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1. Introduction

The concept of Markov exchangeability was suggested for the first time as a
particular case of partial exchangeability by de Finetti in [6]. This particular
case has peculiar importance and is sometimes simply referred to as partial
exchangeability. Since then, the main aim of the authors working on this spe-
cific topic has been to find a theorem characterizing the discrete time mixtures
of Markov chains processes. Various papers ([13, 14, 8, 34, 12]) outline differ-
ent theoretical frameworks for extending de Finetti’s representation theorem to
Markov exchangeable (hereafter ME) processes, the main result being that a
recurrent process is ME if, and only if, its law is a mixture of Markov chains.
Besides this characterization problem, some particular ME processes have been
studied in the context of certain random walks over graphs, namely the Edge
Reinforced Random Walks (see [25] and references therein for a comprehensive
survey), and in the Bayesian analysis of certain processes (see [24, 10]). The
inferential analysis of ME processes has not received the same attention.

A finite sequence of r.v.s (X1, . . . , Xn) taking values in a discrete state space
I is said ME if its distribution assigns the same probability to all the I–valued
sequences having the same starting state and the same number of transitions
(i, j) for each couple of states in I. A process {Xn}n∈N is said ME if the above
holds for every n.

When we have to analyze a dataset consisting of multiple I–valued sequences,
for example when we have a sequence of responses recorded for each unit, we may
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consider a hypothesis of Markov exchangeability. Rigorously, we should adopt it
whenever, in a sequence of observations, we consider “the last outcome before
any observation as a relevant attribute of the observation itself, and, once the
observations are classified according to this attribute, time order becomes irrel-
evant” (see [12]). Even if we do not have such a precise idea on the data, we can
adopt a hypothesis of Markov exchangeability for example whenever we deem
it appropriate to use an homogeneous Markov chain, but this choice results in a
poor fit to the data (possibly due to population’s heterogeneity). Then we can
look for a wider class of models maintaining the hypothesis of Markov exchange-
ability (a Markov chain is a particular ME process). Moreover, we can adopt it
as a way to approximate a multivariate discrete distribution, reducing the com-
plexity of the analysis. In fact, under Markov exchangeability, we a priori reduce
the maximum number of free parameters the distribution can have (numerical
details will be given on that). So, if one is interested, even if somehow informally,
to the order of a set of I–valued variables, Markov exchangeability is a reasonable
intermediate between considering the joint distribution in its greatest generality,
and a simple Markov dependence (i.e., since I is discrete, a Markov chain).

To the author’s knowledge, only Quintana and co–authors have explicitly con-
sidered this use of the hypothesis in several papers (see e.g. [26–28]). Other pa-
pers analyze the practical use of discrete time mixtures of Markov chains models
for the analysis of multiple categorical sequences (e.g. [15, 17, 16]). Specifically,
they analyze various kind of finite mixtures of Markov chains and their use in
(model–based) cluster analysis, but they do not even mention the concept of
Markov exchangeability.

This paper tries to fill the gap, analyzing the practical use of this hypothesis,
and proposing an alternative to the mixtures of Markov chains models.

The need of an alternative to the mixture models is explained by the fol-
lowing argument: de Finetti’s representation theorem asserts that an infinite
sequence of r.v.s is exchangeable if, and only if, its law is a mixture of laws of
i.i.d. variables. Not all the exchangeable finite sequences are initial segments of
longer exchangeable sequences, i.e., as is said, not all of them are “extendible”.
Then, it may be the case that a mixture of i.i.d. model is not suitable to analyze
the data at hand under the exchangeability assumption. As a simple example of
this, in a mixture of i.i.d. r.v.s, the correlation among the variables is necessarily
nonnegative, while it is not so in the not extendible case. The question of ex-
tendibility has been studied mainly for binary exchangeable r.v.s (e.g. [9, 3, 33]),
and the concept has been extended to ME r.v.s in [35, 36], so that we can say
that a finite ME sequence is not necessarily the initial segment of a mixture of
Markov chains process.

We will consider the case I = {0, 1}, as repeated binary variables often arise in
practice, and we present a new class of hierarchical models for ME binary data.
Such a class is presented as a reparameterization of the joint distribution of n
ME r.v.s in terms of the “Bahadur/Lancaster’s interactions”. These interactions,
also called “additive interactions”, were first introduced in [2] and [21] and
define the “additive models” which constitute an alternative to the loglinear
models for the analysis of categorical variables. In fact, this class of additive
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models for the ME case is large enough to include all the distributions of the
ME sequences of a fixed length disregarding their extendibility under a simple
additional assumption, and nearly all the others.

The paper is structured as follows: In Section 2 we give some definitions and
insights in ME distributions and mixtures of Markov chains, and we present
a first simple parameterization of a ME distribution. In Section 3 we define a
second parameterization which serves as a necessary intermediate step in order
to construct the Bahadur/Lancaster’s interaction parameters, and an assump-
tion we should adopt to successfully accomplish that construction. In Section 4
we briefly introduce the additive models in general, then present the additive
models for ME binary data. An application of the models presented concludes
the paper.

2. Some definitions

Consider an I–valued sequence (x1, . . . , xn). Define its transition counts n i,j for
all i, j in I as

n i,j =

n−1∑

k=1

1(i,j)(xk, xk+1)

Arrange them in a matrix N = {n i,j}i,j. Then, we will say that (X1, . . . , Xn) is
ME (or n–ME when we need to highlight the length of the sequence), if its joint
n–variate distribution assigns the same probability to all the (x1, . . . , xn) in In

having the same value of the first step x1, and the same transition count matrix
N . That is, x1 and N together are a sufficient statistic, the probability of having
any sequence starting in x1 and consistent with N depends only on x1 and N ,
and we will denote it p x1,N . Denote the set of all the distinct transition count
matrices of all the I–valued sequences of n steps starting in x1 as Φ(x1, n).
For what we have said, an n–ME distribution is completely defined by the
probabilities {p x1,N} for x1 ranging in I and N ranging in Φ(x1, n), and that
constitutes a first simple parameterization of an n–ME distribution.

