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Higher criticism is a method for detecting signals that are both sparse and
weak. Although first proposed in cases where the noise variables are inde-
pendent, higher criticism also has reasonable performance in settings where
those variables are correlated. In this paper we show that, by exploiting the
nature of the correlation, performance can be improved by using a modified
approach which exploits the potential advantages that correlation has to offer.
Indeed, it turns out that the case of independent noise is the most difficult of
all, from a statistical viewpoint, and that more accurate signal detection (for a
given level of signal sparsity and strength) can be obtained when correlation
is present. We characterize the advantages of correlation by showing how to
incorporate them into the definition of an optimal detection boundary. The
boundary has particularly attractive properties when correlation decays at a
polynomial rate or the correlation matrix is Toeplitz.

1. Introduction. Donoho and Jin [18] developed Tukey’s [52] proposal for
“higher criticism” (HC), showing that a method based on the statistical signifi-
cance of a large number of statistically significant test results could be used very
effectively to detect the presence of very sparsely distributed signals. They demon-
strated that HC is capable of optimally detecting the presence of signals that are so
weak and so sparse that the signal cannot be consistently estimated. Applications
include the problem of signal detection against cosmic microwave background ra-
diation (Cayon, Jin and Treaster [10], Cruz et al. [16], Jin [36–38], Jin et al. [44]).
Related work includes that of Cai, Jin and Low [8], Hall, Pittelkow and Ghosh [29]
and Meinshausen and Rice [45].

The context of Donoho and Jin’s [18] work was that where the noise is white,
although a small number of investigations have been made of the case of correlated
noise (Hall, Pittelkow and Ghosh [29], Hall and Jin [30], Delaigle and Hall [17]).
However, that research has focused on the ability of standard HC, applied in the
form that is appropriate for independent data, to accommodate the nonindependent
case. In this paper we address the problem of how to modify HC by developing
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innovated higher criticism (iHC) and showing how to optimize performance for
correlated noise.

Curiously, it turns out that when using the iHC method tuned to give optimal
performance, the case of independence is the most difficult of all, statistically
speaking. To appreciate why this result is reasonable, note that if the noise is corre-
lated then it does not vary so much from one location to a nearby location, and so
is a little easier to identify. In an extreme case, if the noise is perfectly correlated at
different locations then it is constant, and in this instance it can be easily removed.

On the other hand, standard HC does not perform well in the case of correlated
noise, because it utilizes only the marginal information in the data without much
attention to the correlation structure. Innovated HC is designed to exploit the ad-
vantages offered by correlation and gives good performance across a wide range
of settings.

The concept of the “detection boundary” was introduced by Donoho and Jin
[18] in the context of white noise. In this paper, we extend it to the correlated case.
In brief, the detection boundary describes the relationship between signal sparsity
and signal strength that characterizes the boundary between cases where the signal
can be detected and cases where it cannot. In the setting of dependent data, this
watershed depends on the correlation structure of the noise as well as on the spar-
sity and strength of the signal. When correlation decays at a polynomial rate we are
able to characterize the detection boundary quite precisely. In particular, we show
how to construct concise lower/upper bounds to the detection boundary, based on
the diagonal components of the inverse of the correlation matrix, �n. A special
case is where �n is Toeplitz; there the upper and the lower bounds to the detection
boundary are asymptotically the same. In the Toeplitz case, the iHC is optimal for
signal detection but standard HC is not.

There is a particularly extensive literature on multiple hypothesis testing un-
der conditions of dependence. It includes contributions to the control of family-
wise error rate and false discovery rate, and work of Abramovich et al. [1], Ben-
jamini and Hochberg [2], Benjamini and Yekutieli [3], Brown and Russel [7], Cai
and Sun [9], Clarke and Hall [12], Cohen, Sackrowitz and Xu [13], Donoho and
Jin [19], Dunnett and Tamhane [22], Efron [23], Finner and Roters [24], Genovese
and Wasserman [25], Jin and Cai [40], Olejnik et al. [46], Rom [47], Sarkar and
Chang [48] and Wu [54]. Work of Kuelbs and Vidyashankar [41] is also related.
Our contributions differ from those of these authors in that we point to the advan-
tages, rather than the disadvantages, of dependence, and show how the advantages
can be exploited. In particular, as noted above, the problem of denoising depen-
dent data is actually simpler than in the case of independence. We show how to
exploit dependence and obtain improvements in performance relative to what is
possible in the context of independence and also relative to the inferior perfor-
mance that is obtained if a method that is designed for the case of independence
is applied inappropriately to dependent data. In contrast, earlier work has tended
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to try to minimize the problems caused by dependence rather than to capitalise on
the advantages that are available.

The paper is organized as follows. Section 2 introduces the sparse signal model
followed by a brief review of the uncorrelated case. Section 3 establishes lower
bounds to the detection boundary in correlated settings. Section 4 introduces in-
novated HC and establishes an upper bound to the detection boundary. Section 5
applies the main results in Sections 3 and 4 to the case where the �n’s are Toeplitz.
In this case, the lower bound coincides with the upper bound and innovated HC
is optimal for detection. Section 6 discusses a case where the signals have a more
complicated structure. Section 7 investigates a case of strong dependence. Simu-
lations are given in Section 8, and discussion is given in Section 9. Section 10 and
the Appendix give proofs of theorems and lemmas, respectively.

2. Sparse signal model and review of HC.

2.1. Model. Consider an n-dimensional Gaussian vector,

X = μ + Z where Z ∼ N(0,�),(2.1)

with the mean vector μ unknown and the dimension n large. In most parts of the
paper, we assume that � = �n is known and has unit diagonal elements (the case
where �n is unknown is discussed in Section 4.4 and Section 9). We are interested
in testing whether no signal exists (i.e., μ = 0) or there is a sparse and faint signal.

Formulae (2.2) and (2.4), below, introduce quantities m and An that represent
signal sparsity and signal strength, respectively. In particular, as m increases the
amount of sparsity decreases, and as An increases the strength of the signal in-
creases. Of course, an increase in either m or An leads to an increase in the ease
with which the signal can be detected and read. It would be possible to connect
m and An by a formula, and use that relationship to adjust the signal, but we feel
that the influence of the key elements of sparsity and strength are most clearly pre-
sented by treating them separately. In particular, we model the number of nonzero
entries of μ as

m = n1−β where β ∈ (1/2,1).(2.2)

This is a very sparse case, for the proportion of signals is much smaller than 1/
√

n.
We suppose that the signals appear at m different locations—�1 < �2 < · · · < �m—
that are randomly drawn from {1,2, . . . , n} without replacement,

P {�1 = n1, �2 = n2, . . . , �m = nm} =
(

n

m

)−1

(2.3)
for all 1 ≤ n1 < n2 < · · · < nm ≤ n,

and that they have a common magnitude of

An =
√

2r logn where r ∈ (0,1).(2.4)
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These assumptions are made throughout the paper, in cases where � is rela-
tively general as well as in cases (see Sections 2.2 and 2.3, below) where the
noise variables are assumed uncorrelated and so � is the identity. Variations of
this model give similar results. For example, if we take the j th nonzero sig-
nal to equal Wj

√
2 logn, where the Wj ’s are independent random variables with

a common, nonnegative distribution that has an upper endpoint r1/2 satisfying
P(W ≤ r1/2) = 1 and P(W > r1/2 − ε) > 0 for all ε > 0, then the results are
identical to their counterparts when signal strength is given by (2.4).

