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ON CONVERGENCE RATES EQUIVALENCY AND SAMPLING
STRATEGIES IN FUNCTIONAL DECONVOLUTION MODELS
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University of Central Florida and University of Cyprus

Using the asymptotical minimax framework, we examine convergence
rates equivalency between a continuous functional deconvolution model and
its real-life discrete counterpart over a wide range of Besov balls and for the
L2-risk. For this purpose, all possible models are divided into three groups.
For the models in the first group, which we call uniform, the convergence rates
in the discrete and the continuous models coincide no matter what the sam-
pling scheme is chosen, and hence the replacement of the discrete model by
its continuous counterpart is legitimate. For the models in the second group,
to which we refer as regular, one can point out the best sampling strategy in
the discrete model, but not every sampling scheme leads to the same conver-
gence rates; there are at least two sampling schemes which deliver different
convergence rates in the discrete model (i.e., at least one of the discrete mod-
els leads to convergence rates that are different from the convergence rates
in the continuous model). The third group consists of models for which, in
general, it is impossible to devise the best sampling strategy; we call these
models irregular.

We formulate the conditions when each of these situations takes place. In
the regular case, we not only point out the number and the selection of sam-
pling points which deliver the fastest convergence rates in the discrete model
but also investigate when, in the case of an arbitrary sampling scheme, the
convergence rates in the continuous model coincide or do not coincide with
the convergence rates in the discrete model. We also study what happens if
one chooses a uniform, or a more general pseudo-uniform, sampling scheme
which can be viewed as an intuitive replacement of the continuous model.
Finally, as a representative of the irregular case, we study functional decon-
volution with a boxcar-like blurring function since this model has a number
of important applications. All theoretical results presented in the paper are
illustrated by numerous examples; many of which are motivated directly by
a multitude of inverse problems in mathematical physics where one needs
to recover initial or boundary conditions on the basis of observations from a
noisy solution of a partial differential equation. The theoretical performance
of the suggested estimator in the multichannel deconvolution model with a
boxcar-like blurring function is also supplemented by a limited simulation
study and compared to an estimator available in the current literature. The
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paper concludes that in both regular and irregular cases one should be ex-
tremely careful when replacing a discrete functional deconvolution model by
its continuous counterpart.

1. Introduction. We consider the estimation problem of the unknown re-
sponse function f (·) based on observations from the following noisy convolutions:

y(u, t)= f ∗ g(u, t)+ 1√
n
z(u, t), u ∈U, t ∈ T ,(1.1)

where U = [a, b], −∞< a ≤ b <∞ and T = [0,1]. Here, z(u, t) is assumed to
be a two-dimensional Gaussian white noise, that is, a generalized two-dimensional
Gaussian field with covariance function E[z(u1, t1)z(u2, t2)] = δ(u1 − u2)δ(t1 −
t2), where δ(·) denotes the Dirac δ-function, and

f ∗ g(u, t)=
∫
T
f (x)g(u, t − x)dx

with the blurring (or kernel) function g(·, ·) also assumed to be known.
The model (1.1) has been recently introduced by Pensky and Sapatinas (2009a)

and can be viewed as a functional deconvolution model. If a = b, it reduces to
the standard deconvolution model which attracted the attention of a number of re-
searchers, for example, Donoho (1995), Abramovich and Silverman (1998), Kalifa
and Mallat (2003), Johnstone et al. (2004), Donoho and Raimondo (2004), John-
stone and Raimondo (2004), Neelamani, Choi and Baraniuk (2004), Kerkyachar-
ian, Picard and Raimondo (2007), Cavalier and Raimondo (2007) and Chesneau
(2008).

The functional deconvolution model (1.1) can be viewed as a generalization of
a multitude of inverse problems in mathematical physics where one needs to re-
cover initial or boundary conditions on the basis of observations of a noisy solution
of a partial differential equation. Lattes and Lions (1967) initiated research in the
problem of recovering the initial condition for parabolic equations based on ob-
servations in a fixed-time strip, while this problem and the problem of recovering
the boundary condition for elliptic equations based on observations in an internal
domain were studied in Golubev and Khasminskii (1999); the latter problem was
also discussed in Golubev (2004). These and other specific models in mathematical
physics were discussed in detail in Pensky and Sapatinas (2009a).

However, model (1.1) is just an idealization of a real-life situation. One
can make observations only at particular points (ul, ti), l = 1,2, . . . ,M , i =
1,2, . . . ,N , so that the actual problem can be formulated as follows: recover the
unknown response function f (·) from observations y(ul, ti), where

y(ul, ti)=
∫
T
f (x)g(ul, ti − x)dx + εli, ul ∈U, ti = i/N,(1.2)

with εli being standard Gaussian random variables, independent for different l
and i. Model (1.2) can be viewed as a discrete version of the continuous functional
deconvolution model (1.1).
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It is well documented in the literature that asymptotic equivalence between dis-
crete and continuous models holds in some nonparametric models. In particular,
Brown and Low (1996) and Brown et al. (2002) in the univariate case and Reiss
(2008) in the multivariate case established, under some restrictions, asymptotic
equivalence (in the Le Cam sense) between nonparametric regression and Gaussian
white noise models. Although, to the best of our knowledge, such an asymptotic
equivalence between continuous and discrete models, in the functional deconvo-
lution setting, has not yet been explored, it has been documented in the literature
a convergence rate equivalency, in the asymptotical minimax sense, between stan-
dard continuous and discrete deconvolution models, that is, when a = b, M = 1
andN = n in (1.1) and (1.2), over a wide range of Besov balls and for the Lr -risks,
1 ≤ r <∞ [e.g., Chesneau (2008), Pensky and Sapatinas (2009a) and Petsa and
Sapatinas (2009)].

For the above reason, and using the asymptotical minimax framework, one may
attempt to study the continuous functional deconvolution model (1.1) instead of
its discrete counterpart (1.2), assuming that the convergence rates between these
models coincide. However, in this case, this equivalence has only a limited scope.
Indeed, Pensky and Sapatinas (2009a) only touched upon the issue, showing that,
under very restrictive conditions, a convergence rate equivalence between the con-
tinuous functional deconvolution model (1.1) and its discrete counterpart (1.2)
models holds when n = NM , over a wide range of Besov balls and for the L2-
risk. Nevertheless, in majority of practical situations, these conditions are violated
and it remains to be seen how legitimate the replacement of the real life model (1.2)
by its idealization (1.1) is, even in the case of inverse problems in mathematical
physics, presented in Pensky and Sapatinas (2009a). In fact, in many situations,
the convergence rates in the two models depend on the choice of M and the se-
lection of sampling points u1, u2, . . . , uM and may coincide with the convergence
rates in the continuous model for one selection and be different for another. Also,
from a practical point of view, the objective is not to find M and u1, u2, . . . , uM
which make the two models equivalent from the convergence rate viewpoint, but
rather to point outM and u1, u2, . . . , uM which deliver the fastest possible conver-
gence rates in the real life model (1.2). Note that the discrete model (1.2) can also
be viewed as a multichannel deconvolution model where the number of channels
M =Mn is fixed or, possibly,Mn → ∞ as the sample size n→ ∞; the case when
M ≥ 2 (finite) was considered in, for example, Casey and Walnut (1994) and De
Canditiis and Pensky (2004, 2006). Hence if the kernel g(·, ·) is fixed, the choice
ofM and the selection of sampling points u1, u2, . . . , uM which provide the fastest
convergence rates is of extreme importance in signal processing.

Using the asymptotical minimax framework, our objective is to evaluate how
legitimate it is to replace the real-life discrete model (1.2) by its continuous coun-
terpart (1.1). For this purpose, we shall divide all possible models into three groups.
For the models in the first group, which we call uniform, the convergence rates in
discrete and continuous functional deconvolution models coincide no matter what



1796 M. PENSKY AND T. SAPATINAS

the sampling scheme is chosen, and hence the replacement of the discrete model
by its continuous counterpart is legitimate. For the models in the second group, to
which we refer as regular, one can point out the best sampling strategy in the dis-
crete model (i.e., the strategy which leads to the fastest convergence rate), but not
every sampling scheme leads to the same convergence rates: there are at least two
sampling schemes which deliver different convergence rates in the discrete model
(i.e., at least one of the discrete models leads to convergence rates that are differ-
ent from the convergence rates in the continuous functional deconvolution model).
The third group consists of models for which, in general, it is impossible to devise
the best sampling strategy; we call these models irregular.

We formulate the conditions when each of these situations takes place. In the
regular case, we not only point out the choice of M and the selection of sampling
points u1, u2, . . . , uM which deliver the fastest convergence rates in the discrete
model but also investigate when, in the case of an arbitrary sampling scheme, the
convergence rates in the continuous functional deconvolution model coincide or do
not coincide with the convergence rates of its discrete counterpart. We also study
what happens if one chooses a uniform, or a more general pseudo-uniform, sam-
pling scheme which can be viewed as an intuitive replacement of the continuous
model. Finally, as a representative of the irregular case, we study functional de-
convolution with a boxcar-like kernel since this model has a number of important
applications. All theoretical results presented are illustrated by numerous exam-
ples; many of which are motivated directly by a multitude of inverse problems in
mathematical physics where one needs to recover initial or boundary conditions
on the basis of observations from a noisy solution of a partial differential equation.

As in Pensky and Sapatinas (2009a), we consider functional deconvolution in
a periodic setting; that is, we assume that f (·) and, for fixed u ∈ U , g(u, ·) are
periodic functions with period on the unit interval T . Note that the periodicity as-
sumption appears naturally in the above mentioned special models which (1.1) and
(1.2) generalize and allows one to explore ideas considered in the above cited pa-
pers to the proposed functional deconvolution framework. Moreover, not only for
theoretical reasons but also for practical convenience [see Johnstone et al. (2004),
Sections 2.3, 3.1 and 3.2], we use band-limited wavelet bases and in particular
the periodized Meyer wavelet basis for which fast algorithms exist [see Kolaczyk
(1994) and Donoho and Raimondo (2004)]. In order to also allow inhomogeneous
functions f (·) into our study, we consider a wide range of Besov balls, as it is
common in the wavelet literature, and, for simplicity, we work with the L2-risk
only. However, the results of this paper can be extended to a more general class
of Lr -risks, 1 ≤ r <∞, using the unconditionality and Temlyakov properties of
Meyer wavelets [e.g., Johnstone et al. (2004) and Petsa and Sapatinas (2009)].

The rest of the paper is organized as follows. In Section 2, we describe the con-
struction of wavelet estimators of f (·) derived by Pensky and Sapatinas (2009a)
both for the continuous functional deconvolution model (1.1) and its discrete coun-
terpart (1.2). In Section 3, for the continuous model and for a discrete model with
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any particular design of sampling points, using the asymptotical minimax frame-
work, we provide lower bounds for the L2-risk over a wide range of Besov balls
and show that those bounds are attained by the wavelet estimators constructed in
Section 2. Section 4 is devoted to the discussion of the interplay between contin-
uous and discrete functional deconvolution models. First, Section 4.1 formulates
the necessary and sufficient conditions for the convergence rates in continuous and
discrete functional deconvolution models to coincide and to be independent of the
choice ofM and the selection of points u1, u2, . . . , uM . Then Section 4.2 provides
examples where these conditions do or do not take place, and Section 4.3 sorts all
possible situations into the uniform, regular and irregular cases. Section 5 studies
the regular case. In particular, Section 5.1 designs the best possible sampling strat-
egy. Section 5.2 provides some motivating examples. Section 5.3 investigates the
relation between the L2-risks in the continuous and the discrete models under an
arbitrary sampling scheme and formulates conditions when the convergence rates
do or do not coincide. Section 5.4 formulates sufficient conditions when the con-
vergence rates in both models coincide under a pseudo-uniform sampling scheme
in the discrete model. Section 5.5 provides a variety of examples where the conver-
gence rates coincide or differ depending on what sampling scheme is employed.
Section 6 explores the interplay between continuous and discrete functional de-
convolution models in the case of a boxcar-like blurring function. Section 7 sup-
plements the theory with a limited simulation study in the case of a boxcar-like
blurring function and compares performance of the suggested estimator to the esti-
mator proposed by De Canditiis and Pensky (2006). Concluding remarks are given
in Section 8. Finally, the Appendix provides the proofs of the theoretical results
obtained in the previous sections.

In the rest of the paper, the continuous functional deconvolution model (1.1) is
referred to as the “continuous model” and its discrete counterpart (1.2) is referred
to as the “discrete model.”

2. Wavelet estimators. For both the continuous model and the discrete
model, we use the wavelet estimator derived in Pensky and Sapatinas (2009a),
described as follows.

Let ϕ∗(·) and ψ∗(·) be the Meyer scaling and mother wavelet functions, re-
spectively, in the real line [see, e.g., Meyer (1992)] and obtain a periodized ver-
sion of Meyer wavelet basis as in Johnstone et al. (2004); that is, for j ≥ 0 and
k = 0,1, . . . ,2j − 1,

ϕjk(x)=
∑
i∈Z

2j/2ϕ∗(2j (x + i)− k),
ψjk(x)=

∑
i∈Z

2j/2ψ∗(2j (x + i)− k), x ∈ T .

Denote 〈f,g〉 = ∫
T f (t)g(t) dt , the inner product in the Hilbert space L2(T ).

Let em(t) = ei2πmt , m ∈ Z, and, for any (primary resolution level) j0 ≥ 0 and
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any j ≥ j0, let ϕmj0k = 〈em,ϕj0k〉,ψmjk = 〈em,ψjk〉, fm = 〈em,f 〉 be the Fourier
coefficients of ϕjk(·), ψjk(·) and f (·), respectively. For each u ∈ U , denote the
functional Fourier coefficients by

ym(u)= 〈em, y(u, ·)〉, gm(u)= 〈em,g(u, ·)〉.
In what follows we assume that function g(u, t) is such that gm(u) are continu-
ous functions of u for every m. (This condition is not restrictive and holds in all
examples considered below.)

If we have the continuous model (1.1), then, by using properties of the Fourier
transform, for each u ∈U , we have hm(u)= gm(u)fm and

ym(u)= gm(u)fm + n−1/2zm(u),(2.1)

where zm(u) are generalized one-dimensional (complex-valued) Gaussian pro-
cesses such that E[zm1(u1)zm2(u2)] = δm1,m2δ(u1 − u2), where δm1,m2 is Kro-
necker’s delta. If we have the discrete model (1.2), then, by using properties of
the discrete Fourier transform, for each l = 1,2, . . . ,M , (2.1) takes the form

ym(ul)= gm(ul)fm +N−1/2zml,(2.2)

where zml are standard (complex-valued) Gaussian random variables, independent
for different m and l.

Estimate the Fourier coefficients fm of f (·) by

f̂m =
(∫ b

a
gm(u)ym(u)du

)/(∫ b

a
|gm(u)|2 du

)
(2.3)

in the continuous model,

f̂m =
(
M∑
l=1

gm(ul)ym(ul)

)/(
M∑
l=1

|gm(ul)|2
)

(2.4)
in the discrete model.

Here, we adopt the convention that when a = b, f̂m takes the form f̂m =
(gm(a)ym(a)/|gm(a)|2 and somewhat abuse notation using fm for both functional
Fourier coefficients and their discrete counterparts.

Note that, using the periodized Meyer wavelet basis described above and for
any j0 ≥ 0, any (periodic) f (·) ∈ L2(T ) can be expanded as

f (t)=
2j0−1∑
k=0

aj0kϕj0k(t)+
∞∑
j=j0

2j−1∑
k=0

bjkψjk(t), t ∈ T .(2.5)

Furthermore, by Plancherel’s formula, the scaling coefficients, aj0k = 〈f,ϕj0k〉,
and the wavelet coefficients, bjk = 〈f,ψjk〉, of f (·) can be represented as

aj0k = ∑
m∈Cj0

fmϕmj0k, bjk = ∑
m∈Cj

fmψmjk,(2.6)
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where Cj0 = {m :ϕmj0k �= 0} and, for any j ≥ j0, Cj = {m :ψmjk �= 0}. We esti-
mate aj0k and bjk by substituting fm in (2.6) with (2.3) or (2.4), that is,

âj0k = ∑
m∈Cj0

f̂mϕmj0k, b̂jk = ∑
m∈Cj

f̂mψmjk.(2.7)

We now construct a (block thresholding) wavelet estimator of f (·), suggested
by Pensky and Sapatinas (2009a). For this purpose, we divide the wavelet co-
efficients at each resolution level into blocks of length lnn. Let Aj and Ujr be
the following sets of indices: Aj = {r | r = 1,2, . . . ,2j / lnn}, Ujr = {k | k =
0,1, . . . ,2j − 1; (r − 1) lnn≤ k ≤ r lnn− 1}. Denote

Bjr = ∑
k∈Ujr

b2
jk, B̂jr = ∑

k∈Ujr
b̂2
jk.(2.8)

Finally, for any j0 ≥ 0, f (·) is constructed as

f̂n(t)=
2j0−1∑
k=0

âj0kϕj0k(t)

(2.9)

+
J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

b̂jkI(|B̂jr | ≥ λj )ψjk(t), t ∈ T ,

where I(A) is the indicator function of the set A, and the resolution levels j0 and
J and the thresholds λj will be defined in Section 3.2.