When I = {0, 1}, we deal with 2 × 2 transition count matrices of the kind:

N =

(
n 0,0 n 0,1

n 1,0 n 1,1

)

Two cases are possible: n 0,1 and n 1,0 are equal or differ by one. In the first
case, the sequences necessarily start and end at the same state; in the second,
in different states. So, if we know x1 and N , we also know xn. Let us denote
as Φ0(0, n) the subset of Φ(0, n) of the matrices having n 0,1 = n 1,0. The cor-
responding sequences all start and end in 0. Denote as Φ1(0, n) the subset of
Φ(0, n) of the matrices having n 0,1 = n 1,0 +1. The corresponding sequences all
start in 0 and end in 1. We have Φ0(0, n) ∪ Φ1(0, n) = Φ(0, n). Symmetrically,
for the sequences starting in 1, we define

Φ0(1, n) = {N ∈ Φ(1, n) : n 1,0 = n 0,1 + 1}
Φ1(1, n) = {N ∈ Φ(1, n) : n 1,0 = n 0,1}

such that Φ0(1, n)∪ Φ1(1, n) = Φ(1, n).
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The number of probabilities defining an n–ME distribution is equal to the
number of possible different transition count matrices for each fixed starting
state. We have (for a proof see [7])

|Φ(1, n)| = |Φ(0, n)| =

(
n

2

)
+ 1

So, in general an n–ME binary distribution is defined by the 2
(
n
2

)
+2 probabilities

{p 0,N}N∈Φ(0,n) and {p 1,N}N∈Φ(1,n). We will also use the symbols p x1,

( n 0,0 n 0,1
n 1,0 n 1,1

)
.

Let N be the transition count matrix intended as a r.v. Denote as w x1,N the
probability of

{
(X1 = x1) ∩ (N = N)

}
. Then any n–ME binary distribution is

as well defined by the probabilities {w 0,N}N∈Φ(0,n) and {w 1,N}N∈Φ(1,n). The
relation with the previous parameterization is clear: the parameter w x1,N is the
probability of having any sequence in In consistent with

{
(X1 = x1)∩(N = N)

}
,

i.e. starting in x1 and having the transition count N , and all those sequences
have the same probability p x1,N . The number of sequences such defined has
been first computed by Whittle in [32]. When I = {0, 1} and N =

( n 0,0 n 0,1
n 1,0 n 1,1

)
,

the corresponding number is
(

n+

0

n 0,0

)(
n+

1
−1

n 1,1

)
if xn = 0 and

(
n+

0
−1

n 0,0

)(
n+

1

n 1,1

)
if xn = 1

where n+
0 = n 0,0 + n 0,1 and n+

1 = n 1,0 + n 1,1. Then we have

w x1,N =

{ (
n

+

0

n 0,0

)(
n

+

1
−1

n 1,1

)
p x1,N when (x1, N) lead to xn = 0

(
n

+

0
−1

n 0,0

)(
n

+

1

n 1,1

)
p x1,N when (x1, N) lead to xn = 1

(1)

If we do not add any assumption, the {w x1,N} are subject to the only restriction:

∑

x1∈I

∑

N∈Φ(x1,n)

w x1,N = 1

Then we have 2
(
n
2

)
+ 1 free parameters, and that is the maximum number of

identifiable free parameters for an n–ME distribution. Any parameterization
of an n–ME distribution without further assumptions would be a one–to–one
transform of the {w x1,N} (or equivalently of the {p x1,N}), and so would have
that number of free parameters. Then, in a fully parametric approach, we will
say that a model for an n–ME sequence is saturated if it has 2

(
n
2

)
+ 1 free

parameters. That result allows us to appreciate the usefulness of a hypothesis
of Markov exchangeability in terms of reduction of complexity: if we do not
make any assumption on the joint distribution of n binary r.v.s, we would have
2n − 1 free parameters. Under the only assumption of Markov exchangeability,
we a priori reduce that number to about n2. In case of simple exchangeability
it would be n, but we would have lost any information about the order of the
variables.

2.1. Mixtures of Markov chains

We say that an I–valued process X = {Xn}n∈N is ME if (X1, . . . , Xn) is ME for
every n. Diaconis and Freedman in [8] demonstrated that a recurrent process
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(X1 = Xn i.o.) is ME if, and only if, its law is a mixture of Markov chains. That
is, let P be the space of all the stochastic matrices Θ = {θ i,j}i,j on I × I. Then
there exists a mixing measure ν on the Borel sets of I × P such that

P (X1 = x1, . . . , Xn = xn) =

∫

P

n−1∏

i=1

θxi,xi+1
ν(x1, dΘ)

Let Γi(k) be the step of the process at which the state i occurs for the k–th
time. Let Vi(k) be the k–th successor of the state i, i.e. the variable immediately
subsequent the k–th occurrence of i: Vi(k) = XΓi(k)+1, and let vi(k) be the
corresponding observed value. Originally de Finetti hinted at the possibility
to characterize X as a mixture of Markov chains by the exchangeability of all
the subprocesses {Vi(k)}k, i ∈ I. Much later in [12] it has been demonstrated
that the idea of de Finetti and the characterization of Diaconis and Freedman
coincide in case of recurrent processes. In the following we will use the fact that
in a ME process the {Vi(k)}k are exchangeable.

When I = {0, 1}, the only non–recurrent ME processes are negligible degener-
ate cases (see [8]). In a recurrent binary ME process there are two exchangeable
subprocesses {V0(k)}k and {V1(r)}r, and there exists a measure ν defined on
the Borel sets of I × [0, 1]2 determining the joint distribution of (X1, θ 0,0, θ 1,1),
such that

p x1,N = p x1,

( n 0,0 n 0,1
n 1,0 n 1,1

)

=

∫ 1

0

∫ 1

0

θ
n 0,0

0,0 (1 − θ 0,0)
n 0,1 θ

n 1,1

1,1 (1 − θ 1,1)
n 1,0 ν (x1, dθ 0,0, dθ 1,1) (2)

If ν factorizes: ν(x1, θ 0,0, θ 1,1) = ν1(x1, θ 0,0) ν2(x1, θ 1,1), for x1 = 0, 1, the two
exchangeable subprocesses {V0(k)}k and {V1(r)}r are independent. If ν is con-
centrated on the diagonal set {(θ, 1− θ) | θ ∈ [0, 1]}, we obtain an exchangeable
binary process. If ν is concentrated in a single point of the unit square we obtain
an ordinary Markov chain. Furthermore, if this point belongs to the diagonal
set above, the resulting is an i.i.d. process.

