically [1, 3, 5, 9, 13] (see
also the review article [4]). It has been a common practice to perform trial runs,
and determine the proposal from the outcome. The recently proposed methods are
different in that they adapt on-the-fly, continuously during the estimation run. In
this paper, we focus on the forerunner of these methods, the Adaptive Metropolis
(AM) algorithm [9], which is a random-walk Metropolis sampler with a Gaussian
proposal qv having a covariance v. The proposal covariance v is updated contin-
uously during the run, according to the history of the chain. In general, such an
adaptation may, if carelessly implemented, destroy the correct ergodicity proper-
ties, that is, that In does not converge to π(f ) as n → ∞ (see, e.g., [13]). For
practical considerations of the AM algorithm, the reader may consult [8, 14].

In the original paper [9] presenting the AM algorithm, the first ergodicity re-
sult for such adaptive algorithms was obtained. More precisely, a strong law of
large numbers was proved for bounded functionals, when the algorithm is run on
a compact subset of R

d . After that, several authors have obtained more general
conditions under which an adaptive MCMC process preserves the correct ergodic-
ity properties. Andrieu and Robert [3] established the connection between adaptive
MCMC and stochastic approximation, and proposed a general framework for adap-
tation. Atchadé and Rosenthal [5] developed further the technique of [9]. Andrieu
and Moulines [1] made important progress by generalizing the Poisson equation
and martingale approximation techniques to the adaptive setting. They proved the
ergodicity and a central limit theorem for a class of adaptive MCMC schemes.
Roberts and Rosenthal [13] use an interesting approach based on coupling to show
a weak law of large numbers. However, in the case of AM, all the techniques es-
sentially assume that the adapted parameter is constrained to a predefined compact
set, or do not present concrete verifiable conditions. The only result to overcome
this assumption is the one by Andrieu and Moulines [1]. Their result, however,
requires a modification of the algorithm, including additional re-projections back
to some fixed compact set.

This paper describes sufficient conditions under which the AM algorithm pre-
serves the correct ergodicity properties, and In → π(f ) almost surely as n → ∞
for any function f that is bounded on compact sets and grows at most ex-
ponentially as ‖x‖ → ∞. Our main result (Theorem 10) holds for the origi-
nal AM process (without re-projections) having a target distribution supported
on R

d . Essentially, the target density π must have asymptotically lighter tails
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than π(x) = ce−‖x‖p
for some p > 1, and for large enough ‖x‖, the sets Ax =

{y ∈ R
d :π(y) ≥ π(x)} must have uniformly regular contours. Our assumptions

are very close to the well-known conditions proposed by Jarner and Hansen [10]
to ensure the geometric convergence of a (nonadaptive) Metropolis process. By
the techniques of this paper, one may also establish a central limit theorem (see
Theorem 18).

The ergodicity results for the AM process rely on three main contributions. First,
in Section 2, we describe an adaptive MCMC framework, in which the adaptation
parameter is constrained at each time to a feasible adaptation set. In Section 3, we
prove a strong law of large numbers for such a process, through a modification of
the technique of Andrieu and Moulines [1]. Second, we propose an independent
estimate for the growth rate of a process satisfying a general drift condition in
Section 4. Third, in Section 5, we provide an estimate for constants of geometric
drift for a symmetric random-walk Metropolis process, when the target distribution
has super-exponentially decaying tails with regular contours.

The paper is essentially self-contained, and assumes little background knowl-
edge. Only the basic martingale theory is needed to follow the argument, with the
exception of Theorem 19 by Meyn and Tweedie [12], restated in Appendix A.
Even though we consider only the AM algorithm, our techniques apply also to
many other adaptive MCMC schemes of similar type.

2. General framework and notation. We consider an adaptive Markov chain
Monte Carlo (MCMC) chain evolving in space X × S, where X is the state space
of the “MCMC” chain (Xn)n≥0 and the adaptation parameter (Sn)n≥0 evolves in
S ⊂ S, where S is a separable normed vector space. We assume an underlying
probability space (�, F�,P), and denote the expectation with respect to P by E.
The natural filtration of the chain is denoted with F := (Fk)k≥0 ⊂ F� where Fk :=
σ(Xj , Sj : 0 ≤ j ≤ k). We also assume that we are given an increasing sequence
K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ S of subsets of the adaptation parameter space S. The
random variables (Xn,Sn)n≥0 form a stochastic chain, starting from S0 ≡ s0 ∈
K0 ⊂ S and X0 ≡ x0 ∈ X, and for n ≥ 0, satisfying the following recursion:

Xn+1 ∼ PSn(Xn, ·),(1)

Sn+1 = σn+1(Sn, ηn+1H(Sn,Xn+1)),(2)

where Ps is a transition probability for each s ∈ S, H : S × X → S is an adaptation
function, and (ηn)n≥1 is a decreasing sequence of adaptation step sizes ηn ∈ (0,1).
The functions σn : S × S → S are defined as

σn(s, s
′) :=

{
s + s′, if s + s′ ∈ Kn,
s, otherwise.

Thus, σn ensures that Sn lies in Kn for each n ≥ 0. The recursion (2) can also
be considered as constrained Robbins–Monro stochastic approximation (see [1, 2]
and references therein).
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Let V : X → [1,∞) be a function. We define a V -norm of a function f as

‖f ‖V := sup
x∈X

|f (x)|
V (x)

.

As usual, we denote the integration of a function f with respect to a (signed)
measure μ as μ(f ) := ∫

f (x)μ(dx), and define Pf (x) := ∫
f (y)P (x, dy) for a

transition probability P . The V -norm of a signed measure is defined as

‖μ‖V := sup
|f |≤V

|μ(f )|.

The indicator function of a set A is denoted as 1A(x) and equals one if x ∈ A and
zero otherwise. In addition, we use the notation a ∨ b := max{a, b} and a ∧ b :=
min{a, b}.

Finally, we define the following regularity property for a family of functions
{fs}s∈S.

DEFINITION 1. Suppose V : X → [1,∞). Given an increasing sequence of
subsets Kn ⊂ S, n ≥ 1, we say that a family of functions {fs}s∈S, with fs : X → R,
is (Kn,V )-polynomially Lipschitz with constants c ≥ 1, ε ≥ 0, if for all s, s ′ ∈ Kn,
we have

‖fs‖V ≤ cnε and ‖fs − fs′‖V ≤ cnε|s − s′|.
3. Ergodicity of sequentially constrained adaptive MCMC. This section

contains general ergodicity results for a sequentially constrained process defined in
Section 2. These results can be seen auxiliary to our results on Adaptive Metropolis
in Section 5, but may be applied to other adaptive MCMC methods as well.

Suppose that the adaptation algorithm has the form given in (1) and (2), and the
following assumptions are satisfied for some c ≥ 1 and ε ≥ 0.

(A1) For each s ∈ S, the transition probability Ps has π as the unique invariant
distribution.

(A2) For each n ≥ 1, the following uniform drift and minorization condition holds
for all s ∈ Kn:

PsV (x) ≤ λnV (x) + bn1Cn(x) ∀x ∈ X,(3)

Ps(x,A) ≥ δnνs(A) ∀x ∈ Cn,∀A ⊂ X,(4)

where Cn ⊂ X is a subset (a minorization set), V : X → [1,∞) is a drift
function such that supx∈Cn

V (x) ≤ bn, and νs is a probability measure on X,
concentrated on Cn. Furthermore, the constants λn ∈ (0,1) and bn ∈ (0,∞)

are increasing, and δn ∈ (0,1] is decreasing with respect to n, and they are
polynomially bounded so that

(1 − λn)
−1 ∨ δ−1

n ∨ bn ≤ cnε.
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(A3) For all n ≥ 1 and any r ∈ (0,1], there is c′ = c′(r) ≥ 1 such that for all
s, s′ ∈ Kn,

‖Psf − Ps′f ‖V r ≤ c′nε‖f ‖V r |s − s′|.
(A4) There is a β ∈ [0,1/2] such that for all n ≥ 1, s ∈ Kn and x ∈ X

|H(s, x)| ≤ cnεV β(x).

