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Abstract: Consider an R×C contingency table in which the categories are
ordered. Multiple testing of the hypotheses that each local odds ratio is one
is carried out. The methodology to perform the multiple tests is an exten-
sion of the MRDSS method of Chen, Cohen, and Sackrowitz (2009). The
MRDSS method extends the MRD method of Cohen, Sackrowitz, and Xu
(2009) by adding a screen stage and a sign stage to MRD. The MRDSS
method as well as the extension here is admissible and consistent. Both
Fisher-type statistics and Chi-square statistics are used. Examples and a
simulation study are included.
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1. Introduction

R× C contingency tables with ordered categories are studied. In particular we
study multiple testing of the (R − 1) × (C − 1) local log odds ratios. That is,
the null hypotheses are that these log odds ratios are zero against the alter-
native that each is not zero. One sided alternatives are also studied. For two
sided alternatives we show that oftentimes the usual step-up and step-down
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procedures based on P-values derived from Fisher’s exact test statistics or from
Pearson’s Chi-square statistics for local 2 × 2 subtables, have an undesirable
property. Namely, that relevant acceptance sections of individual hypotheses
are not always convex. This renders these multiple testing procedures (MTPs)
inadmissible in terms of expected number of type I errors and expected number
of type II errors.

New admissible and consistent MTPs are offered. The new procedures rep-
resent an extension of the MRDSS method developed in the companion paper
by Chen, Cohen, and Sackrowitz (2009). Precise definitions of admissibility and
consistency are given in that reference. MRDSS is a three stage multiple test-
ing method. The first stage called maximum residual down was developed by
Cohen, Sackrowitz, and Xu (2009). It is a step-down method with several desir-
able practical and theoretical properties. However, MRD is not always consistent
in the sense that asymptotically (as sample size tends to infinity) it can some-
times make mistakes. A screen stage added to MRD plus a sign stage added to
MRD yields MRDSS which is both admissible and consistent.

The MRD stage of MRDSS is based on statistics called residuals. These
statistics arise naturally in multivariate normal models and in some exponen-
tial family models. The residuals have certain monotonicity properties that are
essential for admissibility of individual tests. In the contingency table models
analogues of the residuals, with the desirable properties, are found. The new, so
called residuals, can be determined as Fisher statistics or Chi-square statistics
for certain 2 × 2 tables obtained by collapsing R × C tables and certain sub-
tables. Sometimes this involves segmenting the overall table into smaller tables
that subsequently are collapsed into 2 × 2 tables. Systems of equations need to
be derived and solved to provide estimated expected frequencies and estimated
variances of frequencies for the Chi-square statistics. This all must be done so
that the analogues of the residuals have the necessary monotonicity properties
enjoyed by the residuals of MRD. Precise definitions are forthcoming.

The screen stage and sign stage of MRDSS also must be developed for the
R × C model. The new screen stage must depend on statistics for local 2 × 2
tables that yield consistency. For MRDSS applied in normal models the choice
of statistic for the screen stage is obvious. For the R×C case there are several
choices of statistics. The screen stage statistic is formed for local 2 × 2 tables.
The sign stage for the R × C table is not literally a comparison of signs. This
time “signs” match or not, depending whether a rejection by MRD is for a left
or right side rejection as compared to whether the screen stage statistic would
reject on the right side or left side. Again precise definitions are forthcoming.

Multiple testing of odd ratios in 2× 2 subtables of R×C tables is a problem
discussed in Gabriel (1966), Hirotsu (1978, 1983) and Hochberg and Tamhane
(1987). The procedures recommended are all single step and are very conserva-
tive. Shaffer (1986) recommends stepwise procedures for testing 2×2 subtables.
We regard testing all local odds ratios as a meaningful problem for R×C tables
with both factors having ordered categories. Such testing enables detections of
change points in directions of each factor, enables examination of likelihood ra-
tio order (all log odds non-negative one-sided testing) between pairs of rows or
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pairs of columns, and helps identify the adjacent levels of each factor where a
true association exists.

Textbook discussions on stepwise methods for multiple testing in general (not
necessarily for categorical data) can be found in Hochberg and Tamhane (1987),
Lehmann and Romano (2005) and Dudoit and Van Der Laan (2008). Another
useful reference for these methods is Dudoit, Shaffer, and Boldrick (2003).Cohen
and Sackrowitz (2005b, 2005a, 2007, 2008) and Cohen, Kolassa, and Sackrowitz
(2007) demonstrate the inadmissibility of the usual step-up and step-down pro-
cedures for a wide variety of models, loss functions and conditions for some
one-sided and some two-sided hypotheses. Cohen, Sackrowitz, and Xu (2009)
and Chen, Cohen, and Sackrowitz (2009) offer new methodologies in models
concerned with means of normal variables.

In the next section we pose several discrete models for an R×C contingency
table and give some other preliminaries. In Section 3 we cite examples for the
2 × C case in which step-up or step-down procedures based on Fisher exact
test statistics or based on Pearson’s chi-squared statistics are inadmissible. We
give examples since discreteness and other conditions prevent a general result.
Nevertheless the examples are such that it will be clear that inadmissibility will
often be the case. Examples of inadmissibility of typical procedures for the R×C
case will be similar to the 2 ×C case.

New methodology, first for 2×C tables will be given in Section 4. An example
will be given. New methodology will be given in Section 5 for the R × C case.
Pearson’s chi-squared statistics will be used for the R × C case since Fisher’s
statistic becomes less computationally feasible. An example is given in Section 6
for the R× C case and a simulation study is offered in Section 7.

