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Abstract. Consider a random walk {Xn :n ≥ 0} in an elliptic i.i.d. environ-
ment in dimensions d ≥ 2 and call P0 its averaged law starting from 0. Given
a direction l ∈ S

d−1, Al = {limn→∞ Xn · l = ∞} is called the event that
the random walk is transient in the direction l. Recently Simenhaus proved
that the following are equivalent: the random walk is transient in the neigh-
borhood of a given direction; P0-a.s. there exists a deterministic asymptotic
direction; the random walk is transient in any direction contained in the open
half space defined by this asymptotic direction. Here we prove that the fol-
lowing are equivalent: P0(Al ∪ A−l ) = 1 in the neighborhood of a given
direction; there exists an asymptotic direction ν such that P0(Aν ∪ A−ν) = 1
and P0-a.s we have limn→∞ Xn/|Xn| = 1Aν

ν − 1A−ν
ν; P0(Al ∪ A−l ) = 1

if and only if l ·ν �= 0. Furthermore, we give a review of some open problems.

1 Introduction

For each site x ∈ Z
d , consider the vector ω(x) := {ω(x, e) : e ∈ Z

d, |e| = 1} such
that ω(x, e) ∈ [0,1] and

∑
|e|=1 ω(x, e) = 1. We call the set of possible values of

these vectors P and define the environment ω = {ω(x) :x ∈ Z
d} ∈ � := P Z

d
. We

define a random walk on the random environment ω, as a random walk {Xn :n ∈ N}
with a transition probability from a site x ∈ Z

d to a nearest neighbor site x + e

with |e| = 1 given by ω(x, e). Let us call Px,ω the law of this random walk starting
from site x in the environment ω. Let P be a probability measure on � such that
the coordinates {ω(x)} of ω are i.i.d. and such that the environment ω is elliptic,
which means that P(mine ω(0, e) > 0) = 1. On the other hand, whenever there is a
constant κ > 0 such that P(mine ω(0, e) ≥ κ) = 1, we say the environment is uni-
formly elliptic. We call Px,ω the quenched law of the random walk in random en-
vironment (RWRE), starting from site x. Furthermore, we define the averaged (or
annealed) law of the RWRE starting from x by Px := ∫

� Px,ω dP. In this note we
discuss some aspects of RWRE related to the a.s. existence of an asymptotic direc-
tion in dimension d ≥ 2, briefly reviewing some of the open questions which have
been unsolved and proving an improved version of a recent theorem of Simenhaus
on the a.s. existence of an asymptotic direction.
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Some very fundamental and natural questions about this model remain open.
Given a vector l ∈ R

d\{0}, define the event

Al :=
{

lim
n→∞Xn · l = ∞

}
.

Whenever Al occurs, we say that the random walk is transient in direction defined
by l. Let also

Bl :=
{

lim inf
n→∞

Xn · l
n

> 0
}
.

Whenever Bl occurs, we say that the random walk is ballistic in direction defined
by l. Recently, Sabot and Tournier showed in [4] and [12], that there exist examples
of RWRE in elliptic i.i.d. environments in dimensions d ≥ 2 wich are transient in
a given direction but are not ballistic in that direction. Nevertheless, the following
question remains open.

Open Problem 1.1. For any RWRE in a uniformly elliptic i.i.d. environment in
dimensions d ≥ 2, does transience in direction l already imply ballisticity in direc-
tion l?

Some partial progress related to this question has been achieved by Sznitman
and Zerner [10], and later by Sznitman in [7–9], which we will discuss below.
Under the assumption of uniform ellipticity the following lemma, which we call
Kalikow’s zero–one law, was proved by Kalikow in [2] (see also Lemma 1 in
Sznitman and Zerner [10]). Thereafter, Zerner and Merkl derived the correspond-
ing result under the assumption of ellipticity only (cf. Proposition 3 in [15]).

Lemma 1.2 (Kalikow, Sznitman–Zerner). For any RWRE in an elliptic i.i.d. en-
vironment and l ∈ S

d−1,

P0(Al ∪ A−l) = 0 or 1.