We will consider two kinds of mixtures of Markov chains models. In the first
model, introduced in [27], X1, θ 0,0 and θ 1,1 are hypothesized to be indepen-
dent, X1 is modelled separately, and both θ 0,0 and θ 1,1 have a Beta mixing
distribution. That is, dν (θ 0,0, θ 1,1) can be written as

Beta(θ 0,0 ; α0, β0) Beta(θ 1,1 ; α1, β1) dµ(θ 0,0, θ 1,1)

where Beta( · ; α, β) is the Beta density of parameters α and β, and µ(θ 0,0, θ 1,1)
is the Lebesgue measure on [0, 1]2. The above product of two independent Beta is
sometimes called Matrix Beta distribution. So, we will call the resulting mixture
of Markov chains Matrix Beta Mixture (MBM). The MBM model is defined by
5 free parameters: α0, β0, α1, β1 and P (X1 = 1) = q1.

The second class of mixtures of Markov chains models we will consider are the
finite mixture models (see [17, 28]), where the mixing distribution is conceived
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as a discrete distribution supported only on a finite number of points. A binary
simple Markov chain is completely defined by three parameters: the probability
of transition (0, 0), θ 0,0, the probability of transition (1, 1), θ 1,1, and by P (X1 =
1) = q1. Then if the discrete mixing distribution has, say, d support points, it

assigns masses λh, h = 1, . . . , d,
∑d

h=1 λh = 1 to d points
(
q1(h), θ 0,0(h),

θ 1,1(h)
)

in the parameter space of a Markov chain. The Markov chains having
these parameter’s values are called the component Markov chains and d is the
number of components. The λh are called the mixing weights. Thus, we have
to estimate (d − 1) free mixture weights and three parameters q1(h), θ 0,0(h),
θ 1,1(h) for each component Markov chain, that is, a total of 4d−1 independent
parameters.

When dealing with mixtures of discrete components distributions, an identifi-
ability problem may arise. That question has been studied and solved in the case
of finite mixtures of Binomials, calculating the maximum number of components
the mixture can have, that guarantee the identifiability of all the parameters
(see, for example, [22] for a geometric approach). In our case, we have already
calculated the maximum number of identifiable parameters 2

(
n
2

)
+1, then 4d−1

could not exceed that number and we have:

d ≤

(
n
2

)
+ 1

2

In [28] the authors consider a mixing distribution over d points
(
θ 0,0(h), θ 1,1(h)

)
,

h = 1, . . . , d, i.e., X1 is analyzed separately and the total number of free param-
eters is 3d.

3. A first reparameterization

In an n–ME sequence (X1 , . . . , Xn), the first k elements (X1, . . . , Xk), k < n,
constitute a k–ME sequence, and we can obtain all the probabilities of the kind

{p x1,K}K∈Φ(x1,k) starting from the {p x1,N}N∈Φ(x1,n). Let K =
(

k 0,0 k 0,1

k 1,0 k 1,1

)
be

the transition count matrix up to the first k steps, i.e.
∑

i,j∈I k i,j = k − 1 and

let k 0,0 + k 0,1 = k+
0 and k 1,0 + k 1,1 = k+

1 . Then we have (for a proof see [7])

p 0,K =
∑

N∈Φ0(0,n)

(
n+

0 − k+
0

n 0,0 − k 0,0

)(
n+

1 − k+
1 − 1

n 1,1 − k 1,1

)
p 0,N+

+
∑

N∈Φ1(0,n)

(
n+

0 − k+
0 − 1

n 0,0 − k 0,0

)(
n+

1 − k+
1

n 1,1 − k 1,1

)
p 0,N (3)

where the sums should be restricted over those matrices N in Φ(0, n) having
n i,j ≥ k i,j , for all i, j in I. A similar formula holds for the sequences starting
in 1. Consider now the probability p 0, ( k 1

0 r ) of having the sequence of r + k + 2
steps starting in 0 with k transitions (0, 0), a single transition (0, 1) and ending
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with r transitions (1, 1), and denote it w 0,k,r. Applying the above formula we
have

w 0,k,r =
∑

N∈Φ0(0,n)

(
n+

0 − k − 1

n 0,0 − k

)(
n+

1 − r − 1

n 1,1 − r

)
p 0,N+

+
∑

N∈Φ1(0,n)

(
n+

0 − k − 2

n 0,0 − k

)(
n+

1 − r

n 1,1 − r

)
p 0,N (4)

We set w 0,n−1,0 = p 0,
(

n−1 0
0 0

)
.

Introduce the operators ∆0 and ∆1 such that:

∆0 (w 0,k,r) = w 0,k+1,r − w 0,k,r and ∆1 (w 0,k,r) = w 0,k,r+1 − w 0,k,r

then the inverse formula of (4), defining the {p 0,N} in terms of the {w 0,k,r}, is
the following (see [7]):

p 0,N = (−1)n 0,1−1+n 1,0∆
n 0,1−1
0 ∆

n 1,0

1

(
w 0,n 0,0,n 1,1

)

=

n 0,1−1∑

i=0

n 1,0∑

j=0

(−1) i+j

(
n 0,1 − 1

i

)(
n 1,0

j

)
w 0,n 0,0+i,n 1,1+j

(5)

In an n–ME sequence the probabilities {w 0,k,r} are well defined for every couple
of nonnegative integers (k, r) such that 0 ≤ k + r ≤ n − 2 together with the
case w 0,n−1,0. The two formulas above assure that the set {w 0,k,r} such defined
constitutes a saturated parameterization of an n–ME distribution starting in
0. It is easily seen that the number of parameters defined is

(
n
2

)
+ 1. For the

sequences starting in 1, we introduce the parameters {w 1,k,r}, defined as the
probabilities of having the sequence starting in 1 with r transitions (1, 1), a
single transition (1, 0) and ending with k transitions (0, 0). Formulas analogous
to (4) and (5) define their one–to–one relation with the {p 1,N}N∈Φ(1,N).