2. Models and preliminaries

Consider an R×C contingency table with ordered categories in both rows and
columns. Let Xij be the frequency in the ijth cell, i = 1, . . . , R, j = 1, . . . , C.
Assume either the full multinomial model or the product multinomial model
with cell probabilities pij. In either case, if we condition on both the column
totals tj, j = 1, . . . , C and the row totals Ri, i = 1, . . . , R, the conditional distri-
bution of Xij , i = 1, . . . , R− 1, j = 1, . . . , C − 1 given all Ri, tj is multivariate

hypergeometric. Let n =
∑R

i=1 Ri =
∑C

j=1 tj .
The conditional distribution expressed in exponential family form is

fX(x|ν) ∝ exp





R−1
∑

i=1

C−1
∑

j=1

xijνij



 (2.1)

where νij are log odds ratios, i.e., νij = log
pijpRC

piCpRj
with x = (x1, . . . ,xR)′,

xi = (xi1, . . . , xiC)′, ν = (ν1, . . . , νR)′. See Cohen and Sackrowitz (2000). If

we let Sij =
∑i

k=1

∑j
l=1Xkl and let µij = log[pijp(i+1)(j+1)/pi(j+1)p(i+1)j] then
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with S = (S11, . . . , SRC)′

fS(s|µ) ∝ exp





R−1
∑

i=1

C−1
∑

j=1

µijSij



 . (2.2)

Note (2.2) would also ensue for the model in which Xij are independent
Poisson variables with parameter λij. Then upon conditioning on Ri, Xi is

multinomial with parameter pij = λij/
∑C

j=1 λij . Conditioning next on tj yields
the multivariate hypergeometric of (2.1).

Hypotheses of interest for the R× C table are

Hij : µij = 0 vs Kij : µij 6= 0 (2.3)

or,
Hij : µij = 0 vs K∗

ij : µij > 0 (2.4)

A local 2 × 2 table of frequencies is

xij xi(j+1)

x(i+1)j x(i+1)(j+1)
(2.5)

and let Tij be a statistic to test Hij. Typical step-down and step-up procedures
are based on statistics Tij that depend only on the cell frequencies in (2.5).
Such statistics are often Fisher’s exact test statistics or Pearson’s chi-square
statistics.

To describe a class of step-down procedures based on P-values let 0 < α1 <
· · · < αq, where q = (R−1)(C−1), be a sequence of critical values. Let Pij(Tij)
be the P-value for testing Hij and let P(1) ≤ · · · ≤ P(q) correspond to the
ordered P-values.

(i) If P(1) < α1, reject H(1) and continue to step 2. Otherwise stop and accept
H(i), i = 1, . . . , q.

(ii) If H(1) is rejected, reject H(2) if P(2) < α2. Otherwise stop and accept
H(2), . . . , H(q).

(iii) In general, at step m, if P(m) < αm, reject H(m). Otherwise stop and
accept H(m), . . . , H(q).

The critical values αi can be chosen in variety of ways.
Often times α1 is chosen at step 1 to control the weak familywise error rate

(FWER). That is, the probability of at least one false rejection when all nulls
are true. The other α’s are often chosen to control strong FWER or the false
discovery rate (FDR). See for example, Dudoit, Shaffer, and Boldrick (2003).

To describe a class of step-up procedures again consider a sequence of critical
values 0 < α1 < · · · < αq, not necessarily the same as in the step-down case.

(i) If P(q) < αq, stop and reject all H(i). If P(q) ≥ αq accept H(q) and go to
step (ii).

(ii) If P(q−1) < αq−1, stop and reject H(1), . . . , H(q−1). Otherwise accept
H(q−1) and continue.
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(iii) In general, at step m, if P(q−m+1) < αq−m+1 , stop and reject H(1), . . . ,
H(q−m+1). Otherwise accept H(q−m+1) and continue.

The critical constants are often chosen to control FDR (or FWER). See for
example, Benjamini and Hochberg (1995).

We evaluate the collection of q tests by evaluating each individual test by its
expected type I error and expected type II error. If T represents the collection
of test statistics Tij(x) and ψij(x) represents the test function based on Tij for
testing Hij then the risk for the individual test is

Eµψij(x) when µij = 0 and Eµ(1 − ψij(x)) when µij 6= 0 (2.6)

One can consider a q-vector risk function consisting of q components, each
representing the risk for an individual test. In terms of admissibility, multiple
testing procedures that are inadmissible for this vector risk would remain so if
the risk is any non-decreasing function of the collection of individual components
of the vector risk.

3. 2 × C tables — examples of non-convex acceptance sections

Poisson, multinomial, or independent binomial models

Our starting point in this section is to assume the model where upon con-
ditioning on row and column totals we have the multivariate hypergeometric
distribution given in (2.2). We start with a result for R×C tables.

Lemma 3.1. A necessary and sufficient condition for a test ψij(x) to be admis-

sible is that for all Si′j′(i′ 6= i, j′ 6= j), except Sij , fixed, the acceptance sections

of the test are convex in Sij .

Proof. See Matthes and Truax (1967).

Note that convex in the discrete case is defined for sample points whose
coordinates take on integer values. A discrete set B is convex if whenever s1 ∈ B,
s2 ∈ B, all sample points between s1 and s2 are in B. Note that when R = 2, S

depends only on S11, . . . , S1(C−1) and these depend only on X11, . . . , X1(C−1).
Furthermore when R = 2 an increase in S1j by one unit while S1j′ remain

fixed j′ 6= j is accomplished with (X11, . . . , X1j, X1(j+1), . . . , X1(C−1))
′+g where

g = (0, . . . , 1,−1, . . . , 0)′ where 1 is in position j.
Whereas one cannot demonstrate that step-down and step-up procedures

based on Fisher exact tests or Pearson’s chi-square tests are always inadmissi-
ble, we give examples (which are more typical than not) to indicate that those
procedures often are inadmissible. It sufficies to work with 2 × 3 tables since
extensions to 2 × C tables would easily follow.

Example 3.1. Consider a 2 × 3 table as follows

109
100

90 60 59
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Test H1j : µ1j = 0 vs K1j : µ1j 6= 0, j = 1, 2. For step-down using Fisher’s
P-value (with FWER controlled at α = 0.1). The critical values are α1 = 0.05,
α2 = 0.1. Now suppose the frequencies are:

59 31 19
31 29 40

Then the P-values are 0.093, 0.041 which leads to rejecting both H11 and
H12. However for frequencies

60 30 19
30 30 40

the P-values are 0.061, 0.063 which means both hypotheses are accepted. For
a first row of 55 35 19, H11 would be accepted which demonstrates that the
acceptance section for H11 would not be an interval in S11:

S11 55 59 60
Decision A R A

For the two-sided case using the same critical values of α, using Pearson’s
chi-squared statistic the following tables of frequencies also provide an example
where the acceptance section is not an interval. Note in the following pairs
of tables, the first table leads to reject and the second table to accept. It is
understood that a third extreme table exists which would lead to rejection.