THEOREM 2. Assume (A1)–(A4) hold and let f be a function with ‖f ‖V α <

∞ for some α ∈ (0,1 − β). Assume ε < κ−1∗ [(1/2) ∧ (1 − α − β)], where κ∗ ≥ 1
is an independent constant, and that

∑∞
k=1 kκ∗ε−1ηk < ∞. Then

1

n

n∑
k=1

f (Xk)
n→∞−−−→ π(f ) almost surely.(5)

The proof of Theorem 2 is postponed to the end of this section. We start by the
following lemma, whose proof is given in Appendix A. It shows that if we have
polynomially worse bounds for drift and minorization constants, then the speed of
geometric convergence can get only polynomially worse.

LEMMA 3. Suppose (A2) holds. Then, one has for r ∈ (0,1] that for all s ∈ Kn

and k ≥ 1,

‖P k
s (x, ·) − π(·)‖V r ≤ V r(x)Lnρ

k
n

with bound

Ln ∨ (1 − ρn)
−1 ≤ c2n

κ2ε,

where κ2 > 0 is an independent constant, and c2 = c2(c, r) ≥ 1.

Observe that the statement in Lemma 3 entails that any function ‖f ‖V < ∞ is
integrable with respect to the measures π and P k

s (x, ·), for all x ∈ X, k ≥ 1 and
s ∈ ⋃

n≥0 Kn. The next three results are modified from Proposition 3, Lemma 5
and Proposition 6 of [1], respectively. The first one bounds the regularity of the
solutions f̂s of the Poisson equation

f̂s − Psf̂s = fs − π(fs)(6)

for a polynomially Lipschitz family of functions.

PROPOSITION 4. Suppose that (A1)–(A3) hold, and the family of functions
{fs}s∈S is (Kn,V

r)-polynomially Lipschitz with constants (c, ε), for some r ∈
(0,1]. There is an independent constant κ3 > 0 and a constant c3 = c3(c, c

′, r) ≥ 1,
such that:
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(i) The family {Psfs}s∈S is (Kn,V
r)-polynomially Lipschitz with constants

(c3, κ3ε).
(ii) Define, for any s ∈ S, the function

f̂s :=
∞∑

k=0

[P k
s fs − π(fs)].(7)

Then, f̂s solves the Poisson equation (6), and the families {f̂s}s∈S and {Psf̂s}s∈S

are (Kn,V
r)-polynomially Lipschitz with constants (c3, κ3ε). In other words,

‖f̂s‖V r + ‖Psf̂s‖V r ≤ c3n
κ3ε,(8)

‖f̂s − f̂s′‖V r + ‖Psf̂s − Ps′ f̂s′‖V r ≤ c3n
κ3ε|s − s′|(9)

for all s, s′ ∈ Kn.

PROOF. Throughout the proof, suppose s, s′ ∈ Kn.
The part (i) follows easily from Lemma 3, since

‖Psfs‖V r ≤ ‖Psfs − π(fs)‖V r + |π(fs)| ≤ [c2n
κ2ε + π(V r)]‖fs‖V r ,

‖Psfs − Ps′fs′‖V r ≤ ‖(Ps − Ps′)fs‖V r + ‖Ps′(fs − fs′)‖V r

≤ c′nε‖fs‖V r |s − s′| + c̃nκ2ε‖fs − fs′‖V r ≤ c̃n(κ2+1)ε|s − s′|.
Consider then (ii). Estimate (8) follows by the definition of f̂s and Lemma 3,

‖f̂s‖V r ≤
∞∑

k=0

‖P k
s fs − π(fs)‖V r ≤ Ln‖fs‖V r

∞∑
k=0

ρk
n

= Ln

1 − ρn

‖fs‖V r ≤ (c2n
κ2ε)2cnε = c2

2cn
(2κ2+1)ε.

The above bound clearly applies also to ‖Psf̂s‖V r , and the convergence implies
that f̂s solves (6).

For (9), define an auxiliary transition probability by setting �(x,A) := π(A),
and write

P k
s f − P k

s′f =
k−1∑
j=0

(P j
s − �)(Ps − Ps′)[P k−j−1

s′ f − π(f )]

since πPs = π for all s. By Lemma 3 and assumption (A3), we have for all s, s′ ∈
Kn and j ≥ 0

‖(P j
s − �)(Ps − Ps′)[P k−j−1

s′ f − π(f )]‖V r

≤ Lnρ
j
n‖(Ps − Ps′)[P k−j−1

s′ f − π(f )]‖V r

≤ Lnρ
j
nc′nε|s − s′|‖P k−j−1

s′ f − π(f )‖V r

≤ L2
nρ

k−1
n ,
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which gives that

‖P k
s f − P k

s′f ‖V r ≤ kL2
nρ

k−1
n c′nε|s − s′|‖f ‖V r .(10)

Write then

f̂s − f̂s′ =
∞∑

k=0

[P k
s fs − P k

s′fs] −
∞∑

k=0

[P k
s′(fs′ − fs) − π(fs′ − fs)].

By Lemma 3 and estimate (10) we have

‖f̂s − f̂s′‖V r ≤ L2
nc

′nε|s − s′|
( ∞∑

k=0

kρk−1
n

)
‖fs‖V r + Ln

( ∞∑
k=0

ρk
n

)
‖fs′ − fs‖V r

≤ [L2
nc

′nε(1 − ρn)
−2cnε + Ln(1 − ρn)

−1cnε]|s − s′|
≤ [(c2n

κ2ε)2c′nε(c2n
κ2ε)2cnε + (c2n

κ2ε)(c2n
κ2ε)cnε]|s − s′|

≤ 2c4
2c

′cn(4κ2+2)ε|s − s′|.
The same bound applies, with a similar argument, to Psf̂s − Ps′ f̂s′ . �

LEMMA 5. Assume that (A2) holds. Then, for all r ∈ [0,1], any sequence
(an)n≥1 of positive numbers, and (x0, s0) ∈ X × K0, we have that

E[V r(Xk)] ≤ cr
4k

2rεV r(x0),(11)

E

[
max

m≤j≤k
(ajV (Xj ))

r
]
≤ cr

4

(
k∑

j=m

ajj
2ε

)r

V r(x0),(12)

where the constant c4 depends only on c.

PROOF. For (x0, s0) ∈ X×K0 and k ≥ 1, we can apply the drift inequality (3)
and the monotonicity of λk and bk to obtain

E[V (Xk)] = E[E[V (Xk)|Fk−1]] = E[PSk−1V (Xk−1)]

≤ λkE[V (Xk−1)] + bk ≤ · · · ≤ λk
kV (x0) + bk

k−1∑
j=0

λ
j
k(13)

≤
(

1 + bk

∞∑
j=0

λ
j
k

)
V (x0) ≤ (1 + c2k2ε)V (x0) ≤ c4k

2εV (x0).

