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1. Introduction

Let {Xu,v : u, v ∈ Z} be a homogeneous first-order intrinsic autoregression
on the two-dimensional rectangular lattice Z

2 [12, 3] with generalized spectral
density function

f(w, η) = κ (1 − 2a cosw − 2b cos η)
−1

for w ∈ (−π, π], η ∈ (−π, π] and the conditional expectation structure

E
(
Xu,v | · · ·

)
= a (xu−1,v + xu+1,v) + b (xu,v−1 + xu,v+1) , (1)

where a > 0, b > 0, a + b = 1
2 and Var (Xu,v | · · · ) = κ. We can assume without

loss of generality that κ = 1 and that {Xu,v} is Gaussian, see [4]. It follows that
the difference Xu,v − Xu+s,v+t has a well defined distribution with zero mean
and lag (s, t) variogram

νst(a, b) :=
1

π2

∫ π

0

∫ π

0

1 − cos(sx) cos(ty)

1 − 2a cosx − 2b cos y
dxdy . (2)
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The computation of (2), both analytically and numerically, has been a subject
of considerable interest. The symmetric case a = b = 1/4 was considered by
McCrea and Whipple [14], Spitzer [20] and Besag and Kooperberg [3]. Besag and
Mondal [4] derived explicit expressions for νs,s and νs,0 for the asymmetric case
with the latter expressed as a finite sum of incomplete beta functions. Duffin
and Shaffer [9, Theorem 4] and Besag and Mondal [4, Theorem 2] provided
asymptotic expansions for νs,t in terms of r =

√
4bs2 + 4at2 for the symmetric

and asymmetric cases. Their approach was to exploit a recurrence equation with
respect to integer time variables s and t [4, Eq. (4)]. See also [2] and [12].

The aim of this note is to derive an explicit expression for (2) for general s, t,
a and b. Our approach to find the explicit formula for νst(a, b) is quite different.

The expression given in Section 2 involves Appell’s hypergeometric function
of the fourth kind [10, page 1008] defined by

F4

[
α, β; γ, γ′; x, y

]
=

∞∑

j=0

∞∑

k=0

(α)j+k(β)j+k

(γ)j (γ′)k

xj

j!

xk

k!
(3)

for
√
|x|+

√
|y| < 1, where (w)ℓ := w(w + 1) · · · (w + ℓ − 1) denotes Pochham-

mer symbol with (w)0 ≡ 1. Various particular cases of the general expression,
involving simpler functions, are derived in Section 3.

A transformation formula between F4 and Appell’s hypergeometric function,
F2, defined by

F2

[
α, β, β′; γ, γ′; x, y

]
:=

∞∑

j=0

∞∑

k=0

(α)j+k(β)j(β
′)k

(γ)j (γ′)k

xj

j!

xk

k!
|x|+ |y| < 1

is [19, §5.4]

F4

[
α, (α + 1)/2; γ + 1

2 , γ′ + 1
2 ; x2, y2

]

= (1 + x + y)−α F2

[
α, γ, γ′; 2γ, 2γ′;

2x

x + y + 1
,

2y

x + y + 1

]
.

This formula has been proved earlier (in equivalent form) in [1, p. 11, Eq. (3.1)],
see [22, Eq. (175), §9.4.] too. In-built numerical routines for the computation
of F2 are available, see [8, §3.1.3] and especially [7, §2]. Reduction procedures
for F4 to lower order analytical expressions have been developed by Niukkanen
[15], Paramonova and Niukkanen [16] and references therein.