65 51 38
39 49 66 P-values are 0.0973, 0.0373

66 50 38
38 50 66 P-values are 0.0523, 0.0523

Similarly, using the same critical value, for one-sided Fisher, α = .1

65 52 26
40 48 44 P-values are 0.0983, 0.0392

66 51 26
39 49 44 P-values are 0.0577, 0.0513

For chi-square one-sided, we find that

65 51 27
41 47 43 P-values are 0.0906, 0.0427

66 50 27
40 48 43 P-values are 0.0526, 0.0552

For step-up, Fisher 2-sided with α1 = 0.05, α2 = 0.1, consider

59 31 13
31 29 26 P-values are 0.0931, 0.0980

60 30 13
30 30 26 P-values are 0.0608, 0.1461
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For step-up Fisher 1-sided

65 52 33
40 48 47 P-values are 0.0983, 0.0992

66 51 33
39 49 47 P-values are 0.0577, 0.1245

Examples for step-up and chi-square are easily obtained. Examples for R×C
tables are also easily obtained.

4. 2 × C tables. New methodology

Our starting point for this section is the case R = 2 and we observe S with
distribution given in (2.2).

The methods offered are related to the MRDSS method of Chen, Cohen, and
Sackrowitz (2009) which extends the MRD method of Cohen, Sackrowitz, and Xu
(2009). The new method also features a 3-stage process in the spirit of the orig-
inal MRDSS. Although the statistics used at each stage are quite different we
will still refer to the new method as MRDSS. Here it involves using Fisher’s test
statistics (or Pearson’s chi-square statistics) for various sometimes collapsed ta-
bles that wind up as 2 × 2 tables. We give the method using Fisher’s statistics
P1j although Pearson’s chi-square statistics could also be used.

Recall there are (C−1) local log odds ratios to be tested; namelyH1j : µ1j = 0
vs K1j : µ1j 6= 0, j = 1, . . . , C − 1. Note when R = 2, the approach makes sense
if only the columns are ordered. The main method involves 3 stages. Stage 1
involves a step-down testing method; stage 2 involves screening and stage 3
involves a possible change due to sign differences. The method is as follows: Let
0 < α1 < · · · < αC−1.

At stage 1,
(i) consider the (C − 1) 2 × 2 tables

S1j R1 − S1j
∑j

k=1 tk − S1j R2 −
∑j

k=1 tk + S1j
(4.1)

Compute P
(1)
1j for Table j, j = 1, . . . , C−1 and find P

(1)
(1) , the smallest among

P
(1)
1j . If P

(1)
(1) = P

(1)
1j1

< α1, reject H(1) and continue. Otherwise stop and accept
H1j, j = 1, . . . , C − 1.

(ii) If j1 = 1 consider the 2 × (C − 2) table with column 1 left out. Proceed
as in step (i). That is, form (C-2) 2 × 2 tables

S1j − S11 R1 − S1j
∑j

k=2 tk − S1j + S11 R2 −
∑j

k=1 tk + S1j − S11
(4.2)

Compute P
(2)
1j , j = 2, . . . , C − 1 and find P

(2)
1j2

= min2≤j≤C−1P
(2)
1j . If P

(2)
1j2

<
α2, reject H1j2 and continue. Otherwise stop and accept H(2), . . . , H(C−1).
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If 1 < j1 < C − 1, segment the 2 × C table into 2 tables. The first table is
the 2 × j1 table consisting of the first j1 columns of the original table and the
second table is 2 × (C − j1) consisting the last (C − j1) columns of the table.
Now treat each table as in the 2×C table case and form 2× 2 tables as in step
(i). That is, form (j1 − 1) P-values for the 2 × j1 table and C − j1 − 1 P-values

for the 2× (C − j1) table and then get P
(2)
1j2

as the minimum P-value and reject

H1j2 if P
(2)
1j2

< α2 and continue. Otherwise stop and accept H(2), . . . , H(C−1).
If j1 = C − 1 then do essentially what was done when j1 = 1.
(iii) If the process continues beyond step (ii), then continue for each table

at step (ii) by further segmentation if necessary at all future steps. Compute
P-values as in previous stages and get the min P-value and compare it with

the appropriate critical value, i.e., at step m, if P
(m)
1jm

< αm, reject H1jm
and

continue. Otherwise stop and accept H(m), . . . , H(C−1).
At stage 2, screen the results of stage 1, as follows: Let αL < αU be two

critical values between 0 and 1. Typically αL < αC−1 ≤ αU . Find Fisher’s
statistic for each local 2 × 2 table. If the Fisher statistic is less than αL and at
stage 1 the test accepted, switch to rejection. If the statistic exceeds αU and
at stage 1 the test rejected, switch to accept. Otherwise maintain the results of
stage 1.

At stage 3, switch a reject at stage 1 to a final accept at stage 3, if when
screening, the statistic lies between αL and αU and if the Fisher statistic used
in stages 1 and 2 were compiled using opposite sides of their respective 2 sided
rejection regions. For example, suppose we are testing H11 : µ11 = 0 vs K11 :
µ11 6= 0. Suppose that at stage 1, step 1 the table

S11 SiC − S11

t1 − S11 t2 − S1C + S11

yielded the minimum P-value < α1 and thus H11 was rejected at stage 1. Note
that (1 - P-value) based on Fisher’s statistic for this table as a function of S11

is decreasing and then increasing. See Cohen (1987). Suppose further that the
observed value of S11 was on the increasing part of the function. Now for the
table

x11 x12

x21 x22

assume the Fisher test statistic P-value was between αL and αU . Further sup-
pose for the observed value of x11 that (1 - P-value) as a function of x11 was on
the decreasing part of the function. This would call for a switch of reject H11

to accept H11.