This estimate with Jensen’s inequality yields for r ∈ [0,1] that

E[V r(Xk)] ≤ (E[V (Xk)])r ≤ cr
4k

2rεV r(x0).
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Similarly, we have

E

[
max

m≤j≤k
(ajV (Xj ))

r
]
≤

(
E

[
max

m≤j≤k
ajV (Xj )

])r

≤
(

k∑
j=m

ajE[V (Xj )]
)r

≤ cr
4

(
k∑

j=m

ajj
2ε

)r

V r(x0)

by Jensen’s inequality and estimate (13). �

Assume that {fs}s∈S is a regular enough family of functions. Consider the fol-
lowing decomposition, which is one of the key observations in [1],

k∑
j=1

[fSj
(Xj ) − π(fSj

)] = Mk + R
(1)
k + R

(2)
k ,(14)

where (Mk)k≥1 is a martingale with respect to F , and (R
(1)
k )k≥1 and (R

(2)
k )k≥1 are

“residual” sequences, given by

Mk :=
k∑

j=1

[f̂Sj−1(Xj ) − PSj−1 f̂Sj−1(Xj−1)],

R
(1)
k :=

k∑
j=1

[f̂Sj
(Xj ) − f̂Sj−1(Xj )],

R
(2)
k := PS0 f̂S0(X0) − PSk

f̂Sk
(Xk).

Recall that f̂s solves the Poisson equation (6). The following proposition controls
the fluctuations of these terms individually.

PROPOSITION 6. Assume (A1)–(A4) hold, (x0, s0) ∈ X × K0 and let {fs}s∈S

be (Kn,V
α)-polynomially Lipschitz with constants (c, ε) for some α ∈ (0,1 − β).

Then, for any p ∈ (1, (α + β)−1], for all δ > 0 and ξ > α, there is a c∗ =
c∗(c,p,α,β, ξ) ≥ 1, such that for all n ≥ 1,

P

[
sup
k≥n

|Mk|
k

≥ δ

]
≤ c∗δ−pnpε∗−(p/2)∧(p−1)V αp(x0),(15)

P

[
sup
k≥n

|R(1)
k |
kξ

≥ δ

]
≤ c∗δ−p

( ∞∑
j=1

(j ∨ n)ε∗−ξ ηj

)p

V (α+β)p(x0),(16)

P

[
sup
k≥n

|R(2)
k |
kξ

≥ δ

]
≤ c∗δ−pnpε∗−(ξ−α)pV αp(x0),(17)
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whenever ε > 0 is small enough to ensure that ε∗ := κ∗ε < [1
2 ∧ (1− 1

p
)∧ (ξ −α)],

where κ∗ ≥ 1 is an independent constant.

PROOF. In this proof, c̃ is a constant that can take different values at each
appearance. By Proposition 4, we have that ‖f̂s‖V α + ‖Psf̂s‖V α ≤ c3�

κ3ε for all
s ∈ K�. Since αp ∈ [0,1], we can bound the martingale differences dM� := M� −
M�−1 for � ≥ 1 as follows:

E|dM�|p = E|f̂S�−1(X�) − PS�−1 f̂S�−1(X�−1)|p

≤ E
∣∣‖f̂S�−1‖V αV α(X�) + ‖PS�−1 f̂S�−1‖V αV α(X�−1)

∣∣p
(18)

≤ 2p(c3�
κ3ε)p

(
E[V αp(X�)] + E[V αp(X�−1)])

≤ 2p+1c
p
3 c

αp
4 �pκ3ε�2αpεV αp(x0) ≤ c̃�(κ3+2α)pεV αp(x0)

by (11) of Lemma 5. For p ≥ 2, we have, by Burkholder and Minkowski’s inequal-
ities,

E|Mk|p ≤ cpE

[
k∑

�=1

|dM�|2
]p/2

≤ cp

[
k∑

�=1

(E|dM�|p)2/p

]p/2

≤ c̃k(κ3+2α)pε+p/2V αp(x0),

where the constant cp depends only on p. For 1 < p ≤ 2, the estimate (18) yields,
by Burkholder’s inequality,

E|Mk|p ≤ cpE

[
k∑

�=1

(|dM�|p)2/p

]p/2

≤ cp

k∑
�=1

E|dM�|p

≤ c̃k(κ3+2α)pε+1V αp(x0).

The two cases combined give that

E|Mk|p ≤ c̃k(κ3+2α)pε+(p/2)∨1V αp(x0).(19)

Now, by Corollary 21 of Birnbaum and Marshall’s inequality in Appendix B,

P

[
max

n≤k≤m

|Mk|
k

≥ δ

]
≤ δ−p

[
m−p

E|Mm|p +
m−1∑
k=n

(
k−p − (k + 1)−p)

E|Mk|p
]

≤ δ−p

[
m−p

E|Mm|p + p

m−1∑
k=n

k−p−1
E|Mk|p

]

for all m ≥ n. By letting κ∗ := κ3 + 3, we have from (19)

m−p
E|Mm|p ≤ c̃mp(κ∗ε+(1/2)∨(1/p)−1) m→∞−−−→ 0,
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since κ∗ε + (1/2) ∨ (1/p) < 1. Now, (15) follows by

P

[
sup
k≥n

|Mk|
k

≥ δ

]
≤ c̃δ−p

[ ∞∑
k=n

k(κ3+2α)pε+(p/2)∨1−p−1

]
V αp(x0)

≤ c̃δ−pnpκ∗ε−(p/2)∧(p−1)V αp(x0)

since we have that pκ∗ε − (p/2) ∧ (p − 1) < 0.
By Proposition 4, ‖f̂s − f̂s′‖V α ≤ c3�

κ3ε|s − s′| for s, s′ ∈ K�. By con-
struction, |S� − S�−1| ≤ η�|H(S�−1,X�)|, and assumption (A4) ensures that
|H(S�−1,X�)| ≤ c�εV β(X�), so

|f̂S�
(X�) − f̂S�−1(X�)| ≤ c3�

κ3ε|S� − S�−1|V α(X�) ≤ c3�
κ3εη�c�

εV α+β(X�).

Let k ≥ n. Since �(κ3+1)εk−ξ ≤ (� ∨ n)(κ3+1)ε−ξ for � ≤ k, we obtain

k−ξ
∣∣R(1)

k

∣∣ ≤ k−ξ
k∑

�=1

|f̂S�
(X�) − f̂S�−1(X�)|

≤ c̃

k∑
�=1

(� ∨ n)(κ3+1)ε−ξ η�V
α+β(X�)

and then by Minkowski’s inequality and (11) of Lemma 5,

E

[
max

n≤k≤m
k−ξp

∣∣R(1)
k

∣∣p]

≤ E

[
m∑

�=1

c̃(� ∨ n)(κ3+1)ε−ξ η�V
(α+β)p(X�)

]p

(20)

≤ c̃

[
m∑

�=1

(
E

[
(� ∨ n)(κ3+1)ε−ξ η�V

α+β(X�)
]p)1/p

]p

≤ c̃

[ ∞∑
�=1

(� ∨ n)(κ3+1+2α+2β)ε−ξ η�

]p

V (α+β)p(x0).

Finally, consider R
(2)
k . From Proposition 4, we have that ‖PSk

f̂Sk
(Xk)‖V α ≤

c3k
κ3ε , and by (12) of Lemma 5,

E

[
max

n≤k≤m
k−ξp|PSk

f̂Sk
(Xk)|p

]
≤ c

p
3 E

[
max

n≤k≤m

(
k(κ3ε−ξ)/αV (Xk)

)αp
]

≤ c
p
3 c

αp
4

(
m∑

k=n

k(κ3ε−ξ)/α+2ε

)αp

V αp(x0)

≤ c̃n(κ3+2α)pε+(α−ξ)pV αp(x0)
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since (κ3 + 2α)ε − (ξ − α) < 0. So, we have that

E

[
sup
k≥n

k−ξp
∣∣R(2)

k

∣∣p]
≤ 2p

E

[
sup
k≥n

k−ξp(|PS0 f̂S0(X0)|p + |PSk
f̂Sk

(Xk)|p)]

≤ 2p
E

[
|PS0 f̂S0(X0)|p + sup

k≥n

k−ξp|PSk
f̂Sk

(Xk)|p
]

(21)

≤ c̃n(κ3+2α)pε+(α−ξ)pV αp(x0).