2. Main result

Theorem 1 expresses (2) in terms of Appell’s hypergeometric function of the
fourth kind defined in (3). It applies for |a|+ |b| < 1

2 . The case |a| + |b| = 1
2 is

considered by Theorem 2.
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Theorem 1. For all s, t ∈ N0 = N ∪ {0}, |a|+ |b| < 1
2 we have

νst(a, b) = F4

[
1
2 , 1; 1, 1; 4a2, 4b2

]
−

(
s + t

s

)
asbt

× F4

[
1
2(s + t + 1), 1

2(s + t) + 1; s + 1, t + 1; 4a2, 4b2
]
. (4)

Proof. By equation 3.915(2) in [10], we can write

νst(a, b) =
1

π2

∫ π

0

∫ π

0

∫ ∞

0

(
1 − cos(sx) cos(ty)

)
e−(1−2a cos x−2bcosy)zdxdydz

=

∫ ∞

0

e−x
(
J0(−2axi)J0(−2bxi)− is+tJs(−2axi)Jt(−2bxi)

)
dx, (5)

where i =
√
−1 and Js(x) denotes the Bessel function of the first kind of order

s. Setting

Ist(a, b) := is+t

∫ ∞

0

e−xJs(−2axi)Jt(−2bxi) dx,

we can rewrite (5) as

νst(a, b) = I00(a, b) − Ist(a, b) . (6)

Consider now, for instance, the Laplace-transform formula 3.12.15(20) in [17],
viz

∫ ∞

0

e−pttλ Jµ(At)Jν(Bt) dt =
AµBν

2µ+νpλ+µ+ν+1

Γ(λ + µ + ν + 1)

Γ(µ + 1)Γ(ν + 1)

× F4

[
1
2 (λ + µ + ν + 1), 1

2(λ + µ + ν + 2); µ + 1, ν + 1; −A2

p2
,−B2

p2

]
(7)

for ℜ{λ+µ+ν} > −1, ℜ{p} > |ℑ{A}|+|ℑ{B}|. Setting p = 1, λ = 0, A = −2ai,
B = −2bi in (7), one deduces

Ist(a, b) =

(
s + t

s

)
asbt F4

[
1
2(s + t + 1), 1

2(s + t)+ 1; s + 1, t + 1; 4a2, 4b2
]
. (8)

The result of the theorem follows from (6) and (8).

Remark 1. The explicit expression in (4) has some applicability. Although one

assumes that |a| + |b| = 1
2

in (1) the case |a|+ |b| < 1
2

has been of interest. For

instance, consider Example 3.3 in [3]. This example is based on the data provided

by Table 2 in [11]. The data are the yields from a 28×7 uniformity trial on spring

barley, carried out in 1979 at the Plant Breeding Institute, Cambridge, England.

[11] fitted the model given by (1) to the data and found that the maximum

likelihood estimates are â = 0.4848 and b̂ = 0.0132. So, for this example, we

have â + b̂ = 0.4980 < 1
2 .

Theorem 2. For all a ∈
(
0, 1

2

)
we have

νst

(
a, 1

2 − a
)

= lim
θ→0+

νst

(
a
√

1 − θ,
(

1
2 − a

)√
1 − θ

)
. (9)
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Proof. Consider the Laplace transform (7) for p = (1 − θ)−1/2 and λ = 0. The
resulting Appell’s function F4 obviously converges on the edge a + b = 1

2 of the
convergence region. Noting that νst is a difference of two F4 terms, the result
follows by Abel’s summation method.

Remark 2. The limit in (9) gives an approximation formula, viz

νst(a, 1
2 − a) ≈ F4

[
1
2 , 1; 1, 1; 4a2(1 − θ), 4

(
1
2 − a

)2
(1 − θ)

]

−
(

s + t

s

)
as

(
1
2 − a)t

(1 − θ)−(s+t)/2
F4

[
1
2
(s + t + 1), 1

2
(s + t) + 1;

s + 1, t + 1; 4a2(1 − θ), 4
(

1
2
− a

)2
(1 − θ)

]
, (10)

where the quality of approximation is controlled by suitably chosen small θ > 0.

Remark 3. To show the usefulness of (9) we compared it with the corresponding

formula given in Besag and Mondal [4]. We computed both these formulas for

a = 0.1 and s, t = 6, 7, . . . , 10. Table 1 shows the exact and approximate values

of νst.

