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1. Introduction

Consider the random vector XT = (YT , ZT ) ∈ R
d+p, where Y ∈ R

d, d ≥ 1,
is always observable but Z ∈ R

p, p ≥ 1, may be missing. Now let t : R
d+p 7→

R
s, s ≥ 1, be a given (known) function and, for any measurable set A ⊂ R

s,
consider the estimation of

µ(A) = P {t(X) ∈ A} . (1)

When t(X) = X and A = (−∞, x1]×· · ·×(−∞, xd+p] then (1) is the usual em-
pirical cumulative distribution function of the random vector X. Alternatively,
taking t(X) = Z and A = (−∞, z1] × · · · × (−∞, zp], gives the empirical c.d.f.
of the subvector Z.

Let Dn = {X1, . . . , Xn} be a random sample, where Xi
i.i.d.
= X, i = 1, . . . , n.

Clearly, when every XT
i = (YT

i , ZT
i ) is fully observable, (i.e., there are no

missing Zi’s), one can use the classical empirical version

µn(A) =
1

n

n∑

i=1

I {t(Xi) ∈ A} . (2)

Now the celebrated inequality of Vapnik and Chervonenkis (1971) can be used
to obtain uniform (in A) performance bounds on the deviations of µn(A) from
µ(A). More specifically, let A be a class of measurable sets {A |A ⊂ R

s} and
define

S(A, n) = max
t(x1), ..., t(xn)∈Rs

{#ofdifferent sets in {{t(x1), . . . , t(xn)}∩A |A ∈ A}} .

Here, the combinatorial quantity S(A, n), called the nth shatter coefficient
of the class A, measures the richness/massiveness of the class A, and is al-
ways bounded by 2n. The following result is well-known and goes back to
Vapnik and Chervonenkis (1971).

Theorem 1. Let µ and µn be as above. Then, for every ǫ > 0 and every n ≥ 1,

P

{
sup
A∈A

|µn(A) − µ(A)| > ǫ

}
≤ 8 S(A, n) e−n ǫ2/32 .

For a proof of the above result based on symmetrization arguments see, for
example, Devroye et al. (1996). Using more complicated techniques, it is possible
to improve the constants that appear in the exponent of Theorem 1; see Devroye
(1982) for more on this. Other relevent results along these lines are those of
Talagrand (1994), Dudley (1978), and Massart (1990).
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Remark 1. When the collection of sets A is uncountable, the measurability of
the supremum in the above theorem can become an important issue. One way to
deal with the measurability problem, in general, is to work with outer probability;
see, for example, the monograph by van der Vaart and Wellner (1996). In the
rest of this article we shall assume that the supremum functionals do satisfy
measurability conditions.

In passing we also note that if n−1 log(S(A, n)) → 0, as n → ∞, then by the

Borel-Cantelli lemma sup
A∈A

|µn(A) − µ(A)|
a.s.
−−→ 0, i.e. the so-called uniform law

of large numbers.
To deal with the general case where there are missing Zi’s (recall that XT =

(YT , ZT )) among the data, we start by defining the random variable

δ =

{
1 if Z is not missing

0 otherwise .
(3)

Then the data Dn may be represented by

Dn = {(X1, δ1), . . . , (Xn, δn)} = {(Y1, Z1, δ1), . . . , (Yn, Zn, δn)} .

Clearly, the estimator µn in (2) is no longer computable because some of the Zi’s
may be missing. In order to revise (2) appropriately we also need to take into
account the missing probability mechanism, i.e., the quantity P {δ = 1 |Y, Z} =
E(δ |Y, Z). If the missing probability mechanism satisfies

P {δ = 1 |Y, Z} = P {δ = 1}

then it is said to be Missing Completely At Random, (MCAR). Of course the
MCAR assumption is rather unrealestic and restrictive. A more widely used
assumption in the literature is the Missingness At Random assumption, MAR,
where one has

P {δ = 1 |Y, Z} = P {δ = 1 |Y} , (4)

i.e., the probability that Z is missing does not depend on Z itself. For more on
these and other missing patterns one may refer to Little and Rubin (2002), p.
12. When the missing probability mechanism satisfies the MCAR assumption
(unrealestic), one may just use the complete cases to estimate µ(A); (a complete
case is a case where δi = 1). For example, if p := P {δ = 1} 6= 0 then one may
consider the simple estimator

µ̃n(A) =
1

n p

n∑

i=1

δi I {t(Xi) ∈ A} , (5)

provided that p is known. Under the MCAR assumption, the estimator (5)
is unbiased for µ(A). To appreciate this simply observe that E (µ̃n(A)) =

(n p)−1
n∑

i=1
E [E (δi I {t(Xi) ∈ A} |Xi)] = (n p)−1

n∑
i=1

P {t(Xi) ∈ A} p = µ(A) ,

because under the MCAR assumption, E(δ |X) = P (δ = 1) = p. In fact more
is true:
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Theorem 2. Let µ̃n(A) be as in (5) then for every ǫ > 0 and every n ≥ 1

P

{
sup
A∈A

|µ̃n(A) − µ(A)| > ǫ

}
≤ c1 S(A, n) e−c2 n ǫ2 ,

where c1 = 8 and c2 = 2−1p2.

When p = P (δ = 1) is unknown, it may be replaced by p = n−1
n∑

i=1
δi in (5),

and the bound in Theorem 2 continues to hold with different constants c1 > 0
and c2 > 0.