The estimates (16) and (17) follow by Markov’s inequality from (20) and (21). �

The proof of Theorem 2 follows as a straightforward application of Proposi-
tion 6.

PROOF OF THEOREM 2. Let δ > 0, and denote

B(δ)
n :=

{
ω ∈ � : sup

k≥n

1

k

∣∣∣∣∣
k∑

j=1

[f (Xj ) − π(f )]
∣∣∣∣∣ ≥ δ

}
.

Since ‖f ‖V α < ∞ by assumption, we may consider the family {fs}s∈S with fs ≡
f for all s ∈ S. Then, we have by decomposition (14) that

P
(
B(δ)

n

) ≤ P

[
sup
k≥n

|Mk|
k

≥ δ

3

]
+ P

[
sup
k≥n

|R(1)
k |
k

≥ δ

3

]
+ P

[
sup
k≥n

|R(2)
k |
k

≥ δ

3

]
.(22)

We select p ∈ (1, (α + β)−1) so that κ∗ε < (1 − 1/p), and let ξ = 1. Then, Propo-
sition 6 readily implies that the first and the third terms in (22) converge to zero as
n → ∞. For the second term, consider

∞∑
j=1

(j ∨ n)κ∗ε−1ηj = nκ∗ε−1
n∑

j=1

ηj +
∞∑

j=n+1

jκ∗ε−1ηj ,

where the second term converges to zero by assumption, and the first term by Kro-
necker’s lemma. There is an increasing sequence (nk)k≥1 such that P(B

(1/k)
nk ) ≤

k−2. Denoting B := ⋂∞
m=1

⋃∞
k=m B

(1/k)
nk , the Borel–Cantelli lemma implies that

P(B�) = 1, and for all ω ∈ B�, (5) holds. �

4. Bound for the growth rate. In this section, we assume that X is a normed
space, and establish a bound for the growth rate of the chain (‖Xn‖)n≥1, based on
a general drift condition. The bound assumes little structure; one must have a drift
function V that grows rapidly enough, and that the expected growth of V (Xn) is
moderate.

PROPOSITION 7. Suppose that there is V : X → [1,∞) such that the bound

PsV (x) ≤ V (x) + b(23)
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holds for all (x, s) ∈ X × S, where b < ∞ is a constant independent of s. Suppose
also that V grows rapidly enough so that

‖x‖ ≥ u �⇒ V (x) ≥ r(u)(24)

for all u ≥ 0, where r : [0,∞) → [0,∞) is a function growing faster than any
polynomial, that is, for any p > 0 there is a c = c(p) < ∞ such that

sup
u≥1

up

r(u)
≤ c.(25)

Then, for any ε > 0, there is an a.s. finite A = A(ω, ε) such that

‖Xn‖ ≤ Anε.

PROOF. To start with, (23) implies for n ≥ 1

E[V (Xn)] = E[E[V (Xn)|Fn−1]] = E[PSn−1V (Xn−1)] ≤ E[V (Xn−1)] + b

≤ · · · ≤ V (x0) + bn ≤ b̃V (x0)n,

where b̃ := b + 1. Now, with fixed a ≥ 1, we can bound the probability of ‖Xn‖
ever exceeding anε as follows

P

(
max

1≤n≤m

‖Xn‖
nε

≥ a

)
≤

m∑
n=1

P(‖Xn‖ ≥ anε) ≤
∞∑

n=1

P
(
V (Xn) ≥ r(anε)

)

≤
∞∑

n=1

E[V (Xn)]
r(anε)

≤ b̃V (x0)

∞∑
n=1

n

r(anε)

≤ b̃V (x0)c

a3/ε

∞∑
n=1

n−2 a→∞−−−→ 0,

where we use Markov’s inequality, and c = c(3/ε) < ∞ is from the application of
(25). �

We record the following easy lemma, dealing with a particular choice of V (x),
for later use in Section 5.

LEMMA 8. Assume that the target density π is differentiable, bounded,
bounded away from zero on compact sets, and satisfies the following radial de-
cay condition:

lim
r→∞ sup

‖x‖≥r

x

‖x‖ · ∇ logπ(x) < 0.

Then, for V (x) = cV π−1/2(x), the bound (24) applies with a function r(u) := ceγu

for some γ, c > 0, satisfying (25).
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PROOF. Let R ≥ 1 be such that sup‖x‖≥R
x

‖x‖ · ∇ logπ(x) ≤ −γ for some

γ > 0. Assume y ∈ R
d and ‖y‖ ≥ 2R, and write y = (1 + a)x, where ‖x‖ = R

and a = ‖y‖
R

− 1 ≥ 1. Denote h(x) := logπ(x), and write

log
π(y)

π(x)
=

∫ 1+a

1
x · ∇h(tx) dt ≤ −γ a.

We have that

V (y) = cV π(x)−1/2
(

π(y)

π(x)

)−1/2

≥ cV eγ a/2 inf‖x‖=R
π(x)−1/2 ≥ ceγ/(4R)‖y‖

and, since π is bounded away from zero on {x :‖x‖ < 2R}, we can select c > 0
such that the bound applies to all y ∈ R

d . �

5. Ergodicity result for adaptive metropolis. We start this section by out-
lining the original Adaptive Metropolis (AM) algorithm [9]. The AM chain starts
from a point X0 ≡ x0 ∈ R

d , and we have an initial covariance �0 ∈ Cd where
Cd ⊂ R

d×d stands for the symmetric and positive definite matrices. We generate,
recursively, for n ≥ 0,

Xn+1 ∼ Pθ�n(Xn, ·),(26)

�n+1 =
{

v0, 0 ≤ n ≤ Nb − 1,
Cov(X0, . . . ,Xn) + κI, n ≥ Nb,

(27)

where θ > 0 is a parameter, Nb ≥ 2 is the length of the burn-in, κ > 0 is a small
constant, I is an identity matrix and Pv(x, ·) is a Metropolis transition probability
defined as

Pv(x,A) := 1A(x)

[
1 −

∫ (
1 ∧ π(y)

π(x)

)
qv(y − x)dy

]
(28)

+
∫
A

(
1 ∧ π(y)

π(x)

)
qv(y − x)dy,

where the proposal density qv is the Gaussian density with zero mean and covari-
ance v ∈ Cd .

In this paper, just for notational simplicity (see Remark 9), we consider a slight
modification of the AM chain. First, we do not consider a burn-in period, that is,
let Nb = 0, and let �0 ≥ κI . Instead of (27), we construct �n recursively for n ≥ 1
as

�n = n

n + 1
�n−1 + 1

n + 1
[(Xn − Xn−1)(Xn − Xn−1)

T + κI ],(29)

where Xn denotes the average of X0, . . . ,Xn.
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REMARK 9. The original AM process uses the unbiased estimate of the co-
variance matrix. In this case, the recursion formula for �n, when n ≥ Nb + 2, has
the form

�n = n − 1

n
�n−1 + 1

n + 1
[(Xn − Xn−1)(Xn − Xn−1)

T + κI ].(30)

This recursion can also be formulated in our framework described in Section 2 by
simply introducing a sequence of adaptation functions Hn(s, x). Our proof applies
with obvious changes. However, in the present paper, we prefer (29) for simpler
notation. Also, from a practical point of view, observe that (29) differs from (30)
by a factor smaller than n−2�n−1 whence it is mostly a matter of taste whether to
use (29) or (30).