On the other hand, in dimension d = 1 a zero–one law holds, that is, P0(Al) ∈
{0,1}. Zerner and Merkl, proved the following (see Theorem 1 in [15] and a sim-
plified proof in [14]).

Theorem 1.3 (Zerner–Merkl). Consider an RWRE in an elliptic i.i.d. environ-
ment in dimension d = 2. Then, for l ∈ S

1,

P0(Al) = 0 or 1.

Nevertheless, we still have the following open problem.
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Open Problem 1.4. Consider an RWRE in an elliptic i.i.d. environment in dimen-
sions d ≥ 3. Does

P0(Al) ∈ {0,1}
hold for all l ∈ S

d−1.

Combining Kalikow’s zero–one law with the directional law of large numbers
results of Sznitman and Zerner [10] as well as Zerner [13] one obtains the follow-
ing theorem.

Theorem 1.5 (Sznitman–Zerner). Given an RWRE in an elliptic i.i.d. environ-
ment in dimensions d ≥ 2, there exist a direction ν ∈ S

d−1 and v1, v2 ∈ [0,1] such
that P0-a.s.

lim
n→∞

Xn

n
= v1ν1Aν − v2ν1A−ν .

Indeed, we start with the following version of the directional law of large num-
bers. Theorem 3.2.2 of [11], the proof of which can be performed in the same
manner with the assumption of ellipticity only instead of uniform ellipticity, states
that for l ∈ S

d−1 with

P0(Al ∪ A−l) = 1 (1.1)

there exist vl, v−l ∈ [0,1] such that P0-a.s.

lim
n→∞

Xn · l
n

= vl1Al
− v−l1A−l

. (1.2)

Combining this with Theorem 1 of [13] we may omit assumption (1.1) and still
obtain (1.2). Having (1.2) for the elements l = e1, . . . , ed of the standard basis
of R

d, we obtain that limn→∞ Xn/n exists P0-a.s. and may take values in a set of
cardinality 2d . Employing the same argument as Goergen in page 1112 of [1] we
now obtain that P0-a.s. limn→∞ Xn/n takes two values at most. Indeed, if there
existed v1 and v2 noncolinear with P0(limn→∞ Xn/n = vi) > 0 for i ∈ {1,2}, then
by (1.2) one obtains that l · v1 = vl = l · v2 for each l such that l · v1, l · v2 > 0.

Letting l vary among a sufficiently rich set of such vectors, we conclude v1 = v2,

a contradiction. This yields Theorem 1.5.
Whenever limn→∞ Xn/|Xn| exists P0-a.s. we call this limit the asymptotic di-

rection and we say that a.s. an asymptotic direction exists. The existence of an
asymptotic direction can already be established assuming some of the conditions
introduced by Sznitman which imply ballisticity. Let γ ∈ (0,1) and l ∈ S

d−1. By
definition, condition (T )γ holds relative to l if for all l′ ∈ S

d−1 in a neighborhood
of l,

lim sup
L→∞

L−γ logP0({XTU
l′,b,L

· l′ < 0}) < 0, (1.3)
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for all b > 0, where Ul′,b,L = {x ∈ Z
d :−bL < x · l′ < L} is a slab and TUl′,b,L

=
inf{n ≥ 0 :Xn /∈ Ul′,b,L} is the first exit time of this slab. On the other hand, one
says that condition (T ′) holds relative to l if condition (T )γ holds relative to l for
every γ ∈ (0,1). It is known that whenever the environment is elliptic and i.i.d.,
for each γ ∈ (0,1) condition (T )γ relative to l implies transience in direction l

and that a.s. an asymptotic direction exists which is deterministic. Also, whenever
the environment is uniformly elliptic and i.i.d., Sznitman proved [9] that for each
γ ∈ (1/2,1), condition (T )γ relative to l implies condition (T ′), which in turn
implies ballisticity. One of the open problems related to condition (T )γ is the
following.

Open Problem 1.6. Consider a RWRE in an elliptic i.i.d. environment. Does (1.3)
for some l′ ∈ S

d−1 already imply (T )γ relative to l′?

Recently in [5], Simenhaus established the following theorem which gives
equivalent conditions for the existence of an a.s. asymptotic direction and showing
that transience in a neighborhood of a given direction implies that an a.s. asymp-
totic direction exists.