Let Yi,j(k) be the indicator function of the event
{
the k–th successor of i

is j
}

considered as a r.v. and let y i,j(k) be the corresponding observed value.
That is: 1j

(
Vi(k)

)
= Yi,j(k) 1j

(
vi(k)

)
= y i,j(k) ∀ i, j ∈ I

Note that the exchangeability of {V0(k)}k and {V1(r)}r implies the exchange-
ability of the {Yi,j(k)}k for each fixed couple (i, j). We have

w 0,k,r = E
[
(1 − X1) · Y0,0(1) · · ·Y0,0(k) ·

(
1 − Y0,0(k + 1)

)
· Y1,1(1) · · ·Y1,1(r)

]

w 1,k,r = E
[
X1 · Y1,1(1) · · ·Y1,1(r) ·

(
1 − Y1,1(r + 1)

)
· Y0,0(1) · · ·Y0,0(k)

]

In the particular case when (X1, . . . , Xn) is the initial segment of a mixture of
Markov chains process, that parameters are restricted to satisfy:
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w 0,k,r =

∫ 1

0

∫ 1

0

(θ 0,0)
k(1 − θ 0,0)(θ 1,1)

rν(0, d θ 0,0, d θ 1,1)

= Eν

[
(1 − X1) (θ 0,0)

k (1 − θ 0,0) (θ 1,1)
r
]

w 1,k,r =

∫ 1

0

∫ 1

0

(θ 0,0)
k(1 − θ 1,1)(θ 1,1)

rν(1, d θ 0,0, d θ 1,1)

= Eν

[
X1 (θ 0,0)

k (1 − θ 1,1) (θ 1,1)
r
]

where Eν indicates the expectation w.r.t. the mixing measure ν(X1, θ 0,0, θ 1,1).

Consider now the parameters m i,k,r defined as

m i,k,r = E
[1 i (X1) · Y0,0(1) · · ·Y0,0(k) · Y1,1(1) · · ·Y1,1(r)

]
i ∈ {0, 1}

We have:

w 0,k,r = m 0,k,r − m 0,k+1,r and w 1,k,r = m 1,k,r − m 1,k,r+1 (6)

Then, once you know the {m i,k,r} defined for i in {0, 1} and every couple (k, r)
such that 0 ≤ k+r ≤ n−1, excluding the cases m 0,0,n−1 and m 1,n−1,0, you can
define an n–ME distribution. On the converse, it is easily seen that in an n–ME
distribution it is not possible to single out all the values {m i,k,r} such defined
without adding some restrictions, i.e., you cannot write them as a function of
the {p i,N} and they are not identifiable. To realize that, one can simply note
that their number is 2

(
n+1

2

)
− 2 which is greater than the maximum number of

identifiable parameters for an n–ME distribution.
In order to reduce the total number of independent parameters and to make

further constructions, we present an assumption which, though arbitrary, is
reasonable and not particularly restrictive: we will call it “Independence As-
sumption”, hereafter Ind.Ass. 1:

Ind.Ass. 1. X1 and N are independent.

In a mixture of Markov chains model that assumption corresponds to

ν(X1, θ 0,0, θ 1,1) = ν1(X1) ν2(θ 0,0, θ 1,1)

Denote P (X1 = i) =
∑

N∈Φ(i,n)

w i,N as qi and define

m k,r = E [Y0,0(1) · · ·Y0,0(k) · Y1,1(1) · · ·Y1,1(r)]

If we adopt Ind.Ass. 1, we can bypass the identifiability problem we have men-
tioned above. In fact, we have

m i,k,r = qi m k,r (7)

so, by (6), the {m k,r} defined for every (k, r) such that 0 ≤ k + r ≤ n−1 suffice
to define an n–ME distribution under Ind.Ass. 1. On the converse, it is possible
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to write (with a recursive formula) all the probabilities {m k,r} such defined in
terms of the {w 0,k,r} and {w 1,k,r}. In fact we have

w 0,k,r

q0
= m k,r − m k+1,r and

p 1, ( 0 0
0 r )

q1
= m 0,r

Then we have m 1,r = m 0,r −
w 0,0,r

q0
, and in general, by recurrence,

m k,r = m k−1,r −
w 0,k−1,r

q0
(8)

So, we can parameterize any n–ME distribution satisfying Ind.Ass. 1 in terms
of the {m k,r}, for k + r ≤ n − 1, together with q1.

In case of a mixture of Markov chains (2), the parameters m k,r are con-
strained to be the mixed moments of the mixing measure ν(θ 0,0, θ 1,1):

m k,r = Eν

[
θ k

0,0 θ r
1,1

]

Another case of interest is when the two exchangeable subprocesses forming
the ME process are independent. We will refer to that condition as:

Ind.Ass. 2. {Y0,0(k)}k and {Y1,1(r)}r are mutually independent sets.