In the notation of the general adaptive MCMC framework in Section 2, we have
the state space X := R

d . The adaptation parameter Sn = (S
(m)
n , S

(v)
n ) consists of the

mean S
(m)
n and the covariance S

(v)
n , having values in (S

(m)
n , S

(v)
n ) ∈ S := R

d × Cd .
The space S := R

d × R
d×d ⊃ S is equipped with the norm |s| := ‖s(m)‖ ∨ ‖s(v)‖

where we use the Euclidean norm, and the matrix norm ‖A‖2 := trace(AT A),
respectively. The Metropolis kernel Ps is defined as in (28), with the definition
qs := qs(v) for s ∈ S. The adaptation function H is defined for s = (s(m), s(v)) as

H(s, x) :=
[

x − s(m)(
x − s(m)

)(
x − s(m)

)T − s(v) + κI

]
,

and the adaptation weights are ηn := (n + 1)−1.
We now formulate our ergodicity result for the AM chain.

THEOREM 10. Assume π is positive, bounded, bounded from below on com-
pact sets, differentiable and

lim
r→∞ sup

‖x‖≥r

x

‖x‖ρ
· ∇ logπ(x) = −∞(31)

for some ρ > 1. Moreover, assume that π has regular contours

lim
r→∞ sup

‖x‖≥r

x

‖x‖ · ∇π(x)

‖∇π(x)‖ < 0.(32)

Define V (x) := cV π−1/2(x) with cV = (supx π(x))1/2. Then, for any f with
‖f ‖V α < ∞ where 0 ≤ α < 1,

1

n

n∑
k=1

f (Xk)
n→∞−−−→ π(f )(33)

almost surely.
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REMARK 11. If the conditions of Theorem 10 are satisfied, the function V (x)

grows faster than an exponential, and hence (33) holds for exponential moments.
In particular, (33) holds for power moments, that is, for f (x) = ‖x‖p for any
p ≥ 0, and therefore also Sn → (mπ, vπ + κI) where mπ and vπ are the mean and
covariance of π .

The proof of Theorem 10 is postponed to the end of this section. We start by a
simple lemma bounding the growth rate of the AM chain.

LEMMA 12. If the conditions of Proposition 7 are satisfied for an AM chain,
then for any ε > 0, there is an a.s. finite A = A(ω, ε) such that∥∥S(m)

n

∥∥ ≤ Anε,
∥∥S(v)

n

∥∥ ≤ Anε.

PROOF. Since the AM recursion is a convex combination, this is a straightfor-
ward corollary of Proposition 7. �

Next, we show that each of the Metropolis kernels used by the AM algorithm
satisfy a geometric drift condition, and bound the constants of geometric drift.
The result in Proposition 15 is similar to the results obtained in [10, 15], with the
exception that we have a common minorization set C for all proposal scalings. We
start by two lemmas. We define B(x, r) := {y ∈ R

d :‖x − y‖ ≤ r}.

LEMMA 13. Assume E ⊂ R
d is measurable and A ⊂ R

d compact, given as

A := {ru :u ∈ Sd,0 ≤ r ≤ g(u)},
where Sd := {u ∈ R

d :‖u‖ = 1} is the unit sphere, and g :Sd → [b,∞) is a mea-
surable function parameterising the boundary ∂A, with some b > 0.

For any ε > 0, define Bε := {ru :u ∈ Sd, g(u) < r ≤ g(u) + ε}. Then, for all
ε̃ > 0, there is a b̃ = b̃(ε̃) ∈ (0,∞) such that for all 0 < ε < ε̃ and for all λ ≥ 3ε,
it holds that

|E ∩ Bε| ≤
∣∣(E ⊕ B(0, λ)

) ∩ A
∣∣,

whenever b ≥ b̃. Above, A ⊕ B := {x + y :x ∈ A,y ∈ B} stands for the Minkowski
sum.

PROOF. See Figure 1 for an illustration of the situation. Denote by S∗ := {u ∈
Sd :∃r > 0, ur ∈ E ∩ Bε} the projection of the set E ∩ Bε onto Sd . Then we have
E ∩ Bε ⊂ {ru :u ∈ S∗, g(u) < r ≤ g(u) + ε} and A ⊃ {ru :u ∈ S∗,0 ≤ r ≤ g(u)}.
Now, for ε ≤ λ ≤ g(u), we have(

(E ∩ Bε) ⊕ B(0, λ)
) ∩ A ⊃ {ru :u ∈ S∗, g(u) − λ + ε ≤ r ≤ g(u)} =: G,
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FIG. 1. Illustration of the boundary estimate. The set A is in light grey, and the set Bε in dark gray.

for let ru ∈ G, then there is g(u) < r̃ ≤ g(u) + ε such that r̃u ∈ E ∩ Bε , and we
can write ru = r̃u + (r − r̃)u, where (r − r̃)u ∈ B(0, λ). Clearly, E ⊕ B(0, λ) ⊃
(E ∩ Bε) ⊕ B(0, λ), and we can estimate∣∣(E ⊕ B(0, λ)

) ∩ A
∣∣ − |E ∩ Bε|

≥
∫
S∗

∫ g(u)

g(u)−2ε
rd−1 dr −

∫ g(u)+ε

g(u)
rd−1 dr Hd−1(du)

= 1

d

∫
S∗

2(g(u))d − (
g(u) − 2ε

)d − (
g(u) + ε

)d Hd−1(du),

where Hd−1 stands for the (d − 1)-dimensional Hausdorff measure. This integral
is nonnegative for all 0 ≤ ε ≤ cdb, for some constant cd depending only on the
dimension d , namely let h(ε) := (y − 2ε)d + (y + ε)d . The mean value theorem
implies that for some 0 ≤ ε′ ≤ ε, one has

h(0) − h(ε) = εd(y − 2ε′)d−1
[
2 −

(
y + ε′

y − 2ε′
)d−1]

≥ 0,

whenever ε ≤ cdy. �

LEMMA 14. Let f (x) := xe−x2/2. For any 0 < ε < 1/8, the following esti-
mates hold:

2f (x + ε) − f (x) ≥ x

8
for all 0 < x ≤ 1

2

and ∫ ∞
0

([2f (x + ε) − f (x)] ∧ 0
)
dx ≥ −e−cε−2

for some constant c > 0.
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PROOF. We can write

2f (x + ε) − f (x) = e−x2/2[2(x + ε)e−xε−ε2/2 − x],
which is positive whenever e−xε−ε2/2 ≥ 2/3, holding at least for all 0 ≤ x ≤ x∗,
with

x∗ = log(3/2)

ε
− ε

2
≥ 1

4ε
.

Now, x∗ ≥ 1/2 and we can estimate

2f (x + ε) − f (x) ≥ 1

4
xe−x2/2 ≥ x

8
for all 0 < x ≤ 1/2. Also,∫ ∞

0

([2f (x + ε) − f (x)] ∧ 0
)
dx ≥ −

∫ ∞
x∗

xe−x2/2 dx = −e−cε−2

with c = 1/32. �

PROPOSITION 15. Assume that π satisfies the conditions in Theorem 10 and
κ > 0. Then, there exists a compact set C ⊂ R

d , a probability measure ν on C,
and a constant b ∈ [0,∞) such that for the Metropolis transition probability Pv in
(28) and for all v ∈ Cd with all eigenvalues greater than κ > 0, it holds that

PvV (x) ≤ λvV (x) + b1C(x) ∀x ∈ X,(34)

Pv(x,B) ≥ δvν(B) ∀x ∈ C,∀B ⊂ X,(35)

where V (x) := cV π−1/2(x) ≥ 1 with cV := (supx π(x))1/2 and the constants
λv, δv ∈ (0,1) satisfy the bound

(1 − λv)
−1 ∨ δ−1

v ≤ c det(v)1/2

for some constant c ≥ 1.