Remark 4.1. The critical values 0 < α1 < · · · < αC−1 in stage 1 and αL ≤ αU

in stage 2 can be chosen according to some considerations. They can be chosen
so that the overall procedure satisfies an error rate control such as FWER or
FDR. They can be chosen so that FDR is controlled only when the numbers
of non-nulls is large. This can sometimes be accomplished by simulation. The
degree of conservativeness, total sample size, namely SRC and the total number
of hypotheses to be tested influence the choice of constants.
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Table 4.1

Change in Size of Ulcer Crater

Treatment Larger < 2/3 Healed ≥ 2/3 Healed Healed Total
A 12 10 4 6 32
B 5 8 8 11 32

Total 17 18 12 17 64

At stage 2 αL and αU would be chosen so that changes are made only if the
evidence is compelling. In other words αL is usually small and αU is relatively
large. Sometimes critical values are obtained via simulation. In this case we
seek FDR control for all situations except perhaps when the number of true
alternations is small.

We now illustrate the method for 2 × C tables. The data are from Agresti
(1984a) and are provided in Table 4.1.

Stage 1- step 1. Form 3 2 × 2 tables where the entries in the first row-first
column are S11, S12 and S13 respectively. These 3 tables and their correspond-
ing P-values based on Fisher statistics are:

12 20 22 10 26 6
5 27 23 19 21 11

P − values .0879 .0437 .2474

The minimum P-value among the 3 tables occurs for the second table. Using
critical values (.05, .075, .1) we reject H12 : µ12 = 0.

Stage 1- step 2. Since µ12 = 0 was rejected the 2× 4 table is segmented into
two 2 × 2 tables. Namely

12 10 4 6
and

5 8 8 11

The P-values for these are .4887 and 1 respectively. Since P-values are less
than .075, both H11 and H13 are not rejcted and Stage 1 is complete.

Stage 2 (screen stage): The 3 local 2× 2 tables are considered. These include
the two considered at Stage 1 - step 2 and the third is

10 4
8 8

with a P-value of .2839. If αL = .01 and αU = .3 no change is made at this
stage.

Stage 3 (sign stage): The only rejection was for H12. Both at stage 1 and
stage 2 the statistics were on the same side (right hand side) of rejection regions
so again no change occurs at the sign stage.

Thus there is evidence that the ratio of the proportion of larger craters to
less than 2/3 healed craters is different for the two treatments.

Note if in stage 2 αU = .2, the decision to reject H12 at stage 1 would be
reversed and all 3 null hypotheses would have been accepted.
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5. R × C tables

Recall that in an R×C table we wish to test (R−1)(C−1) individual hypotheses
Hij : µij = 0 vs Kij : µij 6= 0, i = 1, . . . , R− 1; j = 1, . . . , C− 1. Let Ω1 > Ω2 >
· · · > Ω(R−1)(C−1) > 0 be a set of critical values. We will do as follows at stage
1, MRD stage:

Step 1: Form (R− 1)(C − 1) 2 × 2 tables:

Sij SiC − Sij

SRj − Sij SRC − SiC − SRj + Sij

Find the statistics:

U
(1)
ij = (Sij − Ê

(1)
ij )/

√

V̂
(1)
ij (5.1)

where Ê
(1)
ij and V̂

(1)
ij , along with Ê

(m)
ij and V̂

(m)
ij for step m, m = 1, 2, . . . ,

(R − 1)(C − 1) will be determined below. U
(1)
ij will be used to test hypothesis

Hij. If |U
(1)
i1j1

| = max(i,j) |U
(1)
ij | > Ω1, reject Hi1j1 , record the sign of U

(1)
i1j1

and

continue. Note that (U
(1)
ij )2 is equivalent to Pearson’s chi-square statistic for the

above 2 × 2 table.
At step 2, find the statistics

U
(2)
ij = (Sij − Ê

(2)
ij )/

√

V̂
(2)
ij (5.2)

If |U
(2)
i2j2

| = max(i,j) |U
(2)
ij | > Ω2, reject Hi2j2 , record the sign of U

(2)
i2j2

and
continue.

The quantities Ê
(1)
ij , V̂

(1)
ij will be estimated under two conditions:

(I) all null hypotheses are assumed true
(II) Row sums, column sums are fixed

The quantities Ê
(2)
ij , V̂

(2)
ij will be estimated under two conditions:

(I) all null hypotheses except Hi1j1 are assumed true
(II) Row sums, column sums, and Si1j1 are fixed

In general, at step m, suppose Hi1j1 , . . . , Him−1jm−1
have been rejected. Then

Ê
(m)
ij and V̂

(m)
ij will be estimated under two conditions:

(I) all null hypotheses except Hi1j1 , . . . , Him−1jm−1
are assumed true

(II) Row sums, column sums, and Si1j1 , . . . , Sim−1jm−1
are fixed

Now we indicate exactly how Ê
(m)
ij and V̂

(m)
ij are estimated.

At step 1 let λij denote the mean of cell(i, j). Then estimate λij by λ̂ij , where

λ̂ij is the solution to the following set of equations
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∑

k,l

λkl = n (5.3)

R
∑

k=1

λkj = tj for j = 1, . . . , C − 1 (5.4)

C
∑

l=1

λil = Ri for i = 1, . . . , R− 1 (5.5)

λijλ(i+1)(j+1) = λ(i+1)jλi(j+1) for 1 ≤ i ≤ R− 1, 1 ≤ j ≤ C − 1 (5.6)

There are a total of 1 + (C − 1) + (R− 1) + (R− 1)(C − 1) = RC equations
in RC variables. The unique non-negative solution is λij = Ritj/n.

At step 2, suppose Hi1j1 is rejected by the end of step 1. Estimate the means
of cells again by using the same R×C equations, except now replace the equation

λi1j1λ(i1+1)(j1+1) = λ(i1+1)j1λi1(j1+1) (5.7)

with equation
∑

k≤i1,l≤j1

λkl = Si1j1 (5.8)

In general at step m, we remove (m− 1) equations of the type (5.6) and add
(m− 1) equations of the type (5.8).

To get the estimate V̂
(m)
ij we think of the cell frequencies xij as independent

normal variables with mean λij and variance λij. Recall Sij =
∑i

l=1

∑j
k=1xlk,

so S = AX for the appropriate A, It would follow that S ∼ N(Aλ, AΣA′) with
Σ = diag(λ11, . . . , λRC) being the covariance matrix of X . Having estimated

λij by λ̂ij we thus have an estimator of ΣS = AΣA′. However to find V̂
(m)
ij , we

compute the conditional covariance matrix of S under conditions:

(i) SiC , i = 1, . . . , R− 1 are known
(ii) SRj , j = 1, . . . , C − 1 are known
(iii) Si1j1 , . . . , Sim−1jm−1

are known.