In what follows, the symbol C is used for a generic positive constant, indepen-
dent of n, while the symbol K is used for a generic positive constant, independent
of m, n, M and u1, u2, . . . , uM , which either of them may take different values at
different places.

3. Minimax lower and upper bounds for the L2-risk over Besov balls.
Among the various characterizations of Besov spaces for periodic functions de-
fined on Lp(T ) in terms of wavelet bases, we recall that for an r-regular mul-
tiresolution analysis with 0 < s < r and for a Besov ball, Bsp,q(A) = {f (·) ∈
Lp(T ) :f ∈ Bsp,q,‖f ‖Bsp,q ≤ A}, of radius A > 0 with 1 ≤ p,q ≤ ∞, one has
that, with s′ = s + 1/2 − 1/p,

Bsp,q(A)=
{
f (·) ∈Lp(T ) :

(2j0−1∑
k=0

|aj0k|p
)1/p

(3.1)

+
( ∞∑
j=j0

2js
′q
(2j−1∑
k=0

|bjk|p
)q/p)1/q

≤A
}

with respective sum(s) replaced by maximum if p = ∞ or q = ∞ [see, e.g., John-
stone et al. (2004), Section 2.4]. (Note that, for the Meyer wavelet basis, considered
in Section 2, r = ∞.)
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We construct below asymptotical minimax lower bounds for the L2-risk based
on observations from either the continuous model or the discrete model. For this
purpose, we define the corresponding minimax L2-risks over the set � as

Rcn(�)= inf
f̃ cn

sup
f∈�

E‖f̃ cn − f ‖2,(3.2)

Rdn(�,u,M)= inf
f̃ dn

sup
f∈�

E‖f̃ dn − f ‖2,(3.3)

Rdn(�)= inf
u,M
Rdn(�,u,M),(3.4)

where the infimum in (3.2) is taken over all possible estimators (i.e., measurable
functions) f̃ cn (·) of f (·) from the continuous model, the infimum in (3.4) is taken
over all possible estimators f̃ dn (·) of f (·) from the discrete model, based on a
sample at M points u = (u1, u2, . . . , uM) and the infimum in (3.4) is evaluated
over all possible estimators f̃ dn (·) of f (·) and the choices of M and u. Note that,
since the asymptotical minimax convergence rates for the L2-risk in the discrete
model depends on M and u if these quantities are fixed, we are interested in the
selection ofM and u, minimizing the asymptotical minimax convergence rates for
the L2-risk.

Denote s∗ = s + 1/2 − 1/p′,p′ = min(p,2) and, for κ = 1,2, define

τ cκ (m)=
∫ b

a
|gm(u)|2κ du and τdκ (m,u,M)=

1

M

M∑
l=1

|gm(ul)|2κ ,(3.5)

where τ c1 (m)= |gm(a)|2 when a = b.
Pensky and Sapatinas (2009a) constructed asymptotical minimax lower and up-

per bounds for the L2-risk for the continuous model. The corresponding bounds
for the discrete model were obtained under the very restrictive conditions that the
upper and the lower bounds on τd1 (m,u,M) do not depend on n,M and u. Below
we shall need asymptotic lower and upper bounds for the L2-risk in the case of
much more general expressions for τ c1 (m) and τd1 (m,u,M), than in Pensky and
Sapatinas (2009a).

3.1. Minimax lower bounds: Particular choice of sampling points. Let, with
some abuse of notation, τ1(m)= τ c1 (m), R∗

n(B
s
p,q(A))=Rcn(Bsp,q(A)), in the con-

tinuous model, and τ1(m)= τd1 (m,u,M), R∗
n(B

s
p,q(A))= Rdn(Bsp,q(A),u,M), in

the discrete model.
Assume that for some constants ν ∈ R, λ ∈ R, α ≥ 0 and β > 0, independent of

m and n, and for some sequence εn > 0, independent of m,

τ1(m)≤Kεn|m|−2ν(ln|m|)−λ exp(−α|m|β), ν > 0 if α = 0.(3.6)

Denote n∗ = nεn and assume that the sequence εn is such that

n∗ = nεn → ∞ as n→ ∞.(3.7)
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Then the following statement is true.

THEOREM 1. Let {φj0,k(·),ψj,k(·)} be the periodic Meyer wavelet basis dis-
cussed in Section 2. Let s > max(0,1/p − 1/2), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and
A> 0. Let assumptions (3.6) and (3.7) hold. Then, as n→ ∞,

R∗
n(B

s
p,q(A))≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C(n∗)−2s/(2s+2ν+1)(lnn∗)2sλ/(2s+2ν+1),

if α = 0, ν(2 − p) < ps∗,

C

(
lnn∗

n∗
)2s∗/(2s∗+2ν)

(lnn∗)2s∗λ/(2s∗+2ν),

if α = 0, ν(2 − p)≥ ps∗,
C(lnn∗)−2s∗/β, if α > 0.

(3.8)

3.2. Minimax upper bounds: Particular choice of sampling points. Assume
that for the constants ν ∈ R, λ ∈ R, α ≥ 0 and β > 0 and the sequence εn > 0 in
(3.6)

τ1(m)≥Kεn|m|−2ν(ln|m|)−λ exp(−α|m|β), ν > 0 if α = 0.(3.9)

Let f̂n(·) be the wavelet estimator defined by (2.9). Let, as before, n∗ = nεn
satisfy condition (3.7), and assume that in the case of α = 0 in (3.9) the sequence
εn is such that

−h1 lnn≤ ln(1/εn)≤ (1 − h2) lnn(3.10)

for some constants h1 > 0 and h2 ∈ (0,1). Observe that condition (3.10) implies
(3.7) and that lnn∗ � lnn as n → ∞. Here, and in what follows, u(n) � v(n)
means that there exist constants C1 > 0 and C2 > 0, independent of n, such that
0<C1v(n)≤ u(n)≤ C2v(n) <∞ for n large enough.

Choose j0 and J such that

2j0 = ln(n∗), 2J = (n∗)1/(2ν+1) if α = 0,(3.11)

2j0 = 3

8π

(
ln(n∗)

2α

)1/β

, 2J = 2j0 if α > 0.(3.12)

[Since j0 > J − 1 when α > 0, the estimator (2.9) only consists of the first (linear)
part, and hence λj does not need to be selected in this case.] Set, for some constant
μ> 0, large enough,

λj = μ2(n∗)−1 ln(n∗)22νj jλ if α = 0.(3.13)

Note that the choices of j0, J and λj are independent of the parameters, s, p, q
and A of the Besov ball Bsp,q(A); hence the estimator (2.9) is adaptive with respect
to these parameters.
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Set (x)+ = max(0, x), and define

�=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2ν + 1)(2 − p)+
p(2s + 2ν + 1)

, if ν(2 − p) < ps∗,

(q − p)+
q

, if ν(2 − p)= ps∗,

0, if ν(2 − p) > ps∗.

(3.14)

For any j ≥ j0, let |Cj | be the cardinality of the set Cj ; note that, for Meyer
wavelets, |Cj | = 4π2j [see, e.g., Johnstone et al. (2004)]. Let also

�κ(j)= |Cj |−1
∑
m∈Cj

τκ(m)[τ1(m)]−2κ , κ = 1,2.(3.15)

Direct calculations yield that under conditions (3.9) and (3.10), for some constants
c1 > 0 and c2 > 0, independent of n, one has

�1(j)≤
⎧⎨
⎩
c1(εn)

−122νj jλ, if α = 0,

c2(εn)
−122νj jλ exp

{
α

(
8π

3

)β
2jβ

}
, if α > 0.

(3.16)

The proof of the minimax upper bounds for theL2-risk is based on the following
two lemmas.

LEMMA 1. Let assumption (3.9) hold, and let the estimators âj0k and b̂jk
of the scaling and wavelet coefficients aj0k and bjk , respectively, be given by the
formula (2.7) with f̂m defined by (2.3) in the continuous model and by (2.4) in the
discrete model. Then, for all j ≥ j0,

E|âj0k − aj0k|2 ≤ Cn−1�1(j0), E|b̂jk − bjk|2 ≤ Cn−1�1(j).(3.17)

If α = 0 and assumption (3.10) holds, then, for any j ≥ j0, one has

E|b̂jk − bjk|4 ≤ Cn(lnn)3λ(n∗)−3/(2ν+1).(3.18)

LEMMA 2. Let the estimators b̂jk of the wavelet coefficients bjk be given by
the formula (2.7) with f̂m defined by (2.3) in the continuous model and by (2.4) in
the discrete model. Let assumptions (3.9) (if α = 0) and (3.10) hold. If

μ≥ 2
√
c1
(√

6 + 1
)
/
√
h2,(3.19)

where c1 and h2 are defined in (3.16) and (3.10), respectively, then, for all j ≥ j0,

P

( ∑
k∈Ujr

|b̂jk − bjk|2 ≥ (4n∗)−1μ222νj jλ ln(n∗)
)

≤ n−3.(3.20)

Then the following statement is true.
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THEOREM 2. Let f̂n(·) be the wavelet estimator defined by (2.9), with j0 and
J given by (3.11) (if α = 0) or (3.12) (if α > 0) and μ satisfying (3.19). Let s >
1/p′, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0. Then, under the assumptions (3.9) and
(3.7) if α > 0, or (3.9) and (3.10) if α = 0, as n→ ∞,

sup
f∈Bsp,q(A)

E‖f̂n − f ‖2

(3.21)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C(n∗)−2s/(2s+2ν+1)(lnn)�+2sλ/(2s+2ν+1),

if α = 0, ν(2 − p) < ps∗,
C

(
lnn

n∗
)2s∗/(2s∗+2ν)

(lnn)�+2s∗λ/(2s∗+2ν),

if α = 0, ν(2 − p)≥ ps∗,
C(ln(n∗))−2s∗/β, if α > 0.

REMARK 1. Note that in the continuous model, one can write a lower bound
for τ1(m) in (3.6) and an upper bound for τ1(m) in (3.9) with εn = 1, so that
n∗ = n in (3.8) and (3.21). However, in the discrete model this may not be possible.
Theorems 1 and 2 allow to account for the dependence of τ1(m) on n in the case
of the discrete model as well as for an extra logarithmic factor in the expression of
τ1(m) which often appears in the case of the continuous model.

REMARK 2. Note that Theorems 1 and 2 can be applied even if the values of
ν,λ, α and β in assumptions (3.6) and (3.9) are different, that may also depend
on M and u. Then Theorem 1 provides asymptotical minimax lower bounds for
the L2-risk while Theorem 2 provides the corresponding upper bounds. If, in the
continuous model or in the discrete model with some particular choice of M and
sampling points u, the values of ν,λ, α and β and the functions εn in conditions
(3.6) and (3.9) coincide, then Theorems 1 and 2 imply that the estimator f̂n(·)
defined by (2.9) is asymptotically optimal (in the minimax sense), or near-optimal
within a logarithmic factor, over a wide range of Besov balls Bsp,q(A). Therefore,
in the rest of the paper, when we talk about convergence rates we refer to the
asymptotical minimax lower bounds for the L2-risk which are attainable, up to at
most a logarithmic factor, according to Theorems 1 and 2.

4. The interplay between continuous and discrete models: Uniform, reg-
ular and irregular cases. The convergence rates in the discrete model depend
on two aspects: the total number of observations n = NM and the behavior of
τd1 (m,u,M). In the continuous model, the values of τ c1 (m) are fixed; they depend
on m only, and hence conditions (3.6) and (3.9) can be easily verified. However,
this is no longer true in the discrete model; in this case, the values of τd1 (m,u,M)
may depend on the choice of M and the selection of points u. If we require the
values of τd1 (m,u,M) to be independent of the choice of M and the selection of
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points u, then the convergence rates in the discrete and the continuous models co-
incide and are independent of the selection of points u. Moreover, in this case, the
wavelet estimator (2.9) is asymptotically optimal (in the minimax sense) no matter
what the choice of M is. It is quite possible, however, that in the discrete model,
conditions (3.6) and (3.9) both hold but with different values of ν, λ, α and β for
different choices ofM and u. In this case, the asymptotical minimax upper bounds
for the L2-risk in the discrete model may not coincide with the convergence rates
in the continuous model, at least for some sampling schemes.

4.1. Necessary and sufficient conditions for convergence rates equivalency be-
tween continuous and discrete models. Assume that there exist points u∗, u∗ ∈
[a, b], independent of m, such that, for any u ∈ [a, b],

|gm(u)| ≤K|gm(u∗)| and |gm(u)| ≥K|gm(u∗)|.(4.1)

In this case,

(b− a)K2|gm(u∗)|2 ≤ τ c1 (m)≤ (b− a)K2|gm(u∗)|2

and K2|gm(u∗)|2 ≤ τd1 (m,u,M) ≤ K2|gm(u∗)|2 for any M and u. Note that,
based on the assumption on the blurring function g(·, ·) made in Section 2, points
u∗ and u∗ satisfying condition (4.1) always exist; however, they are not necessarily
independent of m.

Here, and in what follows, um � vm means that there exist constants C1 > 0 and
C2 > 0, independent of m, such that 0 < C1vm ≤ um ≤ C2vm <∞ for |m| large
enough.

The following statement, which substantially extends Proposition 1 of Pensky
and Sapatinas (2009a), presents the necessary and sufficient conditions for the con-
vergence rates in the discrete model to be independent of the choice of M and the
selection of points u and hence to coincide with the convergence rates in the con-
tinuous model.

THEOREM 3. Let there exist constants ν1 ∈ R, ν2 ∈ R, α1 ≥ 0, α2 ≥ 0, β1 > 0
and β2 > 0, independent of m and n, such that

|gm(u∗)|2 � |m|−2ν1 exp(−α1|m|β1), ν1 > 0 if α1 = 0,(4.2)

|gm(u∗)|2 � |m|−2ν2 exp(−α2|m|β2), ν2 > 0 if α2 = 0.(4.3)

Then, the convergence rates obtained in Theorems 1 and 2 in the discrete model are
independent of the choice of M and the selection of points u, and hence coincide
with the convergence rates obtained in Theorems 1 and 2 in the continuous model,
if and only if

α1α2 > 0 and β1 = β2 or α1 = α2 = 0 and ν1 = ν2.(4.4)
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REMARK 3. Theorem 3 provides necessary and sufficient conditions for the
convergence rates in the continuous and the discrete models to coincide, and to be
independent of the choice ofM and the selection of points u. These conditions also
guarantee asymptotical optimality (in the minimax sense) of the wavelet estimator
(2.9) and can be viewed as some kind of uniformity conditions. Under assumptions
(4.2)–(4.4), asymptotically (up to a constant factor) it makes absolutely no differ-
ence whether one samples the discrete model n times at one point, say, u1 or, say,√
n times atM = √

n points ul , l = 1,2, . . . ,M . In other words, each sample value
y(ul, ti), l = 1,2, . . . ,M , i = 1,2, . . . ,N , asymptotically (up to a constant factor)
gives the same amount of information, and, therefore, the convergence rates are
not sensitive to the choice of M and the selection of points u. On the other hand,
if the conditions of Theorem 3 are violated, then the convergence rates in the dis-
crete model depend on the choice ofM and u, and some recommendations on their
selection should be given. Furthermore, optimality (in the minimax sense) issues
become much more complex when τd1 (m;u,M) is not uniformly bounded from
above or below.

4.2. Some illustrative examples. Theorem 3 provides necessary and sufficient
conditions for the continuous and the discrete models to be equivalent, from the
viewpoint of convergence rates, no matter what the choice of M and the selection
of points u are. The difficulty, however, is that many models do not satisfy those
conditions. Below, we consider some illustrative examples that have recently been
studied in Pensky and Sapatinas (2009a).

EXAMPLE 1 (Estimation of the initial condition in the heat conductivity equa-
tion). Let h(t, x) be a solution of the heat conductivity equation,

∂h(t, x)

∂t
= ∂2h(t, x)

∂x2 , x ∈ [0,1], t ∈ [a, b], a > 0, b <∞,
with initial condition h(0, x) = f (x) and periodic boundary conditions h(t,0) =
h(t,1) and ∂h(t, x)/∂x|x=0 = ∂h(t, x)/∂x|x=1.

We assume that a noisy solution y(t, x) = h(t, x) + n−1/2z(t, x) is observed,
where z(t, x) is a generalized two-dimensional Gaussian field with covariance
function E[z(t1, x1)z(t2, x2)] = δ(t1 − t2)δ(x1 − x2), and the goal is to recover
the initial condition f (·) on the basis of observations y(t, x). This problem was
initially considered by Lattes and Lions (1967) and further studied by Golubev
and Khasminskii (1999).

Then the functional Fourier coefficients gm(·) are of the form

gm(u)= exp(−4π2m2u),

so that u∗ = b, u∗ = a, |gm(u∗)| = exp(−4π2bm2) and |gm(u∗)| = exp(−4π2a ×
m2) [see Example 1 in Pensky and Sapatinas (2009a)]. Hence Theorem 3 holds
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with ν1 = ν2 = 0, α1 = 4π2b, α2 = 4π2a and β1 = β2 = 2. Therefore, the conver-
gence rates in the continuous and the discrete models coincide and are independent
of the choice ofM and the selection of points u.