We are interested in testing which of the following two hypotheses is true:

H0 :μ = 0 vs. H
(n)
1 :μ is a sparse vector as above.(2.5)

This testing problem was found to be delicate even in the uncorrelated case where
�n = In. See [18] (also [8, 32, 33, 36, 45]) for details.

The case where �n is not the identity can arise when signals are recorded at
time points that are closely spaced in time or space. See Section 4.4 for discus-
sion. An example of a different type is that of global testing in linear models. Here
we consider a model Y ∼ N(Mμ, In), where the matrix M has many rows and
columns, and we are interested in testing whether μ = 0. The setting is closely
related to model (2.1), since the least squares estimator of μ is distributed as
N(μ, (M ′M)−1). The global testing problem is important in many applications.
One is that of testing whether a clinical outcome is associated with the expression
pattern of a pre-specified group of genes (Goeman et al. [26, 27]) where M is the
expression profile of the specified group of genes. Another is expression quanti-
tative Trait Loci (eQTL) analysis where M is related to the numbers of common
alleles for different genetic markers and individuals (Chen, Tong and Zhao [11]).
In both examples, M is either observable or can be estimated. Also, it is frequently
seen that only a small proportion of genes is associated with the clinical outcome,
and each gene contributes weakly to the clinical outcome. In such a situation, the
signals are both sparse and faint.

2.2. Detection boundary in the uncorrelated case (�n = In). The testing
problem is characterized by the curve r = ρ∗(β) in the β–r plane where

ρ∗(β) =
{

β − 1/2, 1/2 < β ≤ 3/4,(
1 − √

1 − β
)2

, 3/4 < β < 1,
(2.6)

and we call r = ρ∗(β) the detection boundary. The detection boundary partitions
the β–r plane into two sub-regions: the undetectable region below the boundary
and the detectable region above the boundary (see Figure 1). In the interior of the
undetectable region, the signals are so sparse and so faint that no test is able to
successfully separate the alternative hypothesis from the null hypothesis in (2.5):
the sum of types I and II errors of any test tends to 1 as n diverges to infinity.
In the interior of the detectable region, it is possible to have a test such that as n
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FIG. 1. Phase diagram for the detection problem in the uncorrelated case. The detection boundary
separates the β–r plane into the detectable region and the undetectable region. In the estimable
region, it is not only possible to reliably tell the existence of nonzero coordinates, but is also possible
to identify them individually.

diverges to infinity, the type I error tends to zero and the power tends to 1. [In fact,
Neyman–Pearson’s Likelihood Ratio Test (LRT) is such a test.] See [18, 32, 36],
for example.

The drawback of LRT is that it needs detailed information about the unknown
parameters (β, r). In practice, we need a test that does not need such information;
this is where HC comes in.

2.3. Higher criticism and its optimal adaptivity in the uncorrelated case (�n =
In). A notion that goes back to Tukey [52], higher criticism was first proposed
in [18] to tackle the aforementioned testing problem in the uncorrelated case. To
apply higher criticism, let pj = P {|N(0,1)| ≥ |Xj |} be the p-value associated with
the j th observation unit, and let p(j) be the j th p-value after sorting in ascending
order. The higher criticism statistic is defined as

HC∗
n = max

j : 1/n≤p(j)≤1/2

{√
n(j/n − p(j))√
p(j)(1 − p(j))

}
.(2.7)

There are also other versions of HC (see, e.g., [18, 20, 21]). When H0 is true,
HC∗

n equals in distribution to the maximum of the standardized uniform stochastic
process [18]. Therefore, by a well-known result for empirical processes [49],

HC∗
n√

2 log logn
→ 1 in probability.(2.8)

Consider the higher criticism test which rejects the null hypothesis when

HC∗
n ≥ (1 + a)

√
2 log logn where a > 0 is a constant.(2.9)
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It follows from (2.8) that the type I error tends to zero as n diverges to infinity. For
any parameters (β, r) that fall in the interior of the detectable region, the type II
error also tends to zero. This is the following theorem.

THEOREM 2.1. Consider the higher criticism test that rejects H0 when
HC∗

n ≥ (1 + a)
√

2 log logn. For every alternative H
(n)
1 where the associated pa-

rameters (r, β) satisfy r > ρ∗(β), the HC test has asymptotically full power for
detection:

P
H

(n)
1

{Reject H0} → 1 as n → ∞.

That is, the higher criticism test adapts to unknown parameters (β, r) and yields
asymptotically full power for detection throughout the entire detectable region. We
call this the optimal adaptivity of higher criticism [18].

Theorem 2.1 is closely related to [18], Theorem 1.2, where a mixture model is
used. The mixture model reduces approximately to the current model if we ran-
domly shuffle the coordinates of X. However, despite its appealing technical con-
venience, it is not clear how to generalize the mixture model from the uncorrelated
case to general correlated settings. Theorem 2.1 is a special case of Theorem 4.2.

We now turn to the correlated case. In this case, the exact “detection boundary”
may depend on �n in a complicated manner, but it is possible to establish both a
tight lower bound and a tight upper bound. We discuss the lower bound first.

3. Lower bound to detectability. To establish the lower bound, a key element
is the theory in comparison of experiments (e.g., [50]) where a useful guideline is
that adding noise always makes the inference more difficult. Thus we can alter the
model by either adding or subtracting a certain amount of noise so that the diffi-
culty level (measured by the Hellinger distance, or the χ2-distance, etc., between
the null density and the alternative density) of the original problem is sandwiched
by those of the two adjusted models. The correlation matrices in the latter have a
simpler form and hence are much easier to analyze. Another key element is the
recent development of matrix characterizations based on polynomial off-diagonal
decay where it shows that the inverse of a matrix with this property shares the same
rate of decay as the original matrix.

3.1. Comparison of experiments: Adding noise makes inference harder. We
begin by comparing two experiments that have the same mean, but where the data
from one experiment are more noisy than those from the other. Intuitively, it is
more difficult to make inference in the first experiment than in the other. Specifi-
cally, consider the two Gaussian models

X = μ + Z, Z ∼ N(0,�) and
(3.1)

X∗ = μ + Z∗, Z∗ ∼ N(0,�∗),
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where μ is an n-vector that is generated according to some distribution G = Gn.
The second model is more noisy than the first, in the sense that �∗ ≥ �. Here,
given two matrices, A and B , we write A ≥ B if A − B is positive semi-definite.