Ind.Ass. 1 and 2 together hold if and only if m k,r = m k,0 m 0,r . The MBM
and the simple Markov chain fall within this case. In particular, we have a simple
Markov chain of parameters qi, θ 0,0 and θ 1,1, if, and only if

m i,k,r = qi (θ 0,0)
k(θ 1,1)

r and m k,r = (θ 0,0)
k(θ 1,1)

r (9)

4. The additive models

A typical approach to the analysis of multivariate categorical data is that of
defining some kind of interactions between the variables, by means of which we
decompose their joint distribution in a hierarchical model. We can start from
the saturated model, that is, when all the identifiable interaction parameters are
included, to analyze the dependence structure. Then, setting equal to zero some
interaction parameters, we can construct all the reduced models, and choose a
suitable, parsimonious one, tuning our target of goodness of fit. Note that it is
required that the interaction parameters can consistently assume zero values.
There are two main approaches to interaction: the so called multiplicative and
the additive approach. For a comparison of the two see [4, 5, 18]. The most com-
monly used is the multiplicative approach and the respective models, namely the
loglinear models. The additive definition was introduced in [2] and defined for
general real variables in [21] and hence is sometimes called Bahadur/Lancaster’s
interaction. It has been studied in few isolated papers ([37, 31, 30]). The respec-
tive models for categorical variables (we will call them additive models) have
been rarely utilized ([23, 11]).
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When dealing with {0, 1}–valued variables, the additive interaction of order
k among the variables (X1, . . . , Xk) is

E[(X1 − E[X1]) · · · (Xk − E[Xk])]

It can be viewed as a generalization of the concept of covariance between two
variables, so we will denote it Cov[X1, . . . , Xk].

When data consist of sequences of unequal sizes, we should specify model
parameters in such a way that they have a consistent interpretation, what-
ever the sequence size, i.e. parameters with meanings that are invariant across
different marginal distributions. That is, the joint distribution of (X1, . . . , Xk),
k < n, should be defined by the same parameters, or a subset of the parameters,
defining the joint distribution of (X1, . . . , Xn). Sometimes, those distributions
defined by parameters invariant under marginalization are said “reproducible”.
For some detail on the concept of reproducibility see [29, 18, 11].

The main advantage of the additive models with respect to the loglinear
models is that the former are reproducible. On the converse, consider the fol-
lowing example from [18]: Let (X1, X2, X3) be binary variables and denote
P (X1 = i, X2 = j, X3 = h) as p i,j,h, i, j, h ∈ {0, 1}. Under the saturated
loglinear model we have

lg p i,j,h = u+ui(1)+uj(2)+uh(3)+ui,j(1, 2)+ui,h(1, 3)+uj,h(2, 3)+ui,j,h(1, 2, 3)

where for example uj,h(2, 3) is the interaction parameter resulting from the joint
occurrences of state j in X2 and state h in X3. The logarithm of its marginal
distribution for (X1, X2) is

lg p i,j(1, 2) = ũ + ũi(1) + ũj(2) + ũi,j(1, 2)

but ũi(1) 6= ui(1), ũj(2) 6= uj(2) and ũi,j(1, 2) 6= ui,j(1, 2). So loglinear models
are not reproducible, and when data consist of multiple sequences of unequal
sizes, we should prefer an additive model.

4.1. Additive models for Markov exchangeable data

The additive models for general r.v.s are a parameterization of the joint distri-
bution of a set of variables. That parameterization is readily adaptable to the
case of exchangeable binary variables. In fact, in that case the only difference is
that things simplifies, as all the interactions of a same order are equal, i.e. they
depend only on the number k of variables involved: Cov[Xi1 , . . . , Xik

] = Covk,
∀ i1, . . . , ik. For an application of the additive models in the case of binary
exchangeable data see [1] and [20].

In our case of ME variables, we do not define the additive interactions between
the X1, . . . , Xn, but between the r.v.s {Y0,0(k)}k and {Y1,1(r)}r, and we need
an additional assumption to define the parameterization, namely Ind.Ass. 1.

Say data consist of m binary sequences {x1, . . . ,xm}. For each observed se-
quence xl = (xl,1, . . . , xl,nl

), l = 1, . . . , m, consider its number of transitions
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(i, j), n i,j(xl), such that
∑

i,j∈I n i,j(xl) = nl − 1, and the quantities n+
i (xl) =∑

j∈I n i,j(xl). We will consider the observed values {y 0,0(k)}k=1,...,n
+

0
(xl)

and

{y 1,1(r)}r=1,...,n+

1
(xl)

as realizations of the r.v.s {Y0,0(k)}k and {Y1,1(r)}r. Note

however that, even in the case when all the observed sequences {x1, . . . ,xm}
have the same length, (i.e. nl = n, ∀ l), the quantities n+

i (xl) for each fixed
i ∈ {0, 1}, will not be, in general, constant amongst the various sequences. For
that reason, reproducibility is a crucial property of the interaction model chosen,
hence, we will not consider the multiplicative interactions, which are not repro-
ducible. Note that the parameterizations in terms of the {p x1,N} or {w x1,N}
presented in Section 2 are clearly not reproducible, while the parameterizations
presented in Section 3 are reproducible, but it does not make sense to set some
of their elements equal to zero. The mixture models presented in Section 2.1 are
reproducible.

In case of ME variables, the additive interactions depend only on the numbers
of variables involved for each exchangeable group {Y0,0(k)}k and {Y1,1(r)}r, that
is, we can define

Cov k,r = E




k∏

i=1

(
Y0,0(i) − E[Y0,0(i)]

) r∏

j=1

(
Y1,1(j) − E[Y1,1(j)]

)




By expanding the product, one can find the following formulas defining the
one–to–one relation between parameters {m k,r} and {Cov k,r} (see [7]):

Cov k,r =

k∑

i=0

r∑

j=0

(
k

i

)(
r

j

)
(−1)i+j

(
m 1,0

)i(
m 0,1

)j
m k−i,r−j (10)

m k,r =

k∑

i=0

r∑

j=0

(
k

i

)(
r

j

)(
m 1,0

)i(
m 0,1

)j
Cov k−i,r−j (11)

As a consequence, the parameterization in terms of the {Cov k,r}, defined for
every (k, r) such that 2 ≤ k + r ≤ n − 1, together with m 0,1, m 1,0 and q1

represents all the n–ME distributions satisfying Ind.Ass. 1. (Cov 0,0 is always
equal to 1 while Cov 1,0 and Cov 0,1 are always 0).

Note that the simplest case when all the Cov k,r are zero, represents the
Markov chains models. In fact by (11), we would have m k,r = (m 1,0)

k(m 0,1)
r ,

that is, by (9), a Markov chain having probability of transition (0, 0) equal to
m 1,0, and probability of transition (1, 1) equal to m 0,1.