PROOF. Define the sets Ax := {y :π(y) ≥ π(x)} and its complement Rx :=
{y :π(y) < π(x)}, which are the regions of almost sure acceptance and possible
rejection at x, respectively. Let R > 1 be sufficiently large to ensure that for all
‖x‖ ≥ R, it holds that

sup
‖x‖≥R

x

‖x‖ · ∇π(x)

‖∇π(x)‖ < −γ and sup
‖x‖≥R

x

‖x‖ · ∇ logπ(x) < −‖x‖ρ−1

for some γ > 0. Suppose that the dimension d ≥ 2. Lemma 22 in Appendix C
implies that for R sufficiently large, we have B(0,M−1‖x‖) ⊂ Ax ⊂ B(0,M‖x‖)
for all ‖x‖ ≥ R with some constant M ≥ 1. Moreover, we can parameterize Ax =
{ru :u ∈ Sd,0 ≤ r ≤ g(u)} where Sd := {u ∈ R

d :‖u‖ = 1} is the unit sphere, and
g :Sd → [M−1‖x‖,M‖x‖].
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Consider (34). We may compute

τv := 1 − PvV (x)

V (x)

=
∫
Ax

(
1 −

√
π(x)

π(y)

)
qv(y − x)dy(36)

−
∫
Rx

√
π(y)

π(x)

(
1 −

√
π(y)

π(x)

)
qv(y − x)dy.

In what follows, unless explicitly stated, we assume ‖x‖ ≥ M(R + 1). Denote
εx := ‖x‖−α < 1, where α = (ρ − 1)/2 > 0. Define Ãx := {ru :u ∈ Sd,0 ≤ r ≤
g(u) − εx} ⊂ Ax and R̃x := {ru :u ∈ Sd, r ≥ g(u) + εx} ⊂ Rx . From (36), we can
estimate

τv ≥
∫ [(

1 −
√

π(x)

π(y)

)
1

Ãx
(y) − 1

4
1

Rx\R̃x
(y)

]
qv(y − x)dy

(37)

− sup
z∈Rd

qv(z − x)

∫
R̃x

√
π(y)

π(x)
dy.

We estimate the two terms in the right-hand side separately, starting from the first.
Let h(x) := logπ(x). Suppose z ∈ Ãx , and write z = (1 − a/‖y‖)y for some

y ∈ ∂Ax and εx ≤ a ≤ ‖y‖. Assume for a moment ‖z‖ ≥ R. Then, h is decreasing
on the line segment from z to y, and we can estimate

π(x)

π(z)
= π(y)

π(z)
= eh(y)−h(z) = e

∫ ‖y‖
‖y‖−a y/‖y‖·∇h(ty/‖y‖) dt ≤ e

∫ ‖y‖
‖y‖−εx

y/‖y‖·∇h(ty/‖y‖) dt

≤ e−εx(‖y‖−εx)ρ−1 ≤ e−εx‖x‖ρ−1/(2M)ρ−1 = e−‖x‖α/(2M)ρ−1
.

Hence, in this case, π(x)/π(z) ≤ 1/4 assuming ‖x‖ ≥ R2 for sufficiently large
R2 ≥ R. If ‖z‖ < R, then there is z′ such that ‖z′‖ = R and the estimate above
holds for z′. Consequently,

π(x)

π(z)
= π(y)

π(z′)
π(z′)
π(z)

≤ e−‖x‖α/(2M)ρ−1 sup‖w‖≤R π(w)

inf‖w‖≤R π(w)
≤ 1

4
,(38)

whenever ‖x‖ ≥ R2 by increasing R2 if needed. In conclusion, we have shown that
for ‖x‖ ≥ R2, it holds that (1 − √

π(x)/π(y)) ≥ 1/2 for all y ∈ Ãx .
By Fubini’s theorem, we can write for positive f that∫

f (z + x)qv(z) dx = cd√
det(v)

∫ 1

0

∫
{e−1/2zT v−1z≥t}

f (z + x)dz dt

= cd√
det(v)

∫ ∞
0

∫
Eu

f (y) dy ue−u2/2 du,
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where cd = (2π)−d/2 and Eu := {z + x : zT v−1z ≤ u2}. Consequently, for ‖x‖ ≥
R2, we can estimate the first term of (37) from below by∫ ∞

0

( |Eu ∩ Ãx |
2

− |Eu ∩ (Rx \ R̃x)|
4

)
ue−u2/2 du

≥ 1

4

∫ ∞
0

2|Eu+a ∩ Ãx |(u + a)e−(u+a)2/2 − |Eu ∩ (Rx \ R̃x)|ue−u2/2 du

≥ 1

4

∫ ∞
0

2
∣∣(Eu ⊕ B(0, κ1/2a)

) ∩ Ãx

∣∣(u + a)e−(u+a)2/2

− |Eu ∩ Bε|ue−u2/2 du

for any a ≥ 0, since simple computation shows that Eu ⊕ B(0, κ1/2a) = {x +
y :x ∈ Eu,y ∈ B(0, κ1/2a)} ⊂ Eu+a , and as we may write Ãx = {ru :u ∈ Sd,0 ≤
r ≤ g̃(u)} where g̃(u) = g(u) − εx , we obtain that Rx \ R̃x ⊂ {ru :u ∈ Sd, g̃(u) ≤
r ≤ g̃(u)+ 2εx} =: Bε . We set a = 6κ−1/2εx and apply Lemma 13 with the choice
ε = 2εx and λ = 6εx ,∫ ∞

0

( |Eu ∩ Ãx |
2

− |Eu ∩ (Rx \ R̃x)|
4

)
ue−u2/2 du

≥ 1

4

∫ ∞
0

|[Eu ⊕ B(0,6εx)] ∩ Ãx |[2(u + a)e−(u+a)2/2 − ue−u2/2]
du

≥ 1

4

∫ 1/2

1/4
|Eu ∩ Ãx |u

8
du − |Ãx |e−c1ε

−2
x

≥ c2|E1/4 ∩ Ãx | − Md‖x‖de−c1‖x‖α

by Lemma 14, for sufficiently large ‖x‖, and since Eu are increasing with re-
spect to u. We have that E1/4 ⊃ B(x, κ1/2/4). If ‖x‖ → ∞, then εx → 0 and
also |B(x, κ1/2/4) ∩ Ãx | − |B(x, κ1/2/4) ∩ Ax | → 0. Moreover, it holds that
|B(x, κ1/2/4) ∩ Ax | ≥ c3 > 0 (see the proof of Theorem 4.3 in [10]). So, for large
enough ‖x‖, there is a c4 > 0 so that |E1/4 ∩ Ãx | ≥ c4. To sum up, by choosing R3
to be sufficiently large, we obtain that the first part of (37) is at least c5(det(v))−1/2

for all ‖x‖ ≥ R3, with a c5 > 0.
Next, we turn to the second term of (37). We obtain by polar integration that

∫
R̃x

√
π(y)

π(x)
dy =

∫
Sd

∫ ∞
g(u)+εx

rd−1e1/2h(ru)−1/2h(g(u)u) dr Hd−1(du)

≤ c′
d sup

M−1‖x‖≤w≤M‖x‖

∫ ∞
w+εx

rd−1e−1/2
∫ r
w tρ−1 dt dr,

where Hd−1 is the (d − 1)-dimensional Hausdorff measure, and c′
d = Hd−1(Sd).