The second model in (3.1) can be viewed as the result of adding noise to the first.
Indeed, defining � = �∗ − �, taking ξ to be N(0,�) (independently of Z), and
noting that Z +ξ ∼ N(0,� +�), the second model is seen to be equivalent to X+
ξ = μ + (Z + ξ). Intuitively, adding noise makes inference more difficult because
it reduces the distance between between X and Z. To make this point concisely,
let Hd(X,Z;μ,�) and Hd(X∗,Z∗;μ,�∗) denote the Hellinger distance between
(the distributions of) X and Z, and between X∗ and Z∗, respectively. Then we
claim that the first of these distances exceeds the second

if �∗ ≥ � in (3.1) then Hd(X,Z;μ,�) ≥ Hd(X∗,Z∗;μ,�∗).(3.2)

See Section 10 for a proof. [The Hellinger distance between distributions with
densities f and g equals 1

2

∫
(f 1/2 − g1/2)2.]

3.2. Matrices having polynomial off-diagonal decay. Next, we review results
concerning matrices with polynomial off-diagonal decay. The main message is
that, under mild conditions, if a matrix has polynomial off-diagonal decay, then
its inverse as well as its Cholesky factorization (which is unique if we require the
diagonal entries to be positive) also have polynomial off-diagonal decay, and with
the same rate. This beautiful result was recently obtained by Jaffard [34] (see also
[28, 51]).

In detail, writing 
n for the set of n × n correlation matrices, we introduce, for
λ > 1,


∗
n(λ, c0,M) = {�n ∈ 
n : |�n(j, k)| ≤ M(1 + |j − k|)−λ,‖�n‖ ≥ c0}.(3.3)

This is the set of matrices which have a given rate of polynomial off-diagonal
decay and where the operator norm is uniformly bounded from below. Consider
a sequence of matrices {�n}∞n=1 such that �n ∈ 
∗

n(λ, c0,M) for each n. It turns
out that the inverses (as well as the Cholesky factorizations) of such sequences
enjoy polynomial off-diagonal decay with the same rate as that of the matrices
themselves. See the Appendix for the proof.

We are now ready for the lower bound.

3.3. Lower bound to detectability. Consider a sequence of matrices {�n}∞n=1
such that �n ∈ 
∗

n(λ, c0,M) for each n. Suppose the extreme diagonal entries of
�−1

n have an upper limit γ̄0 in the range 0 < γ̄0 < ∞; that is,

lim
n→∞

(
max√

n≤k≤n−√
n
�−1

n (k, k)
)

= γ̄0.(3.4)

Recall that the detection boundary in the uncorrelated case is defined by r < ρ∗(β).
The following theorem asserts that, in the presence of correlation, if we change the
definition to r < γ̄ −1

0 ·ρ∗(β), then we obtain at least a lower bound to the detection
boundary.
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THEOREM 3.1. Fix β ∈ (1/2,1), r ∈ (0,1), λ > 1, c0 > 0, and M > 0. Con-
sider a sequence of correlation matrices �n ∈ 
∗

n(λ, c0,M) that satisfy (3.4). If
r < γ̄ −1

0 ρ∗(β), then the null hypothesis and alternative hypothesis in (2.5) merge
asymptotically, and the sum of types I and II errors of any test converges to 1 as n

diverges to infinity.

We now turn to the upper bound. The key is to adapt the higher criticism to
correlated noise and form a new statistic—innovated higher criticism.

4. Innovated higher criticism, upper bound to detectability. Originally de-
signed for the independent case, standard HC is not really appropriate for depen-
dent data for the following reasons. First, HC only summarizes the information
that resides in the marginal effects of each coordinate and neglects the correlation
structure of the data. Second, HC remains the same if we randomly shuffle differ-
ent coordinates of X. Such shuffling does not have an effect if �n = In, but does
otherwise. In this section we build the correlation into the standard higher criticism
and form a new statistic—innovated higher criticism (iHC). We then use iHC to
establish an upper bound to detectability. The iHC is intimately connected to the
well-known notion of innovation in time series [6] [see (4.1) below], hence the
name innovated higher criticism.

Below, we begin by discussing the role of correlation in the detection problem.

4.1. Correlation among different coordinates: Curse or blessing? Consider
model (2.1) in the two cases �n = In and �n �= In. Which is the more difficult
detection problem?

Here is one way to look at it. Since the mean vectors are the same in the two
cases, the problem where the noise vector contains more “uncertainty” is more
difficult than the other. In information theory, the total amount of uncertainty is
measured by the differential entropy, which in the Gaussian case is proportional to
the determinant of the correlation matrix [15]. As the determinant of a correlation
matrix is largest when and only when it is the identity matrix, the uncorrelated case
contains the largest amount of “uncertainty” and therefore gives the most difficult
detection problem. In a sense, the correlation is a “blessing” rather than a “curse”
as one might have expected.

Here is another way to look at it. For any positive definite matrix �n, denote the
inverse of its Cholesky factorization by Un, a function of �n (so that Un�nU

′
n =

In). Model (2.1) is equivalent to

UnX = Unμ + UnZ where UnZ ∼ N(0, In).(4.1)

(In the literature of time series [6], UnX is intimately connected to the notion of
innovation.) Compared to the uncorrelated case, that is,

X = μ + Z where Z ∼ N(0, In).
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It turns out that the noise vectors have the same distribution, but the signals in the
former are stronger. In fact, let �1 < �2 < · · · < �m be the m locations where μ

is nonzero. Recalling that μj = An if j ∈ {�1, �2, . . . , �m}, μj = 0 otherwise, and
that Un is a lower triangular matrix,

(Unμ)�k
= An

k∑
j=1

Un(�k, �i) = AnUn(�k, �k) + An

k−1∑
j=1

Un(�j , �k).(4.2)

Two key observations are as follows. First, since �n has unit diagonal entries,
every diagonal entry of Un is greater than or equal to 1, especially

Un(�k, �k) ≥ 1.(4.3)

Second, recall that m 
 n, and {�1, �2, . . . , �m} are randomly generated from
{1,2, . . . , n}, so different �j are far apart from each other. Therefore, under mild
decay conditions on Un,

Un(�j , �k) ≈ 0, j = 1,2, . . . , k − 1.(4.4)

Inserting (4.3) and (4.4) into (4.2), we expect that (Unμ)�k
� An for k =

1,2, . . . ,m. Therefore, “on average,” Unμ has at least m entries each of which
is at least as large as An. This says that, first, the correlated case is easier for de-
tection than the uncorrelated case. Second, applying standard HC to UnX yields a
larger power than applying it to X directly.

