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Comment: The Essential Role of
Pair Matching
Jennifer Hill and Marc Scott

1. INTRODUCTION

We appreciate having the opportunity to comment
on the well-motivated, highly informative and care-
fully constructed article by Imai, King and Nall (IKN).
There has been a great deal of confusion over the years
about the issue of pair-matching, often due to a con-
flation of the implications of design versus analysis
choice. This article sheds light on the debate and of-
fers a set of helpful alternative analysis choices.

Our discussion does not take issue with IKN’s
provocative assertion that one should pair-match in
cluster randomized trials “whenever feasible.” Instead
we will explore the trade-offs between using the infer-
ential framework advocated by IKN versus fitting fairly
standard multilevel models (see, for instance, Gelman
and Hill, 2007).

The IKN design-based treatment effect estimators
have the advantage of being simple to calculate and
having better statistical properties in general than the
harmonic mean estimator that IKN view to be the most
standard estimator in this setting. Variance estimators
for SATE and CATE are not identified, but that is
a function of not making the assumption of constant
treatment effects, which we find realistic. IKN do pro-
vide upper bound variance estimators for these quanti-
ties of interest. Perhaps the biggest drawback to these
methods is that they are not flexible if it is necessary or
helpful to extend the framework to accommodate addi-
tional complications or information.

The strength of multilevel models in this estima-
tion setting is the flexibility to build in complexity that
could provide us with additional information, increase
our precision, or sometimes even reduce bias (for in-
stance, when correcting for “broken” randomization).
As an example, while the IKN variance estimators ac-
commodate varying treatment effects, the multilevel
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model provides a framework to actually examine these
pair-to-pair differences. The model can also be ex-
tended to allow treatment effects to vary over covariate-
defined subgroups which has the potential to substan-
tially increase our understanding of effect transmis-
sion. Conditioning on pre-treatment covariates can also
help to increase precision (and even reduce bias in situ-
ations where the randomization has been less pristine).
Moreover, not only can multilevel models include co-
variates and random treatment effects quite readily, but
the need for such terms can be evaluated statistically.

A further example is the ability of models to accom-
modate missing data at the individual level (rather than
entire clusters being missing due to group-level non-
compliance or attrition which IKN address). This can
be naturally incorporated into a model-based frame-
work as well; it’s unclear how the IKN framework
would handle this complication.

Of course, these advantages come at the cost of mak-
ing some modeling assumptions. IKN go so far as to
claim that these approaches “violate the very purpose
of experimental work which goes to great lengths and
expense to avoid these types of assumptions.” How-
ever, the primary purpose of experimental work is to
avoid the untestable assumption of ignorability (or
strong ignorability) that is so difficult to avoid in ob-
servational work. While it is true that we do not need
to build models post-randomization in order to estimate
treatment effects, this can hardly be viewed as the goal
of randomized experiments. In fact, randomization ac-
tually increases robustness to model-misspecification,
creating a safer climate within which to build mod-
els than would otherwise exist. Moreover, the paramet-
ric assumptions we make with a multilevel model are
testable, for instance, using graphical regression diag-
nostics.

It could be argued that multilevel models have the
disadvantage of being more complicated to fit. How-
ever with the capabilities of current standard statistical
software the level of technical expertise required to fit
such models is well within the reach of most applied
researchers today.
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2. SIMPLE MULTILEVEL MODELS FOR
ESTIMATING TREATMENT EFFECTS

First we lay out a few simple multilevel models for
estimating treatment effects in the setting of a pair-
matched cluster-randomized experiment. Clearly we
have not exhausted all possibilities, but the models we
discuss have the advantage of being relatively simple,
easily fit with standard software, and readily expand-
able to more complex settings.