Theorem 1.7 (Simenhaus). Consider a RWRE in an elliptic i.i.d. environment.
Then the following are equivalent:

(a) There exists a nonempty open set O ⊂ S
d−1 such that

P0(Al) = 1 ∀l ∈ O. (1.4)

(b) There exists ν ∈ S
d−1 such that P0-a.s.

lim
n→∞

Xn

|Xn| = ν.

(c) There exists ν ∈ S
d−1 such that P0(Al) = 1 for all l ∈ S

d−1 with l · ν > 0.

The example of Sabot and Tournier [4,12] of a RWRE in an elliptic i.i.d. en-
vironment which is transient but not ballistic in a given direction, shows that the
above thoerem does apply in nontrivial situations. On the other hand, it is natural
to wonder if there exists a statement analogous to Theorem 1.5, but related only to
the existence of a possibly nondeterministic asymptotic direction. Here we answer
affirmatively this question proving the following generalization of Theorem 1.7.

Theorem 1.8. Consider a RWRE in an elliptic i.i.d. environment. Then the follow-
ing are equivalent:

(a) There exists a nonempty open set O ⊂ S
d−1 such that

P0(Al ∪ A−l) = 1 ∀l ∈ O. (1.5)
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(b) There exist d linearly independent unit vectors l1, . . . , ld ∈ R
d such that

P0(Alk ∪ A−lk ) = 1 ∀k ∈ {1, . . . , d}. (1.6)

(c) There exists ν ∈ S
d−1 with P0(Aν ∪ A−ν) = 1 such that P0-a.s.

lim
n→∞

Xn

|Xn| = 1Aνν − 1A−ν ν. (1.7)

(d) There exists ν ∈ S
d−1 such that

P0(Al ∪ A−l) = 1

if and only if l ∈ S
d−1 is such that l · ν �= 0. In this case, P0(Al�Aν) = 0 and

P0(A−l�A−ν) = 0 for all l such that l · ν > 0.

If condition (1.5) is fulfilled but (1.4) is not, then if asymptotic directions exist
we have to expect at least (and as it turns out at most, see also Proposition 1 in
[5]) two of them. However, in dimensions d ≥ 3, it is not known whether condi-
tion (1.5) can be fulfilled while (1.4) is not. In fact, if the statement of the Conjec-
ture 1.4 holds, which is true in dimensions d = 2 [15], then the two conditions are
equivalent. Note that due to Kalikow’s zero–one law, condition (d) of Theorem 1.8
yields a complete characterisation of P0(Al ∪ A−l) for all l ∈ S

d−1. As a conse-
quence of this result, we obtain an a priori sharper version of (c) in Theorem 1.7:

(c′) There exists ν ∈ S
d−1 such that P0(Al) = 1 for all l ∈ S

d−1 with l · ν > 0 and
P0(Al) = 0 if l · ν ≤ 0.

This observation and Theorem 1.3 imply that in dimension d = 2 there are at most
three possibilities for the values of the set of probabilities {P0(Al) : l ∈ S

d−1}.
Corollary 1.9. Consider a RWRE in an elliptic i.i.d. environment in dimension
d = 2. Then necessarily, only one of the following is satisfied:

(a) For all l, P0(Al) = 0.
(b) There exists a ν ∈ S

d−1 such that P0(Aν) = 1 while P0(Al) = 0 for l �= ν.
(c) There exists a ν ∈ S

d−1 such that P0(Al) = 1 for l such that l · ν > 0 while
P0(Al) = 0 for l such that l · ν ≤ 0.

The following corollary, which can be deduced from Theorem 1.8, shows that
knowing that there is an l∗ such that P0(Al∗) = 1 and P0(Al) > 0 for all l in a
neighborhood of l∗, determines the value of P0(Al) for all directions l.

Corollary 1.10. Consider a RWRE in an elliptic i.i.d. environment. The following
are equivalent:

(a) There exists l∗ ∈ S
d−1 and some neighborhood U (l∗) such that P0(Al∗) = 1

and P0(Al) > 0 for all l ∈ U (l∗).
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(b) There exists ν ∈ R
d such that P0(Al) = 1 for l such that l · ν > 0, while

P0(Al) = 0 for l such that l · ν ≤ 0.