In the rest of this article we shall focus on the popular (and more realistic)
assumption of MAR missing mechanism, given by (4). In this case the empirical
version of µ(A), given by

µ̃n(A) =
1

n′

n∑

i=1

δi I {t(Xi) ∈ A} ,

where n′ may be taken to be n p or
n∑

i=1

δi or n, is no longer appropriate. This is

because the resulting set-indexed empirical process {µ̃n(A) − µ(A) |A ∈ A} is
not centered - not even asymptotically.

In the next section we propose methods for estimating µ(A), uniformly (in
A), and derive counterparts of Theorem 1 for our proposed estimators. As an im-
mediate consequence of our results, one can establish various Glivenko-Cantelli
type theorems for incomplete data under the MAR assumption.

2. Main results

In this section we consider procedures to correct the naive estimator

1

n

n∑

i=1

δi I {t(Xi) ∈ A} ,

where the correction is done by weighting the complete cases by the inverse of
the missing data probabilities p(Y) := P {δ = 1 |Y}, or its estimates. We recall
that under the MAR assumption P {δ = 1 |Y, Z} = P {δ = 1 |Y} := p(Y) . To
motivate our approaches we first consider the simple (but unrealistic) case where
the function p(y) is completely known. Now consider the revised estimator

µn(A) =
1

n

n∑

i=1

δi

p(Yi)
I {t(Xi) ∈ A} . (6)

How good is µn(A) as an estimator of µ(A)? Clearly under the MAR assumption
E (µn(A)) = µ(A). More importantly, we have
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Theorem 3. Let µn be as above and suppose that p
min

= min
y

p(y) > 0. Then

for every ǫ > 0 and every n ≥ 1,

P

{
sup
A∈A

|µn(A) − µ(A)| > ǫ

}
≤ 8 S(A, n) e−c3 n ǫ2 ,

where c3 = 2−1 p2
min > 0.

Of course in practice the function p(y) = P {δ = 1 |Y = y} = E (δ |Y = y)
is almost always unknown and must first be estimated. Here, we consider two
possible estimators of p(y): the first one is a kernel regression function estimator,
whereas the second approach is based on the least-squares method.

2.1. A kernel-based method

Our first estimator of p(Yi) = E(δi |Yi) in (6) is

p̂(Yi) =

∑
j=1, 6=i

δj K
(

Yj−Yi

hn

)

∑
j=1, 6=i

K
(

Yj−Yi

hn

) , (7)

with the convention 0/0 = 0, where the function K : R
d 7→ R is the kernel

with smoothing parameter hn (→ 0, as n → ∞). We then estimate µ(A) =
P {t(X) ∈ A} by

µ̂n(A) =
1

n

n∑

i=1

δi

p̂(Yi)
I {t(Xi) ∈ A} . (8)

To study µ̂n we first state some conditions.

C1. pmin = min
y

p(y) > 0.

C2. The random vector Y has a compactly supported probability density func-
tion f(y) and is bounded away from zero on its compact support. Further-
more, both f and its first-order partial derivatives are uniformly bounded.

C3. The kernel K satisfies
∫

Rd K(u) du = 1 and
∫

Rd | ui | K(u) du ≤ ∞, for

i = 1, . . . , d. Furthermore, hn → 0 and n hd
n → ∞, as n → ∞.

C4. The partial derivatives ∂
∂ yi

p(y) exist for i = 1, . . . , d, and are bounded
uniformly in y on the support of f .

Condition C1 essentially states that the probability that Z can be observed
(i.e., δ=1) will be nonzero (for all Y = y). Condition C2 is often imposed in
nonparametric regression in order to avoid having unstable estimates (in the
tails of the pdf f of Y). Condition C3 is not a restriction since the choice of
the kernel K is at our discretion. In fact, K only needs to be a proper density
with a finite first absolute moment. Condition C4, which has also been used by
Cheng and Chu (1996), p. 65, is technical.
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Theorem 4. Let µ̂n(A) be as in (8). Then, under conditions C1-C4, for every
ǫ > 0 there is an no such that for all n > no,

P

{
sup
A∈A

|µ̂n(A) − µ(A)| > ǫ

}
≤ 8 S(A, n) e−c4 n ǫ2+4 n e−c5 n hd

n ǫ2+4 n e−c6 n hd
n ,

where c4, c5, and c6 are positive constants not depending on n or ǫ.

The constants c4, c5, and c6 that appear in Theorem 4 depend on the function
p (as well as many other terms) through pmin = miny p(y). In fact, the proof of
the theorem makes it clear (with some more efforts) that one can always take

c4 = p2
min/8

c5 =
f2
minp2

min

8 ‖ K ‖∞ (256 ‖ f ‖∞ +fmin/6)
∧

f2
minp4

min

2048 ‖ K ‖∞‖ f ‖∞

c6 =
4f2

min

8 ‖ K ‖∞ (256 ‖ f ‖∞ +fmin/6)
∧

4f2
minp2

min

2048 ‖ K ‖∞‖ f ‖∞
.

The estimator µ̂n defined via (8) and (7) is quite easy to compute in practice.
However, the bound in Theorem 4 is not as tight as the one in Theorem 3. This
is because of the presence of the term n hd

n that appears in the exponent of the
bound of Theorem 4. In a sense, this shows that the effective sample size for the
results of Theorem 4 is n hd

n (and not n).

2.2. The least-squares method

Our second method uses the least-squares estimator of p(y) to construct an
empirical version of µ(A). More specifically, suppose that the regression function
p(y) = E(δ |Y = y) belongs to a class P of functions p : R

d 7→ [pmin, 1], where,
as before, pmin = min

y
p(y). Also, let p̆

LS
(y) be the least-squares estimator of

p(y), i.e.,

p̆
LS

= argmin
p∈P

1

n

n∑

i=1

| δi − p(Yi) |
2 .