Table 1

Exact and approximate values of νst(0.1,0.4) for s, t = 6,7, . . . ,10

s t Exact Approx in [4] Using (9)
6 6 2.9893 2.9883 2.9887
6 7 3.0170 3.0161 3.0169
6 8 3.0468 3.0459 3.0462
6 9 3.0780 3.0771 3.0778
6 10 3.1102 3.1094 3.1095
7 6 3.0899 3.0893 3.0895
7 7 3.1117 3.1110 3.1111
7 8 3.1354 3.1347 3.1348
7 9 3.1605 3.1599 3.1599
7 10 3.1869 3.1863 3.1864
8 6 3.1813 3.1808 3.1810
8 7 3.1987 3.1982 3.1983
8 8 3.2178 3.2173 3.2176
8 9 3.2384 3.2379 3.2380
8 10 3.2602 3.2597 3.2598
9 6 3.2645 3.2641 3.2643
9 7 3.2786 3.2783 3.2785
9 8 3.2943 3.2939 3.2940
9 9 3.3114 3.3110 3.3112
9 10 3.3297 3.3292 3.3293
10 6 3.3406 3.3404 3.3406
10 7 3.3523 3.3520 3.3520
10 8 3.3654 3.3651 3.3653
10 9 3.3798 3.3794 3.3795
10 10 3.3952 3.3949 3.3952

It is evident from Table 1 that our formula performs consistently better than

that due to [4]. Note that the exact values and the approximate values due to [4]
were taken from Table 1 in [4]. The expression in (9) was computed using the

in-built routines mentioned in Section 1.
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3. The symmetric case a = b = 1/4

Here, we present technical details to calculate νs,t

(
1
4
, 1

4

)
. Using Burchnall-formula

[22, §9.4, Eq. (149)], we can transform

F4

[
α, β; γ, γ′; x, x

]
= 4F3

[
α, β, 1

2(γ + γ′), 1
2 (γ + γ′ − 1)

γ, γ′, γ + γ′ − 1
;
;

4x

]
.

The asymptotics of the generalized hypergeometric series p+1Fp, p ≥ 3 have
been studied by Bühring and Srivastava [6], Saigo and Srivastava [18] and by
A.K. Srivastava [21]. Since we are faced with

4F3

[ 1
2 (s + t + 1), 1

2(s + t) + 1, 1
2(s + t) + 1, 1

2 (s + t + 1)
s + 1, t + 1, s + t + 1

;
;

1
]
, (11)

we have a hypergeometric term

4F3

[ α1, α2, α3, α4

β1, β2 , β3

;
;

1
]

that is zero-balanced, i.e. we have α1 +α2 +α3 +α4 = β1 +β2 +β3. To account
for the asymptotics of this 4F3[· · · ; 1 − θ] as θ → 0+, consider equation (4.2)
in [6] for p = 3:

4F3

[
α1, α2, α3, α4

β1, β2, β3

;
;

1 − θ
]

=
1

Γ

{
L + B − ln θ

}
+ O(θ) + O(θ ln θ) (12)

valid for θ → 0+. Here

Γ =
Γ(α1)Γ(α2)Γ(α3)Γ(α4)

Γ(β1)Γ(β2)Γ(β3)
(13)

and
L = −2γ − Ψ(α1) − Ψ(α2) ,

where γ = −Ψ(1) denotes the Euler-Mascheroni constant and Ψ(x) = d
dx ln Γ(x)

denotes the digamma function. The B in (12) can be represented by various
forms, see (4.6), (4.7), and (4.12) in [6]. An example is [6, Eq. (4.7)]:

B =

∞∑

k=1

(β3 + β1 − α4 − α3)k(β3 + β2 − α4 − α3)k

k(α1)k(α2)k

× 3F2

[
β3 − α3, β3 − α4, −k

β3 + β1 − α4 − α3, β3 + β2 − α4 − α3

;
;

1

]
. (14)

An advantage of this formula is that it is a single infinite series of hypergeometric
terms and the series for each hypergeometric term is finite because of the −k in
the numerator. Combining (11), (13) and (14), we can write Lst := L, Bst := B
and Γst := Γ as