The quantity V
(m)
ij represents the conditional variance of Sij . V

(m)
ij is a func-

tion of λij and is estimated accordingly. The computation of λ̂ij , Ê
(m)
ij and V̂

(m)
ij

is done as follows:
First, we solve the equations for estimating λij . This is done by transforming

the equation-solving problem into a minimization problem.
At step m, let

fm(λ) =

(

∑

k,l

λkl − n

)2

+
C−1
∑

j=1

(

R
∑

k=1

λkj − tj

)2

+
R−1
∑

i=1

(

C
∑

l=1

λil − Ri

)2

+

R−1
∑

i=1

C−1
∑

j=1

d2
ij (5.9)
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where

dij =

{

λijλ(i+1)(j+1) − λ(i+1)jλi(j+1) if Hij is not rejected before step m
∑

k≤i1,l≤j1
λkl − Sij otherwise

It is clear that fm(λ) ≥ 0 for all λ.

Let λ̂ be the unique non-negative solution of equations (5.3)–(5.8). This im-

plies fm(λ̂) = 0. Hence λ̂ is the point that minimizes fm. So by minimizing
fm, we can get the solution of equations (5.3)–(5.8). It is obvious that fm is a
convex function for λ ≥ 0, hence the minimization of fm can be done very easily
and efficiently. In our study, we use the nlm function in the popular R(2009)
software to minimize fm.

After we solve the equations, i.e, we get λ̂, we compute the conditional vari-

ance of Sij . This enables us to complete the computation of U
(m)
ij .

After the MRD stage, we proceed to stage 2, the screen stage. This time we
compute the statistics for each local 2× 2 table and find the P-values for these
statistics, comparing them to αL and αU . Then we proceed to stage 3, the sign
stage. Here we proceed as done in the 2 ×C case.

We conclude this section with:

Theorem 5.1. For an R × C contingency table, assuming either the product

multinomial model, full multinomial model or independent Poisson model, the

MRDSS method using Pearson’s Chi-square statistic or Fisher’s statistic in the

2 × C case is admissible.

Proof. Chen, Cohen, and Sackrowitz (2009) prove that for some exponential
family models adding a screen and sign stage to an MRD procedure main-
tains its admissibility property. A similar argument in this case can be used
to demonstrate that the screen and sign stage will enable an admissible MRD
procedure to maintain its admissibility property. Thus for MRDSS to be admis-
sible it suffices to prove that MRD is admissible. In Cohen, Sackrowitz, and Xu
(2009) MRD was shown to be admissible in a multivariate normal model where
residuals were defined as functions of the coefficients of the parameters to be
tested. For the R × C contingency table model the Sij , i = 1, . . . , R − 1;
j = 1, . . . , C− 1 are the coefficients of the parameters to be tested and suitably
centered and normalized they have the identical properties as the residuals Umj

in Cohen, Sackrowitz, and Xu (2009). That is, suppose we are examing the ad-

missibility of the individual test of Hij : µij = 0 vs Kij : µij 6= 0. Then |U
(m)
ij |

given in (5.1) and (5.2) and given implicitly for m > 2 decrease and then in-

crease as a function of Sij while all other Sij are fixed. Also all other |U
(m)
ij | do

not change. These are the properties needed to prove MRD is admissible.

Remark 5.2. In the case of a 2×C table Fisher’s test statistic can be used instead
of Pearson’s Chi-Square statistic and it too has the same required properties;
namely the statistic for testing Hij is decreasing and then increasing while other
Si′j′ remain fixed and all other Fisher statistics for hypotheses Hi′j′ remain
unchanged.
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6. R × C example

In this section we illustrate the method with an 3 × 3 table example. The data
to be used are shown below in Table 6.1.

The data are from Agresti (1984b):

Table 6.1

Cross-Classification of Attitude Toward Abortion by Amount of Schooling

Generally Disapprove Middle Position Generally Approve
Less than high school 209 101 237

High school 151 126 426
More than high school 16 21 138

There are a total of 2×2 = 4 local log odds ratios, i.e., a total of 4 hypotheses
to be tested.

For the MRD stage, we use critical values obtained from the significance level
1−(1−α)1/k, k = 1, . . . , 4 for our test statistics at step 4,3,2 and 1, respectively,
where α = 0.05. Hence the critical values are:

(Ω1, . . . ,Ω4) = (2.49, 2.39, 2.24, 1.96)

At stage 1 step 1, we first solve the equations (5.3)–(5.6) to get the estimated
mean of each cell given the row and column totals, under the assumption all
local log odds ratios equal to 0. The mean value of each cell is shown below in
Table 6.2.

Table 6.2

Step 1 – Expected cell frequencies

1 2 3
1 144.33 95.20 307.47
2 185.49 122.35 395.16
3 46.18 30.45 98.37

After this, we can compute the conditional variance of Sij . The conditional
variance is shown below in Table 6.3.

Table 6.3

Step 1 – Conditional variances of Sij

1 2 3
1 65.46 82.96 0.00
2 29.82 37.79 0.00
3 0.00 0.00 0.00

Note the zeros in Table 6.3 reflect the fact that the corresponding Sij vari-
ables are fixed.

Now, we can compute the test statistics U
(1)
ij , shown in Table 6.4.

The maximum of these is 7.99, which is greater than the critical value 2.49,
hence we reject the hypothesis H11 and continue to the next step. We also record
the sign of the test: +.
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Table 6.4

Step 1 – Test statistics U
(1)
ij

1 2
1 7.99 7.74
2 5.53 6.45

At step 2, we estimate the mean of each cell conditioned on the row and
column summation being fixed, and conditioned on all local log odds ratios
except µ11 are 0, and also conditioned on S11 fixed. Solve the subset of equations
(5.3)–(5.8) as explained earlier to get the estimated mean of each cell: shown in
Table 6.5.