In particular, this shows that in Theorem 1.7, condition (a) can be replaced by
the a priori weaker condition (a) of this corollary.

In the rest of this paper we prove Theorem 1.8 and Corollary 1.10. In Section 2
we prove some preliminary results needed for the proofs and in Section 3 we apply
them to prove the theorem and the corollary.

2 Preliminary results

The implications (d) ⇒ (a) ⇒ (b) of Theorem 1.8 are obvious, so here we intro-
duce the renewal structure and prove some preliminary results needed to show that
(b) ⇒ (c) ⇒ (d). For l ∈ R

d set

Dl := inf{n ∈ N :Xn · l < X0 · l}
and for B ⊂ R

d define the first-exit time

DB := inf{n ∈ N :Xn /∈ B};
as usual, we set inf ∅ := ∞. We also define for l ∈ R

d and s ∈ [0,∞),

T l
s := inf{n ∈ N :Xn · l > s}.

Due to their linear independence, the vectors l1, . . . , ld of Theorem 1.8(b) give
rise to the following 2d cones:

Cσ :=
d⋂

k=1

{x ∈ R
d :σk(lk · x) ≥ 0}, σ ∈ {−1,1}d .

Furthermore, for λ ∈ (0,1] and l ∈ R
d\{0} we will employ the notation

Cσ (λ, l) :=
d⋂

k=1

{
x ∈ R

d :
(
λσklk + (1 − λ)l

) · x ≥ 0
}
, (2.1)

where the vectors defining the cone are now interpolations of the σklk with l. Note
that Cσ (λ, l) is a nondegenerate cone with base of finite area if and only if the
vectors λσklk + (1 − λ)l, k = 1, . . . , d, are linearly independent. In particular,
Cσ (1, l) = Cσ for all σ ∈ {−1,1}d and l.

We will often choose σ such that P0(
⋂d

k=1 Aσklk ) > 0, which under (1.6) is
possible since we then have

1 = P0

(
d⋂

k=1

Alk ∪ Al−k

)
= P0

(⋃
σ

d⋂
k=1

Aσklk

)
= ∑

σ

P0

(
d⋂

k=1

Aσklk

)
. (2.2)
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For a given σ ∈ {−1,1}d which will usually be clear from the context, we will
frequently consider vectors l ∈ R

d satisfying the condition

inf
x∈Cσ ∩Sd−1

l · x > 0. (2.3)

Note here that for σ such that P0(
⋂d

k=1 Aσklk ) > 0 and l satisfying (2.3), the in-
equality P0(Al) ≥ P0(

⋂d
k=1 Aσklk ) implies that the measure P0(·|Al) is well de-

fined. For such l we will then show the existence of a P0(·|Al)-a.s. asymptotic
direction. The strategy of our proof is based to a significant part on that of Theo-
rem 1.7.

We start with the following lemma which ensures that if with positive probabil-
ity the random walk finally ends up in a cone, then the probability that it does so
and never exits a half-space containing this cone is positive as well.

Lemma 2.1. Let σ ∈ {−1,1}d and l ∈ S
d−1 be such that (2.3) holds. Then

P0

(
d⋂

k=1

Aσklk

)
> 0 �⇒ P0

(
d⋂

k=1

Aσklk ∩ {Dl = ∞}
)

> 0.

Proof. Assume P0(
⋂d

k=1 Aσklk ∩ {Dl = ∞}) = 0. Then P-a.s.

P0,ω

(
d⋂

k=1

Aσklk ∩ {Dl = ∞}
)

= 0. (2.4)

For y ∈ R
d with l · y ≥ 0 this implies

Py

(
d⋂

k=1

Aσklk ∩ {
D{x:l·x≥0} = ∞}) = 0. (2.5)

Indeed, if there existed such y with P({ω ∈ �|Py,ω(
⋂d

k=1 Aσklk ∩ {D{x:l·x≥0} =
∞}) > 0}) > 0 then for ω such that Py,ω(

⋂d
k=1 Aσklk ∩ {D{x:l·x≥0} = ∞}) > 0,

a random walker starting in 0 would, with positive probability with respect to P0,ω,

hit y before hitting {x : l · x < 0} (due to ellipticity) and from there on finally end
up in Cσ without hitting {x : l · x < 0}; this is a contradiction to (2.4), hence (2.5)
holds.