Then we have the following counterpart of (8).

µ̆n(A) =
1

n

n∑

i=1

δi

p̆
LS

(Yi)
I {t(Xi) ∈ A} . (9)

To assess the performance of µ̆n(A), we employ results from the empirical
process theory: For fixed y1, . . . , yn, let N1 (ǫ, P, (yi)

n
i=1) be the ǫ-covering

number of P with respect to the empirical measure of the points y1, . . . , yn.
That is N1 (ǫ, P, (yi)

n
i=1) is the cardinality of the smallest subclass of func-

tions Pǫ = {p1, . . . , p
N(ǫ)

| p
i
: R

d 7→ [pmin, 1]} with the property that for every

p ∈ P there is a p∗ ∈ Pǫ such that n−1
n∑

i=1
| p(yi) − p∗(yi) | < ǫ. (See, for ex-

ample, van der Vaart and Wellner (1996) p. 83, or Pollard (1984), p. 25.) The
following result gives bounds on the uniform deviations of µ̆n(A) from µ(A).
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Theorem 5. Let µ̆n be as in (9). Then, under condition C1, for every ǫ > 0
and every n ≥ 1,

P

{
sup
A∈A

|µ̆n(A) − µ(A)| > ǫ

}
≤ 8 S(A, n) e−c7 n ǫ2

+ 8 E
[
N1

(
p2
min ǫ/32, P, (Yi)

n
i=1

)]
e−c8 n ǫ2

+ 8 E
[
N1

(
p4
min ǫ2/256, P, (Yi)

n
i=1

)]
e−c9 n ǫ4 ,

where c7 = p2
min/8, c8 = p4

min/2048, and c9 = p8
min/((162)(128)).

The two methods of estimation discussed in this section are of course very
different and the performance of each one depends on the function p. More specif-
ically, if one is certain that p belongs to a known class of functions P, then the
least-squares method would be preferable. In this case the performance bound
of Theorem 5 is nonasymptotic in that it holds for every n ≥ 1. Unfortunately,
if p /∈ P then the conclusion of Theorem 5 will be incorrect. In this case (and
in the general case where one has no knowledge of the class of functions P),
one can use the kernel estimator instead. There are, however, some theoretical
drawbacks here: Theorem 4 is only asymptotic (it holds for large n). Further-
more, the kernel estimator requires more regularity conditions for the function
p, (as reflected by Theorem 4).

2.3. An application

The results developed in Section 2 can be used to estimate a distribution func-
tion in the presence of missing covariates. This was briefly explained in the in-
troduction section. Here we consider an application of our results to the problem
of statistical classification. More specifically, let (X, W ) be an R

d+p × {0, 1}-
valued random pair, where X = (YT , ZT )T , with Y ∈ R

d, d ≥ 1, and Z ∈ R
p.

The problem of statistical classification involves the prediction of W based on
the vector of covariates X. Formally, one seeks to find a classifier (a function)
Ψ : R

d+p 7→ {0, 1} for which the probability of misclassification (incorrect
prediction), i.e., P {Ψ(X) 6= W} is as small as possible. It is a simple exercise
to verify that the best classifier, i.e., the classifier with lowest misclassification
probability, is given by

Ψ
B
(x) =

{
1 if P (W = 1

∣∣X = x) > 1
2

0 otherwise.

Since Ψ
B

is virtually always unknown, one uses the data to construct a clas-
sifier. Given a random sample Dn = {(X1, W1), . . . , (Xn, Wn)}, where each

pair (Xi, Wi) is fully observable, one tries to construct a classifier Ψ̂n in such

a way that its misclassification error Ln(Ψ̂n) = P
{
Ψ̂n(X) 6= W

∣∣Dn

}
is in

some sense as small as possible. Let L(Ψ) = P {Ψ(X) 6= W}. If Ln(Ψ̂n)
a.s.
−−→
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inf
Ψ: Rd+p 7→{0, 1}

L(Ψ), we say Ψ̂n is strongly consistent. If the consequence holds

in probability, Ψ̂n is said to be weakly consistent. Given a class Ψ of candidate
classifiers Ψ, the principal of empirical risk minimization (ERM) chooses the
classifier (from Ψ) that minimizes the empirical error

1

n

n∑

i=1

I {Ψ(Xi) 6= Wi} . (10)

Now, consider the case where Zi may be missing in Xi = (YT
i , ZT

i )T . Clearly,
the data can be represented by

Dn = {(Y1, Z1, W1, δ1), . . . , (Yn, Zn, Wn, δn)} ,

where δi = 0 if Zi is missing, (otherwise δi = 1). First note that (10) cannot
be computed because not every Xi is fully observable. Furthermore, using the
complete cases alone will not work because

1

n

n∑

i=1

δi I {Ψ(Xi) 6= Wi}

is the empirical version of E (δ I {Ψ(X) 6= W}), which is not the same as
P {Ψ(X) 6= W} . Our propose ERM-type estimator of the best classifier is given
by

Ψ̃n = argmin
Ψ∈Ψ

1

n

n∑

i=1

δi

p̃(Yi)
I {Ψ(Xi) 6= Wi} , (11)

where p̃(y) is either p(y), (if p(y) is known), or p̂(y) in (7) or p̆
LS

(y) of Section
2.2. Let Ψ∗ be the best classifier in Ψ, i.e. Ψ∗ satisfies

P {Ψ∗(X) 6= W} = inf
Ψ∈Ψ

P {Ψ(X) 6= W} .