A very simple model for observation i in cluster j

and pair k is

Yijk = τTjk + αk + εijk,(1)

with a common treatment effect, τ , as well as vary-
ing intercepts αk , where αk ∼ N(α0, σ

2
α). Tjk is a treat-

ment indicator, and j ∈ {1,2} while k ∈ {1,2, . . . ,K}.
As is common in multilevel models of this sort, the
random terms are assumed independent of the pre-
dictors, an assumption which is particularly defensi-
ble in the context of a randomized experiment, and
εijk ∼ N(0, σ 2

ε ).
A simple adjustment, allowing τ to vary by pair,

yields a model for heterogeneous treatment effects:

Yijk = τkTjk + αk + εijk,(2)

with τk ∼ N(τ0, σ
2
τ ). We typically do not want to as-

sume that αk and τk are independent, therefore there
is a covariance term in the model, σατ , and the pair
(αk, τk) are assumed bivariate normal.

A word of caution is warranted with regard to the τk .
These parameters cannot be interpreted causally except
in the special case in which we know that clusters have
been perfectly matched on their potential outcomes
(which is implausible in practice). Otherwise, we can-
not separately identify variation caused by within-pair
cluster mismatch from variation that is due to treat-
ment effects that actually vary across pairs. Nonethe-
less, allowing τ to vary is important because it allows
us to test for this extra source of heterogeneity (what-
ever the true source of the heterogeneity). To the extent
that we can satisfy ourselves that we have indeed ob-
tained close matches (mostly likely after having also
conditioned on some highly predictive pre-treatment
variables), we can move toward a causal interpretation
of these quantities. However, if our goal is to explore
treatment effect moderation, we’re probably better off
doing so by (additionally) allowing the treatment ef-
fects to vary by covariate levels.

We can augment either of these models by including
cluster-level covariates, Xj . This is particularly helpful

when we are unable to perfectly match clusters. Here
we focus on inclusion of covariates purely for increas-
ing precision (not to explore treatment effect modera-
tion). In this case we add a cluster-specific level to the
model, as in

Yijk = τkTjk + φjk + εijk,
(3)

φjk = Xjkβ + αk,

where φjk captures cluster-specific variation that de-
pends on both Xjk and our varying pair intercepts, αk .

3. EXAMINING THE IMPLICATIONS OF
IMPERFECT MATCHING AND TREATMENT

EFFECT HETEROGENEITY

We explore the implications of imperfect match-
ing and the presence of treatment effect heterogeneity
through a small set of simulations. Our primary simu-
lations vary the following components: (i) cluster size
perfectly or imperfectly matched, (ii) cluster-specific
SATE perfectly or imperfectly matched and (iii) treat-
ment effect fixed or varying. Simulations are repeated
100 times for each scenario.

The data generated in each simulation are fit using
the two multilevel models laid out in equations (1)
and (2) above (we’ll refer to them as MLM1 and
MLM2, for the constant and varying treatment effect
models, respectively). To represent an analysis option
that would be easy to use by an applied researcher we
fit the multilevel models using the lmer command
(package is lme4) in R (R Development Core Team,
2008; very similar packages exist in Stata, SAS and
SPSS, among others) and used the standard estimates.
In theory, however, one could fit these models using
a more flexible package such as BUGS or JAGS in
which case it would be trivial to reweight the τk in
order to make inferences about any of a wide range
of different quantities of interest. For comparison pur-
poses we fit the IKN SATE estimator (to mirror the
multilevel model’s implicit weighting scheme by pair
sample size) using the upper bound variance estimate
to demonstrate the relationship between this bound and
the uncertainty estimate in MLM2. Since we can com-
pare nested multilevel models using likelihood ratio
tests (LRTs), we also evaluate whether the model de-
tects evidence of variation in treatment effects. We then
extend the simulations to incorporate a cluster-level co-
variate as described in more detail below, and fit the
multilevel model described in equation (3) above.

We simulate matched-pair cluster randomized exper-
iments in a manner similar to the IKN simulations with
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the notable difference that we do not force cluster-
specific SATE to be perfectly matched within pair (as
described below). The number of pairs in each simu-
lation is 30. Throughout our simulations, the average
(or fixed) cluster size is 50. When cluster size is im-
perfectly matched across clusters, we allow it to vary
based on multinomial draws from cluster labels, each
equally likely, drawing a sufficient sample so that the
expected size of any cluster is 50. Using this strategy,
the average difference in cluster size is about 8 and the
average standard deviation of these differences across
repeated simulations is approximately 6.