Choosing a sequence (yn) ⊂ Cσ such that l · yn → ∞ as n → ∞ we therefore
get

0 = Pyn

(
d⋂

k=1

Aσklk ∩ {
D{x:l·x≥0} = ∞})

≥ P0

(
d⋂

k=1

Aσklk ∩ {
D{x:l·x≥−l·yn} = ∞}) → P0

(
d⋂

k=1

Aσklk

)
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as n → ∞. To obtain the inequality we employed the translation invariance of P

as well as the monotonicity of events. �

The following lemma will be employed to set up a renewal structure; it can in
some way be seen as an analog to Lemma 1 of [5].

Lemma 2.2. Let σ ∈ {−1,1}d be such that P0(
⋂d

k=1 Aσklk ) > 0. Then for each l

such that (2.3) holds, one has

P0
(
DCσ (λ,l) = ∞)

> 0 (2.6)

for λ > 0 small enough.

Proof. Lemma 2.1 implies P0(
⋂d

k=1 Aσklk ∩{Dl = ∞}) > 0. Due to the ellipticity
of the walk and the independence of the environment we therefore obtain

P0

(
{X1 · l > 0} ∩

d⋂
k=1

Aσklk (X1+· − X1) ∩ {Dl(X1+· − X1) = ∞}
)

> 0, (2.7)

where we name explicitly the path X1+· − X1 to which the corresponding events
Aσklk and Dl refer. Each path of the event in (2.7) is fully contained in Cσ (λ, l) for
λ > 0 small enough. Thus, the continuity from above of P0 yields

P0

({
DCσ (λ,l) = ∞} ∩ {X1 · l > 0}

(2.8)

∩
d⋂

k=1

Aσklk (X1+· − X1) ∩ {Dl(X1+· − X1) = ∞}
)

> 0

for all λ > 0 small enough. �

Employing Lemma 2.2, for σ ∈ {−1,1}d with P0(
⋂d

k=1 Aσklk ) > 0 as in [5] we
can introduce a cone renewal structure, where we choose l ∈ S

d−1 such that (2.3)
is fulfilled and the cone to work with is Cl := Cσ (λ, l), where we fixed λ > 0 small
enough as in the statement of Lemma 2.2. Note that for fixed l the set Cσ (λ, l) is
indeed a cone as long as λ > 0 is chosen small enough [since the defining vectors
in (2.1) are linearly independent].

For k ∈ N let θk : (Zd)N0 � (xn) �→ (xn+k) ∈ (Zd)N0 be the k-fold time shift. We
define

Sl
0 := T l

0 , Rl
0 := DX

Sl
0
+Cl

◦ θSl
0
+ Sl

0, Ml
0 := max{Xn · l : 0 ≤ n ≤ Rl

0}
and inductively for k ≥ 1:

Sl
k := T l

Ml
k−1

, Rl
k := DX

Sl
k
+Cl

◦ θSl
k−1

+ Sl
k,

Ml
k := max{Xn · l : 0 ≤ n ≤ Rl

k},
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where for x ∈ Z
d by x + Cl we denote the cone Cl shifted such that its apex lies

at x. Furthermore, set

Kl := inf{k ∈ N :Sl
k < ∞,Rl

k = ∞}
as well as

τ l
1 := Sl

Kl ,

that is, τ l
1 is the first time at which the walk reaches a new maximum in direction l

and never exits the cone Cl shifted to Xτl
1
. We define inductively the sequence of

cone renewal times with respect to Cl by

τ l
k := τ l

1(X·+τ l
k−1

− Xτl
k−1

) + τ l
k−1

for k ≥ 2.

The following lemma shows that under the conditions of Lemma 2.2 the se-
quence τ l

k is well defined on Al. It can be seen as an analog to Proposition 2 of [5].

Lemma 2.3. Let σ ∈ {−1,1}d be such that P0(
⋂d

k=1 Aσklk ) > 0 and choose l and
λ such that (2.3) and (2.6) hold. Then P0(·|Al)-a.s. one has Kl < ∞.