Recall that, in case of a mixture of Markov chains (2), the {m k,r} are the
mixed moments of the mixing measure ν . Formulas (10) and (11) link the ordi-
nary mixed moments and the central mixed moments of a bivariate distribution
(see e.g. equations (34.28) (34.29) in [19]). Consequently, in a mixture of Markov
chains model we have:

Cov k,r = Eν

[(
θ 0,0 − Eν[θ 0,0]

)k (
θ 1,1 − Eν [θ 1,1]

)r
]
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Then we can represent the mixtures of Markov chains models under Ind.Ass. 1
(for example the MBM) as particular additive models, specifically those where
the Cov k,r are the mixed central moments of a measure over [0, 1]2. In partic-
ular, Cov 2,0 and Cov 0,2 respectively are the variance of θ 0,0 and of θ 1,1, and
hence are necessarily nonnegative. That does not need to hold in general:

Example 1. The 3–ME distribution defined by

w 0, ( 2 0
0 0 ) = 3

32 , w 0, ( 0 1
1 0 ) = 2

32 , w 0, ( 1 1
0 0 ) = 5

32 , w 0, ( 0 1
0 1 ) = 6

32
w 1, ( 0 0

0 2 ) = 2
32 , w 1, ( 0 1

1 0 ) = 2
32 , w 1, ( 0 0

1 1 ) = 6
32 , w 1, ( 1 0

1 0 ) = 6
32

satisfies Ind.Ass. 1, and by (1), (4), (8) and (10) leads to

m 0,1 = m 1,0 =
1

2
, Cov 2,0 = −

1

16
Cov 0,2 = Cov 1,1 = −

1

8

Actually, in a mixture model all the even order terms Cov 2k,2r are necessarily
positive. These restrictions on the parameters constitute a simple test for the
extendibility of a ME sequence under Ind.Ass. 1, and can help us in deciding
for an additive model instead of a mixture model. We can write many similar
necessary conditions for extendibility using moments inequalities. One that has
been found to be useful is the following: In a mixture model we necessarily have

m k,0 = Eν[θ k
0,0] ≥

(
Eν [θ0,0]

)k
= m k

1,0 m 0,r = Eν[θ r
1,1] ≥

(
Eν[θ1,1]

)r
= m r

0,1

for any k and r. In particular, we can be interested in the values of q0 m n−1,0

and q1 m 0,n−1 which are the probabilities of never changing the initial state.
In a mixture those values can only exceed the corresponding values we would
have in a simple Markov chain. On the converse, by (11) one can see that in an
additive model, if the interaction parameters are negative, the inverse inequality
can hold. In Example 1 we have

m 2,0 =
3

16
<

1

4
= m 2

1,0 and m 0,2 =
1

8
<

1

4
= m 2

0,1

4.2. Estimation procedures

4.2.1. Saturated models

Say we have observed a sample of m binary sequences of length n, {x1, . . . ,xm},
and let ♯[x1, N ] be the number of sequences in the sample starting with x1 and
consistent with the transition count matrix N , such that

∑

x1∈I

∑

N∈Φ(x1,n)

♯[x1, N ] = m

Then the likelihood and the log–likelihood of the sample under the parameteri-
zation {p x1,N} respectively are:



D. Di Cecco/Markov exchangeable models 1125

L
(
{x1, . . . ,xm} ; {p x1,N}

)
=

∏

x1∈I

∏

N∈Φ(x1,n)

(p x1,N)♯[x1,N] (12)

l
(
{x1, . . . ,xm} ; {p x1,N}

)
=

∑

x1∈I

∑

N∈Φ(x1,n)

♯[x1, N ] · lg (p x1,N) (13)

Obviously, in the same conditions the ML estimates {ŵ x1,N} of the {w x1,N}
simply are the observed proportions of sequences consistent with (x1, N):

ŵ x1,N =
♯[x1, N ]

m
(14)

Since ML estimates are invariant under one–to–one functions, we can find the
ML estimates of any saturated parameterization of an n–ME distribution by
applying to the (14) the corresponding transformation. So, by (1) we can find
the ML estimates of the {p x1,N}. Subsequently, by (4) we can obtain the ML
estimates of the {w i,k,r}. Then, under Ind.Ass. 1, by (8) we can obtain the ML
estimates of the {m k,r}, and by (10) the ML estimates of the {Cov k,r}.

4.2.2. Reduced additive models

To construct the reduced additive models under Ind.Ass. 1 and to calculate the
ML estimate of the parameters, first consider the log–likelihood (13) in terms of
the {p x1,N}. Then, by formulas (5), (6), (7) and (11), we can rewrite it in terms
of the {Cov k,r} together with m 0,1, m 1,0 and q1. Thus we can construct a re-
duced additive model, simply by setting as zero in the log–likelihood expression
some of the Cov k,r, for example starting from those of higher orders, and finally
find the ML estimates of the remaining parameters by numerically maximizing
the log–likelihood with respect to them (note that the log–likelihood is always
linear in the interaction parameters).

We can also construct the additive interactions without Ind.Ass. 1 defining

m i,k,r

qi

= EPi

[
Y0,0(1) · · ·Y0,0(k) · Y1,1(1) · · ·Y1,1(r)

]
i ∈ {0, 1}

and

Cov i,k,r = EPi




k∏

h=1

(
Y0,0(h) − EPi

[Y0,0(h)]
) r∏

j=1

(
Y1,1(j) − EPi

[Y1,1(j)]
)




where Pi is the distribution of (X1 , . . . , Xn) conditioned on {X1 = i} and EPi
is

the respective expectation. Then formulas (10) and (11) hold with Cov i,k,r

replacing Cov k,r and
m i,k,r

qi
replacing m k,r. But, as we have said, without

Ind.Ass. 1 we have an identifiability problem regarding the {m i,k,r}. Then,
any one–to–one transform of the {m i,k,r} would have the same problem, and
we cannot define a saturated parameterization in terms of the {Cov i,k,r}. Nev-
ertheless, we can consider nearly all the corresponding reduced additive models.
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In fact, if we a priori set as zero (at least) the parameters Cov 0,k,r and Cov 1,k,r

for all the couples (k, r) such that k + r = n − 1, we can write the likelihood in
terms of the {Cov 0,k,r} and {Cov 1,k,r} for k + r < n−1 together with the four
parameters

m i,0,1

qi
,

m i,1,0

qi
, i ∈ {0, 1} and numerically maximize it.