Potential outcomes were simulated such that for a
given pair k, with cluster j = 1 as the control, and clus-
ter j = 2 as the treated,1

Y·1k(0) ∼ N(μ0, σ
2
0 ),(4)

Y·2k(0) = Y·1k(0) + δk with δk ∼ N(0, π2σ 2
0 ).(5)

Therefore δk serves the role of creating imbalance in
SATE across clusters (IKN do not allow for this in their
simulations). As π grows we move from a situation
with perfect balance to a situation in which we may as
well have randomly chosen pair matches.

Treatment effects were either kept constant across
pairs at τjk = 3.2 for all j and k or were allowed
to vary. Heterogeneous treatment effects were gener-
ated using a nonlinear deterministic function of the
cluster potential outcome under treatment such that
τjk = 30/Y·jk(0). This creates a partial ceiling effect
in which larger baseline values are associated with
smaller treatment effects and as such the distribution
for both Y(1) and τjk are quite skewed (again mimick-
ing the IKN example).2 The mean of τjk across j and k

is about 3.2 on average under this formulation.

1After submitting a draft of this comment, IKN asked for our
code and upon reviewing confirmed an error in our original simu-
lation setup; randomization had not been imposed. Given the nec-
essary restrictions on iterative revisions in this discussion setting
we will not update our comment to incorporate the corrected re-
sults; however we were permitted to change the description of the
simulations to reflect what was actually run (that is, with the er-
ror included). We have, however, verified that after correcting our
simulations (by imposing randomization such that both potential
outcomes and our covariate are independent of the treatment, the
situation described in the rest of the discussion), our original con-
clusions remain; the results are extremely similar to those presented
here. More details and the code appear in our online appendix at
https://files.nyu.edu/jlh17/public/stat.sci.appendices/.

The error did spark an interesting additional discussion about
the potential problems with adjusting for covariates when random-
ization has failed which IKN explore in their rejoinder.

2We were able to obtain data from IKN on the distributon of pair
specific differences in means in the data they used as a starting point

Individual-level observations are generated from
these cluster potential outcomes by adding random er-
rors,

Yijk(·) = Y·jk(·) + εijk,(6)

with εijk ∼ N(0, σ 2
ε ). We chose μ0 = 10, σ 2

ε = 1 and
σ 2

0 = 4 for all simulations.

4. SIMULATION RESULTS

In Figure 1, we plot the standard error associated
with our three estimates of the common treatment ef-
fect when cluster size is not perfectly matched (the sce-
nario in which cluster sizes are equal is nearly identi-
cal, with minor differences noted below). Panel A dis-
plays the results in the scenario when treatment effects
are constant (ignore the thick grey line at this point in
the discussion). When π = 0, match quality is perfect,
and multilevel model estimators have the same preci-
sion. However, as the match quality degrades (as rep-
resented by increasing levels of π ) the lines diverge
rapidly with MLM2 reflecting increasingly higher lev-
els of uncertainty.

We might think that MLM1 is the “correct” model
in this simulation scenario—after all, the treatment is
constant. However, in terms of heterogeneity, there is
no identifiable difference between poor matches and
variable treatment effects. So in the likely realm of im-
perfect matches, which model do we prefer, and why?
Model selection techniques such as LRTs will guide
us toward models that capture variation, when it is
present, and we find that when π > 0.13, the null that
σ 2

τ = 0 is rejected at the 0.05 level. We represent this
shift away from MLM1 by slowly greying out its stan-
dard error in panel A. Thus models can provide evi-
dence of either imperfect matching or variable treat-
ment effects, but with this design, cannot adjudicate be-
tween the two. Of course, to the extent that we can use
covariates to sufficiently improve across-cluster equiv-
alence within pairs (that is, to make up for imbalance
remaining after matching), we might have more con-
fidence in using such tests to infer that the treatment
effect is constant.