Next we make the argument more precise. Fix a positive sequence {δn :n ≥ 1}
that tends to zero as n diverges to infinity, and a sequence of integers {bn :n ≥
1} that satisfy 1 ≤ bn ≤ n. Recall that Un is the function of �n defined by
Un�nU

′
n = In, and let


̃∗
n(δn, bn) =

{
�n ∈ 
n,

k−bn∑
j=1

|Un(k, j)| ≤ δn,

for all k satisfying bn + 1 ≤ k ≤ n

}
.

Introducing 
̃∗
n seems a digression from our original plan of focusing on 
∗

n (the
set of matrices with polynomial off-diagonal decay), but it is interesting in its
own right. In fact, compared to 
∗

n, 
̃∗
n is much broader as it does not impose

much of a condition on �n(j, k) for |j − k| ≤ bn. This helps to illustrate how
broadly the aforementioned phenomenon holds. The following theorem is proved
in Section 10.

THEOREM 4.1. Fix β ∈ (1/2,1) and r ∈ (ρ∗(β),1). Let bn = nβ/3, and let δn

be a positive sequence that tends to zero as n diverges to infinity. Suppose we apply
standard higher criticism to UnX and we reject H0 if and only if the resulting score
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exceeds (1 + a)
√

2 log logn where a > 0. Then, uniformly in all sequences of �n

satisfying �n ∈ 
̃∗
n(δn, bn),

PH0{Reject H0} + P
H

(n)
1

{Accept H0} → 0, n → ∞.

Generally, directly applying standard HC to X does not yield the same result
(e.g., [30]).

4.2. Innovated higher criticism: Higher criticism based on innovations. We
have learned that applying standard HC to UnX yields better results than applying
it to X directly. Is this the best we can do? No, there is still space for improvement.
In fact, HC applied to UnX is a special case of innovated higher criticism to be
elaborated in this section. Innovated higher criticism is even more powerful in
detection.

To begin, we revisit the vector Unμ via an example. Fix n = 100; let �n be
a symmetric tri-diagonal matrix with 1 on the main diagonal, 0.4 on two sub-
diagonals and zero elsewhere; and let μ be the vector with 1 at coordinates 27,
50, 71 and zero elsewhere. Figure 2 compares μ and Unμ. Especially, the nonzero
coordinates of Unμ appear in three visible clusters, each of which corresponds to
a different nonzero entry of μ. Also, at coordinates 27, 50, 71, Unμ approximately
equals to 1.2, but μ equals 1. To interpret the figure caption, recall that Un is the
function of �n defined by Un�nU

′
n = In.

Now we can either simply apply standard HC to UnX as before, or we can first
linearly transform each cluster of signals to a singleton and then apply the standard
HC. Note that in the second approach, we may have fewer signals, but each of them
is much stronger than those in UnX. Since the HC test is more sensitive to signal

FIG. 2. Comparison of μ (left) and Unμ (right). Here n = 100 and �n is a symmetric tri-diagonal
matrix with 1 on the main diagonal, 0.4 on two sub-diagonals and zero elsewhere. Also, μ is 1 at
coordinates 27, 50, and 71 and 0 elsewhere. In comparison, the nonzero entries of Unμ appear in
three visible clusters, each of which corresponds to a nonzero coordinate of μ.
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strength than to the number of signals, we expect that the second approach yields
greater power for detection than the first.

In light of this we propose the following approach. Write Un = (ukj ){1≤k,j≤n}.
We pick a bandwidth 1 ≤ bn ≤ n, and construct a matrix Ũn(bn) = Un(�n, bn) by
banding Un [4]

Ũ (bn) ≡ (ũkj )1≤j,k≤n, ũkj =
{

ukj , k − bn + 1 ≤ j ≤ k,
0, otherwise.

(4.5)

We then normalize each column of Ũn(bn) by its own �2-norm, and call the result-
ing matrix Ūn(bn). Next, defining

Vn(bn) = Vn(bn;�n) = Ū ′
n(bn;�n) · Un,(4.6)

we transform model (2.1) into

X �−→ Vn(bn)X = Vn(bn)μ + Vn(bn)Z.(4.7)

Finally, we apply standard higher criticism to Vn(bn)X, and call the resulting sta-
tistic innovated higher criticism,

iHC∗
n(bn) = iHC∗

n(bn;�n)
(4.8)

= 1√
2bn − 1

sup
j : 1/n≤p(j)≤1/2

{√
n · j/n − p(j)√

p(j)(1 − p(j))

}
.

Note that standard HC applied to UnX is a special case of iHC∗
n with bn = 1.

We briefly comment on the selection of the bandwidth parameter bn. First,
for each k ∈ {�1, �2, . . . , �m}, direct calculations show that (Vn(bn)μ)k ≈ An ·√∑bn

j=1 u2
k,k−j+1 ≥ An. Second, Vn(bn)Z ∼ N(0, Ū ′

n(bn)Ūn(bn)), where Ū ′
n(bn)×

Ūn(bn) is a banded correlation matrix with bandwidth 2bn − 1. Therefore, choos-
ing bn involves a trade-off: a larger bn usually means stronger signals but also
means stronger correlation among the noise. While it is hard to give a general
rule for selecting the best bn, we must mention that in many cases, the choice of
bn is not very critical. For example, when �n has polynomial off-diagonal decay,
a logarithmically large bn is usually appropriate.

4.3. Upper bound to detectability. We now establish an upper bound to de-
tectability. Suppose the diagonal entries of �−1

n have a lower limit as follows:

lim
n→∞

(
min√

n≤k≤n−√
n
�−1

n (k, k)
)

= γ0.(4.9)

Recall that the nonzero coordinates of μ are modeled as An = √
2r logn. If we

let bn = logn then it can be proved that the vector Vn(bn) · X has at least m

nonzero coordinates, each of which is as large as √
γ0An =

√
2γ0 · r · logn. (See
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Lemma A.3.) Note that a larger bn cannot improve the signal strength significantly,
but may yield a much stronger correlation in Vn(bn)Z. Therefore, a smaller band-
width is preferred. The choice bn = logn is mainly for convenience, and can be
modified.

We now turn to the behavior of iHC∗
n(bn) under the null hypothesis. In the in-

dependent case, iHC∗
n reduces to HC∗

n and is approximately equal to
√

2 log logn.
In the current situation, iHC∗

n is comparably larger due to the correlation. How-
ever, since the selected bandwidth is relatively small, iHC∗

n remains logarithmi-
cally large. See Lemma A.5 for details. The following theorem elaborates on the
upper bound, and is proved in Section 10.

THEOREM 4.2. Fix c0 > 0, λ > 1, and M > 0, and set bn = logn. Suppose
γ0 · r > ρ∗(β). If we reject H0 when iHC∗

n(bn;�n) ≥ (logn)2, then, uniformly in
all �n ∈ 
∗

n(λ, c0,M),

PH0{Reject H0} + P
H

(n)
1

{Accept H0} → 0 as n → ∞.