Proof. Employing Lemma 2.2, the proof takes advantage of the fact that each time
the walk hits a new maximum in direction l, the event that from there on it never
exits the cone centred at that point is independent from the past and has the same
positive probability. This then gives rise to a geometrically distributed renewal
structure. For further details on these standard renewal arguments see the proofs
of Proposition 2 in [5] or Proposition 1.2 in [10] which proceed in an analogous
way. �

Lemma 2.4. Let σ ∈ {−1,1}d be such that P0(
⋂d

k=1 Aσklk ) > 0 and choose l and
λ such that (2.3) and (2.6) hold. Then ((Xτl

1∧·, τ l
1), . . . , (X(τ l

k+·)∧τ l
k+1

−Xτl
k
, τ l

k+1 −
τ l
k)), . . . are independent under P0(·|Al) and for k ≥ 1, ((X(τ l

k+·)∧τ l
k+1

− Xl
τk

),

τ l
k+1 − τ l

k) under P0(·|Al) is distributed like (Xτl
1∧·, τ l

1) under P0(·|{DCl
= ∞}).

Proof. This result is intrinsic to the i.i.d. property of the environment and the proof
is analogous to the proof of Corollary 1.5 in [10]. �

The following lemma has been derived in Simenhaus’ thesis [6] (Lemma 2 in
there). Here we state it and prove it under a slightly weaker assumption.

Lemma 2.5. Let σ ∈ {−1,1}d be such that P0(∩d
k=1Aσklk ) > 0 and choose l ∈ Z

d

and λ such that (2.3) and (2.6) hold and the g.c.d. of the coordinates of l is 1. Then

E0(Xτl
1
· l|DCl

= ∞) = 1

P0(DCl
= ∞|Al) limi→∞ P0(T

l
i−1 < ∞,XT l

i−1
· l = i)

< ∞
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and

E0(Xτl
1
|DCl

= ∞) (2.9)

is well defined.

Remark 2.6. A fundamental consequence of working with the cone renewal struc-
ture instead of working with slabs is the existence of (2.9); see also Proposition 2.7.

Proof. The proof leans on the proof of Lemma 3.2.5 in [11] which is due to Zerner.
Due to the strong Markov property and the independence and translation invariance
of the environment we have for i > 0:

P0({∃k ≥ 1 :Xτl
k
· l = i} ∩ Al)

= ∑
x∈Zd ,l·x=i

EP0,ω(T l
i−1 < ∞,XT l

i−1
= x,DCl+X

T l
i−1

◦ θT l
i−1

= ∞)

(2.10)
= ∑

x∈Zd ,l·x=i

EP0,ω(T l
i−1 < ∞,XT l

i−1
= x)Px,ω(DCl+x = ∞)

= P0(T
l
i−1 < ∞,XT l

i−1
· l = i)P0(DCl

= ∞).

At the same time using {τ l
1 < ∞} = Al, a fact which is proven similarly to Propo-

sition 1.2 of [10], we compute

lim
i→∞P0({∃k ≥ 1 :Xτl

k
· l = i}|Al)

= lim
i→∞P0({∃k ≥ 2 :Xτl

k
· l = i}|Al)

= lim
i→∞

∑
n≥1

P0({∃k ≥ 2 :Xτl
k
· l = i} ∩ {Xτl

1
· l = n}|Al) (2.11)

= lim
i→∞

∑
n≥1

P0
({∃k ≥ 2 : (Xτl

k
− Xτl

1
) · l = i − n} ∩ {Xτl

1
· l = n}|Al

)

= lim
i→∞

∑
n≥1

P0
({∃k ≥ 2 : (Xτl

k
− Xτl

1
) · l = i − n}|Al

)
P0(Xτl

1
· l = n|Al),

where to obtain the last equality we took advantage of Lemma 2.4. Blackwell’s
renewal theorem in combination with Lemma 2.4 now yields

lim
i→∞P0

({∃k ≥ 2 : (Xτl
k
− Xτl

1
) · l = i − n}|Al

) = 1

E0(Xτl
1
· l|DCl

= ∞)

and thus (2.11) implies

lim
i→∞P0(∃k ≥ 1 :Xτl

k
· l = i|Al) = 1

E0(Xτl
1
· l|DCl

= ∞)
.
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Therefore, taking into consideration (2.10) we infer

E0(Xτl
1
· l|DCl

= ∞)

(2.12)

= 1

P0(DCl
= ∞|Al) limi→∞ P0(T

l
i−1 < ∞,XT l

i−1
· l = i)

.