Bst =

∞∑

k=1

4k
(
s + 1

2

)
k

(
t + 1

2

)
k

k(s + t + 1)2k
3F2

[ 1
2(s + t), 1

2(s + t + 1), −k

s + 1
2 , t + 1

2

;
;

1

]
(15)
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and

Γst = Γ =

(
s + t

s

)
π

4s+t
,

respectively. Note, for instance, that

Bss = Ψ(s + 1) − Ψ
(
s + 1

2

)
s ∈ N0 , (16)

see the Appendix. Finally, routine calculations show that:

νst

(√
1−θ
4 ,

√
1−θ
4

)
=

ln4 + B00 − ln θ

π

−
(

s + t

s

)
(1 − θ)(s+t)/2

4s+tΓst

{
Lst + Bst − ln θ

}
+ O(θ) + O(θ ln θ)

=
1

π

{
ln 16 + B00 + 2γ + Ψ

(
1
2 (s + t + 1)

)
+ Ψ

(
1
2(s + t) + 1

)
− Bst

}

+ O(θ) + O(θ ln θ) θ → 0+ (17)

for all (s, t) ∈ N
2
0.

Theorem 3. For all s, t ∈ N0 we have

νst

(
1
4
, 1

4

)
=

1

π

{
ln 4 + 2

s+t∑

k=1

1

k
− Bst

}
. (18)

Proof. In (17) assume that s+ t is even. So, applying properties of the digamma
function, Ψ, to expression (17), we conclude

Ψ
(

1
2(s + t + 1)

)
+ Ψ

(
1
2 (s + t) + 1

)
= −2γ − ln 4 +

1

2
(s+t)−1∑

k=0

1

k + 1
2

+

1

2
(s+t)∑

k=1

1

k
.

For odd s + t repeat this procedure.

Corollary 3.1. For all s ∈ N0,

νss

(
1
4 , 1

4

)
=

4

π

s−1∑

k=0

1

2k + 1
. (19)

Proof. Consider (18) for s = t. By (16) it follows

νs,s

(
1
4 , 1

4

)
=

2

π

{
ln 4 + γ + Ψ

(
s + 1

2

)}
=

2

π

{
ln 4 + γ + Ψ

(
1
2

)
+

s−1∑

k=0

1

k + 1
2

}
,

so the result.

Remark 4. The equation (19) is well-known in the literature, see [3, Example
3.2], where the authors refer back to [20, p. 148].



T.K. Pogány, S. Nadarajah/The variogram of first-order intrinsic autoregressions 382

Acknowledgement

The work of the first author was supported in part by Research Project No. 112-
2352818-2814 of Ministry of Sciences, Education and Sports of Croatia. Both
authors would like to thank the Editor and the referee for carefully reading the
paper and for their comments which greatly improved the paper.

Appendix

Here we prove (16). Using the transformation given by Bühring [5, Eq. (4.1)],
one can express Bst in (15) as

Bst =

∞∑

k=1

4k
(
s + 1

2

)
k

(
1
2
(t − s + 1)

)
k

k
(

1
2(s + t + 1)

)
k

(
1
2 (s + t) + 1

)
k

3F2

[ 1
2(s + t), 1

2 (s− t), −k

s + 1
2 , 1

2(s − t + 1) − k

;
;
1

]
.

If s = t then the hypergeometric term reduces to 1, so

Bss =

∞∑

k=1

(
1
2

)
k

k (s + 1)k
=

∫ 1

0

∞∑

k=1

(
1
2

)
k
xk−1

(s + 1)k
dx

=
1

2(s + 1)

∫ 1

0

∞∑

k=1

(
3
2

)
k−1

(1)k−1

(s + 2)k

xk−1

(k − 1)!
dx

=
1

2(s + 1)

∫ 1

0
2F1

[ 3
2 , 1
s + 2

;
;

x
]
dx

=
1

2(s + 1)
3F2

[ 3
2
, 1, 1

s + 2, 2
;
;

1
]

= Ψ
(
s + 1

)
− Ψ

(
s + 1

2

)
,

where the last two steps follow by equation 1.512 (5) in [10] and equation
3.13 (42) in [13], respectively. The proof is complete.
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