EXAMPLE 2 (Estimation of the boundary condition for the Dirichlet problem
of the Laplacian on the unit circle). Let h(x,w) be a solution of the Dirichlet
problem of the Laplacian on a region D on the plane

∂2h(x,w)

∂x2 + ∂2h(x,w)

∂w2 = 0, (x,w) ∈D ⊆ R
2,(4.5)

with a boundary ∂D and boundary condition h(x,w)|∂D = F(x,w). Consider the
situation when D is the unit circle. Then it is advantageous to rewrite the function
h(·, ·) in polar coordinates as h(x,w)= h(u, t) where u ∈ [0,1] is the polar radius
and t ∈ [0,2π ] is the polar angle. Then the boundary condition can be presented
as h(1, t)= f (t), and h(u, ·) and f (·) are periodic functions of t with period 2π .

Suppose that only a noisy version y(u, t)= h(u, t)+ n−1/2z(u, t) is observed,
where z(u, t) is as in Example 1, and that observations are available only on the
interior of the unit circle with u ∈ [0, r0], r0 < 1, that is, a = 0, b = r0 < 1. The
goal is to recover the boundary condition f (·) on the basis of observations y(u, t).
This problem was initially investigated in Golubev and Khasminskii (1999) and
Golubev (2004).

Then the functional Fourier coefficients gm(·) are of the form

|gm(u)| =Ku|m| =K exp
(−|m| ln(1/u)

)
, u ∈ [0, r0],(4.6)

so that u∗ = 0, u∗ = r0, |gm(u∗)| = 0 and |gm(u∗)| =K exp(−|m| ln(1/r0)) [see
Pensky and Sapatinas (2009a), Example 2]. Hence, the conditions of Theorem 3
do not hold, and we cannot be certain that the convergence rates in the contin-
uous and the discrete models coincide for any sampling scheme. Actually, it is
easy to see that if sampling is carried out entirely at the single point u∗ = 0, then
τd1 (m,u∗,1)= 0, and we cannot recover the boundary condition f (·).

EXAMPLE 3 (Estimation of the speed of a wave on a finite interval). Let
h(t, x) be a solution of the wave equation

∂2h(t, x)

∂t2
= ∂2h(t, x)

∂x2

with initial-boundary conditions h(0, x) = 0, ∂h(t, x)/∂t |t=0 = f (x) and h(t ,
0)= h(t,1)= 0.

Here f (·) is a function defined on the unit interval [0,1], and the goal is
to recover the speed of a wave f (·) on the basis of observing a noisy solution
y(t, x) = h(t, x)+ n−1/2z(t, x) where z(t, x) is as in Example 1 with t ∈ [a, b],
a > 0, b < 1.
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Then the functional Fourier coefficients gm(·) are of the form

g0(u)= 1 and gm(u)= (2πm)−1 sin(2πmu),
(4.7)

m ∈ Z \ {0}, u ∈ [a, b],
[see Pensky and Sapatinas (2009a), Example 4]. It is easy to see that in order to
satisfy the condition (4.1) the points u∗ and u∗ should depend on m, and hence
the convergence rates depend on the selection ofM and u. Hence the convergence
rates in the continuous and the discrete models may coincide for one selection of
M and u and be different for another. Actually, it is easy to see that if M = 1 and
u is an integer, then τd1 (m,u,1) = 0, and we cannot recover the speed of a wave
f (·).

4.3. Possible cases. Theorem 3 in Section 4.1 provides necessary and suffi-
cient conditions for the convergence rates in the discrete model to be independent
of the choice of M and the selection of points u and hence to coincide with the
convergence rates in the continuous model. We can divide these conditions into
the following two groups.

CONDITION I. There exist constants ν1 ∈ R, α1 ≥ 0 and β1 > 0 and a point
u∗ ∈ [a, b], independent of m and n, such that

|gm(u)|2 ≤K|gm(u∗)|2 � |m|−2ν1 exp(−α1|m|β1), ν1 > 0 if α1 = 0.(4.8)

CONDITION I*. There exist constants ν2 ∈ R, α2 ≥ 0 and β2 > 0, and a point
u∗ ∈ [a, b], independent of m and n, such that

|gm(u)|2 ≥K|gm(u∗)|2 � |m|−2ν2 exp(−α2|m|β2), ν2 > 0 if α2 = 0.(4.9)

CONDITION II. Either α1α2 > 0 and β1 = β2 or α1 = α2 = 0 and ν1 = ν2.

Consider now the following three cases.

1. The uniform case: Conditions I, I* and II hold.
2. The regular case: Condition I holds but Condition II does not hold. Condition I*

holds or, possibly, |gm(u∗)| = 0.
3. The irregular case: Condition I does not hold.

It is easy to see that Examples 1, 2 and 3 of Section 4.2 correspond to the
uniform case, the regular case and the irregular case, respectively.

Theorem 3 shows that in the uniform case, the convergence rates obtained in
Theorems 1 and 2 in the discrete model are independent of the choice of M and
the selection of points u and hence coincide with the convergence rates obtained
in Theorems 1 and 2 in the continuous model. In the uniform case one can replace
the discrete model by the continuous model, no matter what M and u are.
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In the regular case, one cannot guarantee that the convergence rates between
continuous and discrete models coincide. However, as we shall show below, one
can still locate a point u∗ which delivers the best possible convergence rates. If
sampling is done entirely at this point, then the discrete model can sometimes de-
liver better convergence rates than the continuous model. Nevertheless, if another
sampling strategy is chosen, then the convergence rates in the discrete model may
be worse than in the continuous model. Note that we do not require Condition I*
to hold. This is due to the fact that Condition I* refers to the “worst case scenario”
when we sample at the points which leads to the highest possible variance and,
consequently, to the lowest convergence rates. One can also view |gm(u∗)| = 0 as
an extreme case of Condition I* when ν2 = ∞ or α2 = α1 and β2 = ∞. It is easy
to see that if, in the discrete model, all sampling is carried out at u∗, then the con-
vergence rates will be worse than in the case of sampling entirely at u∗ or than in
the continuous model. Hence, in the regular case, sampling strategy does matter.

In the irregular case, it is impossible to pinpoint the best sampling strategy
which suits any problem; this is due to the fact that Condition I can be violated
in a variety of ways. For this reason, we study a particular example of the irregular
case, namely, functional deconvolution with a boxcar-like blurring function; this
important model occurs in the problem of estimation of the speed of a wave on a fi-
nite interval (see Example 3 in Section 4.2) and, a discretized version of it, in many
areas of signal and image processing which include, for instance, LIDAR (Light
Detection and Ranging), remote sensing and reconstruction of blurred images (see
Section 6).

5. The regular case.

5.1. The best discrete rates. It is easy to see that, in the regular case,
τd1 (m,u

∗,1)≥Kτc1 (m). Hence it follows from Theorems 1 and 2 that, if the dis-
crete model is sampled entirely at u∗ (i.e.,M = 1 and u1 = u∗), then the asymptot-
ical minimax lower and upper bounds for the L2-risk in the discrete model can be
only lower than the respective lower and upper bounds in the continuous model.

Denote by f̂ cn (·) the wavelet estimator of f (·) defined by (2.9) based on ob-
servations from the continuous model, and let f̂ dn (·) = f̂ dn (u,M, ·) be the corre-
sponding wavelet estimator of f (·) based on observations from the discrete model
evaluated at the point u. Denote f̂ d∗n (·)= f̂ dn (u∗,1, ·).

Then the following statement is true.

THEOREM 4. Let {φj0,k(·),ψj,k(·)} be the periodic Meyer wavelet basis dis-
cussed in Section 2 and assume that s >max(0,1/p−1/2) (for the lower bounds)
or s > 1/p′ (for the upper bounds), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A> 0. Then

Rcn(B
s
p,q(A))≥ CRdn(Bsp,q(A),u∗,1)�Rdn(Bsp,q(A)).(5.1)
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Also, for any choice ofM and u, we have

sup
f∈Bsp,q (A)

E‖f̂ d∗n − f ‖2 ≤ C sup
f∈Bsp,q (A)

E‖f̂ cn − f ‖2,(5.2)

sup
f∈Bsp,q (A)

E‖f̂ d∗n − f ‖2 ≤ C sup
f∈Bsp,q (A)

E‖f̂ dn − f ‖2.(5.3)

Theorem 4 confirms that sampling entirely at the single point u∗ leads to the
highest possible convergence rates in the discrete model. However, it does not
provide an answer to the question whether the inequalities in (5.1) and (5.2) are
strict or the convergence rates are the same in the continuous and the discrete
models with sampling entirely at the single point u∗. To get a better insight into
the matter, let us consider a few more examples.

5.2. More examples. Example 2 (continued). In the case of estimation of the
boundary condition for the Dirichlet problem of the Laplacian on the unit circle,
the functional Fourier coefficients gm(·) are of the form (4.6) with r0 < 1. Hence,
u∗ = r0 and τd1 (m,u

∗,1) � |gm(u∗)|2 � exp(−|m| ln(1/r0)). On the other hand,

τ c1 (m) � ∫ r0
0 u

2|m| du = r2|m|+1
0 /(2|m| + 1) � |m|−1 exp(−|m| ln(1/r0)). Hence,

by Theorems 1 and 2, the convergence rates in the continuous model coincide with
the convergence rates in the discrete model if sampling is carried out entirely at
the single point u∗.

EXAMPLE 4. Let the functional Fourier coefficients gm(·) satisfy

|gm(u)|2 � |m|−2u, 0< a ≤ u≤ b <∞.
Then, in the continuous model,

τ c1 (m)=
∫ b

a
|gm(u)|2 du�

∫ b

a
exp(−2u ln|m|) du� |m|−2a(ln|m|)−1,

implying that conditions (3.6) and (3.9) hold with ν = a, α = 0 and λ = 1. In
the case of the discrete model, u∗ = a and τd1 (m,u

∗,1) � |gm(u∗)|2 � |m|−2a

and conditions (3.6) and (3.9) hold with ν = u∗, α = 0 and λ = 0. Hence, by
Theorems 1 and 2, the convergence rates in the continuous model are worse than
the convergence rates in the discrete (they differ by a logarithmic factor) model
when sampling is carried out entirely at the single point u∗.

EXAMPLE 5. Let the functional Fourier coefficients gm(·) satisfy

|gm(u)|2 � exp(−α|m|u), 0< a ≤ u≤ b <∞,(5.4)

for some constant α > 0, independent of m. Then u∗ = a and τd1 (m,u
∗,1) =

|gm(u∗)|2 � exp(−α|m|a). On the other hand, τ c1 (m) � ∫ b
a exp(−α|m|u) du �
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(ln|m|)−1 ∫ |m|b
|m|a z−1 exp(−αz)dz, so that

τ c1 (m)≥K|m|−b(ln|m|)−1
∫ |m|b

|m|a
exp(−αz)dz� |m|−b(ln|m|)−1 exp(−α|m|a)

and

τ c1 (m)≤K|m|−a(ln|m|)−1
∫ ∞
|m|a

exp(−αz)dz� |m|−a(ln|m|)−1 exp(−α|m|a).
Hence, by Theorems 1 and 2, the convergence rates in the continuous and the

discrete models coincide if sampling is carried out entirely at the single point u∗.

EXAMPLE 6. Let the functional Fourier coefficients gm(·) satisfy

|gm(u)|2 � |m|−2ν exp(−u|m|β), 0 ≤ u≤ b <∞,(5.5)

for some constants ν > 0 and β > 0, independent of m. Then, u∗ = 0 and

τd1 (m,u
∗,1)� |gm(u∗)|2 � |m|−2ν.(5.6)

On the other hand, it is easy to check that

τ c1 (m)� |m|−2ν
∫ b

0
exp(−u|m|β) du� |m|−(2ν+β).(5.7)

Hence, by Theorems 1 and 2, the convergence rates in the continuous model are
worse than in the discrete model when sampling is carried out entirely at the single
point u∗ = 0.

5.3. Conditions for convergence rates equivalency and nonequivalency between
continuous and discrete models. We shall say that the convergence rates in the
continuous and the discrete models “almost coincide” if the convergence rates co-
incide up to, at most, a logarithmic factor when the convergence rates are poly-
nomial [α(u) ≡ 0] or up to, at most, a constant when the convergence rates are
logarithmic [α(u) > 0]. We choose this distinction between the cases of polyno-
mial and logarithmic convergence rates since in the polynomial case the upper
bounds for the risks of the adaptive estimator may differ from the corresponding
lower bounds for the risk by a logarithmic factor.

Hence a question naturally arises: under which conditions on the choice of M
and the selection of sampling points u do the convergence rates in the discrete and
the continuous models almost coincide, and under which conditions this does not
happen? In order to answer this question, first we have to derive upper and lower
bounds for the L2-risk in the continuous model.

In what follows we assume that the functional Fourier coefficients gm(·) satisfy
the assumption

|gm(u)|2 � |m|−2ν(u) exp
(−α(u)|m|β(u)), u ∈U,(5.8)
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for some continuous functions ν(·), α(·) and β(·) defined on u ∈ U , such that
either α(u)= 0 and ν(u) > 0 or α(u) > 0 and β(u) > 0, for all u ∈U . Denote

ϑ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2s

k(2s + 2ν(u∗)+ 1)
, if ν(u∗)(2 − p) < ps∗,

2s∗

k(2s∗ + 2ν(u∗))
, if ν(u∗)(2 − p)≥ ps∗.

(5.9)

Then the following statement is valid.

LEMMA 3. Let {φj0,k(·),ψj,k(·)} be the periodic Meyer wavelet basis dis-
cussed in Section 2, and assume that s >max(0,1/p−1/2) (for the lower bounds)
or s > 1/p′ (for the upper bounds), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0. Let also
the functional Fourier coefficients gm(·) satisfy assumption (5.8). Denote

u∗ =
⎧⎨
⎩

arg min
u∈U

ν(u), if α(u)≡ 0,

arg min
u∈U

β(u), if α(u) > 0, β(u) �= const.

Assume further that, in the neighborhood of point u = u∗, the function β(·) is
continuously differentiable [if α(u) > 0, u ∈ U ] or the function ν(·) is k-times
continuously differentiable [if α(u)= 0, u ∈U ], where k ≥ 1 is such that

ν(s)(u∗)= 0, s = 1, . . . , k− 1, ν(k)(u∗) �= 0(5.10)

with ν(s)(·) denoting the sth derivative of the function ν(·). Then the asymptotical
minimax lower and upper bounds for the L2-risk in the continuous model are as
follows:

Rcn(B
s
p,q(A))

(5.11)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cn−2s/(2s+2ν(u∗)+1)(lnn)ϑ,
if α(u)= 0, ν(u∗)(2 − p) < ps∗,

C

(
lnn

n

)2s∗/(2s∗+2ν(u∗))
(lnn)ϑ,

if α(u)= 0, ν(u∗)(2 − p)≥ ps∗,
C(lnn)−2s∗/(β(u∗)), if α(u) > 0,

and

sup
f∈Bsp,q(A)

E‖f̂ cn − f ‖2

(5.12)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cn−2s/(2s+2ν(u∗)+1)(lnn)ρ+ϑ,
if α(u)= 0, ν(u∗)(2 − p) < ps∗,

C

(
lnn

n

)2s∗/(2s∗+2ν(u∗))
(lnn)ρ+ϑ,
if α(u)= 0, ν(u∗)(2 − p)≥ ps∗,

C(lnn)−2s∗/(β(u∗)), if α(u) > 0.
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Here ρ is given by (3.14) with ν = ν(u∗), and ϑ is given by (5.9). If ν(·) is a
constant function, then k = ∞ in (5.10) and ϑ = 0.

REMARK 4. In Lemma 3, we do not consider the case when β(u) is constant
since this situation belongs to the uniform case and the convergence rates in the
continuous and the discrete models coincide for any sampling scheme due to The-
orem 3. Note also that the value of u∗ in Lemma 3 is always independent of m and
easy to find.

The utility of Lemma 3 is that it allows one to formulate conditions such that the
convergence rates in the continuous model almost coincide with the convergence
rates in the discrete model for any particular choice of a sampling scheme.

THEOREM 5. Let assumptions (5.8) and (5.10) hold.

(i) If α(u)≡ 0, then the convergence rates in the continuous and the discrete
models coincide up to at most a logarithmic factor ifM =Mn and u are such that

τd1 (m,u,Mn)≥Kεn|m|−2ν(u∗)(ln|m|)−λ1(5.13)

for some constant λ1 ∈ R, independent of m and n, and for some sequence εn > 0,
independent of m, satisfying

lim
n→∞ εn(lnn)

λ2 > 0(5.14)

for some constant λ2 ≥ 0. If, moreover, εn, M =Mn and u are such that opposite
inequalities hold, that is,

τd1 (m,u,Mn) ≤ Cεn|m|−2ν(u∗)(ln|m|)−λ1 and
(5.15)

lim
n→∞ εn(lnn)

λ2 <∞,
for the same constants λ1 and λ2 as in formulae (5.13) and (5.14), and if k in
(5.10) is such that k(λ1 + λ2) = 1, then the convergence rates in the continuous
and discrete models coincide up to constant.