The cut-off value (logn)2 can be replaced by other logarithmically large terms
that tend to infinity faster than (logn)3/2. For finite n, this cut-off value may be
conservative. In Section 8 [i.e., experiment (a)], we suggest an alternative where
we select the cut-off value by simulation.

In summary, a lower bound and an upper bound are established as r =
γ̄ −1

0 ρ∗(β) and r = γ0
−1ρ∗(β), respectively, under reasonably weak off-diagonal

decay conditions. When γ̄0 = γ0, the gap between the two bounds disappears,
and iHC is optimal for detection. Below in Sections 5–7, we investigate several
Toeplitz cases, ranging from weak dependence to strong dependence; for these
cases, iHC is optimal in detection.

4.4. Effect of estimating �n and related issues. So far, we have assumed that
the covariance matrix �n is known. When �n is unknown, we could still use iHC
if �n could be estimated. We now briefly comment on the effect of estimating �n.

In practical problems where iHC methodology would be used, noise could rea-
sonably be represented as a time series, and its characteristics estimated from data.
In particular, the time series might be an autoregression, and data over a longer
period than that for which the current dataset was recorded could be used to de-
duce properties of the noise. Examples include detection of xenon byproducts as
evidence of a nuclear explosion, early detection of bioweapons and detection of
covert communications.

If data are gathered over a time period of length p, if the signal is present at
no more than m = n1−β points where β ∈ (1/2,1) and if the maximum size of
the signal is no greater than a constant multiple of (logn)1/2, then it is typically
possible to estimate the components of Un at rate (p−1 logp)1/2 uniformly in all
components. From this property it can be proved that the difference between Unμ
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and its empirical form equals Op[{n2−βp−1(logn)(logp)}1/2], uniformly in all
components. Similarly, if the noise process is conventional (e.g., an autoregres-
sion) then the distance between UnZ and its empirical form can be shown to equal
Op(n1+ε/p) for all ε > 0. Therefore the effects of variance estimation will be as-
ymptotically negligible if, for some ε > 1 − β , n1+ε/p → 0 converges to zero as
n → ∞.

To appreciate the extent to which this condition is restrictive, consider the case
where the signals are particularly sparse, that is, β is close to 1; say, β = 1 − η1
where η1 > 0 is small. Then the condition holds if p is at least as large as n1+η2

for some η2 > η1. That is, the amount of time for which data have to be acquired
in order to estimate �n with sufficient accuracy need only be a factor nε greater
than n, for ε > 0 relatively small. As the prevalence of the signal increased, the
size of ε would have to too.

Application of our methods to other problems, such as those involving genomic
data, can be inhibited by the difficulty of estimating �n without information from
outside the dataset. However, while there is sometimes evidence of strong depen-
dence in genomic data, from other viewpoints the overall level of correlation is
often quite low. For example, Messer and Arndt [43] argue that correlation decays
from about 0.08, at a separation of approximately two base pairs, to about 0.01
for a separation of ten base pairs. Work of Mansilla et al. [42] corroborates these
figures. Results such as these, together with the upper tail independence property
which is generally available for light-tailed distributions, suggest that for genomic
data it is possible to work effectively under the assumption that expression levels
are statistically independent, even when they are not. Details are given by Delaigle
and Hall [17], who use the fact that in the case of genomic data the variables are
typically t-statistics.

More generally, cases where the signals are distributed nonrandomly can be
compared readily with the case of independent, randomly-distributed signals,
noted just below (2.2), as follows. Let us take as our benchmark the classical prob-
lem P(n0,m0) where there are n0 independent noise variables, and m0 signals are
distributed randomly among the n0 locations. We shall compare it with the more
general problem where the noise variables are d-dependent with the integer d de-
pending on n. To quantify the effects of nonrandomness we assume that m = n1−β

signals are distributed among m/K clumps of length K = K(n), and that the points
in clumps that are furthest to the right are distributed sequentially among the inte-
gers K,K + 1, . . . , n − 1, n, with each placement being conditional on the clump
not overlapping any pre-existing clumps. We make no other assumption about the
dependence structure of the process for placing the clumps, only that it be inde-
pendent of the noise variables; and we assume that d ≤ K . If K = O(nη) for all
η > 0 then, for each η, the difficulty of the signal detection problem is bounded
above by that of P(n1−η,mn−η), and below by that of P(n,m). Since η here is
arbitrary then it can be deduced that the effect of clustering has asymptotically
negligible effect. On the other hand, if K = nη�n for a fixed η > 0 and a quantity
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�n that satisfies �n = O(nε) and nε = O(�n) for all ε > 0, then the problem can be
asymptotically as difficult as P(n1−η,mn−η) for the given value of η.

5. Application in the Toeplitz case. In this section, we discuss the case where
�n is a (truncated) Toeplitz matrix that is generated by a spectral density f defined
over (−π,π). In detail, let ak = (2π)−1 ∫|θ |<π f (θ)e−ikθ dθ be the kth Fourier
coefficient of f . The nth truncated Toeplitz matrix generated by f is the matrix
�n(f ) of which the (j, k)th element is aj−k , for 1 ≤ j, k ≤ n.

We assume that f is symmetric and positive, that is,

c0(f ) ≡ essinf−π≤θ≤π
f (θ) > 0.(5.1)

First, note that f is a density, so a0 = 1 and �n(f ) has unit diagonal entries.
Second, from the symmetry of f , it can be seen that �n(f ) is a real-valued sym-
metric matrix. Last, it is well known [5] that the smallest eigenvalue of �n(f ) is no
smaller than c0(f ), so �n(f ) is positive definite. Putting all these together, �n(f )

is seen to be a correlation matrix.
Toeplitz matrices enjoy convenient asymptotic properties. In detail, let λ > 1

and suppose that additionally f has at least λ bounded derivatives [meaning, if λ

is a positive integer, that |f (j)| is bounded for 0 ≤ j ≤ λ, and, if λ is not an integer,
that |f (j)| is bounded for 0 ≤ j < λ and |f (λ′)(θ1) − f (λ′)(θ2)|/|θ1 − θ2|λ−λ′

is
bounded, where λ′ denotes the largest integer less than λ]. Then by elementary
Fourier analysis, there is a constant M0 = M0(f ) > 0 such that

|ak| ≤ M0(f )(1 + k)−λ for k = 0,1,2, . . . .(5.2)

Comparing (5.1) and (5.2) with the definition of 
∗
n, we conclude that

�n ∈ 
∗
n(λ, c0(f ),M0(f )).(5.3)

In addition, it is known that the inverse of �n(f ) is typically asymptoti-
cally equivalent to the Toeplitz matrix generated by 1/f . The diagonal entries of
�n(1/f ) are the well-known Wiener interpolation rates [53],

C(f ) = 1

2π

∫ π

−π

1

f (θ)
dθ.(5.4)

From this property and a result of [5], Theorem 2.15, it can be proved that

max√
n≤k≤n−√

n
|�−1

n (f )(k, k) − C(f )| = o(1).