How good is Ψ̃n as an estimator of Ψ∗? To answer this question, let Ln(Ψ̃n)

be the error of the classifier Ψ̃n, i.e., Ln(Ψ̃n) = P
{
Ψ̃n(X) 6= W

∣∣Dn

}
. Also let

A
Ψ

be the class of all sets A of the from

A =
{{

x
∣∣Ψ(x) = 1

}
× {0}

}⋃{{
x
∣∣Ψ(x) = 0

}
× {1}

}
, Ψ ∈ Ψ .

Then, we have the following result.

Theorem 6. Let Ψ̃n be as above. Then for every ǫ > 0 there is an no > 0 such
that for every n > no

P

{
Ln(Ψ̃n) − inf

Ψ∈Ψ
L(Ψ) > ǫ

}
≤ 8 S(A

Ψ
, n) e−c19 n ǫ2 + rn(ǫ) ,

where
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(i) if p̃(Yi) = p̂(Yi), then under the conditions of Theorem 4,

rn(ǫ) = 4 n e−c20 n hd
n ǫ2 + 4 n e−c21 n hd

n ,

and
(ii) if p̃(Yi) = p̆

LS
(Yi), then under the conditions of Theorem 5

rn(ǫ) = 8 E

[
N1

(
p2
min ǫ

64
, P, (Yi)

n
i=1

)]
e−c22 n ǫ2

+ 8 E

[
N1

(
p4
min ǫ2

1024
, P, (Yi)

n
i=1

)]
e−c23 n ǫ4 .

Here c20, c21, c22, and c23 are positive constants not depending on n or ǫ.

Remark 2. Theorem 6 is based on the assumption that the missing probabil-
ity mechanism satisfies the strong MAR assumption that P {δi = 1 |Xi, Wi} =
P {δi = 1 |Yi} , i = 1, . . . , n, where as before, Xi = (YT

i , ZT
i )T . It is possible

to relax this assumption to P {δi = 1 |Xi, Wi} = P {δi = 1 |Yi, Wi} , i.e., the
probability that Zi is missing can depend on both Yi and Wi. In this case, one
can revise Ψ̃n in (11) by

Ψ̃n = argmin
Ψ∈Ψ

1

n

n∑

i=1

δi

p̃(Yi, Wi)
I {Ψ(Xi) 6= Wi} ,

where p̃(Yi, Wi) is the estimator of p(Yi, Wi) = P {δi = 1 |Yi, Wi}. Taking,
for example,

p̃(Yi, Wi) =

n∑
j=1, 6=i

δj I {Wj = Wi} K
(

Yj−Yi

hn

)

n∑
j=1, 6=i

I {Wj = Wi} K
(

Yj−Yi

hn

) ,

one can show, with some more efforts, that the conclusion of part (i) of Theorem
6 continues to hold with different constants c20 > 0 and c21 > 0. Similar results
can also be established for part (ii) of Theorem 6.

In passing we also note that the size of S(A
Ψ

, n) depends on the underlying

class Ψ. When, for example, Ψ is the popular class of linear classifiers

Ψ(x) =

{
1 if a0 + a1 x1 + · · ·+ a

d+p
x

d+p
> 0

0 otherwise,

where a0 , a1 , . . . , a
d+p

∈ R, then S(A
Ψ

, n) ≤ nd+p+1 , (see, for example, chap-

ter 13 of Devroye et al. (1996).). In this case, if we choose p̃(y) = p̂(y), where p̂

is as in (7), then Ln(Ψ̃n)
a.s.
−−→ inf

Ψ∈Ψ
L(Ψ), as n → ∞, provided that log(n)

n hd
n

→ 0.

Remark 3. Strictly speaking, the classifier Ψ̃n is not suitable if the new obser-
vation X, (based on which W has to be predicted), also has missing covariates.
I.e., in addition to the data Dn, the new observation X = (YT , ZT )T is also
allowed to have a missing Z.
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3. Proofs

Proof of Theorem 3

The following proof employes the symmetrization argument of Dudley (1978), p.
925, and Pollard (1984), sec. II.3. (Also see van der Vaart and Wellner (1996),
sec. 2.3.)

Let D′
n = {(Y′

1, Z′
1, δ′1), . . . , (Y′

n, Z′
n, δ′n)} be a hypothetical sample, inde-

pendent of Dn, where (Y′
i, Z′

i, δ′i)
i.i.d.
= (Y1, Z1, δ1), i = 1, . . . , n. Also, define

µ ′
n(A) =

1

n

n∑

i=1

δ′i
p(Y′

i)
I {t(X′

i) ∈ A} .

Now, fix the data Dn and note that if sup
A∈A

|µn(A) − µ(A) | > ǫ then there is at

least one set Aǫ ∈ A which depends on Dn (but not D′
n) such that |µn(Aǫ) −

µ(Aǫ | Dn) | > ǫ, where

µ(Aǫ | Dn) = E [I {t(X) ∈ Aǫ} | Dn] .

Next, observe that

P
{
|µ ′

n(Aǫ) − µ(Aǫ | Dn) | <
ǫ

2
| Dn

}
≥ 1 − sup

A∈A
P
{
|µ ′

n(A) − µ(A) | ≥
ǫ

2

}

≥ 1 −
4

n ǫ2
sup
A∈A

Var

(
δ1

p(Y1)
I {t(X1) ∈ A}

)

(via Chebysheff’s inequality)

≥ 1 −
4

n p2
minǫ2

sup
A∈A

[E (δ1 I {t(X1) ∈ A}) (1 − E (δ1 I {t(X1) ∈ A}))]

(because δ I {t(X) ∈ A} is a Bernoulli r.v.)