It remains to show that the right-hand side of (2.12) is finite. Writing lmax :=
max{|l1|, . . . , |ld |} for the maximum of the absolute values of the coordinates of
l we have

k+lmax−1∑
i=k

P0({T l
i−1 < ∞,XT l

i−1
· l = i})

≥
k+lmax−1∑

i=k

P0({T l
i−1 < ∞,XT l

k−1
· l = i}) ≥ P0(Al) ∀k ∈ N,

where the first inequality follows since {XT l
k−1

· l = i} ⊆ {XT l
i−1

· l = i} for all k ∈ N

and i ∈ {k, . . . , k + lmax − 1}. This now yields limi→∞ P0({T l
i−1 < ∞,XT l

i−1
· l =

i}) ≥ l−1
maxP0(Al) > 0, whence due to (2.12) we obtain

E0(Xτl
1
· l|{DCl

= ∞}) < ∞. (2.13)

Since on {DCl
= ∞} there exists a constant C > 0 such that |Xτl

1
| ≤ CXτl

1
· l, we

infer as a direct consequence of (2.13) that (2.9) is well-defined. �

We can now employ the above renewal structure to obtain an a.s. constant
asymptotic direction on Al.

Proposition 2.7. Let σ ∈ {−1,1}d be such that P0(
⋂d

k=1 Aσklk ) > 0 and choose
l ∈ Z

d and λ such that (2.3) and (2.6) hold and the g.c.d. of the coordinates of l

is 1. Then P0(·|Al)-a.s.

lim
n→∞

Xn

|Xn| =
E0(Xτl

1
|{DCl

= ∞})
|E0(Xτl

1
|{DCl

= ∞})| .

Remark 2.8. In particular, this proposition implies that the limit does not depend
on the particular choice of l nor λ (for λ sufficiently small). Note that the indepen-
dence of l stems from the fact that if l1, l2 satisfy (2.3) we have P0(Al1 ∩Al2) > 0.

Proof. Due to Lemmas 2.2 to 2.5 we may apply the law of large numbers to the
sequence (Xτl

k
)k∈N yielding

Xτl
k

k
→ E0(Xτl

1
|DCl

= ∞) P0(·|Al)-a.s., k → ∞,
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and hence
Xτl

k

|Xτl
k
| →

E0(Xτl
1
|DCl

= ∞)

|E0(Xτl
1
|DCl

= ∞)| P0(·|Al)-a.s., k → ∞.

Using standard methods to estimate the intermediate terms (cf. page 9 in [5]) one
obtains

lim
n→∞

Xn

|Xn| =
E0(Xτl

1
|DCl

= ∞)

|E0(Xτl
1
|DCl

= ∞)| P0(·|Al)-a.s.
�

The following two results will be needed to obtain results about transience in
directions orthogonal to the asymptotic direction.

Lemma 2.9. Let (Yn)n∈N be an i.i.d. sequence on some probability space
(X , F ,P ) with expectation EY1 = 0 and variance EY 2

1 ∈ (0,∞]. Then, for Sn :=∑n
k=1 Yk we have P(lim infn→∞ Sn = −∞) = P(lim supn→∞ Sn = ∞) = 1.

Proof. We only prove P(lim infn→∞ Sn = −∞) = 1, the remaining equality
is proved in a similar way. Setting ε := (− ess infY1/2) ∧ 1 one can show
for all x ∈ R, using the strong Markov property at the entrance times of
Sn to the interval [x, x + ε], that P(lim infn→∞ Sn ∈ [x, x + ε]) = 0. This
then implies P(lim infn→∞ Sn = ±∞) = 1. But Kesten’s result in [3] yields
lim infn→∞ Sn/n > 0 P(·∩ {lim infn→∞ Sn = ∞})-a.s., while by the strong law of
large numbers we have limn→∞ Sn/n = 0 P -a.s. This yields P(lim infn→∞ Sn =
∞) = 0 and hence finishes the proof. �

Lemma 2.10. Let l ∈ R
d be such that

P0

(
lim

n→∞Xn/|Xn| = l
)

> 0. (2.14)

Then, for l∗ ∈ R
d such that l∗ · l = 0 one has P0((Al∗ ∪ A−l∗) ∩ Al) = 0.