In case of a mixture model, we have some restrictions on the parameters
analogous to those we have seen before under Ind.Ass. 1. We can consider some
of them. In fact, even if the parameters m i,k,r are not identifiable without
Ind.Ass. 1, the particular cases m 0,k,0 and m 1,0,r (and hence Cov 0,k,0 and
Cov 1,0,r) actually are. In fact, they correspond respectively to p 0, ( k 0

0 0 ) and
p 1, ( 0 0

0 r ), so we can obtain them by (3). In a mixture we necessarily have

m 0,k,0

q0
≥

(
m 0,1,0

q0

)k

and
m 1,0,r

q1
≥

(
m 1,0,1

q1

)r

∀ k, r (15)

Then, given a real dataset, starting from the (14), we can calculate the sam-
ple values m̂ 0,k,0 and m̂ 1,0,r, and eventually derive some evidences against a
mixture model if the inequalities (15) do not hold.

5. Numerical examples

We now present an application of the models analyzed to three datasets. The
first one has been obtained from a longitudinal study: the National Longitudinal
Survey of Youth (NLSY79) whose data are freely available on web. Over 12000
persons answered a questionnaire by interview for several years. We have con-
sidered a variable concerning the labor status of the respondent during the week
preceding the interview. The second one is a simulated dataset generated from
a mixture of Markov chains model. The third, analyzed in [27], concerns the
results of two kinds of medical tests on diabetic pregnant patients to determine
fetal oxygenation.

On all the datasets, we have fitted a simple Markov chain (MC), a MBM
model, some finite mixtures of Markov chains and some additive models (AM)
with and without Ind.Ass. 1. To estimate the additive models, we have used a
software that allows manipulation of mathematical expressions in symbolic form
to write their log–likelihoods following the procedure described in Section 4.2.2.
Then we utilized a Newton–Raphson maximization routine to maximize them.
The ML estimates of the finite mixture models have been computed using the
EM algorithm (for the equations utilized see [17] and [28]), while a numerical
maximization routine has been used for the MBM model (see [27]). Since the
fitted models have different numbers of parameters, we consider the Akaike and
the Bayesian information criteria in order to compare their performances:

AIC = −2 l̂ + 2c BIC = −2 l̂ + c ln(m)

where l̂ is the value of the log–likelihood of the model corresponding to the ML
estimates of the parameters, m is the number of sequences in the dataset, and
c is the number of free parameters to be estimated in the model. Concerning
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the finite mixture models and the additive models, we present just the models
that resulted in the best performance w.r.t. the two criteria. In particular, we
have not checked all the possible additive models, so the results we show may
be suboptimal.

5.1. NLSY dataset

We have dichotomized the variable concerning the labor status of the respon-
dent (1=working, 0=not working) and considered a period of 12 years. We
successively have excluded the units having missing values, finally obtaining a
sample consisting of 5657 binary sequences of length 12. We consider them as
independent realizations of a 12–ME sequence (X1 , . . . , X12).

With regard to the finite mixture models, the fit is just slightly improved by
adding more than 6 component Markov chains, and the models with 5 and 6
components have the best BIC and AIC respectively in their class.

The total number of possible additive models is huge. So we have restricted
our attention to the lower order interaction parameters: {Cov i,k,r : k + r ≤ 6},
as it seems that in general they contribute more to the fit. In addition, to
make a direct comparison with the mixture models, we have fixed a number of
parameters equal to that of the best performing mixture models (c = 19 and 23).
AM 1 in Table 1 was found to be the best additive model with those restrictions
under Ind.Ass. 1. The others (AM 2 and AM 3) without Ind.Ass. 1.

AM 1 is defined by all the interaction parameters Cov k,r, for k, r ≤ 3 ex-
cluding Cov 2,2, together with Cov 4,0, Cov 0,4, Cov 4,2 and Cov 2,4. AM 2 is
defined by the interaction parameters Cov i,2,0, Cov i,0,2, Cov i,2,1, Cov i,1,2 and
Cov i,4,0, for both i = 0 and i = 1, together with Cov 0,1,1, Cov 0,3,1, Cov 0,1,3

and Cov 0,0,4. AM 3 has all the parameters of AM 2 together with Cov 1,3,0,
Cov 1,0,3, Cov 1,1,1 and Cov 0,2,3.

AM 1, AM 2 and AM 3 all have a better AIC and BIC than the mixture
models. More generally, most of the additive models we have checked perform
better than mixtures. To investigate such a clear difference we checked the

Table 1

Results for the NLSY data

AM 1 (Ass 1) AM 2 AM 3 Saturated

−l̂ 38635.9 38540.3 38523.9 38327.2
c 19 19 23 133

AIC 77309.8 77118.5 77093.9 76920.4
BIC 77435.9 77244.7 77246.7 77803.6

Mix of Mix of
M.C. MBM 5 M.C. 6 M.C.

−l̂ 39146.9 38943.2 38657.1 38646.5
c 3 5 19 23

AIC 78299.8 77896.4 77352.3 77339.1
BIC 78319.8 77929.6 77478.5 77491.8
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criteria for extendibility for the empirical distribution. Let m̂ 0,k,0 be the sample
value of m 0,k,0 for this dataset. We have that m̂ 0,k,0/q̂0 − (m̂ 0,1,0/q̂0)

k is slightly
positive for small values of k, it decreases with k and is negative for k ≥ 8. We
know that in the mixture models (15) holds, and in addition, all the fitted
mixture models show an opposite trend to that of the empirical distribution,
as the difference increases with k. Consequently, it is not surprising that the
additive models in general work better than the mixtures for this dataset.