(ii) If α(u) > 0, then the convergence rates in the continuous and discrete mod-
els coincide up to constant ifM =Mn and u are such that

τd1 (m,u,Mn)≥Kεn|m|−2ν exp
(−α|m|β(u∗))(ln|m|)−λ1(5.16)

for some constants ν ∈ R, λ1 ∈ R and α > 0, independent of m and n, and for
some sequence εn > 0, independent of m, satisfying condition (3.10).

Theorem 5 provides sufficient conditions for a sampling scheme in the discrete
model to lead to the convergence rates which are optimal or near-optimal. It fol-
lows from conditions (5.8) and (5.10) and Theorems 1 and 2 that, if the discrete
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model is sampled entirely at u∗, then the convergence rates in the continuous and
the discrete models almost coincide. Namely, as n→ ∞,

Rdn(B
s
p,q(A))

(5.17)

≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Cn−2s/(2s+2ν(u∗)+1), if α(u)= 0, ν(u∗)(2 − p) < ps∗,

C

(
lnn

n

)2s∗/(2s∗+2ν(u∗))
, if α(u)= 0, ν(u∗)(2 − p)≥ ps∗,

C(lnn)−2s∗/(β(u∗)), if α(u) > 0,

and

sup
f∈Bsp,q (A)

E‖f̂ d∗n − f ‖2

(5.18)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cn−2s/(2s+2ν(u∗)+1)(lnn)�,
if α(u)= 0, ν(u∗)(2 − p) < ps∗,

C

(
lnn

n

)2s∗/(2s∗+2ν(u∗))
(lnn)�,

if α(u)= 0, ν(u∗)(2 − p)≥ ps∗,
C(lnn)−2s∗/(β(u∗)), if α(u) > 0.

From the above, it also follows that

Rcn(B
s
p,q(A))

Rdn(B
s
p,q(A))

�
{

1, if α(u) > 0 and β(u) > 0, u ∈U ,
(lnn)ϑ, if α(u)= 0, u ∈U ,

and hence the convergence rates in the discrete model cannot be better than the
convergence rates in the continuous model if α(u) > 0 and cannot be better by
more than a logarithmic factor if α(u)≡ 0.

We shall say that the convergence rates in the discrete model with sampling
at M points u are “inferior” to the convergence rates in the continuous model if
the convergence rates differ by more than a logarithmic factor for α(u)≡ 0 or by
more than a constant factor if α(u) > 0. The following statement shows when this
happens.

THEOREM 6. Let assumptions (3.7), (5.8) and (5.10) hold and let

lim
n→∞ ln(εn)/ lnn= ε0 <∞

for some sequence εn > 0, independent of m.

(i) Let α(u) ≡ 0, and let assumption (3.10) hold. If M =Mn and u are such
that

τd1 (m,u,Mn)≤Kεn|m|−2ν(ln|m|)−λ(5.19)
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for some constants λ ∈ R and ν > 0, independent ofm and n, then the convergence
rates in the discrete model are inferior to the convergence rates in the continuous
model if

ν > ν(u∗) and
(5.20)

ε0 <

{
2
(
ν − ν(u∗)

)
/
(
2s + 2ν(u∗)+ 1

)
, if ν(2 − p) < ps∗,

2
(
ν − ν(u∗)

)
/
(
2s∗ + 2ν(u∗)

)
, if ν(2 − p)≥ ps∗,

or

ν = ν(u∗) and lim
n→∞ εn(lnn)

a = 0 for any a > 0.(5.21)

(ii) Let α(u) > 0 andM =Mn and u be such that

τd1 (m,u,Mn)≤Kεn|m|−2ν exp(−α|m|β)(ln|m|)−λ(5.22)

for some constants ν ∈ R, λ ∈ R and α > 0, independent of m and n. Then the
convergence rates in the discrete model are inferior to the convergence rates in the
continuous model if

β > β(u∗) and ε0 ≥ −1 or β = β(u∗) and ε0 = −1.(5.23)

Theorems 5 and 6 formulate conditions in terms of τd1 (m,u,Mn). The following
corollaries contain more specific results for various sampling schemes.

COROLLARY 1. LetM =Mn be finite. Then the necessary and sufficient con-
dition for the convergence rates in the continuous and the discrete models to al-
most coincide is that for at least one l, l = 1,2, . . . ,M , one has ν(ul)= ν(u∗) if
α(u)≡ 0 or β(ul)= β(u∗) if α(u) > 0.

COROLLARY 2. If α(u) ≡ 0 and M = Mn ≤ C(lnn)λ∗
for some constant

λ∗ ∈ [0,∞), then the convergence rates in the continuous and the discrete models
almost coincide if one has ν(ul)= ν(u∗) for at least one l, l = 1,2, . . . ,M .

COROLLARY 3. If α(u) > 0 and M = Mn ≤ Cnτ for some constant τ ∈
[0,1), then the convergence rates in the continuous and the discrete models al-
most coincide if one has β(ul)= β(u∗) for at least one l, l = 1,2, . . . ,M .

5.4. Pseudo-uniform sampling strategies. Theorems 5 and 6 and Corollar-
ies 1, 2 and 3 in Section 5.3 establish, in the case of an arbitrary sampling scheme,
when the convergence rates in the continuous model almost coincide with the con-
vergence rates in the discrete model, or when the convergence rates in the discrete
model are inferior.

However, when the discrete model is replaced by the continuous model, the un-
derlying implicit assumption is that sampling is carried out atM =Mn equidistant
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points with Mn → ∞. In particular, the interval [a, b] is partitioned into M equal
subintervals of the length �= (b− a)/M and ul =�(l+ d), l = 0,1, . . . ,M − 1,
where d ∈ [0,1] is the parameter which allows one to accommodate various sam-
pling techniques (e.g., d = 0, d = 1 or d = 1/2, respectively, when sampling is
carried out at the left, the right and the middle of each sub-interval).

Below, we study an extension of this sampling scheme. We avoid treating
u1, u2, . . . , uM as a random sample since this is not the case in both mathemat-
ical physics and signal processing applications. Instead, in order to accommodate
various sampling strategies, we consider a continuously differentiable function
S(x), x ∈ [0,1], such that 0 ≤ s1 ≤ S′(x) ≤ s2 <∞ and S(0) = a, S(1) = b. Let
d ∈ [0,1], and let

ul = S
(
l − 1 + d
M

)
, l = 1,2, . . . ,M.(5.24)

Denote the inverse of S(u) by q(u) = S−1(u), u ∈ [a, b], and observe that q(u)
is continuously differentiable in [a, b] with 0 ≤ 1/s2 ≤ q ′(u) ≤ 1/s1 <∞. Many
functions S(·) satisfy these conditions, for example, S(x)= a + (b− a)xh, where
0< h<∞ (the case h= 1 corresponds to the uniform sampling).

THEOREM 7. Let assumptions (5.8) and (5.10) hold, and let ul , l = 1,2, . . . ,
M , be defined by (5.24) where the function S(x), x ∈ [0,1], is continuously dif-
ferentiable such that 0 ≤ s1 ≤ S′(x) ≤ s2 <∞ and S(0)= a, S(1)= b. Then the
convergence rates in the discrete and the continuous models almost coincide if, for
M =Mn,

α(u)≡ 0 and lim
n→∞M

−1
n lnn= τ1 <∞ or

(5.25)
α(u) > 0 and lim

n→∞M
−1
n ln lnn= τ2 <∞.

If, moreover, |gm(u)|2 =K|m|−2ν(u) for some continuously differentiable function
ν(u), u ∈U , and also

lim
n→∞M

−1
n (lnn)

1+1/k = 0,

where k is defined in (5.10), then the convergence rates in the discrete and the
continuous models coincide up to a constant.

REMARK 5. Note that if α(u) > 0 in (5.8) and d in (5.24) is such that β(ul)=
β(u∗) for some l, l = 1,2, . . . ,M , then a combination of Theorems 5 and 7 yields
that the convergence rates in the discrete and the continuous models coincide for
any value of M =Mn. Note also that, although conditions (5.25) in Theorem 7
are sufficient for the convergence rates in the discrete and the continuous models
to almost coincide, examples in the next section demonstrate that these conditions
are also necessary or close to being necessary; if the conditions in (5.25), or some
slightly weaker conditions, are violated, then the convergence rates in the discrete
model are inferior to the convergence rates in the continuous model.
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5.5. Examples revisited. Example 2 (continued). Recall that |gm(u)|2 �
exp(−2 ln(1/u)|m|), u ∈ [0, r0], so that β = 1 and α(u) = 2 ln(1/u). Hence
u∗ = r0, and if the discrete model is sampled entirely at the single point u∗, then the
convergence rates in the continuous and the discrete models are given by formulae
(5.11) and (5.12) or (5.17) and (5.18), respectively, and they coincide.

However, the convergence rates in the discrete and the continuous mod-
els coincide under much weaker conditions. In fact, if Mn = O(nτ ) for some
constant τ ∈ [0,1) and ul = r1 > 0 for at least one l, l = 1,2, . . . ,M , then
τd1 (m,u,M) ≥ Kn−τ exp(−2 ln(1/r1)|m|), and, by Theorem 5, the convergence
rates in the discrete and the continuous models coincide. On the other hand, if
u1 = · · · = uM−1 = 0, uM = r1 > 0 and M =Mn � n/ lnn, then τd1 (m,u,M) �
n−1 lnn exp(−2 ln(1/r1)|m|), and, by Theorem 6, the convergence rates in the dis-
crete model are inferior to the convergence rates in the continuous model.

Now, consider the case of the pseudo-uniform sampling ul = S((l−1+d)/M),
l = 1,2, . . . ,M , with d ∈ [0,1] and a function S(x), x ∈ [0,1], satisfying the as-
sumptions of Section 5.4. We will show that the convergence rates in the discrete
and the continuous models coincide no matter what the value of M is. To verify
this, note that τ d1 (m,u,M)=M−1 ∑M

l=1 u
2|m|
l ≤ r2|m|

0 .On the other hand, it is easy
to see that since S((l−1+d)/M)= S((l−1+d)/M)−S(0)≥ s1(l−1+d)/M ,
one has τd1 (m,u,M) ≥M−1 ∑M

l=M/2+1 u
2|m|
l ≥M−1 ∑M

l=M/2+1(M
−1s1(l − 1 +

d))2|m|. Here, s1 < 1, due to S(0) = 0, S(1) = r0 < 1 and 0 < s1 ≤ S′(x), and,
therefore, τd1 (m,u,M)≥M−1 ∑M

l=M/2+1(0.5s1)
2|m| = 0.5 exp(−2|m| log(2/s1)).

Since ln(2/s1) > 0, the convergence rates in the discrete and the continuous mod-
els coincide due to Theorems 1 and 2.

We conclude this example with a rather obvious observation. Reducing the sam-
pling interval from [0, r0] to [r1, r0], with r1 > 0, yields u∗ = r1 and Theorem 3
immediately becomes valid. For this reason, although |gm(u)| does not satisfy
condition (5.8) [since |gm(0)| = 0], the convergence rates in the continuous and
the discrete models coincide for the majority of “reasonable” sampling schemes.
Since, with the restriction 0< r1 ≤ u, the problem of the estimation of the bound-
ary condition for the Dirichlet problem of the Laplacian on the unit circle simply
reduces to the uniform case, we can consider the problem as an example of an
“almost uniform” case and conclude that replacing the discrete model by the con-
tinuous model is a legitimate choice.

Example 4 (continued). Recall that |gm(u)|2 � |m|−2u, u ∈ [a, b], so that
α(u)= 0, ν(u)= 2u, k = 1 and u∗ = a. If M =Mn =O((lnn)λ∗

) for some con-
stant λ∗ ≥ 0 and ul = a for at least one l, l = 1,2, . . . ,M , then, by Corollaries 1
and 2, the convergence rates in the discrete and the continuous models almost co-
incide. On the other hand, if u1 = a but ul ≥ a + d , d > 0, for l = 2,3, . . . ,M ,
andM =Mn is such that limn→∞Mn(lnn)−λ

∗ = ∞ for any constant λ∗ > 0, then
the convergence rates in the discrete model are inferior to those in the continuous
model.
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To verify this, note that under the assumptions above τd1 (m,u,M)≤K(M−1
n ×

|m|−2a+|m|−2(a+d))≤Kmax(M−1
n |m|−2a, |m|−2(a+d)). Now, apply Theorem 6,

first with εn =M−1
n and ν = ν(u∗) and then with εn = 1 and ν = ν(u∗)+ d .

Now, consider the case of the pseudo-uniform sampling ul = S((l−1+d)/M),
l = 1,2, . . . ,M , with d ∈ [0,1] and a function S(x), x ∈ [0,1], satisfying the as-
sumptions of Section 5.4. By Theorem 7, the convergence rates in the discrete and
the continuous models coincide up to, at most, a logarithmic factor if M =Mn is
such that limn→∞M−1

n lnn <∞. If, moreover, |gm(u)|2 =K|m|−2u andM =Mn
is such that limn→∞M−1

n (lnn)
2 = 0, then the convergence rates coincide up to, at

most, a constant. In other words, in each case, the convergence rates in the discrete
and the continuous models almost coincide.

Let us show that the opposite is also true: if d > 0 and M =Mn is such that

lim
n→∞M

−1
n (ln lnn)−1 lnn= ∞,(5.26)

then the convergence rates in the discrete model are inferior to those in the con-
tinuous model. For this purpose, note that u1 − a = S(d/M)− S(0) ≥ s1d/M =
d1/M , so that τd1 (m,u,M) ≤ K|m|−2(a+d1/M) = K|m|−2a exp(−2d1 ln|m|/M).
Since ln|m| � lnn in this case, we have τd1 (m,u,M) ≤ Kεn|m|−2a with εn =
exp(−2d1 ln|m|/M). Now the fact that the convergence rates in the discrete model
are inferior to those in the continuous model follows from Theorem 6 and the ob-
servation that condition (5.26) implies condition (5.21). The latter shows that the
sufficient conditions of Theorem 7 are very close to being also necessary condi-
tions in this case.

Example 5 (continued). Recall that |gm(u)|2 � exp(−α|m|u), 0< a ≤ u≤ b <
∞, so that α(u) = α > 0 and u∗ = a. Note that, by Corollary 3, if M =Mn is
such that Mn ≤ Cnτ for some constant τ ∈ [0,1) and ul = a for at least one l, l =
1,2, . . . ,M , then the convergence rates in the discrete and the continuous models
almost coincide. However, if u1 = a and ul ≥ a + d for l = 2,3, . . . ,M , andM =
Mn is such that Mn � n/ lnn, then the convergence rates in the discrete model are
inferior to those in the continuous model. To show this, note that τd1 (m,u,M) ≤
K[exp(−α|m|a+d)+n−1 lnn exp(−α|m|a)] � n−1 lnn exp(−α|m|a) since, in this
case, |m| � (lnn)1/a and thus exp(−α|m|a+d) = o(n−1 lnn exp(−α|m|a)) as
n→ ∞. Hence, application of Theorem 6 with εn = lnn/n yields that the con-
vergence rates in the discrete model are inferior to the convergence rates in the
continuous model.

Now, consider the case of pseudo-uniform sampling. By Theorem 7, the conver-
gence rates in the discrete and the continuous models coincide if M =Mn is such
that limn→∞M−1

n ln lnn <∞. Moreover, by Remark 5, the convergence rates in
the discrete and the continuous models coincide whenever d = 0 in formula (5.24),
no matter what the value of M is.

Let us show that, if d > 0, then the second condition in (5.25) is necessary
in order for the convergence rates in the discrete and the continuous models to
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coincide up to at most a constant. For this purpose, we assume that M =Mn is
such that limn→∞M−1

n ln lnn = ∞ and prove that the convergence rates in the
discrete model are inferior to the rates in the continuous model. For this purpose,
observe that ul ≥ a + d/M for every l, l = 1,2, . . . ,M , so that τd1 (m,u,M) ≤
K exp(−α|m|aed ln|m|/M). Now, recalling that, in this case, ln|m| � ln lnn and
lnn∗ � lnn, and repeating the proof of Theorem 1 with εn = 1, we obtain that,
for every n, in both the sparse and the dense cases as n→ ∞,

Rn(B
s
p,q(A),u,Mn)≥ C(lnn)−2s∗/(a+d/Mn).

Hence, the convergence rates in the discrete case are inferior to those in the con-
tinuous model whenever

lim
n→∞(lnn)

−2s∗/(a+d/Mn)+2s∗/a = lim
n→∞ exp

(
2s∗d

a(aMn + d) ln lnn
)

= ∞,

which is true if limn→∞M−1
n ln lnn= ∞ and d > 0.