Proof. We choose a basis l1, . . . , ld of R
d and σ such that l is contained in the

interior of the cone Cσ corresponding to l1, . . . , ld and (2.3) is satisfied. Further-
more, by (2.14) and Lemma 2.2 we may choose λ such that condition (2.6) is
satisfied for the corresponding cone Cσ (λ, l). Lemma 2.3 yields that the sequence
(τ l

k)k∈N is well defined and Lemmas 2.4 and 2.5 yield that under P0(·|Al) the se-
quence ((Xτl

2
−Xτl

1
) · l∗, (Xτ l

3
−Xτl

2
) · l∗, . . .) is i.i.d. with expectation 0, the latter

being due to the validity of Lemma 2.5 as well as (1.7) and l∗ · l = 0. Indeed,
Proposition 2.7 yields

E0
(
Xτl

1
· l∗|DCσ (λ,l) = ∞) = ∣∣E0

(
Xτl

1
|DCσ (λ,l) = ∞)∣∣ lim

k→∞
Xτl

k

|Xτl
k
|︸ ︷︷ ︸

=l

·l∗ = 0
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P0(·|Al)-a.s. Applying Lemma 2.9 to the sequence ((Xτl
2
−Xτl

1
) · l∗, (Xτ l

3
−Xτl

2
) ·

l∗, . . .) yields P0((Al∗ ∪ A−l∗) ∩ Al) = 0. �

3 Proof of Theorem 1.8 and Corollary 1.10

3.1 Proof of Theorem 1.8

We first prove that condition (b) implies (c). For this purpose consider σ such that
P0(

⋂d
k=1 Aσklk ) > 0 and l ∈ Z

d that satisfies (2.3) and for which the g.c.d. of the
coordinates of l is 1. Then, since P(

⋂d
k=1 Aσklk\Al) = 0, Proposition 2.7 yields

that P0(·|⋂d
k=1 Aσklk )-a.s.

lim
n→∞

Xn

|Xn| =
E0(Xτl

1
|DCl

= ∞)

|E0(Xτl
1
|DCl

= ∞)| =: ν, (3.1)

which due to Remark 2.8 is independent of the respective l chosen.
In combination with (2.2) this implies that

lim
n→∞Xn/|Xn| exists a.s. (3.2)

Now Proposition 1 of [5] states that if two elements ν �= ν′ of S
d−1 occur with

positive probability each with respect to P0 as asymptotic directions, then ν = −ν′.
Thus, (3.2) already implies (c).

Now with respect to the implication (c) ⇒ (d) note that the only thing that
is not obvious at a first glance is that l · ν = 0 implies P0(Al ∪ A−l) = 0.

However, Lemma 2.10 yields P0((Al ∪ A−l) ∩ (Aν ∪ A−ν)) = 0 which due to
P0(Aν ∪ A−ν) = 1 yields the desired result.

3.2 Proof of Corollary 1.10

We only have to prove (a) ⇒ (b). Given (a), Theorem 1.8 yields the existence of
ν ∈ S

d−1 such that

P0(Aν ∪ A−ν) = 1 (3.3)

and (1.7) holds.
Now if l∗ ·ν �= 0 then P0(Aν ∩Al∗) = 1 or P0(A−ν ∩Al∗) = 1, respectively, and

hence P0(Aν) = 1 or P0(A−ν) = 1, which due to Theorem 1.7 finishes the proof.
Thus, assume

l∗ · ν = 0 (3.4)

from now on. Then Lemma 2.10 yields P0((Al∗ ∪A−l∗)∩ (Aν ∪A−ν)) = 0 which
due to (3.3) implies P0(Al∗ ∪ A−l∗) = 0, a contradiction to assumption (a).
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