From the results obtained with the additive models we can derive some in-
formation on the data. Let us call the terms Cov k,r having both k and r non
null, the “cross” terms. The MBM satisfies Ind.Ass. 2 that amounts to:

Cov k,r = Cov k,0 Cov 0,r ∀ k, r

Since Cov 0,1 = Cov 1,0 = 0, all the cross terms having k or r equal to one are
null under the MBM, and in general the other cross terms are small in value. But
the cross terms seem to be important for the additive models in this dataset, and
that suggests a certain dependence between the two exchangeable subprocesses
forming the ME process exists, i.e. Ind.Ass. 2 is untenable. That explains the
inadequacy of the MBM for this dataset.

5.2. Simulated dataset

In [33] it is demonstrated that, in the space of all the n–exchangeable binary
distributions, the proportion of them (with respect to the Lebesgue measure of
the space) which are mixtures of i.i.d. model quickly tends to zero with n. That
fact, together with the results in [7] suggest that an analogous proportion should
be valid in the ME case, i.e. if we pick uniformly at random a distribution in the
simplex of the parameters w x1,N representing all the n–ME binary distributions,
probably it will not be a mixture of Markov chains model. For that reason, and
to test the versatility of the additive models, we simulated a dataset from a
mixture of Markov chains. We have chosen a large family of mixtures, namely, a
8–components finite mixture whose parameters’ values were randomly sampled
with uniform probability over the parameters’ space. The generated dataset
consists of 100 binary sequences of length 6.

Model AM 1 in Table 2 satisfies Ind.Ass. 1, models AM 2 does not. AM 1 is
defined by the interaction parameters Cov 2,0 and Cov 0,2. AM 2 is defined by
Cov 0,2,0, Cov 1,2,0 and Cov 1,0,2.

Table 2

Results for the simulated data

(Ass 1) Mix of Mix of
M.C. MBM AM 1 2 M.C. AM 2 3 M.C. Saturated

−l̂ 399.14 384.33 385.07 385.39 382.17 380.99 378.92

c 3 5 5 7 8 11 31
AIC 804.28 778.67 780.14 784.78 780.34 783.98 819.84
BIC 812.11 791.71 793.17 803.02 801.18 812.63 900.61
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The MBM results as the best model for both the criteria. We note how-
ever that, even in this adversely simulated dataset, the additive models are
competitive as they show a performance comparable to that of the MBM, and
preferable to those of the finite mixtures. In general, it is not hard to find an
additive model with this characteristics for this dataset. The reason lies in the
possibility of choosing an intermediate number of parameters, while in the finite
mixtures we directly pass from c = 7 to c = 11.

In the various additive models checked, the cross terms did not show par-
ticular importance. AM 1 and AM 2 do not retain any cross term. That may
suggest a weak dependence between the two exchangeable subprocesses, and
that is consistent with the good performance of the MBM.

5.3. Fetal Oxygenation dataset

So far we have analyzed datasets consisting of sequences of equal lengths, but
it is important to note that it is possible to use the additive models and the
mixture models even if the sequences at hand have different lengths, since those
models are reproducible. Say the lengths of the observed sequences range from
nmin to nmax, then we simply have to consider a log–likelihood of the kind

nmax∑

n=nmin

∑

x1∈I

∑

N∈Φ(x1,n)

♯[x1, N ] · lg (p x1,N)

instead of (13). The main difference with the case when all the sequences have
the same length, is that the processing time of the algorithms increases, espe-
cially for the EM algorithm. For that reason, we now analyze a small dataset
consisting of only 30 sequences whose lengths range from 2 to 7. Two kind of
medical tests were repeatedly performed in different occasions on 30 units and
for each occasion we fix a 1 if they resulted as concordant and a 0 if they resulted
as discordant.

Model AM 1 in Table 3 satisfies Ind.Ass. 1; AM 2 does not. AM 1 is defined
by parameters Cov 2,0 and Cov 0,2. AM 2 retains no interaction parameters, i.e.
is just defined by

m 0,0,1

q0
,

m 0,1,0

q0
,

m 1,0,1

q1
,

m 1,1,0

q1
and q1. It substantially provides

two transition probabilities matrices depending on whether the initial state is 0
or 1. Again, the additive models presented are preferable to the mixtures w.r.t.
the AIC and BIC. In particular, the finite mixtures require too many parameters
for this small dataset.

Table 3

Results for the Fetal Oxygenation data

(Ass 1) Mix of
M.C. MBM AM 1 AM 2 2 M.C.

−l̂ 55.49 54.62 53.79 52.90 52.88
c 3 5 5 5 7

AIC 116.97 119.23 117.59 115.81 119.75

BIC 121.17 126.24 124.59 122.81 129.56
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6. Conclusions

The mixtures of Markov chains do not represent all the ME distributions, and
many cases not covered by them may be of practical interest. The models pre-
sented in this paper should fill the gap. The finite mixture models enjoy a great
popularity mainly due to their neat interpretation in terms of cluster analysis.
On the converse, the additive models suffer from the same problem of the log-
linear models (or any interaction model) in terms of parameters selection and
interpretability. Nevertheless, the additive models for ME data seem to be an
interesting tool, their main strength lying in two points: First they represent an
extremely flexible hierarchical class. In a finite mixture of Markov chains, we
must add four parameters for every additional component. In an additive model
we can consider any number of parameters ranging from a very simple model
(a Markov chain, or even an i.i.d. model) to the saturated model. Moreover,
for every fixed number of parameters we have several possible additive models
among which we can choose. So, if we check a sufficiently large number of models
(possibly all), we would likely find one resulting as preferable to any mixture,
both in terms of goodness of fit, and in parsimony of parameters. The second
advantage concerns the processing time of the estimation procedure. In fact, the
ML estimates of the additive models are immediately obtained since Newton–
Raphson methods, or similar devices, have a quadratic speed of convergence.
That contrasts with the slowness of the EM algorithm which is a well–known
problem. For example in the NLSY dataset the EM for the finite mixtures re-
quired several hours to converge and the processing time dramatically increases
with the number of components.
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