≥ 1 −
4

n p2
minǫ2

.
1

4
≥

1

2
, for n ǫ2 ≥

2

p2
min

.

Therefore, for n ǫ2 ≥ 2/p2
min

1

2
≤P

{∣∣µ ′
n(Aǫ) − µ(Aǫ

∣∣Dn)
∣∣ <

ǫ

2

∣∣∣Dn

}

≤P





−
∣∣µ ′

n(Aǫ) − µn(Aǫ )
∣∣+
∣∣µn(Aǫ) − µ(Aǫ | Dn)

∣∣
︸ ︷︷ ︸

>ǫ

<
ǫ

2

∣∣∣Dn






≤P

{
sup
A∈A

∣∣µ ′
n(A) − µn(A)

∣∣ >
ǫ

2

∣∣∣Dn

}
. (12)

But the far left and far right sides of (12) do not depend on any particu-
lar Aǫ and the chain of inequalities between them remain valid on the set
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{
sup
A∈A

∣∣µn(A) − µ(A)
∣∣ > ǫ

}
. Therefore, integrating the two sides with respect

to the distribution of Dn, over this set, one finds

P

{
sup
A∈A

∣∣µn(A) − µ(A)
∣∣ > ǫ

}
≤ 2 P

{
sup
A∈A

∣∣µ ′
n(A) − µn(A)

∣∣ >
ǫ

2

}
, (13)

Next, let R1, . . . , Rn be i.i.d. random variables, independent of Dn and D′
n,

where P {Ri = +1} = P {Ri = −1} = 1/2, and observe that

P

{
sup
A∈A

∣∣µ ′
n(A) − µn(A)

∣∣ >
ǫ

2

}

= P

{
sup
A∈A

1

n

∣∣∣
n∑

i=1

[
δ′i

p(Y′
i)

I {t(X′
i) ∈ A} −

δi

p(Yi)
I {t(Xi) ∈ A}

] ∣∣∣ >
ǫ

2

}

= P

{
sup
A∈A

1

n

∣∣∣
n∑

i=1

Ri

[
δ′i

p(Y′
i)

I {t(X′
i) ∈ A} −

δi

p(Yi)
I {t(Xi) ∈ A}

] ∣∣∣ >
ǫ

2

}

≤ 2 P

{
sup
A∈A

1

n

∣∣∣
n∑

i=1

Ri δi

p(Yi)
I {t(Xi) ∈ A}

∣∣∣ >
ǫ

4

}
.

This last expression together with (13) yield (upon conditioning on Dn),

P

{
sup
A∈A

∣∣µn(A) − µ(A)
∣∣ > ǫ

}

≤ 4 E

[
P

{
sup
A∈A

1

n

∣∣∣
n∑

i=1

Ri δi

p(Yi)
I {t(Xi) ∈ A}

∣∣∣ >
ǫ

4

∣∣∣Dn

}]
. (14)

Now observe that for fixed x1, . . . , xn, the number of different vectors

(I {t(x1) ∈ A} , . . . , I {t(xn) ∈ A})

obtained, as A ranges over A, is just the number of different sets in

{{t(x1), . . . , t(xn)} ∩ A |A ∈ A} ,

and this number is bounded by S(A, n). Thus

P

{
sup
A∈A

1

n

∣∣∣
n∑

i=1

Ri δi

p(Yi)
I {t(Xi) ∈ A}

∣∣∣ >
ǫ

4

∣∣∣Dn

}

≤ S(A, n) . sup
A∈A

P

{
1

n

∣∣∣
n∑

i=1

Ri δi

p(Yi)
I {t(Xi) ∈ A}

∣∣∣ >
ǫ

4

∣∣∣Dn

}
. (15)

Since, conditional on Dn, the term
n∑

i=1

Ri δi

p(Yi)
I {t(Xi) ∈ A} is the sum of n inde-

pendent zero-mean random variables, bounded by −1/pmin and +1/pmin (where
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pmin = min
y

p(y) > 0), one can use Hoeffding’s inequality to conclude

P

{
1

n

∣∣∣
n∑

i=1

Ri δi

p(Yi)
I {t(Xi) ∈ A}

∣∣∣ >
ǫ

4

∣∣∣X1, . . . , Xn

}
≤ 2 e− (p2

min/2) n ǫ2 .

The above bound together with (14) and (15) give

P

{
sup
A∈A

∣∣µn(A) − µ(A)
∣∣ > ǫ

}
≤ 8 S(A, n) e− (p2

min/2)n ǫ2 .

This proves the theorem for n ǫ2 ≥ 2/p2
min. When n ǫ2 < 2/p2

min the theorem
is trivially true.

To prove Theorem 4, we first state a lemma.

Lemma 1. Put φ̂(Yi) = (n − 1)−1 h−d
n

n∑
j=1, 6=i

δj K
(

Yj−Yi

hn

)
and let φ(Y) =

f(Y) p(Y), where f is the density of Y. Then

∣∣∣E
[
φ̂(Y)

∣∣Y
]
− φ(Y)

∣∣∣ ≤ c . hn ,

where c is a positive constant not depending on n.

Proof.