Table 6.5

Step 2 – Expected cell frequencies

1 2 3
1 209 79.91 258.09
2 133.71 134.59 434.70
3 33.29 33.50 108.21

As in step 1, we can compute the conditional variance of Sij: conditioned on
SiC , SRj , S11 are known and fixed. The conditional variance of Sij are shown
below in Table 6.6:

Table 6.6

Step 2 – Conditional variances of Sij

1 2 3
1 0.00 41.36 0.00
2 21.58 34.71 0.00
3 0.00 0.00 0.00

Now we can compute the test statistics U
(2)
ij :

Table 6.7

Step 2 – Test statistics U
(2)
ij

1 2
1 3.28
2 3.72 5.06

The maximum of these is 5.06, which is greater than 2.39, so we reject H22

and continue to the next step. Also we record the sign of the test: +.
Step 3: We estimate the mean of each cell conditioned on the row and column

sum fixed, conditioned on all local log odds ratios (except µ11 and µ22) are 0,
and also conditioned on S11 and S22 are fixed. As in step 2, solve the subset set
of equations (5.3)–(5.8) to get the estimated mean of each cell.

Now, we can compute the conditional variance of Sij: conditioned on SiC , i =
1, . . . , R − 1, SRj , j = 1, . . . , C, S11 and S22 are all fixed. The conditional
variances of Sij are in Table 6.9.

The test statistics U
(3)
ij are in Table 6.10.
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Table 6.8

Step 3 – Expected cell frequencies

1 2 3
1 209 87.01 250.99
2 148.16 142.83 412.01
3 18.84 18.16 138

Table 6.9

Step 3 – Conditional variances of Sij

1 2 3
1 0.00 40.81 0.00
2 8.34 0.00 0.00
3 0.00 0.00 0.00

Table 6.10

Step 3 – Test statistics U
(3)
ij

1 2
1 2.19
2 0.98

The maximum of these is 2.19, which is smaller than the critical value 2.24,
So MRD stops here, and all remaining hypotheses are accepted.

Now the screening stage. The P-values based on Pearson’s Chi-square test
statistics for the 4 local 2 × 2 tables are shown below:

Table 6.11

Screen – local Pearson’s Chi-square P-values

1 2
1 0.002 0.024
2 0.265 0.011

If we choose αL = 0.005, αU = 0.05, then it is clear that screening stage does
not have any effect. So MRD+screening gives the same decisions as MRD.

It is clear that sign stage does not have any action either. So the decision of
MRDSS is: reject H11, H22 and accept H12, H21.

Thus there is evidence of opinion differences only at the extremes. That is,
the “generally disapprove” and “middle position” categories when paired with
“less than high school” and “high school” as well as “middle position” and
“generally approve” categories when paired with “high school” and “more than
high school”.

7. Simulation for R × C table

We did some simulations to compare our method, MRDSS, to Holm’s step down
method. FWER is controlled at level α = 0.05 for Holm’s step down (SD). For
the MRD stage of MRDSS we use critical values obtained from the normal

distribution based on significance levels 1−(1−α)
1

M+1−i in step i. Here α = .05.
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Table 7.1

Comparison of MRDSS to Holm’s step down (SD) for 3 × 3 tables

θ11 θ21 θ12 θ22 Type I Type II FWER % Power Incr
MRDSS SD MRDSS SD MRDSS SD

1 1.0 1.0 1.0 1.0 0.038 0.036 0.000 0.000 0.036 0.031
2 1.0 1.0 1.0 3.0 0.044 0.034 0.433 0.587 0.043 0.031 37.0
3 1.0 1.0 1.0 0.3 0.044 0.033 0.483 0.618 0.041 0.028 35.1
4 1.0 1.0 3.0 3.0 0.032 0.027 0.994 1.238 0.031 0.025 31.9
5 3.0 1.0 1.0 3.0 0.044 0.027 0.736 0.983 0.044 0.026 24.2
6 1.0 3.0 3.0 1.0 0.041 0.028 1.104 1.325 0.040 0.026 32.7
7 0.3 1.0 1.0 0.3 0.041 0.026 1.086 1.302 0.039 0.025 30.9
8 1.0 0.3 0.3 1.0 0.044 0.027 0.725 0.972 0.043 0.026 24.0
9 1.0 1.0 0.3 3.0 0.029 0.025 1.208 1.185 0.028 0.023 -2.9

10 1.0 1.0 0.3 0.3 0.030 0.024 0.992 1.227 0.029 0.022 30.4
11 1.0 3.0 3.0 3.0 0.022 0.013 1.651 1.979 0.022 0.013 32.1
12 1.0 0.3 0.3 0.3 0.020 0.015 1.338 1.677 0.020 0.015 25.6
13 0.3 3.0 3.0 3.0 0.000 0.000 2.379 2.304 0.000 0.000 -4.4
14 3.0 3.0 3.0 3.0 0.000 0.000 2.075 2.437 0.000 0.000 23.2
15 3.0 0.3 0.3 0.3 0.000 0.000 2.298 2.205 0.000 0.000 -5.2
16 0.3 0.3 0.3 0.3 0.000 0.000 2.073 2.412 0.000 0.000 21.4
17 1.0 1.0 1.0 0.5 0.037 0.028 0.812 0.869 0.035 0.024 43.1
18 0.5 1.0 1.0 0.5 0.035 0.026 1.630 1.757 0.034 0.024 52.5
19 1.0 0.5 0.5 1.0 0.034 0.022 1.510 1.682 0.034 0.021 53.9
20 1.0 1.0 0.5 3.0 0.025 0.022 1.414 1.450 0.024 0.021 6.6
21 1.0 1.0 0.5 0.5 0.026 0.018 1.549 1.741 0.025 0.017 74.3
22 1.0 0.5 0.5 0.5 0.019 0.011 2.264 2.554 0.019 0.011 65.1
23 0.5 3.0 3.0 3.0 0.000 0.000 2.695 2.711 0.000 0.000 1.3
24 3.0 0.5 0.5 0.5 0.000 0.000 3.120 3.154 0.000 0.000 4.0
25 0.5 0.5 0.5 0.5 0.000 0.000 3.059 3.453 0.000 0.000 72.0
26 1.0 1.0 1.0 2.0 0.043 0.032 0.787 0.860 0.042 0.028 51.5
27 1.0 1.0 2.0 2.0 0.029 0.023 1.554 1.740 0.028 0.021 71.6
28 2.0 1.0 1.0 2.0 0.035 0.024 1.511 1.675 0.035 0.023 50.7
29 1.0 2.0 2.0 1.0 0.036 0.024 1.632 1.757 0.035 0.023 51.6
30 1.0 2.0 2.0 2.0 0.018 0.012 2.387 2.626 0.018 0.012 63.9
31 2.0 2.0 2.0 2.0 0.000 0.000 3.061 3.463 0.000 0.000 74.9
32 1.0 1.0 0.5 2.0 0.024 0.024 1.726 1.718 0.024 0.021 -2.9
33 0.5 2.0 2.0 2.0 0.000 0.000 3.369 3.451 0.000 0.000 15.0
34 2.0 0.5 0.5 0.5 0.000 0.000 3.291 3.429 0.000 0.000 24.2

For the screen stage we use αL = 1 − (1 − α)1/M , αU = α = .05. For a 3 × 3
table, M = 4; for a 3 × 4 table, M = 6.