What’s interesting to note is that the IKN upper
bound variance estimator for SATE closely mimicks
the uncertainty estimate from MLM2. When clus-
ter size is equal, the IKN estimator’s precision is

for their simulation. We satisfied ourselves that the distribution in
our simulations of the same quantity is even more skewed, thus
clearly violates the assumption of normality of the treatment effects
built in to our multilevel model.

https://files.nyu.edu/jlh17/public/stat.sci.appendices/
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FIG. 1. Plots that display how the standard error for each method varies with increasing disparity in the matches, as measured by π .
The left panel displays results from the scenario with constant treatment effects; the right panel displays results from the scenario with
treatment effect heterogeneity.

nearly coincident with that of MLM2 (not shown). Of
course, neither the IKN estimator nor MLM2 can dis-
tinguish between true treatment effects and pair mis-
matches.

In Figure 1, Panel B, we plot the standard error as-
sociated with two of our three estimates of the com-
mon treatment effect when cluster size is not per-
fectly matched and treatment effects vary nonlinearly
as specified above. Again, ignore the thick grey line
at this point in the discussion. When π = 0, there is
already a difference in precision between MLM1 and
MLM2. MLM1 completely ignores any heterogeneity,
so with this incorrect assumption, it underestimates the
uncertainty. Given that LRTs would correctly suggest
that MLM1 is insufficient, in other words, σ 2

τ > 0, we
do not include MLM1’s precision in the plot.

We now concentrate on MLM2 and the IKN esti-
mator, and again we see that the precision follows a
comparable trend as π is increased and matches de-
grade. Imperfect matches and the varying treatment
effects are increasingly confounded, and the uncer-
tainty concomitantly increases. It is somewhat sur-
prising that the precision curves degrade at a slower
rate than those in Panel A, yielding superior preci-
sion when π > 0.5. This can be attributed, however,

to the additional information contained in the cor-
relation between treatment and pair effects, created
by the nonlinear transformation that generates τjk .
We confirmed this using a different simulation setup
for which variable treatment and pair effects were
generated independently (not shown); in these sim-
ulations, the precision degrades a bit more quickly
than in the case of common treatment effect, as ex-
pected. That MLM2 and the IKN estimator’s s.e. are
at higher levels in Panel B when π < 0.5 is sim-
ply the effect of increased baseline variation in treat-
ment effects introduced in the simulations with vari-
able τjk .

An equally important point here is that even though
we in essence incorrectly model the skewed treatment
effects by pretending they are normally distributed, this
“model failure” did not introduce bias or reduce preci-
sion (skew may have induced slight overestimation of
the variance in the treatment).

4.1 Covariates

We operationalize covariates as having partial infor-
mation on Y·jk(0), but not directly on τjk . The sim-
plest way to do this, in our simulations, is to set Xjk =



58 J. HILL AND M. SCOTT

Y·jk(0) + ζj , where ζj ∼ N(0, σ 2
ζ ) is a noise process

that limits our ability to recover the level of the poten-
tial outcome. When σ 2

ζ is small, we should eliminate,

or nearly eliminate the variation between pairs, σ 2
α .

This should result in increased precision for the treat-
ment effect, particularly when treatment and within
pair differences are greatly confounded. In the simu-
lation results shown in Figure 1, we chose σ 2

ζ = 0.22,
which is large enough to obscure some information in
the covariate, but not so large as to render it nonsignifi-
cant, and fit the model given in (3) above. The standard
errors for treatment effects (our primary assessment)
are presented as a grey line which is remarkably con-
stant across various levels of match quality. Panels A
and B are quite similar, so our remarks apply to either.
When match quality is very good, conditioning on co-
variates actually adds a small amount of uncertainty
to the treatment estimate. However, the payoffs associ-
ated with covariates include: dramatic reduction of be-
tween pair variance σ 2

α , which provides the opportunity
to identify a simpler (common treatment) model, when
this actually is the case, and improved precision when
match quality is poor. To summarize, the impact of a

(significant) covariate or set of covariates should be to
decrease the variance σ 2

α , and this has the potential to
yield remarkable precision gains.

5. CONCLUSION

In some ways, the IKN framework is actually quite
similar to the multilevel framework that allows for vari-
ation in treatment effects across pairs. The advantage
of the multilevel framework however is in moving be-
yond the simplest scenario to incorporate additional
complexity for greater precision or greater understand-
ing. We have illustrated only a small number of the po-
tential set of such model expansions.
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