E
[
φ̂(Y)

∣∣Y
]
− φ(Y) = h−d

n E

[
δ1 K

(
Y1 −Y

hn

) ∣∣∣Y
]
− f(Y) p(Y)

= h−d
n E

[
K

(
Y1 −Y

hn

)
. E
(
δ1

∣∣Y, Y1

) ∣∣∣Y
]
− f(Y) p(Y)

But, since Y and Y1 are independent, E(δ1

∣∣Y, Y1) = E(δ1

∣∣Y1) = p(Y1).
Thus

E
(
φ̂(Y)

∣∣Y
)
− φ(Y) = h−d

n E

[
(p(Y1) − p(Y))K

(
Y1 −Y

hn

) ∣∣∣Y
]

+ E

[
p(Y)

(
h−d

n K

(
Y1 −Y

hn

)
− f(Y)

) ∣∣∣Y
]

:= G1(Y) + G2(Y) (say) . (16)

Now a one-term Taylor expansion gives

G1(Y) = h−d
n E

[(
d∑

i=1

∂p(Y∗)

∂Yi
(Y1, i − Yi)

)
K

(
Y1 − Y

hn

) ∣∣∣Y
]

where Y1, i and Yi are the ith components of Y1 and Y, and Y∗ is a point on
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the interior of the line segment joining Y and Y1. Therefore,

∣∣∣G1(Y)
∣∣∣ ≤ c10

d∑

i=1

E

[
|Y1, i − Yi| . h

−d
n K

(
Y1 − Y

hn

) ∣∣∣Y
]

(
where c10 =

d∨

i=1

sup
y

∣∣∣
∂p(y)

∂yi

∣∣∣
)

= c10

d∑

i=1

∫

R

|yi − Yi| h
−d
n K

(
y − Y

hn

)
f(y) dy

≤ c10 ‖f‖∞

d∑

i=1

∫

Rd

hn | yi | K(y) dy = |const| hn

As for G2(Y), we have

G2(Y) = p(Y)

∫

Rd

h−d
n K

(
y −Y

hn

)
[f(y) − f(Y)] dy

= p(Y)

∫

Rd

[f(Y + hn y) − f(Y)] K(y) dy .

Therefore, using a one-term Taylor expansion yields

∣∣∣G2(Y)
∣∣∣ ≤

(
d ‖f ′‖∞

d∑

i=1

∫

Rd

| yi | K(y) dy

)
hn .

This completes the proof of the lemma.

Proof of Theorem 4

First note that for every A ∈ A,

δi

p̂(Yi)
I {t(Xi) ∈ A} =

δi

p(Yi)
I {t(Xi) ∈ A}−

δi

p̂(Yi)
I {t(Xi) ∈ A}

[
p̂(Yi)

p(Yi)
− 1

]
.

Now let µn(A) be as in (6) and observe that

P

{
sup
A∈A

|µ̂n(A) − µ(A)| > ǫ

}
≤ P

{
sup
A∈A

|µn(A) − µ(A)| >
ǫ

2

}

+ P

{
1

n

n∑

i=1

∣∣∣
1

p̂(Yi)

∣∣∣
∣∣∣
p̂(Yi)

p(Yi)
− 1

∣∣∣ >
ǫ

2

}

:= In + IIn , (say) . (17)

But by Theorem 3,

In ≤ 8 S(A, n) e− (p2
min/8) n ǫ2 . (18)
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To deal with the term IIn , first note that

IIn ≤ P

{[
1

n

n∑

i=1

∣∣∣
1

p̂(Yi)

∣∣∣
∣∣∣
p̂(Yi)

p(Yi)
− 1

∣∣∣ >
ǫ

2

]
⋂ n⋂

i=1

[
p̂(Yi) ≥

pmin

2

]}

+ P

{
n⋃

i=1

[
p̂(Yi) <

pmin

2

]}

≤
n∑

i=1

P

{
2

p2
min

∣∣∣p̂(Yi) − p(Yi)
∣∣∣ >

ǫ

2

}
+

n∑

i=1

P
{

p̂(Yi) <
pmin

2

}

:= IIn(1) + IIn(2), (say) . (19)

To deal with IIn(1), first note that

∣∣∣p̂(Yi) − p(Yi)
∣∣∣ =

∣∣∣
φ̂(Yi)

f̂(Yi)
−

φ(Yi)

f(Yi)

∣∣∣ ≤
∣∣∣
φ̂(Yi) − φ(Yi)

f(Yi)

∣∣∣+
∣∣∣
f̂(Yi) − f(Yi)

f(Yi)

∣∣∣ ,

where φ̂(Yi) and φ(Yi) are as in Lemma 1, and f̂(Yi) is the kernel density
estimator of f at Yi, based on Y1, . . . , Yi−1, Yi+1, . . . , Yn. Thus

P

{∣∣∣p̂(Yi) − p(Yi)
∣∣∣ >

p2
min ǫ

4

}
≤ P

{∣∣∣
φ̂(Yi) − φ(Yi)

f(Yi)

∣∣∣ >
p2
min ǫ

8

}

+ P

{∣∣∣
f̂(Yi) − f(Yi)

f(Yi)

∣∣∣ >
p2
min ǫ

8

}

:= Πn 1 + Πn 2 . (20)

But for n large enough, Lemma 1 implies that

Πn 1 ≤ P

{∣∣∣φ̂(Yi) − E
[
φ̂(Yi)

∣∣Yi

]
+ E

[
φ̂(Yi)

∣∣Yi

]
− φ(Yi)

∣∣∣ >
fmin p2

min ǫ

8

}

(where 0 < fmin := min
y

f(y), by condition C2)

≤ P

{∣∣∣φ̂(Yi) − E
[
φ̂(Yi)

∣∣Yi

] ∣∣∣+
fmin p2

min ǫ

16
>

fmin p2
min ǫ

8

}

(for n large enough, by Lemma 1)

= E



P





1

n − 1

∣∣∣
n∑

j=1, 6=i

Tj(Yi)
∣∣∣ >

fmin p2
min ǫ

16

∣∣Yi








 ,

where

Tj(Yi) = h−d
n

[
δj K

(
Yj −Yi

hn

)
− E

(
δj K

(
Yj − Yi

hn

) ∣∣Yi

)]
.