Example 6 (continuation). Recall that |gm(u)|2 � |m|−2ν exp(−u|m|β), u ∈
[0, b], and that conditions of Lemma 3 do not hold since α(u) = u ≥ 0 and
α(0)= 0. We show that, in this example, the convergence rates in the discrete and
the continuous models do not coincide. Recall that u∗ = 0 and, due to formulae
(5.6) and (5.7), Theorem 1 implies that, as n→ ∞,

Rcn(B
s
p,q(A))≥

⎧⎪⎨
⎪⎩
Cn−2s/(2s+2ν+β+1), if ν(2 − p) < ps∗,

C

(
lnn

n

)2s∗/(2s∗+2ν+β)
, if ν(2 − p)≥ ps∗,

(5.27)

and

Rdn(B
s
p,q(A))� Rdn(Bsp,q(A),u∗,1)

(5.28)

≥
⎧⎪⎨
⎪⎩
Cn−2s/(2s+2ν+1), if ν(2 − p) < ps∗,

C

(
lnn

n

)2s∗/(2s∗+2ν)

, if ν(2 − p)≥ ps∗;

that is, the convergence rates, in both discrete and continuous models, are poly-
nomial. However, if one samples the model at ul ≥ d , l = 1,2, . . . ,M , then
τd1 (m,u,M) ≤ C|m|−2ν exp(−d|m|β) and the convergence rates in the discrete
model are logarithmic; that is, as n→ ∞,

Rdn(B
s
p,q(A),u,M)≥ C(lnn)−2s∗/β .(5.29)

Now, consider the pseudo-uniform sampling strategy ul = S((l − 1 + d)/M),
l = 1,2, . . . ,M , with a continuous differentiable function S(x), x ∈ [0,1], such
that S(0)= 0, S(1)= b and 0 ≤ s1 ≤ S′(x)≤ s2 <∞. Since s1((l − 1 + d)/M)≤
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S((l − 1 + d)/M) ≤ s2((l − 1 + d)/M), l = 1,2, . . . ,M , one obtains, by direct
calculations, that

K|m|−2νe−s2d|m|β/M

M(1 − e−s2|m|β/M)
≤ τd1 (m,u,M)≤

K|m|−2νe−s1d|m|β/M

M(1 − e−s1|m|β/M)
.(5.30)

Therefore, for M =Mn, the convergence rates in the discrete model depend on
the value of d and the asymptotic behavior of |m|β/Mn. Let us now show that by
choosing different values of d and Mn, one can obtain each of the three conver-
gence rates (5.27)–(5.29).

IfMn is large (e.g.,Mn ≥ Cn1/(2ν+β+1)), so that |m|β/Mn → 0 as n→ ∞, then
1 − e−si |m|β/Mn � |m|β/Mn, i = 1,2. Therefore, τd1 (m,u,Mn)� |m|−(2ν+β) and
hence the convergence rates in the discrete and the continuous models coincide
and are given by (5.27).

If Mn is small [e.g., Mn = O(lnn)], so that |m|β/Mn → ∞ as n→ ∞, then
(5.30) takes the form

KM−1
n |m|−2νe−s2d|m|β/Mn ≤ τd1 (m,u,Mn)≤KM−1

n |m|−2νe−s1d|m|β/Mn.

IfM =Mn is finite and d > 0, then, by Theorems 1 and 2, the convergence rates in
the discrete model are logarithmic, they are given by the right-hand side of formula
(5.29) and are inferior to the convergence rates in the continuous model.

Finally, if M =Mn is finite and d = 0, then the convergence rates in the dis-
crete model are provided by the right-hand side of formula (5.28) and are superior
to those in the continuous model. For moderate values of Mn, one can obtain con-
vergence rates in between (5.28) and (5.29).

6. Irregular case: A boxcar-like blurring function. Suppose that the blur-
ring function g(·, ·) in the continuous model is of a boxcar-like, for example,

g(u, t)= 0.5γ (u)I(|t |< u), u ∈U, t ∈ T ,(6.1)

where γ (·) is some positive function. In this case, functional Fourier coefficients
gm(·) satisfy

g0(u)= 1 and gm(u)= (2πm)−1γ (u) sin(2πmu),
(6.2)

m ∈ Z \ {0}, u ∈ [a, b].
It is easy to see that estimation of the initial speed of a wave on a finite interval
(see Example 3 in Section 4.2) leads to gm(·) of the form (6.2) with γ (u)= 1 [see
(4.7)].

Assume that

γ1 ≤ γ (u)≤ γ2, u ∈ [a, b],(6.3)
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for some 0 < γ1 ≤ γ2 <∞. [Obviously, this is true if γ (·) is a continuous func-
tion.] Under (6.3), it is easily seen that

τ c1 (m)�m−2,(6.4)

implying that conditions (3.6) and (3.9) hold with ν = 1 and α = 0. Consequently,
in this case, using the results of Theorems 1 and 2, we can obtain the corresponding
asymptotical minimax lower and upper bounds for the L2-risk.

Consider now the discrete model. Recall from Section 1 that this model can
be viewed as a discretization of the continuous model or as a multichannel de-
convolution problem with M channels where n = NM denotes the total number
of observations and, possibly, M =Mn → ∞ as n→ ∞. Note that multichannel
deconvolution with boxcar kernels [i.e., γ (u)= 1/u, for some fixed u > 0] is the
common problem in many areas of signal and image processing which include, for
instance, LIDAR remote sensing and reconstruction of blurred images. LIDAR is
a lazer device which emits pulses; reflections of which are gathered by a telescope
aligned with the lazer [see, e.g., Park, Dho and Kong (1997) and Harsdorf and
Reuter (2000)]. The return signal is used to determine distance and the position of
the reflecting material. However, if the system response function of the LIDAR is
longer than the time resolution interval, then the measured LIDAR signal is blurred
and the effective accuracy of the LIDAR decreases. This loss of precision can be
corrected by deconvolution. In practice, measured LIDAR signals are corrupted
by additional noise which renders direct deconvolution impossible. Moreover, if
M ≥ 2 (finite) LIDAR devices are used to recover a signal, then we talk about
a multichannel deconvolution problem, leading to the discrete model described
by (1.2).

For any choice ofM and selection of points u, under (6.3), we easily see that

τd1 (m;u,M)= 1

M

M∑
l=1

γ 2(ul) sin2(2πmul)

4π2m2 � 1

m2M

M∑
l=1

sin2(2πmul).(6.5)

It follows from (6.5) that for any choice of M and any selection of points u, we
have

τd1 (m;u,M)≤Km−2.(6.6)

Hence, in this case, by Theorem 1, the asymptotical minimax lower bounds for
the L2-risk in this discrete model cannot be lower than the asymptotical minimax
lower bounds for the L2-risk obtained in the continuous model.

However, it is impossible to find a point u∗ ∈ [a, b], independent of m, such
that, for any u ∈ [a, b], one has sin2(2πmu) ≤ K sin2(2πmu∗); in other words,
in this case, Condition I does not hold and we deal with the irregular case here.
It turns out that in the case of a boxcar-type kernel, sampling at any one point is
not at all the best strategy. Indeed, Johnstone and Raimondo (2004) showed that
in the case of standard deconvolution [M = 1, γ (u)= 1/u, u= u∗ = a = b], the



FUNCTIONAL DECONVOLUTION 1821

degree of ill-posedness is ν = 3/2. The latter means that the asymptotical minimax
lower bounds for the L2-risk is given by Theorem 1 with α = 0 and ν = 3/2.
Johnstone and Raimondo (2004) also demonstrated that if u∗ = a is selected to be
a “Badly Approximable” (BA) irrational number, then these lower bounds can be
attained over a wide range of ellipsiods using a nonlinear blockwise estimator in
the sequence space domain.

The convergence rates obtained above can be improved by sampling at several
different points. De Canditiis and Pensky (2006) studied the multichannel decon-
volution problem with the boxcar blurring function and derived that if M is finite,
M ≥ 2, one of the u1, u2, . . . , uM is a BA irrational number, and u is a BA irra-
tional tuple, then in formula (3.16)

�1(j)≤ C(M)j2j (2+1/M)(6.7)

[for the definitions of the BA irrational number and the BA irrational tuple, see,
e.g., Schmidt (1980), page 42 and also Section 8]. This implies that in this case,
the degree of ill-posedness is at most ν ≤ 1 + 1/(2M), meaning that if M > 1,
then ν is less than 3/2 (that corresponds to the case of sampling at a single BA
irrational number). Furthermore, De Canditiis and Pensky (2006) showed that the
asymptotical upper bounds for the error [for the Lr -risk, 1< r <∞ and for a fixed
response function f (·)] depend on M : the larger the value of M is the higher the
asymptotical convergence rates will be. Hence, in the multichannel boxcar decon-
volution problem, it seems to be advantageous to take M =Mn → ∞ as n→ ∞
and to choose u to be a BA irrational tuple. However, the theoretical results ob-
tained De Canditiis and Pensky (2006) cannot be blindly applied to accommodate
the case when M =Mn → ∞ as n→ ∞; this generalization requires, possibly,
nontrivial results in number theory (see the discussion in Section 8).

On the other hand, if conditions (6.1) and (6.3) hold and M =Mn → ∞ fast
enough as n→ ∞, then it is not needed to employ BA irrational tuples, as we
reveal below. If M =Mn → ∞ fast enough as n→ ∞, then deconvolution with
a boxcar-like blurring function in the discrete model can provide estimators with
the same convergence rates as in the continuous model. The following statement
shows that, ifM =Mn → ∞ fast enough as n→ ∞, then an appropriate selection
of points u can secure asymptotic relation similar to (6.4) thus ensuring equal
convergence rates in both the discrete and the continuous models.

LEMMA 4. Consider g(·, ·) to be of the form (6.1) with γ (·) satisfying (6.3),
and let 0 < a < b < ∞. Let m ∈ Aj , where |Aj | = c2j , for some c > 0, with
(lnn)δ ≤ 2j ≤ n1/3, j ≥ j0, for some δ > 0 and j0 ≥ 0. Take ul = a+ (b− a)l/M ,
l = 1,2, . . . ,M . If M ≥ M0n = (32π/3)(b − a)n1/3, then, for n and |m| large
enough,

τd1 (m;u,M)≥Km−2.(6.8)
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Note that Lemma 4 can be applied if M = Mn ≥ c0n
1/3 for some constant

c0 > 0, independent of n. Let � = min(3c0/(32π), b − a). Set M = Mn, ul =
a + l�/M and observe that ul ∈ [a, b] for l = 1,2, . . . ,M . Then the following
statements are valid.

THEOREM 8. Let {φj0,k(·),ψj,k(·)} be the periodic Meyer wavelet basis dis-
cussed in Section 2. Consider g(·, ·) to be of the form (6.1) with γ (·) satisfying
(6.3), and let 0 < a < b < ∞. Let Ron(B

s
p,q(A)) to be either Rcn(B

s
p,q(A)) or

Rdn(B
s
p,q(A)).

(Lower bounds). Let s >max(0,1/p− 1/2), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A>
0. Then, as n→ ∞,

Ron(B
s
p,q(A))≥

⎧⎪⎨
⎪⎩
Cn−2s/(2s+3), if s > 3(1/p− 1/2),

C

(
lnn

n

)s′/(s′+1)

, if s ≤ 3(1/p− 1/2).
(6.9)

(Upper bounds). Let s > 1/p′, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0. Set ν = 1
and assume thatM =Mn ≥ c0n

1/3 for some constant c0 > 0, independent of n. Let
f̂ cn (·) be the wavelet estimator defined by (2.9), with j0 and J given by (3.11), and
let f̂ dn (u,M, ·) be the wavelet estimator defined by (2.9), evaluated at the points
ul = a + l�/M , l = 1,2, . . . ,M , where �= min(3c0/(32π), b − a) and j0 and
J are given by (3.11). Let also f̂ on (·) be either f̂ cn (·) or f̂ dn (u,M, ·). Let s > 1/p′,
1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A> 0. Then, as n→ ∞,

sup
f∈Bsp,q (A)

E‖f̂ on − f ‖2

(6.10)

≤
⎧⎪⎨
⎪⎩
Cn−2s/(2s+3)(lnn)�, if s > 3(1/p− 1/2),

C

(
lnn

n

)s′/(s′+1)

(lnn)�, if s ≤ 3(1/p− 1/2),

where � = 3(2/p − 1)+/(2s + 3) if s > 3(1/p − 1/2), � = (1 − p/q)+ if s =
3(1/p− 1/2) and �= 0 if s < 3(1/p− 1/2).

7. A limited simulation study. Here we present a limited simulation study in
the multichannel deconvolution model with a boxcar-like blurring function. We as-
sess the performance of the suggested block thresholding wavelet estimator (BT)
given by (2.9), with equispaced selected points ul = l/M , l = 1,2, . . . ,M , and
compare it to the term-by-term thresholding wavelet estimator (TT) proposed by
De Canditiis and Pensky (2006) where the points, ul , l = 1,2, . . . ,M , were se-
lected such that one of the ul’s is a BA irrational number, and u1, u2, . . . , uM is a
BA irrational tuple [see De Canditiis and Pensky (2006), Section 4].

Specifically, we assume that we observe

y(ul, ti)=
∫
T
f (x)g(ul, ti − x)dx + σlεli , ul ∈U = [0,1], ti = i/N,(7.1)
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where g(ul, t)= (2ul)−1
I(|t |< ul), ul ∈U = [0,1], and εli are standard Gaussian

random variables, independent for different l and i. For simplicity, we assume that
σ 2
l = σ 2 for all l = 1,2, . . . ,M .

The suggested algorithm consists of the following steps:

1. For each M = 4,8,16, generate M different equispaced sequences, yli [=
y(ul, i/N)], l = 1,2, . . . ,M , i = 1,2, . . . ,N , following model (7.1).

2. Generate functions g(ul, ·), y(ul, ·) φj0k(·) and ψjk(·), j = j0, j0 + 1, . . . , J −
1, k = 0,1, . . . ,2j−1, at the same equispaced points, ti = i/N , i = 1,2, . . . ,N .

3. Apply the discrete Fourier transform (FFT) to gl , yl , φj0k and ψjk , j = j0, j0 +
1, . . . , J − 1, k = 0,1, . . . ,2j − 1.

4. Estimate aj0k and bjk by, respectively, âj0k and b̂jk , given by (2.7).
5. Compute B̂jr = ∑

k∈Ujr b̂
2
jk .

6. Compute the threshold λj = σ̂ 2d∗n−1 lnn�1(j), j ≥ j0, where n = NM ,
d∗ = 1,

σ̂ =
√√√√ 1

M(N − 2)

M∑
l=1

N−1∑
i=2

(
yl,i−1√

6
− 2yli√

6
+ yl,i+1√

6

)2

,

�1(j)= 1

|Cj |
∑
m∈Cj

τ−1
1 (m)

[see Pensky and Sapatinas (2009a), Remark 6, and Müller and Stadmüller
(1987)].

7. Threshold the wavelet coefficients belonging to blocks with |B̂jr |< λj .
8. Apply the inverse wavelet transform to obtain f̂n(·) given by (2.9).

We used the test functions “Bumps,” “Blip,” “Heavisine” and “Step,” and set
j0 = 3. For a fixed value of the (root) signal-to-noise ratio (RSNR = 1), we gener-
ated S = 100 samples of size n= NM from model (7.1) in order to calculate the
average mean-squared error (AMSE) given by

S−1
S∑
m=1

N∑
i=1

(
f̂ mn (ti)− f (ti)

)2
/ N∑
i=1

f 2(ti), ti = i/N.

In Figure 1, for a fixed number of data points N = 27, we evaluate the AMSE as
the number of channels M , and hence the sample size n, increases for the four
signals mentioned above. Obviously, both BT and TT wavelet estimators improve
their performances as n increases, and the BT wavelet estimator appears to have
smaller AMSE than the TT wavelet estimator in all cases.

Although not reported here, we also evaluated the precision of the suggested BT
wavelet estimator for a wide variety of other test functions [see the list of test func-
tions in Appendix I of Antoniadis, Bigot and Sapatinas (2001)] and RSNRs with
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FIG. 1. AMSE for the Bumps, Blip, Heavisine and Step functions sampled at a fixed number of
N = 128 points, based on RSNR = 1, as the number of channels M (and hence the sample size n)
increases. Solid line: BT wavelet estimator; Dash line: TT wavelet estimator.

very good performances. This numerical study confirms that under the multichan-
nel deconvolution model with a boxcar-like blurring function, block thresholding
wavelet estimators with equispaced selection of points ul , l = 1,2, . . . ,M , pro-
duce quite accurate estimates of f (·).

8. Concluding remarks. We considered the question of whether and when,
in the functional deconvolution setting, it is legitimate to replace the real-life dis-
crete deconvolution problem by its continuous idealization. In other words, using
the asymptotical minimax framework, we studied whether the continuous model
and the discrete model are equivalent for some or any sampling schemes from
the viewpoint of convergence rates, over a wider range of Besov balls and for the
L2-risk. It is worth mentioning that when we talked about convergence rates we re-
ferred to the lower bounds which are attainable up to, at most, a logarithmic factor
according to Theorems 1 and 2. In the cases when convergence rates in the discrete
model depend on the choice of a sampling scheme, we also explored the optimal
sampling strategies. The conclusions of our investigation can be summarized as
follows.

If Conditions I, I* and II are satisfied, then the convergence rates in the discrete
model are independent of the number M , and the choice of sampling points u and
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coincide with the convergence rates in the continuous model. In this case, which
we call uniform, it is legitimate to replace discrete model (with any selection of
sampling points) by continuous model.