Comparing this with (3.4) and (4.9) we deuce that

γ̄0 = γ0 = C(f ).(5.5)

Combining (5.3) and (5.5), the following theorem is a direct result of Theorems 3.1
and 4.1 (the proof is omitted).
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FIG. 3. Phase diagram in the case where �n is a Toeplitz matrix generated by a spectral density f .
Similarly, in Figure 1, the β–r plane is partitioned into three regions—undetectable, detectable,
estimable—each of which can be viewed as the corresponding region in Figure 1 squeezed vertically
by a factor of 1/C(f ). In the rectangular region on the top, the largest signals in Vn(bn) · X [see
(4.6)] are large enough to stand out by themselves.

THEOREM 5.1. Fix λ > 1, and let �n(f ) be the Toeplitz matrix generated
by a symmetric spectral density f that satisfies (5.1) and (5.2). When C(f ) · r <

ρ∗(β), the null and alternative hypotheses merge asymptotically, and the sum of
types I and II errors of any test converges to 1 as n diverges to infinity. When
C(f ) · r > ρ∗(β), suppose we apply iHC with bandwidth bn = logn and reject the
null hypothesis when iHC∗

n(bn,�n(f )) ≥ (logn)2. Then the type I error of iHC
converges to zero, and its power converges to 1.

The curve r = C(f )−1ρ∗(β) partitions the β–r plane into the undetectable re-
gion and the detectable region, similarly to the uncorrelated case. The regions of
the current case can be viewed as the corresponding regions in the uncorrelated
squeezed vertically by a factor of 1/C(f ). See Figure 3. [Note that C(f ) ≥ 1,
with equality if and only if f ≡ 1, which corresponds to the uncorrelated case.]

6. Extension: When signals appear in clusters. In the preceding sections
[see, e.g., (2.3) in Section 2], the m locations of signals were generated randomly
from {1,2, . . . , n}. Since m 
 √

n, the signals appear as singletons with over-
whelming probabilities. In this section we investigate an extension where the sig-
nals may appear in clusters.

We consider a setting where the signals appear in a total of m clusters, whose
locations are randomly generated from {1,2, . . . , n}. Each cluster contains a total
of K consecutive signals, whose strengths are g0An, g1An, . . . , gK−1An, from
right to left. Here, An = √

2r logn as before, K ≥ 1 is a fixed integer and gi are
constants. Approximately, the signal vector can be modeled as follows.
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As before, let �1, �2, . . . , �m be indices that are randomly sampled from
{1,2, . . . , n}. Let μ = (μ1, . . . ,μn)

T, where μj = An if j ∈ {�1, �2, . . . , �m}, and
μj = 0 otherwise. Let B = Bn denote the “backward shift” matrix with 0 in every
position except that it has 1 in position (j + 1, j) for 1 ≤ j ≤ n − 1. Thus, Bμ

differs from μ in that the components are shifted one position backward, with 0
added at the bottom. We model the signal vector as

ν = g0μ + g2Bμ + · · · + gkB
K−1μ =

(
K−1∑
k=0

gkB
k

)
μ.

Thus ν is comprised of m clusters, each of which contains K consecutive signals.
Let g be the function g(θ) =∑

0≤k≤K−1 gke
−ikθ . We note that

∑
0≤k≤K−1 gkB

k

is the lower triangular Toeplitz matrix generated by g. With the same spectral den-
sity f , we consider an extension of that in Section 5 by considering the following
model:

X = �n(g)μ + Z where Z ∼ N(0,�n(f )),(6.1)

with f denoting the spectral density in Section 5.
We note that the model can be equivalently viewed as

X̃ = μ + Z̃ where Z̃ ∼ N(0, �̃n) and �̃n = �−1
n (g) · �n(f ) · �−1

n (ḡ),

with ḡ denoting the complex conjugate of g. Asymptotically,

�̃−1
n ∼ �n(ḡ) · �−1

n (f ) · �n(g) ∼ �n(|g|2/f ),

where the diagonal entries of �n(|g|2/f ) are

C(f,g) = 1

2π

∫ π

−π

|g(θ)|2
f (θ)

dθ.

If γ̄0 and γ0 are as defined in (3.4) and (4.9), then γ0 = γ̄0 = C(f,g), and we
expect the detection boundary to be r = C(f,g)−1 · ρ∗(β). This is affirmed by the
following theorem which is proved in Section 10.

THEOREM 6.1. Fix λ > 1. Suppose g0 �= 0 and let f be a symmetric spectral
density that satisfies (5.1) and (5.2). When C(f,g) · r < ρ∗(β), the null and al-
ternative hypotheses merge asymptotically, and the sum of types I and II errors of
any test converges to 1 as n diverges to infinity. When C(f,g) · r > ρ∗(β), if we
apply iHC to �−1

n (g)X with bandwidth bn = logn and reject the null hypothesis
when iHC∗

n(bn,�
−1
n (g)�n(f )�−1

n (ḡ)) ≥ (logn)2, then the type I error converges
to zero, and the power converges to 1.
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7. The case of strong dependence. So far, we have only discussed weakly
dependent cases. In this section, we investigate the case of strong dependence.

Suppose we observe an n-variate Gaussian vector X = μ + Z, where μ con-
tains a total of m signals, of equal strength to be specified, whose locations are
randomly drawn from {1,2, . . . , n} without replacement, and Z ∼ N(0,�n) where
we assume that �n displays slowly decaying correlation,

�n(j, k) = max{0,1 − |j − k|αn−α0}, 1 ≤ j, k ≤ n,(7.1)

with α > 0 and 0 < α0 ≤ α. The range of dependence can be calibrated in terms of
k0 = k0(n;α,α0), denoting the largest integer by k < nα0/α . Clearly, k0 ≈ nα0/α .
Seemingly, the most interesting range is 0 < α0 ≤ α ≤ 1.

Condition (7.1) is more restrictive than similar assumptions in other places in
this paper. There are at least two reasons. First, the constants in the definition of
the detection boundary turn out to depend intimately on the value of α used in
the definition of �n at (7.1), and so we need to make an assumption which is
driven by that parameter. Secondly, a significantly more general definition of �n

would need to satisfy the positive definiteness property which (as can be seen from
Lemma A.12) is somewhat delicate.

Model (7.1) has been studied in detail by Hall and Jin [30] who showed that the
detectability of standard HC is seriously damaged by strong dependence. However,
it remains open as to what is the detection boundary, and how to adapt HC to
overcome the strong dependence and obtain optimal detection. This is what we
address in the current section.