But, conditional on Yi, the terms Tj ’s are independent, zero-mean random vari-
ables, bounded by −hd

n‖K‖∞ and +hd
n‖K‖∞. Furthermore, Var

(
Tj(Yi)

∣∣Yi

)
=



S. Chenouri et al./Empirical measures for incomplete data 1035

E
(
T 2

j (Yi)
∣∣Yi

)
≤ h−d

n ‖K‖∞ ‖f‖∞. Therefore, by Bennett’s inequality (Bennett
(1962)),

P





1

n − 1

∣∣∣
n∑

j=1, 6=i

Tj(Yi)
∣∣∣ >

fmin p2
min ǫ

16

∣∣Yi






≤ 2 exp

{
−

(n − 1)hd
n f2

min p2
min ǫ2

2 ‖K‖∞ (162 ‖f‖∞ + fmin p2
min ǫ/48)

}
,

which implies that, for n large enough, Πn 1 ≤ 2 exp{−c(n − 1)hd
nǫ2}, where

c > 0 does not depend on n or ǫ. Here, we have also used the fact that in
the far left side of (20) one only needs to consider 0 < ǫ < 8/p2

min (because
|p̂(Yi) − p(Yi)| ≤ |p̂(Yi)| + |p(Yi)| ≤ 1 + 1 = 2). Similarly, one can also show
(in fact, with less effort) that for n large enough

Πn 2 ≤ 2 exp

{
−(n − 1)hd

nf2
minp4

minǫ2

1024 ‖ K ‖∞‖ f ‖∞

}
.

Putting the above together, we have shown

IIn(1) ≤ 4 n e−c11 n hd
n ǫ2 ,

where IIn(1) is as in (19), and c11 > 0 does not depend on n or ǫ. Finally the
theorem follows by noticing that in IIn(2),

P {p̂(Yi) < pmin/2} ≤ P
{∣∣p̂(Yi) − p(Yi)

∣∣ > pmin/2
}

.

Proof of Theorem 5

Using the arguments employed in the proof of Theorem 4, one finds

P

{
sup
A∈A

∣∣∣ µ̆n(A) − µ(A)
∣∣∣ > ǫ

}
≤ In + IIn ,

where In is as in (17) and

IIn = P

{
1

n

n∑

i=1

∣∣∣
1

p̆
LS

(Yi)

∣∣∣ .
∣∣∣
p̆

LS
(Yi)

p(Yi)
− 1
∣∣∣ >

ǫ

2

}
.
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By Theorem 3, we have In ≤ 8 S(A, n) exp
{
− p2

min n ǫ2/8
}

. Also, observe that

IIn ≤ P

{
1

n p2
min

n∑

i=1

∣∣ p̆
LS

(Yi) − p(Yi)
∣∣ >

ǫ

2

}

≤ P

{
1

n

n∑

i=1

∣∣ p̆
LS

(Yi) − p(Yi)
∣∣ − E

[∣∣p̆
LS

(Y) − p(Y)
∣∣
∣∣∣Dn

]

+ E
[∣∣p̆

LS
(Y) − p(Y)

∣∣
∣∣∣Dn

]
>

p2
min ǫ

2

}

≤ P

{
sup
p′∈P

∣∣∣
1

n

n∑

i=1

∣∣ p′(Yi) − p(Yi)
∣∣ − E

[∣∣p′(Yi) − p(Yi)
∣∣ ]
∣∣∣ >

p2
min ǫ

4

}

+ P

{
E
[∣∣p̆

LS
(Y) − p(Y)

∣∣
∣∣∣Dn

]
>

p2
min ǫ

4

}
:= II′n + II′′n , (say) . (21)

Now, using standard results from the empirical process theory (see, for example,
Pollard (1984), p. 31), one finds

II′n ≤ 8 E

[
N1

(
p2
min ǫ

32
, P, (Yi)

n
i=1

)]
e−(p4

min/2048)nǫ2 ,

where N1

(
p2
min ǫ/32, P, (Yi)

n
i=1

)
is the ǫ-covering number of P with respect to

the empirical measure. To deal with the term II′′n , put

Sn(p) =
1

n

n∑

i=1

(p(Yi) − δi)
2 ,

and observe that by Cauchy-Schwartz inequality

II′′n ≤ P

{
E
[∣∣p̆

LS
(Y) − p(Y)

∣∣2
∣∣∣Dn

]
>

p4
min ǫ2

16

}

= P

{
E
[∣∣p̆

LS
(Y) − δ

∣∣2
∣∣∣Dn

]
− E

[∣∣p(Y) − δ
∣∣2
]

>
p4
min ǫ2

16

}

≤ P

{
2 sup

p′∈P

∣∣∣Sn(p′) − E
[∣∣p′(Y) − δ

∣∣2
] ∣∣∣ >

p4
min ǫ2

16

}
,

where the second line above follows from the fact that

E
[∣∣p̆

LS
(Y) − δ

∣∣2
∣∣∣Dn

]
= E

[∣∣p̆
LS

(Y) − p(Y)
∣∣2
∣∣∣Dn

]
+ E

[∣∣p(Y) − δ
∣∣2
]