If Condition II does not hold, then there exist at least two different sampling
schemes in discrete model which deliver two different sets of convergence rates,
and at least one of these sampling schemes leads to the convergence rates different
from the continuous model. However, if Condition I holds, one can point out the
sampling scheme which delivers the fastest convergence rates, namely, sampling
entirely at “the best possible” point u∗. We refer to this case as regular and explore
when, under an arbitrary sampling scheme, convergence rates in the discrete model
coincide or do not coincide with the convergence rates in the continuous model.
The case of sampling at u∗ is studied as a particular case.

In addition, we consider convergence rates in the discrete model under uniform
or pseudo-uniform sampling strategies. Indeed, when a discrete model is replaced
by its continuous counterpart, it is implicitly assumed that sampling is carried out
at M equidistant points in the interval [a, b]. We formulate conditions when this
replacement is legitimate and bring examples when the uniform, or a more general
pseudo-uniform, sampling may lead to convergence rates which differ from the
convergence rates in the continuous model and are lower than when sampling is
carried out entirely at the “best possible” point u∗. Hence, even in the regular case,
one should be extremely careful when replacing a discrete model by its continuous
counterpart.

Finally, we study the case when Condition I is violated. We referred to this
case as irregular. In this case, the convergence rates in the discrete model depend
on a sampling strategy, and, in addition, one cannot design a sampling scheme
which delivers the highest convergence rates. Since Condition I can be violated
in a variety of ways, in the irregular case a general study is very complex. For
this reason, we study a particular example of the irregular case, namely, functional
deconvolution with a boxcar-like blurring function. This important model occurs,
in the problem of estimation of the speed of a wave on a finite interval (Example 3)
as well as, a discrete version of it, in signal and image processing (see Section 6).
In the case of a boxcar-like kernel, sampling at any one point is, by far, not the best
possible choice and delivers lower convergence rates than the continuous model.
The best choice for this model is uniform sampling with a large value ofM =Mn.
Indeed, if M =Mn ≥ c0n

1/3 for some constant c0 > 0, independent of n, and the
selection points u1, u2, . . . , uM , are selected to be equispaced, then, according to
Theorem 8, the convergence rates in the discrete model with a boxcar-like blurring
function coincide with the convergence rates in the continuous model and cannot
be improved.

The assumption that M =Mn grows at least at a rate of n1/3 is very natural in
the inverse mathematical physics problems: in fact, if one samples uniformly in
the rectangle [0,1] × [a, b], then Mn � √

n. However, this assumption is hardly
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natural in a signal processing setting where M corresponds to a number of phys-
ical devices, so even if M =Mn → ∞ as n→ ∞, it grows at a very slow rate.
For this reason, the question remains: if M = Mn → ∞ at a rate slower than
O(n1/3) [e.g., M = Mn = c3n

υ , where 0 < υ < 1/3, or M = Mn = c4(lnn)γ ,
where γ > 0, for some constants c3 > 0 and c4 > 0, independent of n], can one
select points ul ∈ [a, b], l = 1,2, . . . ,M , such that the convergence rates in the
discrete model coincide with the corresponding convergence rates obtained in the
continuous model? And, if for some suchM =Mn the convergence rates in the dis-
crete and the continuous models are not the same, what are the best convergence
rates that can be attained and the best selection of points u1, u2, . . . , uM?

The solution of this question, possibly, rests on very nontrivial results in number
theory. Recall that De Canditiis and Pensky (2006) showed that, if M is finite,
M ≥ 2, one of the ul’s is a BA irrational number, and u1, u2, . . . , uM is a BA
irrational tuple, then (6.7) is valid. The constant C(M) in (6.7) depends on the
value of M and the choice of the BA irrational tuple. Let us now elaborate more
on this. Note that the numbers a1, a2, . . . , aM is a BA irrational tuple [see, e.g.,
Schmidt (1980), page 42], if, for any integers p1,p2, . . . , pM and q , there exists
constant BM such that

max(|a1q − p1|, |a2q − p2|, . . . , |aMq − p1|)≥ BMq−1/M,

where BM is a positive constant that depends only on M . Schmidt [(1980),
page 43] showed that, for a finite value of M , a BA irrational tuple always ex-
ists, and proposed an algorithm for constructing it. It is easy to note that BM → 0
as M → ∞. The value of BM affects the value of C(M) in (6.7) and, therefore,
the convergence rates in the discrete model.

Unfortunately, we are not aware of any results in number theory on how BM
depends on M , and we suspect that relevant results may not have yet been de-
rived. However, a partial answer to the above question, showing that BM ≥
C0 exp(−3M lnM), for some C0 > 0, independent of M , q and p1,p2, . . . , pM ,
and the construction of minimax upper bounds for the L2-risk over a wide range
of Besov balls, covering the caseM =Mn = o((lnn)u), where u≥ 1/2, have been
recently obtained in Pensky and Sapatinas (2009b).

APPENDIX: PROOFS

Recall that the symbol C is used for a generic positive constant, independent
of n, while the symbol K is used for a generic positive constant, independent of
m, n, M and u1, u2, . . . , uM , which either of them may take different values at
different places.

PROOF OF THEOREM 1. The proof of the lower bounds falls into two parts.
First, we consider the lower bounds obtained when the worst functions f (i.e.,
the hardest functions to estimate) are represented by only one term in a wavelet
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expansion (sparse case), and then when the worst functions f are uniformly spread
over the unit interval T (dense case).

In the continuous model, one can always choose εn = 1, so the only difference
with Pensky and Sapatinas (2009a) is an extra logarithmic factor. Since the differ-
ences for the discrete model are much more significant, we only consider below
the proof for the discrete model.

Sparse case. Let the functions fjk be of the form fjk = γjψjk and let f0 ≡ 0.
Note that by (3.1), in order fjk ∈ Bsp,q(A), we need γj ≤A2−js′ . Set γj = c2−js′ ,
where c is a positive constant such that c < A, and apply the following classical
lemma on lower bounds:

LEMMA 5 [Härdle et al. (1998), Lemma 10.1]. Let V be a functional space,
and let d(·, ·) be a distance on V . For f,g ∈ V , denote by Λn(f,g) the likelihood
ratio Λn(f,g) = dP

X
(f )
n
/dP

X
(g)
n

, where dP
X
(h)
n

is the probability distribution of
the process Xn when h is true. Let V contain the functions f0, f1, . . . , fℵ such
that (a) d(fk, fk′) ≥ δ > 0 for k = 0,1, . . . ,ℵ, k �= k′; (b) ℵ ≥ exp(λn) for some
λn > 0; (c) lnΛn(f0, fk)= unk−vnk , where vnk are constants and unk is a random
variable such that there exists π0 > 0 with Pfk (unk > 0)≥ π0; (d) supk vnk ≤ λn.

Then supf∈V P
X
(f )
n
(d(f̃ , f )≥ δ/2)≥ π0/2 for any arbitrary estimator f̃ .

Let now V = {fjk : 0 ≤ k ≤ 2j − 1} so that ℵ = 2j . Choose d(f, g)= ‖f − g‖,
where ‖ · ‖ is the L2-norm on the unit interval T . Then d(fjk, fjk′)= γj = δ. Let
vnk = λn = j ln 2 and unk = lnΛn(f0, fjk)+ j ln 2. Now, to apply Lemma 5, we
need to show that for some π0 > 0, uniformly for all fjk , we have Pfjk (unk > 0)=
Pfjk (lnΛn(f0, fjk) >−j ln 2)≥ π0 > 0.

Note that in the case of the discrete model,

− lnΛn(f0, fjk)= 0.5
N∑
i=1

M∑
l=1

{[y(ul, ti)− γj (ψjk ∗ g)(ul, ti)]2 − y2(ul, ti)}

= vjk − ujk,
where

ujk = γj
N∑
i=1

M∑
l=1

(ψjk ∗ g)(ul, ti)εli , vjk = 0.5γ 2
j

N∑
i=1

M∑
l=1

[(ψjk ∗ g)(ul, ti)]2.

Observe that, due to P(εli > 0)= P(εli < 0)= 0.5, we have P(ujk > 0)= 0.5. By
properties of the discrete Fourier transform and taking into account that in the case
of Meyer wavelets |ψmjk| ≤ 2−j/2 [see, e.g., Johnstone et al. (2004), page 565],
we derive that

vjk ≤ γ 2
j

4π

N∑
i=1

M∑
l=1

∑
m∈Cj

|ψmjk|2|gm(ul)|2 ≤ NMγ
2
j

4π2j
∑
m∈Cj

M−1
M∑
l=1

|gm(ul)|2 ≡ Bn,

where Bn = (4π)−1n2−j γ 2
j

∑
m∈Cj τ

d
1 (m,u,M).
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Let j = jn be such that Bn ≤ 0.5j ln 2. Then, by applying Lemma 5 and Cheby-
shev’s inequality, we obtain

inf
f̃n

sup
f∈Bsp,q(A)

E‖f̃n − f ‖2 ≥ inf
f̂n

sup
f∈V

1

4
γ 2
j P(‖f̃n − f ‖ ≥ γj/2)

(A.1)
≥ 0.25γ 2

j π0.

Thus we just need to choose the smallest possible j = jn satisfying Bn ≤ 0.5j ln 2,
evaluate γj = c2−js′ and to plug it into (A.1). By direct calculations, we derive,
under condition (3.6), that

∑
m∈Cj

τ d1 (m,u,M)≤
⎧⎨
⎩
Kεn2−j (2ν−1)j−λ, if α = 0,
Kεn2−j (2ν+β−1)j−λ exp

(−α(2π/3)β2jβ
)
,

if α > 0.
(A.2)

Hence if α = 0, then 2jn = C(n∗(lnn∗)−(λ+1))1/(2s
′+2ν), and if α > 0, then 2jn =

C(lnn∗)1/β . Now, to obtain the lower bound, plug γj = c2−jns′ into (A.1)

inf
f̃n

sup
f∈Bsp,q

E‖f̃n − f ‖2 ≥
⎧⎨
⎩
C(n∗)2s′/(2s′+2ν)(lnn∗)2s′(λ+1)/(2s′+2ν),

if α = 0,
C(lnn∗)−2s′/β, if α > 0.

(A.3)

Dense case. Let η be the vector with components ηk = ±1, k = 0,1, . . . ,2j − 1,

denote by Ξ the set of all possible vectors η and let fjη = γj
∑2j−1
k=0 ηkψjk .

Let also ηi be the vector with components ηik = (−1)I(i=k)ηk for i, k = 0,1, . . . ,
2j − 1. Note that by (3.1), in order fjη ∈ Bsp,q(A), we need γj ≤A2−j (s+1/2). Set

γj = c�2−j (s+1/2), where c� is a positive constant such that c� < A, and apply the
following lemma on lower bounds:

LEMMA 6 [Willer (2005), Lemma 2]. LetΛn(f,g) be defined as in Lemma 5,
and let η and fjη be as described above. Suppose that, for some positive constants
λ and π0, we have Pfjη(− lnΛn(fjηi , fjη) ≤ λ) ≥ π0, uniformly for all fjη and

all i = 0, . . . ,2j − 1. Then, for any arbitrary estimator f̃ and for some constant
L> 0, one has maxη∈Ξ Efjη‖f̃ − fjη‖ ≥ Lπ0e

−λ2j/2γj .

Since, by Chebychev’s inequality,

Pfjk

(
lnΛn(fjηi , fjη) >−λ) ≥ 1 − Efjk |ln�n(fjηi , fjk)|/λ,

we need to show that Efjη |lnΛn(fjηi , fjη)| ≤ λ1, for a sufficiently small constant
λ1 > 0. Observe that

lnΛn(fjηi , fjη)= 0.5γ 2
j

N∑
i=1

M∑
l=1

[(g ∗ fjηi − fjη)(ul, ti)]2

− γj
N∑
i=1

M∑
l=1

εli
[
(g ∗ [fjηi − fjη])(ul, ti)

]
.



FUNCTIONAL DECONVOLUTION 1829

Then, due to |fjηi − fjη)| = 2|ψjk|, one has Efjη |lnΛn(fjηi , fjη)| ≤ An + Bn
where

An = 2γjE

∣∣∣∣∣
N∑
i=1

M∑
l=1

(ψjk ∗ g)(ul, ti)εli
∣∣∣∣∣,

Bn = 2γ 2
j

N∑
i=1

M∑
l=1

(ψjk ∗ g)2(ul, ti).

Since, by Jensen’s inequality, An ≤ √
2Bn, we only need to construct an up-

per bound for Bn. Note that, similarly to the sparse case, one has Bn =
O(n2−j γ 2

j

∑
m∈Cj τ

d
1 (m,u,M)). According to Lemma 6, we choose j = jn

that satisfies the condition Bn + √
2Bn ≤ λ1. Using (A.2), we derive that

2jn = C(n∗(lnn∗)−λ)1/(2s+2ν+1) if α = 0 and 2jn = C(lnn∗)1/β if α > 0. Then,
Lemma 6 and Jensen’s inequality yield

inf
f̃n

sup
f∈Bsp,q

E‖f̃n − f ‖2 ≥
⎧⎨
⎩
C(n∗)−2s/(2s+2ν+1)(lnn∗)−2sλ/(2s+2ν+1),

if α = 0,
C(lnn∗)−2s/β, if α > 0.

(A.4)

Now, to complete the proof one just needs to note that s∗ = min(s, s′), and that

2s/(2s + 2ν + 1)≤ 2s∗/(2s∗ + 2ν) if ν(2 − p)≤ ps∗,(A.5)

with the equalities taken place simultaneously, and then to choose the highest of
the lower bounds (A.3) and (A.4). This completes the proof of Theorem 1. �

PROOF OF LEMMA 1. In what follows, we shall only construct the proof for
bjk since the proof for aj0k is very similar. Again, we construct the proof only
for discrete model, since in the case of continuous model, one can always choose
εn = 1, so the only difference with Pensky and Sapatinas (2009a) is an extra loga-
rithmic factor.

Note that, by (2.7), one has b̂jk − bjk = ∑
m∈Cj (f̂m − fm)ψmjk, with

f̂m − fm =N−1/2

(
M∑
l=1

gm(ul)zml

)/(
M∑
l=1

|gm(ul)|2
)
,(A.6)

where zml are standard (complex-valued) Gaussian random variables, independent
for different m and l. Therefore,

E|b̂jk − bjk|2 =N−1
∑
m∈Cj

|ψmjk|2
[
M∑
l=1

|gm(ul)|2
]−1

=O(n−1�1(j))
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since |Cj | = 4π2j and |ψmjk|2 ≤ 2−j . If κ = 2, then

E|b̂jk − bjk|4 =O
( ∑
m∈Cj

E|f̂m − fm|4|ψmjk|4
)

+O
([ ∑
m∈Cj

E|f̂m − fm|2|ψmjk|2
]2)

(A.7)
=O(

2−jN−2M−3�2(j)+N−2M−2�2
1(j)

)
=O(

2−jn−2M−1�2(j)+ n−2�2
1(j)

)
.

Direct calculations show that when α = 0 one has �2(j)=O(26jνj3λε−3
n ). Plug-

ging expressions for �1(j) and �2(j) into formula (A.7) and taking into account
that 2j ≤ 2J−1 < (n∗)1/(2ν+1), one derives

E|b̂jk − bjk|4 =O
(

26jνj3λ

n2ε3Mn
+ 24jνj2λ

n2ε2

)

=O(
n(n∗)6ν/(2ν+1)−3(lnn)3λ + (n∗)4ν/(2ν+1)−2(lnn)2λ

)
.

To complete the proof, observe that in the last expression, the second term is as-
ymptotically smaller than the first. �

PROOF OF LEMMA 2. Again we carry out the proof only for the discrete case.
The proof for the continuous case can be obtained as a minor variation of the proof
below. Consider the set of vectors Ωjr = {vk, k ∈ Ujr :

∑
k∈Ujr |vk|2 ≤ 1} and the

centered Gaussian process defined by Zjr(v)= ∑
k∈Ujr vk(b̂jk − bjk). The proof

of the lemma is based on the following inequality:

LEMMA 7 [Cirelson, Ibragimov and Sudakov (1976)]. Let D be a subset of
R = (−∞,∞), and let (ξt )t∈D be a centered Gaussian process. If E(supt∈D ξt )≤
B1 and supt∈DVar(ξt )≤ B2, then, for all x > 0, we have P(supt∈D ξt ≥ x+B1)≤
exp(−x2/(2B2)).

To apply Lemma 7, we need to find B1 and B2. Note that, by Jensen’s inequality,
we obtain

E

[
sup
v∈Ωjr

Zjr(v)
]
= E

[ ∑
k∈Ujr

|b̂jk − bjk|2
]1/2

≤
[ ∑
k∈Ujr

E|b̂jk − bjk|2
]1/2

≤
√
c12νj jλ/2

√
lnn√

n∗ = B1.