Denote T (w, r) := rd−1e−1/4
∫ r
w tρ−1 dt and let us estimate the latter integral from
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above by∫ ∞
w+εx

e−1/4
∫ r
w tρ−1 dt dr sup

r≥w+εx

T (w, r) ≤
∫ ∞
w

e−wρ−1/4(r−w) dr sup
r≥w+εx

T (w, r)

≤ 4Mρ−1‖x‖1−ρ sup
r≥w+εx

T (w, r)

for any w ≥ M−1‖x‖. Suppose first w + εx ≤ r ≤ 2w, then

T (w, r) ≤ (2w)d−1e−1/4εxwρ−1 ≤ (2M)d−1‖x‖d−1e−1/4M1−ρ‖x‖α ≤ c6

for any M−1‖x‖ ≤ w ≤ M‖x‖. For any r > 2w and w ≥ 1, we have

T (w, r) ≤ rd−1e−1/4r/2wρ−1 ≤ rd−1e−r/8 ≤ c7.

Put together, letting R4 ≥ R3 to be sufficiently large, we obtain that τv ≥
c8(det(v))−1/2 with c8 = c5/2 for all ‖x‖ ≥ R4.

To sum up, by setting C = B(0,R4), we get that for all v ∈ Cd with eigenvalues
bounded from below by κ , the estimate PvV (x) ≤ λvV (x) holds for x /∈ C with
λv := 1 − c8 det(v)−1/2 satisfying (1 −λv)

−1 ≤ c−1
8 det(v)1/2. For x ∈ C, we have

by (36) that PvV (x) ≤ 2V (x) ≤ 2 supz∈C V (z) ≤ b < ∞, so (34) holds. In the one-
dimensional case, the above estimates can be applied separately for the tails of the
distribution.

Finally, set ν(B) := |C|−1|B ∩C|, and consider the minorization condition (35)
for x ∈ C,

Pv(x,B) ≥
∫
B∩C

(
1 ∧ π(y)

π(x)

)
qv(y − x)dy

≥ cd√
det(v)

∫
B∩C

(
1 ∧ π(y)

π(x)

)
inf

x,y∈C
e−1/2(x−y)v−1(x−y) dy

≥ cd√
det(v)

e−1/(2κ ′)diam(C)2 infz∈C π(z)

supz π(z)

∫
B∩C

dy.

So (35) holds with δv := c9 det(v)−1/2 for some c9 > 0. Finally, the claim holds
with c := c−1

8 ∨ c−1
9 . �

Finally, we are ready to prove the strong law of large numbers for the AM
process.

PROOF OF THEOREM 10. We start by verifying the strong law of large num-
bers (33). Fix t ≥ 1 and consider first the constrained process (X

(t)
n , S

(t)
n )n≥0

which is defined as the AM chain, but with the constraint sets K
(t)
n defined as

K
(t)
n := {s ∈ S : |s| ≤ tnε′ }, with ε′ = ε/(2d), and ε ∈ (0, κ−1∗ [(1/2) ∧ (1 − α)]),

where κ∗ is the independent constant of Theorem 2.
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We check that assumptions (A1)–(A4) are satisfied by the constrained process
(X

(t)
n , S

(t)
n )n≥0 for all t ≥ 1. Condition (A1) is satisfied by construction of the

Metropolis kernels Ps . Since det(v) ≤ ‖v‖d , Proposition 15 ensures that there is a
compact C ⊂ R

d such that (A2) holds. For (A3), we refer to [1], Lemma 13, sta-
ting that ‖Psf − Ps′f ‖V r ≤ 2dκ−1‖f ‖V r |s(v) − s′(v)| for all s(v), s′(v) ∈ Cd with
eigenvalues bounded from below by κ .

Finally, we check that (A4) holds for any β ∈ (0,1/2]. Similarly to [2], we have
that

sup
s∈K

(t)
n

‖H(s, x)‖V β

= sup
s∈K

(t)
n

sup
x∈Rd

|H(s, x)|
V β(x)

≤ ‖κI‖ + sup
x∈Rd

sup
s∈K

(t)
n

‖x‖ + ‖s(m)‖ + ‖s(v)‖ + ‖(x − s(m))(x − s(m))T ‖
V β(x)

≤ √
dκ + sup

x∈Rd

‖x‖ + ‖x‖2 + t2n2ε′ + 2tnε′ + 2‖x‖tnε′

V β(x)

≤ √
dκ + 7t2n2ε′

sup
x∈Rd

‖x‖2 ∨ 1

V β(x)
≤ c̃nε

for any β ∈ (0,1/2] by Lemma 8, where c̃ = c̃(t, β). So, assumption (A4) holds
for any β ∈ (0,1 − α). In particular, we can select β so that ε < κ−1∗ [(1/2) ∧
(1 − α − β)]. Clearly,

∑
k kκ∗ε−1ηk <

∑
k kκ∗ε−2 < ∞, so all the conditions of

Theorem 2 are satisfied, implying that the strong law of large numbers holds for
the constrained process (X

(t)
n , S

(t)
n ) for all t ≥ 1.

Define B(t) := {∀n ≥ 0 :Sn ∈ K
(t)
n }. We can construct the constrained processes

so that they coincide with the original process in B(t). That is, for ω ∈ B(t) we
have (Xn(ω), Sn(ω)) = (X

(t)
n (ω), S

(t)
n (ω)) for all n ≥ 0. Lemma 12 ensures that

we have P(∀n ≥ 0 :Sn ∈ K
(t)
n ) ≥ g(t) where g(t) → 1 as t → ∞. As in the proof

of Theorem 2, we can use the Borel–Cantelli lemma to deduce that (33) holds
almost surely. �

REMARK 16. Since ε > 0 can be selected arbitrarily small in the proof of
Theorem 10, it is only required for (33) to hold that the adaptation weights ηn ∈
(0,1) are decreasing and that

∑
k kε̃−1ηk < ∞ holds for some ε̃ > 0. In particular,

one can choose ηn := (n + 1)−γ for any γ > 0.

REMARK 17. Condition (31) implies the super-exponential decay of the tails
of π :

lim
r→∞ sup

‖x‖≥r

x

‖x‖ · ∇ logπ(x) = −∞.(39)
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This condition, with the contour regularity condition (32), are common conditions
to ensure geometric ergodicity of a random-walk Metropolis algorithm, and many
standard distributions fulfil them [10]. The decay condition (31) is only slightly
more stringent than (39).

Finally, we formulate a central limit theorem for the AM algorithm.

THEOREM 18. Assume π satisfies the conditions of Theorem 10. For any f

with ‖f ‖V α < ∞ for some 0 ≤ α < 1/2, where V (x) := cV π−1/2(x) and cV =
(supx π(x))1/2, it holds that

1√
n

n∑
k=1

[f (Xk) − π(f )] n→∞−−−→ N(0, σ 2)

in distribution, where σ 2 ∈ [0,∞) is a constant.

The proof of Theorem 18 follows by the techniques of the present paper applied
to [1], Theorem 9. A fully detailed proof can be found in the preprint [16].

APPENDIX A: PROOF OF LEMMA 3

We provide a restatement of a part of a theorem by Meyn and Tweedie [12]
before proving Lemma 3. For a more recent work on quantitative convergence
bounds, we refer to [6].