The type I and type II error columns reflect the average number of type I
and type II errors respectively.

We define the power of a MTP as:

power = 1 - E { # of type II errors } / # of true non-null hypotheses.

The percentage power increase of MRDSS relative to SD is defined as:

power incr = 100×(powerMRDSS - powerSD)/powerSD

We first list 34 sets of local odds ratios. For the 3×3 table, each set contains
4 local odds ratios.
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Table 7.2

Comparison of MRDSS to Holm’s step down (SD) for 3 × 4 tables

θ11 θ21 θ12 θ22 θ13 θ23 Type I Type II FWER % P.Inc
MRDSS SD MRDSS SD MRDSS SD

1 1.0 1.0 1.0 1.0 1.0 1.0 0.042 0.037 0.000 0.000 0.038 0.031
2 1.0 1.0 1.0 1.0 1.0 2.0 0.040 0.030 0.799 0.894 0.038 0.027 90.1
3 1.0 1.0 2.0 1.0 1.0 1.0 0.049 0.033 0.788 0.887 0.047 0.029 86.7
4 2.0 1.0 1.0 1.0 1.0 1.0 0.046 0.032 0.798 0.890 0.044 0.028 84.6
5 1.0 1.0 1.0 1.0 2.0 2.0 0.036 0.024 1.571 1.793 0.034 0.021 107.5
6 1.0 1.0 2.0 2.0 1.0 1.0 0.044 0.024 1.557 1.788 0.042 0.022 108.7
7 2.0 1.0 1.0 1.0 1.0 2.0 0.051 0.027 1.544 1.761 0.049 0.024 90.4
8 1.0 2.0 1.0 1.0 1.0 2.0 0.045 0.025 1.600 1.793 0.043 0.023 93.3
9 1.0 1.0 2.0 1.0 1.0 2.0 0.049 0.025 1.535 1.748 0.048 0.023 84.9

10 1.0 1.0 1.0 2.0 1.0 2.0 0.037 0.028 1.545 1.789 0.036 0.026 115.7
11 2.0 1.0 1.0 1.0 2.0 2.0 0.039 0.021 2.320 2.660 0.038 0.019 99.7
12 1.0 2.0 1.0 1.0 2.0 2.0 0.040 0.022 2.428 2.706 0.039 0.019 94.9
13 1.0 1.0 2.0 1.0 2.0 2.0 0.032 0.019 2.315 2.675 0.031 0.017 110.7
14 1.0 1.0 1.0 2.0 2.0 2.0 0.035 0.018 2.419 2.716 0.034 0.018 104.3
15 2.0 1.0 2.0 2.0 1.0 1.0 0.039 0.022 2.316 2.655 0.038 0.020 98.4
16 2.0 2.0 2.0 2.0 1.0 1.0 0.024 0.013 3.113 3.593 0.023 0.013 117.8
17 1.0 1.0 2.0 2.0 2.0 1.0 0.038 0.019 2.431 2.728 0.037 0.018 108.9
18 1.0 1.0 2.0 2.0 1.0 2.0 0.038 0.022 2.305 2.645 0.037 0.021 95.8
19 1.0 1.0 2.0 2.0 2.0 2.0 0.025 0.014 3.114 3.593 0.024 0.013 117.7
20 2.0 2.0 1.0 1.0 2.0 2.0 0.027 0.013 3.140 3.589 0.027 0.012 109.1
21 1.0 2.0 1.0 2.0 2.0 2.0 0.024 0.013 3.242 3.640 0.024 0.012 110.2
22 1.0 2.0 2.0 1.0 2.0 2.0 0.033 0.016 3.166 3.599 0.033 0.016 107.7
23 1.0 2.0 2.0 2.0 1.0 2.0 0.031 0.015 3.218 3.583 0.031 0.015 87.7
24 1.0 2.0 2.0 2.0 2.0 1.0 0.032 0.013 3.280 3.667 0.031 0.013 116.6
25 2.0 2.0 2.0 2.0 2.0 2.0 0.000 0.000 4.694 5.392 0.000 0.000 114.7
26 1.0 1.0 1.0 1.0 1.0 3.0 0.042 0.030 0.422 0.621 0.040 0.026 52.7
27 1.0 1.0 3.0 1.0 1.0 1.0 0.046 0.029 0.430 0.647 0.045 0.026 61.5
28 3.0 1.0 1.0 1.0 1.0 1.0 0.045 0.033 0.424 0.626 0.042 0.029 54.1
29 1.0 1.0 1.0 1.0 3.0 3.0 0.036 0.029 1.044 1.368 0.034 0.025 51.3
30 1.0 1.0 3.0 3.0 1.0 1.0 0.047 0.025 0.965 1.350 0.046 0.024 59.2
31 3.0 1.0 1.0 1.0 1.0 3.0 0.053 0.032 0.763 1.149 0.051 0.029 45.4
32 1.0 3.0 1.0 1.0 1.0 3.0 0.047 0.030 1.011 1.342 0.045 0.027 50.2
33 1.0 1.0 3.0 1.0 1.0 3.0 0.048 0.025 0.768 1.134 0.046 0.022 42.2
34 1.0 1.0 1.0 3.0 1.0 3.0 0.040 0.029 0.954 1.321 0.038 0.026 54.1
35 3.0 1.0 1.0 1.0 3.0 3.0 0.038 0.021 1.446 1.919 0.036 0.020 43.7
36 1.0 3.0 1.0 1.0 3.0 3.0 0.039 0.021 1.715 2.143 0.038 0.019 50.0
37 1.0 1.0 3.0 1.0 3.0 3.0 0.035 0.024 1.471 1.951 0.033 0.022 45.7
38 1.0 1.0 1.0 3.0 3.0 3.0 0.038 0.020 1.686 2.149 0.037 0.019 54.4
39 3.0 1.0 3.0 3.0 1.0 1.0 0.042 0.024 1.348 1.850 0.041 0.023 43.7
40 3.0 3.0 3.0 3.0 1.0 1.0 0.025 0.014 2.211 2.755 0.024 0.013 43.8
41 1.0 1.0 3.0 3.0 3.0 1.0 0.045 0.022 1.723 2.188 0.044 0.021 57.2
42 1.0 1.0 3.0 3.0 1.0 3.0 0.039 0.022 1.351 1.844 0.039 0.022 42.6
43 1.0 1.0 3.0 3.0 3.0 3.0 0.026 0.016 2.216 2.738 0.026 0.016 41.3
44 3.0 3.0 1.0 1.0 3.0 3.0 0.032 0.016 2.213 2.724 0.031 0.016 40.1
45 1.0 3.0 3.0 1.0 3.0 3.0 0.036 0.020 2.252 2.793 0.036 0.019 44.8