The key idea is to decompose the correlation matrix as the product of three
matrices each of which is relatively easy to handle. To begin with we introduce a
spectral density,

fα(θ) = 1 −
∞∑

k=1

[(k + 1)α + (k − 1)α − 2kα] cos(kθ).(7.2)

[Note that the Fourier coefficients of fα(θ) satisfy the decay condition in (5.2)
with λ = 2 − α.] Next, let

g0(θ) = 1 − e−iθ , an = an(α0) = nα0/2.

The Toeplitz matrix �n(g0) is a lower triangular matrix with 1’s on the main di-
agonal, −1’s on the sub-diagonal and 0’s elsewhere. Additionally, let Dn be the
diagonal matrix where on the diagonal the first entry is 1 and the remaining entries
are

√
an. Let X̃ = Dn · �n(g0) · X. Then model (7.1) can be rewritten equivalently

as

X̃ = μ̃ + Z̃ where μ̃ = Dn · �n(g0) · μ and Z̃ ∼ N(0, �̃n)(7.3)

with �̃n = Dn · �n(g0) · �n · �n(ḡ0) · Dn. The key is that �̃n is asymptotically
equivalent to the Toeplitz matrix generated by fα . In detail, introduce

�̄ =
(

1 0
0 �n−1(fα)

)
.
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It follows from Lemma A.6 that the spectral norm of �̃n − �̄n converges to zero
as n diverges.

Note that μ̃ = √
an · �n−1(g) · μ except for the first coordinate. Therefore, we

expect model (7.3) to be approximately equivalent to

X̃ = √
an · �n(g0) · μ + Z̃ where Z̃ ∼ N(0,�n(fα)).

This is a special case of the cluster model we considered in Section 6 with f = fα

and g = g0, except that the signal strength has been re-scaled by
√

an. Therefore,
if we calibrate the nonzero entries in μ as

a−1/2
n · An = a−1/2

n ·
√

2r logn,(7.4)

then the detection boundary for the model is succinctly characterized by

r = 1

C(fα, g0)
· ρ∗(β),

C(fα, g0) = 1

2π

∫ π

−π

|g0(θ)|2
fα(θ)

dθ = 1

π

∫ π

−π

1 − cos(θ)

fα(θ)
dθ.

See Figure 4 for the display of C(fα, g0). The following theorem is proved in
Section 10.

THEOREM 7.1. Let 0 < α0 ≤ α < 1
2 , β ∈ (1

2 ,1), and r ∈ (0,1). Assume X

is generated according to model (7.1), with signal strength re-scaled as in (7.4).
When C(fα, g0) · r < ρ∗(β), the null and alternative hypotheses merge asymptot-
ically, and the sum of types I and II errors of any test converges to 1 as n diverges
to infinity. When C(fα, g0) · r > ρ∗(β), if we apply the iHC to X with bandwidth
bn = logn and reject the null when iHC∗

n(bn,�n) ≥ (logn)2, then the type I error
converges to zero, and its power converges to 1.
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FIG. 4. Display of C(fα,g0). x-axis: α. y-axis: C(fα,g0).
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8. Simulation study. We conducted a small-scale empirical study to compare
the performance of iHC and standard HC. For iHC, we investigate two choices of
bandwidth: bn = 1 and bn = logn. In this section, we denote standard HC, iHC
with bn = 1, and iHC with bn = logn by HC, HC-a and HC-b correspondingly.

The algorithm for generating data included the following four steps: (1) Fix n,
β , and r , let m = n1−β and An = √

2r logn. (2) Given a correlation matrix �n,
generate a Gaussian vector Z ∼ N(0,�n). (3) Randomly draw m integers �1 <

�2 < · · · < �m from {1,2, . . . , n} without replacement, and let μ be the n-vector
such that μj = An if j ∈ {�1, �2, . . . , �m} and 0 otherwise. (4) Let X = μ + Z.
Using data generated in this manner we explored three parameter settings, (a)–(c),
which we now describe.

In experiment (a), we took n = 1000 and �n(ρ) as the tri-diagonal Toeplitz ma-
trix generated by f (θ) = 1 + 2ρ cos(θ), |ρ| < 1/2. The corresponding detection
boundary was r = ρ∗(β)/C(f ) with C(f ) = (2π)−1 ∫ π

−π [1 − 2ρ cos(θ)]−1 dθ .
Consider all ρ that range from −0.45 to 0.45 with an increment of 0.05,
and four pairs of parameters (β, r) = (0.5,0.2), (0.5,0.25), (0.55,0.2) and
(0.55,0.25). [Note that the corresponding parameters (m,An) are (32,1.66),
(32,2.63), (22,1.66) and (22,2.63)]. For each triple (β, r, ρ), we generated data
according to (1)–(4), applied HC, HC-a and HC-b to both Z and X and repeated
the whole process independently 500 times. As a result, for each triple (β, r, ρ) and
each procedure, we got 500 HC scores that corresponded to the null hypothesis and
500 HC scores that corresponded to the alternative hypothesis.

We report the results in two different ways. First, we report the minimum sum
of types I and II errors (i.e., the minimum of the sum across all possible cut-off
values) (see Figure 5). Second, we pick the upper 10% percentile of the 500 HC
scores corresponding to the null hypothesis as a threshold (for later references, we
call this threshold the empirical threshold) and calculate the empirical power of
the test (i.e., the fraction of HC scores corresponding to the alternative hypothesis
that exceeds the threshold). The empirical thresholds are displayed in Table 1 (to
save space, only part of the thresholds are reported), and the power is displayed in
Figure 6. Recall that in Theorem 4.2 we recommend (logn)2 as a cut-off point in
the asymptotic setting. For moderately large n, this cut-off point is conservative,
and we recommend the empirical threshold instead.

The results suggest that (1) iHC-b outperforms iHC-a, and iHC-a outperforms
HC. (2) As |ρ| increases (note that a larger |ρ| means a stronger correlation), the
detection problem is increasingly easier, and the advantage of iHC is increasingly
prominent. (3) Under the null hypothesis, the HC-b scores are usually smaller than
those of HC and HC-a. This is mainly due to the normalization term

√
2bn − 1 in

the definition of iHC [see (4.8)].
We set the cut-off value as the 10% percentile only for convenience. Replacing

10% by other percentage gives similar conclusion. See Figure 7 for details.
In experiment (b), we took �n to be the Toeplitz matrix generated by f (θ) =

1+ 1
2 cos(θ)+2ρ cos(2θ) where ρ ranged from −0.2 to 0.45 with an increment of
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FIG. 5. Sum of types I and II errors as described in experiment (a). From top to bottom then
from left to right, (β, r) = (0.5,0.2), (0.5,0.25), (0.55,0.2), (0.55,0.25). In each panel, the x-axis
displays ρ, and three curves (blue, dashed-green, and red) display the sum of errors corresponding
to HC, HC-a and HC-b.