THEOREM 19. Suppose that the following drift and minorization conditions
hold:

PV (x) ≤ λV (x) + b1C(x) ∀x ∈ X,

P (x,A) ≥ δν(A) ∀x ∈ C,∀A ⊂ X

for constants λ < 1, b < ∞ and δ > 0, a set C ⊂ X and a probability measure ν

on C. Moreover, suppose that supx∈C V (x) ≤ b. Then, for all k ≥ 1,

‖P k
s (x, ·) − π(·)‖V ≤ V (x)(1 + γ )

ρ

ρ − ϑ
ρk

for any ρ > ϑ = 1 − M̃−1, for

M̃ = 1

(1 − λ̌)2

[
1 − λ̌ + b̌ + b̌2 + ζ̄

(
b̌(1 − λ̌)b̌2)]

defined in terms of

γ = δ−2[4b + 2δλb],
λ̌ = (λ + γ )/(1 + γ ) < 1,

b̌ = b + γ < ∞
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and the bound

ζ̄ ≤ 4 − δ2

δ5

(
b

1 − λ

)2

.

PROOF. See [12], Theorem 2.3. �

PROOF OF LEMMA 3. Observe that PsV (x) = E[V (Xn+1)|Xn = x,Sn = s],
and therefore by Jensen’s inequality, (A2) implies for x /∈ Cn that

PsV
r(x) ≤ (PsV (x))r ≤ λr

nV
r(x).

We can bound λ̃n := λr
n ≤ (1 − c−1n−ε)r ≤ 1 − rc−1n−ε implying

(1 − λ̃n)
−1 ≤ r−1cnε,

whenever r ∈ (0,1]. Similarly, for x ∈ Cn, one has PsV
r(x) ≤ (supz∈Cn

V (z) +
bn)

r ≤ (2bn)
r , so by letting b̃n := (2bn)

r , we obtain the drift inequality

PsV
r(x) ≤ λ̃nV

r(x) + b̃n1Cn(x),

and we can bound b̃n ≤ (2cnε)r . We have the bound (1 − λ̃n)
−1 ∨ b̃n ≤ c̃nε with

some c̃ = c̃(c, r) ≥ 1.
Now, we can apply Theorem 19, where we can estimate the constants

γn = δ−2
n [4b̃n + 2δnλ̃nb̃n] ≤ (cnε)26(c̃nε) = a1n

3ε,

b̌n = b̃n + γn ≤ (c̃ + a1)n
3ε ≤ a2n

3ε

and consequently

1 − λ̌n = 1 − λ̃n

1 + γn

≥ c̃−1n−ε

1 + a1n3ε
≥ c̃−1

1 + a1
n−4ε = a−1

3 n−4ε.

Moreover,

ζ̄n ≤ 4 − δ2
n

δ5
n

(
b̃n

1 − λ̃n

)2

≤ 4(cnε)5(c̃nε)2(c̃nε)2 = a4n
9ε,

and then

M̃n = 1

(1 − λ̌)2

[
1 − λ̌n + b̌n + b̌2

n + ζ̄n

(
b̌n(1 − λ̌n) + b̌2

n

)]
≤ (a3n

4ε)2[1 + b̌n + b̌2
n + ζ̄n(b̌n + b̌2

n)]
≤ (a3n

4ε)2(5ζ̄nb̌
2
n) ≤ 5a2

3n8εa4n
9εa2

2n6ε = a5n
23ε

since we can assume that b̌n, ζ̄n ≥ 1. Now,

1 − ϑn = M̃−1
n ≥ a−1

5 n−23ε
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and we can choose ρn ∈ (ϑn,1) by letting ρn := 1+ϑn

2 . We have

ρn − ϑn = 1 − ρn = 1
2(1 − ϑn) ≥ 1

2c−1
9 n−23ε = (a6n

23ε)−1.

Finally, from Theorem 19, one obtains the bound

‖P k
s (x, ·) − π(·)‖V r ≤ V r(x)Lnρ

k
n,

where

(1 − ρn)
−1 ≤ a6n

23ε,

Ln = (1 + γn)
ρn

ρn − ϑn

≤ (1 + a1n
3ε)(a6n

23ε) ≤ a7n
26ε

with a7 = (1 + a1)a6. This concludes the proof with κ2 = 26 and c2 = a7. �

APPENDIX B: BIRNBAUM AND MARSHALL’S INEQUALITY

THEOREM 20 (Birnbaum and Marshall). Let (Xk)
n
k=1 be random variables,

such that

E[|Xk||Fk−1] ≥ ψk|Xk−1|,
where Fk := σ(X1, . . . ,Xk), and ψk ≥ 0. Let ak > 0, and define

bk := max

{
ak, ak+1ψk+1, . . . , an

n∏
j=k+1

ψj

}

for 1 ≤ k ≤ n, and bn+1 := 0. If p ≥ 1 is such that E|Xk|p < ∞ for all 1 ≤ k ≤ n,
then

P

(
max

1≤k≤n
ak|Xk| ≥ 1

)
≤

n∑
k=1

(b
p
k − ψ

p
k+1b

p
k+1)E|Xk|p.

PROOF. See [7], Theorem 2.1. �

COROLLARY 21. Let (Mk)
n
k=1 be a martingale with respect to (Fk)

n
k=1.

Let (ak)
n
k=1 be a strictly positive nonincreasing sequence. If p ≥ 1 is such that

E|Mk|p < ∞ for all 1 ≤ k ≤ n, then for 1 ≤ m ≤ n,

P

(
max

m≤k≤n
ak|Mk| ≥ 1

)
≤ ap

n E|Mn|p +
n−1∑
k=m

(a
p
k − a

p
k+1)E|Mk|p.

PROOF. By Jensen’s inequality,

E[|Mk||Fk−1] ≥ |E[Mk|Fk−1]| = |Mk−1|.
Define ψk := 1 for 1 ≤ k ≤ n, and ãk := am for 1 ≤ k ≤ m and ãk := ak for m <

k ≤ n. The result follows from Theorem 20. �
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APPENDIX C: CONTOUR SURFACE CONTAINMENT

LEMMA 22. Suppose A ⊂ R
d is a smooth surface parameterized by the unit

sphere S d , that is, A = {ug(u) :u ∈ S d} with a continuously differentiable radial
function g : S d → (0,∞). Assume also that outer-pointing normal n of A satisfies
n(x) · x/‖x‖ ≥ β for all x ∈ A with some constant β > 0. There is a constant
M < ∞ depending only on β such that for any x, y ∈ A, it holds that M−1 ≤
‖x‖/‖y‖ ≤ M .

PROOF. Consider first the two-dimensional case. Let x and y be two distinct
points in A. We employ polar coordinates, thus let u(θ)r(θ) ∈ A with u(θ) :=
[cos(θ), sin(θ)]T and r(θ) := g(u(θ)) so that u(θ1)r(θ1) = x and u(θ2)r(θ2) = y

with θ1, θ2 ∈ [0,2π).
Let α(θ) stand for the (smaller) angle between u(θ) and the normal of the

curve A, that is, the curve parametrized by θ → u(θ)r(θ). Our assumption says
that |α(t)| ≤ α0 := arccos(β) < π/2 for all θ ∈ [0,2π ]. On the other hand, an
elementary computation shows that

tan(α(θ)) = r ′(θ)

r(θ)
,

and hence we have | d
dθ

log r(θ))| = |r ′(θ)/r(θ)| ≤ tanα0 uniformly. We may esti-
mate |log‖x‖ − log‖y‖| ≤ 2π tan(α0) yielding the claim with M = e2π tanα0 .

For d ≥ 3, take the plane T containing the origin and the points x and y. This
reduces the situation to two dimensions, since A ∩ T inherits the given normal
condition of the surface and the radius vector. �
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