For each set, we generate N = 10,000 3 × 3 tables from independent Poisson
distributions with parameters in a 3× 3 matrix λ. The matrix λ is chosen such
that the true local odds ratios are listed in the left 4 columns of Table 7.1, and
the row and column sum of λij are 60. Hence local odds ratios and row/col sum
of λij uniquely define λ, λ itself is not shown in the table.
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Table 7.3

(Continue)Comparison of MRDSS to Holm’s step down (SD) for 3 × 4 tables

θ11 θ21 θ12 θ22 θ13 θ23 Type I Type II FWER % P.Inc
MRDSS SD MRDSS SD MRDSS SD

46 1.0 3.0 3.0 3.0 1.0 3.0 0.035 0.015 2.197 2.762 0.035 0.015 45.6
47 1.0 3.0 3.0 3.0 3.0 1.0 0.036 0.015 2.519 3.091 0.036 0.015 62.9
48 3.0 3.0 3.0 3.0 3.0 3.0 0.000 0.000 3.473 4.241 0.000 0.000 43.7
49 1.0 1.0 1.0 1.0 0.5 2.0 0.033 0.029 1.781 1.784 0.032 0.026 1.6
50 1.0 1.0 1.0 2.0 0.5 1.0 0.038 0.031 1.688 1.789 0.037 0.028 47.8
51 1.0 1.0 2.0 1.0 0.5 1.0 0.034 0.028 1.789 1.782 0.032 0.025 -3.4
52 1.0 2.0 1.0 1.0 0.5 1.0 0.040 0.029 1.659 1.778 0.038 0.026 53.6
53 2.0 1.0 1.0 1.0 0.5 1.0 0.031 0.024 1.717 1.784 0.029 0.022 31.1
54 1.0 1.0 2.0 0.5 1.0 1.0 0.038 0.025 1.743 1.773 0.036 0.023 13.5
55 1.0 2.0 1.0 0.5 1.0 1.0 0.031 0.025 1.766 1.768 0.029 0.022 0.6
56 2.0 1.0 1.0 0.5 1.0 1.0 0.034 0.024 1.677 1.783 0.033 0.022 48.9
57 0.5 1.0 1.0 1.0 2.0 2.0 0.026 0.021 2.437 2.675 0.025 0.019 72.9
58 1.0 0.5 1.0 1.0 2.0 2.0 0.027 0.020 2.452 2.688 0.026 0.019 75.6
59 1.0 1.0 0.5 1.0 2.0 2.0 0.029 0.021 2.526 2.676 0.028 0.019 46.1
60 1.0 1.0 1.0 0.5 2.0 2.0 0.027 0.022 2.571 2.691 0.026 0.020 39.1
61 2.0 1.0 1.0 1.0 0.5 2.0 0.029 0.020 2.602 2.661 0.028 0.018 17.4
62 1.0 2.0 1.0 1.0 0.5 2.0 0.033 0.021 2.573 2.683 0.031 0.020 34.8
63 1.0 1.0 2.0 1.0 0.5 2.0 0.036 0.019 2.601 2.654 0.035 0.017 15.4
64 1.0 1.0 1.0 2.0 0.5 2.0 0.028 0.020 2.505 2.695 0.026 0.018 62.3
65 2.0 2.0 2.0 2.0 0.5 0.5 0.000 0.000 4.914 5.360 0.000 0.000 69.6
66 2.0 2.0 0.5 0.5 2.0 2.0 0.000 0.000 5.135 5.322 0.000 0.000 27.5
67 0.5 0.5 2.0 2.0 2.0 2.0 0.000 0.000 4.897 5.357 0.000 0.000 71.7
68 2.0 0.5 2.0 0.5 2.0 2.0 0.000 0.000 5.056 5.361 0.000 0.000 47.6
69 0.5 2.0 2.0 2.0 2.0 0.5 0.000 0.000 5.166 5.355 0.000 0.000 29.3
70 2.0 0.5 2.0 2.0 0.5 2.0 0.000 0.000 5.026 5.296 0.000 0.000 38.3

We compare the expected number of type I errors, expected number of type
II errors and FWER of MRDSS and SD. We also give the percentage power
increase of MRDSS relative to SD.

For the 3×3 table, note that both MRDSS and SD control FWER at α = .05.
Also note that in 29 out of 33 cases MRDSS had an increase in power over SD
and in many cases the increase was substantial.

In Table 7.2 and 7.3, we list the simulation results for a 3 × 4 table. There
are a total of 70 configurations of local odds ratios. For each row, the row sum
of the Poisson parameter λ is 80, and for each column, the column sum is 60.

Note that MRDSS strongly controls FWER at level α = .05 in all 70 cases,
except one (where MRDSS has a FWER = 0.051). We also compare the per-
centage power increase of MRDSS relative to stepdown method. MRDSS had
an increase in power with only one exception. The increase was substantial in
most cases.
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