[Here c1 is the same positive constant as in (3.16) with α = 0.] Also, by (2.2)
and (A.6), we have E[(b̂jk−bjk)(b̂jk′ −bjk′)] = n−1 ∑

m∈Cj ψmjkψmjk′ [τ1(m)]−1
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where τ1(m) is defined in (3.5). Hence

sup
v∈Ωjr

Var(Zjr(v))= n−1 sup
v∈Ωjr

∑
k∈Ujr

∑
k′∈Ujr

vkvk′
∑
m∈Cj

ψmjkψmjk′ [τ1(m)]−1

≤ c1(n
∗)−122νj jλ

∑
k∈Ujr

v2
k ≤ c1(n

∗)−122νj jλ = B2,

by using
∑
m∈Cj ψmjkψmjk′ = I(k = k′) and (3.16) for α = 0. Therefore, by ap-

plying Lemma 7 with B1 and B2 defined above and x = B1((2
√
c1)

−1μ
√
h2 − 1),

and noting that under condition (3.19), ln(n∗)≥ h2 lnn, we derive

P

( ∑
k∈Ujr

|b̂jk − bjk|2 ≥ μ
222νj jλ ln(n∗)

4n∗
)

≤ exp
{
−
(
μ

√
h2

2
√
c1

− 1
)2 B2

1

2B2

}
≤ n−3,

since (3.19) implies that 0.5[μ√
h2/(2

√
c1)− 1]2 ≥ 3. This completes the proof

of Lemma 2. �

PROOF OF THEOREM 2. First, note that in the case of α > 0, we have E‖f̂n−
f ‖2 =R1 +R2, where

R1 =
∞∑
j=J

2j−1∑
k=0

b2
jk, R2 =

2j0−1∑
k=0

E(âj0k − aj0k)2,(A.8)

since j0 = J . It is well known [see, e.g., Johnstone (2002), Lemma 19.1] that if
f ∈ Bsp,q(A), then for some positive constant c�, dependent on p, q , s and A only,
we have

2j−1∑
k=0

b2
jk ≤ c�2−2js∗;(A.9)

thus R1 =O(2−2J s∗)=O((lnn∗)−2s∗/β). Also, using (3.16) and (3.17), we derive
R2 = O(n−12j0�1(j0)) = O((n∗)−1/2(lnn∗)2ν/β) = o((lnn∗)−2s∗/β), thus com-
pleting the proof for α > 0.

Now consider the case of α = 0. Note that by condition (3.10) one has lnn∗ �
lnn. Due to the orthonormality of the wavelet basis, we obtain

E‖f̂n − f ‖2 =R1 +R2 +R3 +R4,(A.10)

where R1 and R2 are defined in (A.8), and

R3 =
J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

E
[
(b̂jk − bjk)2I

(
B̂jr ≥ μ2(n∗)−122νj ln(n∗)jλ

)]
,

R4 =
J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

E
[
b2
jkI

(
B̂jr < μ

2(n∗)−122νj ln(n∗)jλ
)]
,
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where B̂jr and μ are defined by (2.8), (3.13) and (3.19), respectively.
Let us now examine each term in (A.10) separately. Similarly to the case of

α > 0, we obtain R1 =O(2−2J s∗)=O(n−2s∗/(2ν+1)). By direct calculations, one
can check that 2s∗/(2ν+1) > 2s/(2s+2ν+1), if ν(2−p) < ps∗, and 2s∗/(2ν+
1)≥ 2s∗/(2s∗ + 2ν), if ν(2 − p)≥ ps∗. Hence

R1 =
{
O
(
(n∗)−2s/(2s+2ν+1)), if ν(2 − p) < ps∗,

O
(
(n∗)−2s∗/(2s∗+2ν)), if ν(2 − p)≥ ps∗.

(A.11)

Also, by (3.17) and (3.16), we obtain

R2 =O(
(n∗)−12(2ν+1)j0

) = o((n∗)−2s/(2s+2ν+1))
(A.12)

= o((n∗)−2s∗/(2s∗+2ν)).
Denote

�jr =
{
ω :

∑
k∈Ujr

|b̂jk − bjk|2 ≥ 0.25μ2(n∗)−122νj ln(n∗)jλ
}
.

To construct the upper bounds for R3 and R4, note that simple algebra yields R3 ≤
(R31 +R32),R4 ≤ (R41 +R42), where

R31 =
J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

E[(b̂jk − bjk)2I(�jr)],

R41 =
J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

E[b2
jkI(�jr)],

R32 =
J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

E
[
(b̂jk − bjk)2I

(
Bjr > 0.25μ2(n∗)−122νj ln(n∗)jλ

)]
,

R42 =
J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

E
[
b2
jkI

(
Bjr < 2.5μ2(n∗)−122νj ln(n∗)jλ

)]
.

Then, by (A.9), Lemmas 1 and 2, and the Cauchy–Schwarz inequality, we derive

R31 +R41 =O
(
J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

[√
E(b̂jk − bjk)4 + b2

jk

]√
P(�jr)

)

=O
(
J−1∑
j=j0

[√
n(lnn)3λ/2(n∗)−3/(2(2ν+1)) + 2−2js∗]n−3/2

)

=O((n∗)−1),
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provided μ satisfies (3.19). Hence

Δ1 =R31 +R41 =O((n∗)−1).(A.13)

Now, consider

Δ2 =R32 +R42.(A.14)

First, let us study the dense case, that is, when ν(2 −p) < ps∗. Let j1 be such that

2j1 = (n∗)1/(2s+2ν+1)(lnn)((2/p−1)+−λ)/(2ν+2s+1).(A.15)

Then, Δ2 can be partitioned as Δ2 = Δ21 + Δ22, where the first component is
calculated over the set of indices j0 ≤ j ≤ j1 and the second component over
j1 + 1 ≤ j ≤ J − 1. Hence, using (2.8) and Lemma 1, and taking into account that
the cardinality of Aj is |Aj | = 2j / lnn, we obtain

Δ21 =O
( j1∑
j=j0

[
2(2ν+1)j jλ

n∗ + ∑
r∈Aj

22νj ln(n∗)jλ

n∗

])

(A.16)

=O
([
(lnn)λ

n∗

]2s/(2s+2ν+1)

(lnn)�
)
,

where � is defined in (3.14). To obtain an expression for Δ22, note that for p ≥ 2,
by (3.10) and (A.9), we have

Δ22 =O
(

J−1∑
j=j1+1

∑
r∈Aj

Bjr

)
=O

(
J−1∑
j=j1+1

2−2js

)

(A.17)
=O(

(n∗)−2s/(2s+2ν+1)(lnn)2sλ/(2s+2ν+1)).
If 1 ≤ p < 2, then Bp/2jr = (∑k∈Ujr b

2
jk)

p/2 ≤ ∑
k∈Ujr |bjk|p, so that by Lemma 1,

and since ν(2 − p) < ps∗, we obtain

Δ22 =O
(

J−1∑
j=j1+1

∑
r∈Aj

[((n∗)−122νj jλ lnn)1−p/2Bp/2jr ]
)

=O
(

J−1∑
j=j1+1

((n∗)−122νj jλ lnn)1−p/22−pjs∗
)

(A.18)

=O(
(n∗)−2s/(2s+2ν+1)(lnn)2sλ/(2s+2ν+1)+�).

Let us now study the sparse case when ν(2 − p) > ps∗. Let j1 be defined
by 2j1 = (n∗)1/(2s+2ν+1)(lnn)−λ/(2ν+2s+1). Hence, if Bjr ≥ 0.25μ2(n∗)−122νj ×
ln(n∗)jλ, then Bjr ≤ ∑2j−1

k=0 b
2
jk ≤ c∗2−2js∗ [see (A.9)] implies that j ≤ j2 where

j2 is such that 2j2 = C[n∗/(lnn)1+λ]1/(2s∗+2ν), where C depends on μ and c∗
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only. Again, partition Δ2 = Δ21 + Δ22, where the first component is calculated
over j0 ≤ j ≤ j2 and the second component over j2 + 1 ≤ j ≤ J − 1. Then, using
similar arguments to that in (A.18), and taking into account that ν(2 − p) > ps∗,
we derive

Δ21 =O
( j2∑
j=j0

[(n∗)−122νj jλ lnn]1−p/2 ∑
r∈Aj

∑
k∈Ujr

|bjk|p
)

=O
( j2∑
j=j0

[(n∗)−122νj jλ lnn]1−p/22−pjs∗
)

(A.19)

=O([(n∗)−1(lnn)1+λ]2s∗/(2s∗+2ν)).
To obtain an upper bound for Δ22, recall (A.14) and keep in mind that the portion
of R32 corresponding to j2 +1 ≤ j ≤ J −1 is just zero. Hence, by (A.9), we obtain

Δ22 =O
(

J−1∑
j=j2+1

2j−1∑
k=0

b2
jk

)
=O

(
J−1∑
j=j2+1

2−2js∗
)

=O([(n∗)−1(lnn)1+λ]2s∗/(2s∗+2ν)).
Now, in order to complete the proof, we just need to study the case when ν(2 −

p) = ps∗. In this situation, we have 2s/(2s + 2ν + 1) = 2s∗/(2s∗ + 2ν) = 1 −
p/2 and 2νj (1 − p/2)= pjs∗. Recalling (3.1) and noting that s∗ ≤ s′, we obtain∑J−1
j=j0(2

pjs∗ ∑2j−1
k=0 |bjk|p)q/p ≤Aq. Then we repeat the calculations in (A.19) for

all indices j0 ≤ j ≤ J − 1. If 1 ≤ p < q , then, by Hölder’s inequality, we obtain

Δ2 =O
(
((n∗)−1(lnn)1+λ)1−p/2(lnn)1−p/q

×
[
J−1∑
j=j0

(
2pjs

∗ 2j−1∑
k=0

|bjk|p
)q/p]p/q)

(A.20)

=O(
((n∗)−1(lnn)1+λ)2s∗/(2s∗+2ν)(lnn)1−p/q).

If 1 ≤ q ≤ p, then, by the inclusion Bsp,q(A)⊂ Bsp,p(A), we obtain

Δ2 =O
(
J−1∑
j=j0

(
(lnn)1+λ/n∗)1−p/22pjs

∗ 2j−1∑
k=0

|bjk|p
)

(A.21)
=O((

(lnn)1+λ/n∗)2s∗/(2s∗+2ν))
.

By combining (A.11), (A.12), (A.13), (A.16)–(A.21), we complete the proof of
Theorem 2. �
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PROOF OF THEOREM 3. The first part of the theorem is identical to Proposi-
tion 1 of Pensky and Sapatinas (2009a). The second part can be proved by contra-
diction. Assume that, assumptions (4.2) and (4.3) hold but condition (4.4) does not
take place. It follows from (4.2) and (4.3) that

|gm(u∗)|2 ≤K|m|−2ν1 exp(−α1|m|β1), ν1 > 0 if α1 = 0,

|gm(u∗)|2 ≥K|m|−2ν2 exp(−α2|m|β2), ν2 > 0 if α2 = 0.

Observe that condition (4.4) of Theorem 3 can be violated only in one of the fol-
lowing ways: α1 = α2 = 0 but ν2 < ν1, or α1 > 0 but α2 = 0, or α1 > 0 and α2 > 0
but β2 < β1.

Applying Theorem 1 withM = 1, εn = 1 and u1 = u∗, we arrive at, as n→ ∞,

Rdn(B
s
p,q(A),u∗,1)≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Cn−2s/(2s+2ν1+1), if α1 = 0, ν1(2 − p) < ps∗,

C

(
lnn

n

)2s∗/(2s∗+2ν1)

, if α1 = 0, ν1(2 − p)≥ ps∗,

C(lnn)−2s∗/β1, if α1 > 0.

On the other hand, applying Theorem 2 withM = 1, εn = 1 and u1 = u∗, we derive
that, as n→ ∞,

sup
f∈Bsp,q(A)

E‖f̂ dn − f ‖2 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cn−2s/(2s+2ν2+1)(lnn)�,
if α2 = 0, ν2(2 − p) < ps∗,

C

(
lnn

n

)2s∗/(2s∗+2ν2)

(lnn)�,

if α2 = 0, ν2(2 − p)≥ ps∗,
C(lnn)−2s∗/β2, if α2 > 0,

where ρ is given by formula (3.14) with ν = ν2. Now, to complete the proof just
note that if α1 = α2 = 0 but ν2 < ν1 or α1 > 0 but α2 = 0 or α1α2 > 0 but β2 < β1,
then the asymptotical minimax lower bounds for the L2-risk at the point u = u∗
are higher than the corresponding upper bounds at the point u = u∗. Hence, in
this case, the convergence rates cannot be independent of the choice of M and the
selection of points u, arriving at the required contradiction. �

PROOF OF THEOREM 4. Note that the first inequality in formula (5.1), as
well as relations (5.2) and (5.3) between upper bounds in discrete and continuous
cases, follow directly from Theorems 1 and 2 and from inequalities τ d1 (m,u

∗,1)≥
Kτc1 (m) and τd1 (m,u

∗,1) ≥ Kτd1 (m,u,M). Hence one only needs to prove the
second asymptotic relation in formula (5.1).

Let Rdn(B
s
p,q(A),u,M) be the minimax L2-risk for fixed values of u and M ,

defined by formula (3.3), and let

H(u,M, j)= 2−j γ 2
j

∑
m∈Cj

τ d1 (m,u,M).
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From the proof of Theorem 1 of Pensky and Sapatinas (2009a), it follows that, in
the sparse case [when ν(2 − p) ≥ ps∗], one has Rdn(B

s
p,q(A),u,M) ≥ C2−2jns∗ ,

as n→ ∞, where jn ≡ jn(u,M) is such that nH(u,M, jn)/jn = C. Similarly, in
the dense case [when ν(2 −p) < ps∗], one has Rdn(B

s
p,q(A),u,M)≥ C2−2jns , as

n→ ∞, where jn ≡ jn(u,M) is such that nH(u,M, jn)= C.
Consider now two different values ofM , sayM1 andM2, and the corresponding

sets of u’s, say u1 and u2. If τd1 (m,u1,M1) < τ
d
1 (m,u2,M2) for any m ∈ Cj , then

H(u1,M1, j) < H(u2,M2, j). Observe that, for fixed M and u, both H(u,M, j)
and H(u,M, j)/j are decreasing functions of j . Hence, if jn1 = jn(u1,M1) and
jn2 = jn(u2,M2) are the values of jn corresponding to (u1,M1) and (u2,M2),
respectively, then jn1 ≤ jn2. To show that this is true in the dense case, observe
that the opposite, jn1 > jn2, implies Cn−1 =H(u1,M1, jn1) < H(u1,M1, jn2) <

H(u2,M2, jn2), so that jn2 cannot be the solution of equation H(u2,M2, jn2) =
Cn−1 and jn1 > jn2 cannot be true. In the sparse case, one just needs to replace
H(u,M, j) by H(u,M, j)/j .

Now, it follows immediately that in both sparse and dense cases, Rdn(B
s
p,q(A),

u1,M1) > R
d
n(B

s
p,q(A),u2,M2). Therefore, the infimum of Rdn(B

s
p,q(A),u,M) is

attained at M̃ and ũ such that τd1 (m, ũ, M̃)= supu,M τ
d
1 (m,u,M). Since, for any

choice ofM and any selection of points u, one has τd1 (m,u,M)≤Kτd1 (m;u∗,1),
the validity of the theorem follows from Theorem 1 in Pensky and Sapatinas
(2009a). �

PROOF OF LEMMA 3. Recall that τ c1 (m)=
∫ b
a |gm(u)|2 du and τd1 (m,u

∗,1)=
|gm(u∗)|2. Observe that since ν(·), α(·) and β(·) are continuous functions on
the interval U = [a, b], then there exist ν1 ≤ ν2, α1 ≤ α2 and β1 ≤ β2 such that
ν1 ≤ ν(u)≤ ν2, α1 ≤ α(u)≤ α2 and β1 ≤ β(u)≤ β2, u ∈ [a, b]. Moreover, in the
inequalities above, either α1 = α2 = 0 and ν1 > 0, or α1 > 0 and β1 > 0. Consider
the cases when (a) α(u)≡ 0 and (b) α(u) > 0, β(u) �= const.

Case 1: α(u) ≡ 0. Then |gm(u)|2 � |m|−2ν(u), so that |gm(u)|2 ≤ K|gm(u∗)|2
and |gm(u∗)|2 � |m|−2ν(u∗). Hence, in the discrete case, the asymptotical minimax
lower bounds in (5.17) and the asymptotical minimax upper bounds in (5.18), for
the L2-risk, follow directly from Theorems 1 and 2, respectively.

In order to complete the proof, we need to obtain the asymptotical minimax
lower and upper bounds for the L2-risk in the continuous model. For this purpose,
observe that, under conditions (5.8) and (5.10), one has [see, e.g., Bender and
Orzag (1978), pages 266–267]

τ c1 (m)�
∫ b

a
exp(−2|lnm|ν(u)) du� |m|−2ν(u∗)(ln|m|)−1/k,(A.22)

so that Theorems 1 and 2 yield, respectively, the asymptotical minimax lower
bounds in (5.11) and the asymptotical minimax upper bounds in (5.12), for the
L2-risk.
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Case 2: α(u) > 0 and β(u) �= const. In this case, β(u∗) = β1. Therefore, one
derivesK|m|−2ν2 exp(−α2|m|β1)≤ |gm(u∗)|2 ≤K|m|−2ν1 exp(−α1|m|β1).Hence
the asymptotical minimax lower bounds in (5.17) and the asymptotical minimax
upper bounds in (5.18), for the L2-risk, follow directly from Theorems 1 and 2,
respectively.