,
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and the last line above follows from

E
[∣∣p̆

LS
(Y) − δ

∣∣2
∣∣∣Dn

]
− E

[∣∣p(Y) − δ
∣∣2
]

= E
[∣∣p̆

LS
(Y) − δ

∣∣2
∣∣∣Dn

]
− inf

p′∈P
E
[∣∣p′(Y) − δ

∣∣2
]

, where p(Y) = E(δ
∣∣Y)

= sup
p′∈P

{
E
[∣∣p̆

LS
(Y) − δ

∣∣2
∣∣∣Dn

]
− Sn(p̆

LS
) + S(p̆

LS
)

−Sn(p′) + Sn(p′) − E
[∣∣p′(Y) − δ

∣∣2
]}

≤ 2 sup
p′∈P

∣∣∣Sn(p′) − E
[∣∣p′(Y) − δ

∣∣2
] ∣∣∣ ,

because Sn(p̆
LS

) − Sn(p′) ≤ 0 by the definition of p̆
LS

. Therefore, from the
empirical process theory,

II′′n ≤ 8 E

[
N1

(
p4
min ǫ2

256
, P, (Yi)

n
i=1

)]
e−c17 n ǫ4 ,

where c17 = p8
min/((162)(128)).

Proof of Theorem 6

Let L̂n(Ψ) =
1

n

n∑
i=1

δi

p̃(Yi)
I {Ψ(Xi) 6= Wi} and observe that

Ln(Ψ̃n) − inf
Ψ∈Ψ

L(Ψ) =
[
Ln(Ψ̃n) − L̂n(Ψ̃n)

]
+
[
L̂n(Ψ̃n) − L(Ψ∗)

]
,

(where Ψ∗ = argmin
Ψ∈Ψ

P {Ψ(X) 6= W})

≤ 2 sup
Ψ∈Ψ

∣∣∣L(Ψ) − L̂n(Ψ)
∣∣∣ ,

(22)

where the last line follows from the fact that Ln(Ψ) = L(Ψ), for any nonrandom

classifier Ψ, and the observation that L̂n(Ψ̃n) ≤ L̂(Ψ), for every Ψ ∈ Ψ, (by the

definition of Ψ̃n in (11). Therefore, if we let A
Ψ

be the class of all sets of the

form

A =
{{

x
∣∣Ψ(x) = 1

}
× {0}

}⋃{{
x
∣∣Ψ(x) = 0

}
× {1}

}
, Ψ ∈ Ψ ,
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then one finds

P

{
Ln(Ψ̃n) − inf

Ψ∈Ψ
L(Ψ) > ǫ

}
≤ P

{
sup
Ψ∈Ψ

∣∣∣L̂n(Ψ) − L(Ψ)
∣∣∣ >

ǫ

2

}

= P




 sup
A∈A

Ψ

∣∣∣
1

n

n∑

i=1

δi

p̃(Yi)
I {(Xi, Wi) ∈ A} − P {(X, W ) ∈ A}

∣∣∣ >
ǫ

2






(Since I {(Xi, Wi) ∈ A} = I {Ψ(Xi) 6= Wi})

≤ 8 S(A
Ψ

, n) e−c19 n ǫ2 + rn(ǫ),

for n large enough, where rn(ǫ) is as in the statement of the theorem (by The-
orems 4 and 5).

References

Bennett, G. (1962). Probability inequalities for the sum of independent ran-
dom variables. J. Amer. Statist Assoc., 57:33–45.

Cheng, P. E. and Chu, C. K. (1996). Kernel estimation of distribution func-
tions and quantiles with missing data. Statist. Sinica, 6:63–78. MR1379049

Devroye, L. (1982). Bounds on the uniform deviation of empirical meaures.
Journal of Multivariate Analysis, 12:72–79. MR0650929

Devroye, L., Györfi, L., and Lugosi, G. (1996). A Probabilistic Theory
of Pattern Recognition. Springer-Verlag, New York. MR1383093

Dudley, R. (1978). Central limit theorems for empirical measures. Ann.
Probab., 6:899–929. MR0512411

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis With Missing
Data. Wiley, New York. MR1925014

Massart, P. (1990). The tight constant in the Devoretzky-Kiefer-Wolfowitz
inequality. Ann. Probab., 18:1269–1283. MR1062069

Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag,
New York. MR0762984

Talagrand, M. (1994). Sharper bounds for gaussian and empirical processes.
Ann. Probab., 22:28–76. MR1258865

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and
Empirical Processes, with Applications to Statistics. Springer-Verlag, New
York. MR1385671

Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence
of relative frequencies of events to their probabilities. Theory Probab. Appl.,
16:264–280.

http://www.ams.org/mathscinet-getitem?mr=1379049
http://www.ams.org/mathscinet-getitem?mr=0650929
http://www.ams.org/mathscinet-getitem?mr=1383093
http://www.ams.org/mathscinet-getitem?mr=0512411
http://www.ams.org/mathscinet-getitem?mr=1925014
http://www.ams.org/mathscinet-getitem?mr=1062069
http://www.ams.org/mathscinet-getitem?mr=0762984
http://www.ams.org/mathscinet-getitem?mr=1258865
http://www.ams.org/mathscinet-getitem?mr=1385671

	Introduction
	Main results
	A kernel-based method
	The least-squares method
	An application

	Proofs
	References