To obtain the asymptotical minimax lower and upper bounds for the L2-risk in
the continuous model, note that

τ c1 (m)≤K|m|−2ν1

∫ b

a
exp

(−α(u)|m|β(u))du
(A.23)

≤ C3(b− a)|m|−2ν1 exp(−α1|m|β1).

On the other hand,

τ c1 (m)≥K|m|−2ν2

∫ b

a
exp

(−α(u)|m|β(u))du.(A.24)

Since β(·) is a continuously differentiable function in some neighborhood of u∗,
|u−u∗|< d , we have β(u)≤ β(u∗)+β∗|u−u∗|, where β∗ = max|u−u∗|<d |β ′(u)|.
Therefore, using the inequality ez < 1 + 3z for 0 < z < 1, we obtain |m|β(u) ≤
|m|β1 exp(β∗|u− u∗|ln|m|) ≤ |m|β1(1 + 3β∗|u− u∗|ln|m|) for |u− u∗|< ln|m|/
(3β∗). Denote �m(u∗)= {u ∈U : |u− u∗|< |m|−(β1+1)}. Then∫ b

a
exp

(−α(u)|m|β(u))du
≥ e−α2|m|β1

∫
�m(u∗)

exp(−α2|m|β13β∗|u− u∗|ln|m|) du(A.25)

≥ e−1|m|−(β1+1) exp(−α2|m|β1),

since 3β∗α2|m|−1 ln|m| < 1 for |m| large enough. Combining (A.23)–(A.25), we
derive that

Ke−1|m|−(2ν2+β1+1) exp(−α2|m|β1)
(A.26)

≤ τ c1 (m)≤K(b− a)|m|−2ν1 exp(−α1|m|β1),

so that Theorems 1 and 2 yield, respectively, the asymptotical minimax lower
bounds in (5.11) and the asymptotical minimax upper bounds in (5.12), for the
L2-risk. �

PROOF OF THEOREM 5. First consider the case when α(u)≡ 0. From (5.8),
it follows that τd1 (m,u,Mn) ≤ K|m|−2ν(u∗), so that εn ≤ K(ln|m|)λ1 . Since, in
this case, ln|m| � lnn and ln|m| > 1 as n → ∞, one has εn = O((lnn)λ3),
where λ3 = max(λ1,0). The latter, in combination with (5.14), implies that con-
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dition (3.10) holds and, moreover, that Cn(lnn)−λ2 ≤ n∗ ≤ Cn(lnn)λ3 . Then
Theorems 1 and 2 imply that under conditions (5.8), (5.13) and (5.14), one has
Rdn(B

s
p,q(A),u,M) ≥ Rdn(Bsp,q(A)), where Rdn(B

s
p,q(A)) is given by expression

(5.17) and that, as n→ ∞,

sup
f∈Bsp,q(A)

E‖f̂ dn − f ‖2 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C(n−1(lnn)λ1+λ2)−2s/(2s+2ν(u∗)+1)(lnn)�,

if ν(u∗)(2 − p) < ps∗,
C(n−1(lnn)1+λ1+λ2)2s

∗/(2s∗+2ν(u∗))(lnn)�,
if α(u)= 0, ν(u∗)(2 − p)≥ ps∗,

where ρ is defined in (3.14). If, moreover, (5.15) holds, then Theorem 1 yields, as
n→ ∞,

Rdn(B
s
p,q(A),u,M)≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C(n−1(lnn)λ1+λ2)−2s/(2s+2ν(u∗)+1),

if ν(u∗)(2 − p) < ps∗,
C(n−1(lnn)1+λ1+λ2)2s

∗/(2s∗+2ν(u∗)),
if ν(u∗)(2 − p)≥ ps∗.

To complete the proof of this part, compare the above upper and lower bounds with
(5.11) and (5.12).

Now, let α(u) > 0. Then, due to assumption (3.10) one has lnn∗ � lnn.
Under condition (5.8), by Theorem 1, Rdn(B

s
p,q(A),u,M) ≥ Rdn(B

s
p,q(A)) ≥

C(lnn)−2s∗/β(u∗), as n→ ∞. Also, by Theorem 2, supf∈Bsp,q(A)E‖f̂ dn − f ‖2 ≤
C(lnn)−2s∗/β(u∗), as n→ ∞. To complete the proof, compare the above lower
and upper bounds for the L2-risks with the corresponding bounds in (5.11) and
(5.12). �

PROOF OF THEOREM 6. Note that conditions (5.19), (5.22) and Theorem 1
imply that, as n→ ∞,

Rdn(B
s
p,q(A),u,M)≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C(n∗)−2s/(2s+2ν+1)(lnn∗)2sλ/(2s+2ν+1),

if α = 0, ν(2 − p) < ps∗,
C

(
lnn∗

n∗
)2s∗/(2s∗+2ν)

(lnn∗)2s∗λ/(2s∗+2ν),

if α = 0, ν(2 − p)≥ ps∗,
C(lnn∗)−2s∗/β, if α > 0.

(A.27)

Denote the ratio between the upper bound for the L2-risk (5.18) in the con-
tinuous model and the lower bound (A.27) by �n = supf∈Bsp,q (A)E‖f̂ d∗n −
f ‖2/Rdn(B

s
p,q(A),u,M), and observe that the convergence rates in the dis-

crete model are inferior to the convergence rates in the continuous model if
limn→∞(lnn)hI(α(u)≡0)�n = 0 for any h > 0.



FUNCTIONAL DECONVOLUTION 1839

Let α(u) ≡ 0 and consider the case when ν(2 − p) < ps∗. Then, taking into
account that under condition (3.10) one has lnn∗ � lnn, we obtain

lim
n→∞�n(lnn)

h =O
(

lim
n→∞n

−2s/(2s+2ν(u∗)+1)(lnn)�+h

× (n∗)2s/(2s+2ν+1)(lnn∗)−2sλ/(2s+2ν+1)
)

=O
(

lim
n→∞

[
(lnn)ρ+h−2sλ/(2s+2ν+1)

× n−(2s/(2s+2ν(u∗)+1)−2s/(2s+2ν+1)(1+ε0))
])
.

Now, if ν > ν(u∗), then it is easy to see that under condition (5.20) we
have limn→∞�n(lnn)h = 0 for any h, and the convergence rates in the dis-
crete model are inferior in this case. If ν = ν(u∗), then limn→∞�n(lnn)h =
O(limn→∞[(lnn)ρ+h−2sλ/(2s+2ν+1)(εn)

2s/(2s+2ν+1)]) = 0 if condition (5.21)
holds. The sparse case when ν(2 − p) < ps∗ can be treated in a similar manner.

Now, consider the case when α(u) > 0. One has

lim
n→∞�n = lim

n→∞(lnn)
−2s∗/β(u∗)(lnn∗)2s∗/β

= (1 + ε0)
2s∗/β lim

n→∞(lnn)
−2s∗(1/β(u∗)−1/β)

and it is easy to see that under each set of conditions in (5.23), limn→∞�n = 0.
�

PROOF OF COROLLARY 1. Note that if M =Mn is finite, then for α(u)≡ 0
one has τd1 (m,u,Mn) � |m|−2ν where ν = min(ν(u1), ν(u2), . . . , ν(uM)). If
α(u) > 0, then denote l0 = arg minl β(ul), β = β(ul0), ν0 = ν(ul0) and α0 =
α(ul0). In this case, τd1 (m,u,Mn) � |m|−2ν0 exp(−α0|m|β) and hence the valid-
ity of the corollary follows from Theorems 5 and 6. �

PROOF OF COROLLARY 2. Note that τd1 (m,u,Mn) ≥K(lnn)−λ
∗ |m|−2ν(u∗),

and hence the validity of the corollary follows from Theorem 5. �

PROOF OF COROLLARY 3. Note that, for ul such that β(ul) = β(u∗) one
has τd1 (m,u,Mn)≥Kn−τ |m|−2ν(ul) exp(−α(ul)|m|β(u∗)). Then the validity of the
corollary follows from Theorem 5. �

PROOF OF THEOREM 7. First, consider the case when α(u) ≡ 0. Denote
v(x) = ν(S(x)), x∗ = q(u∗), and let l∗ be the index of a point closest to x∗, that
is, l∗ = arg min |x∗ − (l − 1 + d)/M|. Note that v(x∗) = ν(u∗) and the function
v(x) is continuously differentiable with |v′(x)| ≤ v0 for some v0 > 0. Note that
τd1 (m,u,Mn)≤K|m|−2ν(u∗), so if we show that under condition (5.25) we have

τd1 (m,u,Mn)≥K|m|−2ν(u∗)(lnn)−λ(A.28)
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for some constant λ ∈ R, then the validity of the theorem will follow from Theo-
rem 5. In order to prove (A.28), note that

τd1 (m,u,M)�
1

M

M∑
l=1

|m|−2v(l−1+d)/M

� 1

M

M∑
l=1

|m|−2[v(l−1+d)/M−v(l∗−1+d)/M]−2[v(l∗−1+d)/M−v(x∗)]−2ν(u∗)

≥ K

M
|m|−2ν(u∗)

M∑
l=1

|m|−2v0|l−l∗|/M−v∗
0/M

≥ K

M
|m|−2ν(u∗)

M/2−1∑
k=0

|m|−2v0k/M−v∗
0/M,

where v∗
0 = v0I(x∗ �= (l∗ − 1 + d)/M). Now, recall the following statement from

Calculus: if u(z), z≥ 0, is a continuous, positive, monotonically decreasing func-
tion, then

M/2−1∑
k=0

u(k)≥ max
(∫ M/2

0
u(x) dx,u(0)+

∫ M/2

1
u(x) dx

)
(A.29)

≥ 1

2

(
u(0)+

∫ M/2

0
u(x) dx

)
.

Applying (A.29) with u(x)= |m|−2ν(u∗)−v∗
0/M |m|−2v0x/M , and taking into account

that
∫M/2

0 u(x) dx � |m|−2ν(u∗)−v∗
0/MM−1ln|m|, we obtain

τd1 (m,u,M)≥K|m|−2ν(u∗)(ln|m|)−1(1 +M−1 ln|m|)× exp(−v∗
0M

−1 ln|m|).
Now, recall that ln|m| � lnn in this case and note that under the first assumption
in (5.25), τd1 (m,u,M) satisfies condition (5.13) of Theorem 5 with λ1 = −1 and
εn = 1. Hence, the convergence rates in the discrete and the continuous models
almost coincide.

Now, consider the case when α(u) > 0. Denote v(x)= β(S(x)) and let, as be-
fore, x∗ = q(u∗) and l∗ = arg min|x∗ − (l − 1 + d)/M|. Note that v(x∗)= β(u∗)
and that the function v(x) is continuously differentiable with |v′(x)| ≤ v0 for
some constant v0 > 0. Denote, as before, v∗

0 = v0I(x∗ �= (l∗ − 1 + d)/M). Note
that τd1 (m,u,M)≥M−1K|m|−2ν1

∑M
l=1 exp(−α1|m|β(ul)), where ν1 = maxν(u),

α1 = maxα(u), u ∈U , and, in order to prove the statement, we need to construct a
lower bound for S(m,M)= ∑M

l=1 exp(−α1|m|β(ul)). Similarly to the polynomial

case, we obtain that S(m,M) ≥ K
∑M/2−1
k=0 exp(−α1|m|β(u∗)+v0k/M+v∗

0/(2M)).

Denote αm = α1|m|β(u∗)+v∗
0/(2M), and apply inequality (A.29) with u(x) =
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exp(−αm|m|v0k/M). Observe that∫ M/2

0
u(x) dx = M

v∗
0 ln|m|

∫ |m|v0/2

1
z−1 exp(−αmz)dz≥ M

2v∗
0 ln|m|αm exp(−αm)

and recall that ln|m| � ln lnn. Hence, under the second of conditions in (5.25), as
M → ∞ and |m| → ∞, we derive that

S(m,M)≥KM(lnn)−1|m|−(β(u∗)+1) exp
(−α1|m|β(u∗) exp[0.5v∗

0M
−1 ln|m|]).

Note that due to assumption (5.25) and due to ln|m| � ln lnn, there exists τ3 > 0
such that M−1

n ln|m| ≤ τ3 when n is large enough. Therefore, τd1 (m,u,M) ≥
C(lnn)−1|m|−(2ν1+β(u∗)+1) exp(−α1 exp(0.5v∗

0τ3)|m|β(u∗)). Application of Theo-
rem 5 with ν = ν1 + 0.5β(u∗)+ 0.5, α = α1 exp(0.5v∗

0τ3) and εn = (lnn)−1 com-
pletes the proof of this part of the statement.

To prove the last statement in Theorem 7, recall a simple fact from Calculus: if
function F(x), x ∈ [0,1], is continuously differentiable with F0 = maxx |F ′(x)|,
then for any d such that 0 ≤ d ≤ 1 one has∣∣∣∣∣M−1

M∑
l=1

F
(
(l − 1 + d)/M)−

∫ 1

0
F(x)dx

∣∣∣∣∣ ≤ 0.5M−1F0.(A.30)

Let α(u)≡ 0. Note that since |q ′(u)| is bounded and separated from zero, one has∫ 1
0 |gm(S(x))|2 dx = ∫ b

a |gm(u)|2q ′(u) du� τ c1 (m). Therefore, if

R(m,n)= τd1 (m,u,Mn)−
∫ 1

0
|gm(S(x))|2 dx = o(τ c1 (m))(A.31)

as n→ ∞, then τd1 (m,u,Mn)� τ c1 (m) and the theorem is proved. Applying for-
mula (A.30) to F(x)= |gm(S(x))|2 and noting that |S′(x)| ≤ s2, we obtain

R(m,n)≤ 0.5s2M
−1
n max

u∈[a,b]

∣∣∣∣ ddu |gm(u)|2
∣∣∣∣ =O(

M−1
n |m|−2ν(u∗) ln|m|).

Comparing the last expression with τ c1 (m) given by formula (A.22), we confirm
that condition (A.31) holds and the theorem is valid in this case. �

PROOF OF LEMMA 4. Recall that 0< a < b <∞, β1 ≤ β(u)≤ β2, u ∈ [a, b],
for some 0< β1 ≤ β2 <∞, and ul = a + (b− a)l/M , l = 1,2, . . . ,M . Consider
first the case when a ∈ N. Then, 4π2m2Mτd1 (m,u,M) = ∑M

l=1 β
2(u) sin2(2π ×

mul)≥ β2
1
∑M
l=1 sin2(2πm(b− a)l/M). Using the formula 1.351.1 of Gradshtein

and Ryzhik (1980) with x = 2πm(b− a)/M , n=M and k = l, we obtain

τd1 (m,u,M)≥
β2

2

4π2m2M

(
M

2
− (

cos
(
2(M + 1)πm(b− a)/M)

× sin
(
2πm(b− a)))(A.32)

× (
2 sin

(
2πm(b− a)/M))−1

)
.
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Since 2j ≤ |m|< 2π/32j and lnn≤ 2j ≤ n1/3, the condition Mn ≥ (32π/3)(b−
a)n1/3 guarantees that |2πm(b − a)/M| ≤ π/2. In this case, using the inequality
y ≤ 2 sin(y), 0 ≤ y ≤ π/2 [see, e.g., Lang (1966), page 41], we derive

2 sin
(
2πm(b− a)/M) ≥ 2πm(b− a)/M ≥ (

4π2(b− a) lnn
)
/(3M).(A.33)

Hence, combining (A.32) and (A.33), for n large enough, we arrive at τd1 (m,u,
M)≥Km−2.

Consider now the case when a /∈ N. A standard trigonometrical identity yields

M∑
l=1

sin2(2πma + 2πm(b− a)l/M)
(A.34)

= 1

2

(
M −

M∑
l=1

cos
(
4πma + 4πm(b− a)l/M))

.

Using formula 1.341.3 of Gradshtein and Ryzhik (1980) with x = 4πma, y =
4πm(b− a)/M , n=M and k = l, we derive forM ≥ 4(b− a)|m|,

M∑
l=1

cos
(
4πma + 4πm(b− a)l/M)

= cos(4πma + 2πm(b− a)(M − 1)/M) sin(2πm(b− a))
sin(2πm(b− a)/M)(A.35)

≤ M

πm(b− a) .
Hence combining (A.34) and (A.35) in a manner similar to the first part of the
proof, for |m| large enough, we arrive at τd1 (m,u,M) ≥Km−2 which completes
the proof. �

PROOF OF THEOREM 8. The proof follows directly from the discussion
of Section 6, by combining Theorems 1, 2 and Lemma 4, taking Aj = Cj =
{m :ψmjk �= 0}, and noting that, for the Meyer wavelets, Cj ⊆ 2π/3[−2j+2,
−2j ] ∪ [2j ,2j+2] with |Cj | = 4π2j [see Johnstone et al. (2004), page 565]. �
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