0.05. (The matrix �n is positive definite when ρ is in this range.) Other parameters
are the same as in experiment (a). The minimum sums of types I and II errors are
reported in Figure 8. The results suggest similarly that HC-b outperforms HC-a,
and HC-a outperforms HC.

In experiment (c), we investigated the behavior of HC-a/HC-b/HC for larger n.
We took (β, r) = (0.5,0.25), n = 500 × (1,2,3,4,5) and �n as the tri-diagonal
matrix in experiment (a) with ρ = 0.4. The sum of types I and II errors is reported
in Table 2. The results suggest that the performance of HC-a/HC-h/HC improve
when n gets larger. (Investigation of the case where n was much larger than 2500
needed much greater computer memory, and so we omitted it.)

TABLE 1
Display of empirical thresholds in experiment (a) for different ρ

ρ −0.45 −0.35 −0.25 −0.15 −0.05 0.05 0.15 0.25 0.35 0.45

HC 3.059 2.851 2.913 2.892 2.722 2.835 2.742 2.858 2.834 3.032
HC-a 2.919 2.858 2.924 2.837 2.723 2.899 2.713 2.826 2.677 2.758
HC-b 0.890 0.847 0.806 0.773 0.769 0.775 0.772 0.761 0.832 0.859
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FIG. 6. Power as described in experiment (a). From top to bottom then from left to right,
(β, r) = (0.5,0.2), (0.5,0.25), (0.55,0.2), (0.55,0.25). In each panel, the x-axis displays ρ, and
three curves (blue, dashed-green and red) display the power of HC, HC-a and HC-b.

9. Discussion. We have extended standard HC to innovated HC by building in
the correlation structure. The extreme diagonal entries of �−1

n play a key role in the
testing problem. If the extreme value has finite upper and lower limits, γ̄0 and γ0,
then in the β–r plane, the detection boundary is bounded by the curves r = γ0

−1 ·
ρ∗(β) from above and r = γ̄ −1

0 · ρ∗(β) from below. When the correlation matrix
is Toeplitz, the upper and lower limits merge and equal the Wiener interpolation
rate C(f ). The detection boundary is therefore r = C(f )−1 ·ρ∗(β). The detection
boundary partitions the β–r plane into a detectable region and an undetectable
region. Innovated HC has asymptotically full power for detection whenever (β, r)

falls into the interior of the detectable region (we note, however, neither β nor r is
used to construct iHC). We call this the optimally adaptivity of innovated higher
criticism.

9.1. Connection to recent literature. The work complements that of Donoho
and Jin [18] and Hall and Jin [30]. The focus of [18] is standard HC and its perfor-
mance in the uncorrelated case. The focus of [30] is how strong dependence may
harm the effectiveness of standard HC; what could be a remedy was, however, not
explored. The innovated HC proposed in the current paper is optimal for both the
model in [18] and that in [30].
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FIG. 7. Display of powers for different choices of cut-off value. Fix (β, r) = (0.5,0.2) as in exper-
iment (a). From top to bottom then from left to right, the cut-off values are the 5%, 10%, 15% and
20% percentile of the 500 HC scores corresponding to the null hypothesis. In each panel, the x-axis
displays ρ, and three curves (blue, dashed-green and red) display the power of HC, HC-a and HC-b.
The display suggest that, for different choices of cut-off value, HC-b consistently outperforms HC-a,
and HC-a consistently outperforms HC.

The work is related to that of Jager and Wellner [35] where the authors proposed
a family of goodness-of-fit statistics for detecting sparse normal mixtures. The
work is also related to that of Meinshausen and Rice [45] and of Cai, Jin and
Low [8], where the authors focused on how to estimate εn—the proportion of
nonnull effects.

Recently, HC was also found to be useful for feature selection in high-
dimensional classification. See Donoho and Jin [20, 21], Hall, Pittelkow and Ghosh
[29] and Jin [39]. The work concerned the situation where there are relatively few
samples containing a very large number of features, out of which only a small
fraction is useful, and each useful feature contributes weakly to the classification
problem. In a related setting, Delaigle and Hall [17] investigated HC for classifi-
cation when the data is non-Gaussian or dependent.

9.2. Future work. The work is also intimately connected to recent literature
on estimating covariance matrices. While the study is focused more on situations
where the correlation matrices can be estimated using other approaches (e.g., [11,
26, 27]), it can be generalized to cases where the correlation matrix is unknown
but can be estimated from data. Cases where data on the covariance structure are
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FIG. 8. Sum of types I and II errors as described in experiment (b). From top to bottom then
from left to right, (β, r) = (0.5,0.2), (0.5,0.25), (0.55,0.2), (0.55,0.25). In each panel, x-axis
displays ρ, and three curves (blue, dashed-green and red) display the sum of errors corresponding
to HC, HC-a and HC-b.

available from other time periods were discussed in Section 4.4, but even if we
stay within the confines of the current data, progress can be made. In particular, it
is noteworthy that it was shown in Bickel and Levina [4] that when the correlation
matrix has polynomial off-diagonal decay, the matrix and its inverse can be esti-
mated accurately in terms of the spectral norm. In such situations we expect the
proposed approach to perform well once we combine it with that in [4].

Another interesting direction is to explore cases where the correlation matrix
does not have polynomial off-diagonal decay, but is sparse in an unspecified pat-
tern. This is a more challenging situation as relatively little is known about the
inverse of the correlation matrix.

TABLE 2
Display of the sum of types I and II errors in experiment (c) for different n

n 500 1000 1500 2000 2500

HC 0.201 0.144 0.115 0.123 0.098
HC-a 0.073 0.035 0.017 0.017 0.021
HC-b 0.033 0.005 0.004 0.003 0.002
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Our study also opens opportunities for improving other recent procedures. Take
the aforementioned work on classification [20, 21, 29, 39], for example. The ap-
proach derived in this paper suggests ways of incorporating correlation structure
into feature selection, and therefore raises hopes for better classifiers. For reasons
of space, we leave explorations along these directions to future study.

10. Proofs of main results. In this section we prove all theorems in preceding
sections, except Theorems 2.1 and 5.1. These two theorems are the direct result of
Theorems 3.1 and 4.2, so we omit the proofs. For simplicity, we drop the subscript
n whenever there is no confusion.

10.1. Proof of (3.2). rewrite the second model in (3.1) as X + ξ = μ + ξ + Z,
where independently, Z ∼ N(0,�), ξ ∼ N(0,�), μ ∼ G for � = �∗

n − � and
some distribution G. It suffices to show the monotonicity in the Hellinger distance.
Denote the density function of N(0,�) by f (x) = f (x1, x2, . . . , xn), and write
dx1 dx2 · · ·dxn as dx for short. Then the Hellinger distance corresponding to the
second model in (3.1) can be written as

h(�,�,G) ≡
∫ √

E�

(
EG

(
f (x − μ − ξ)

)) · E�

(
f (x − ξ)

)
dx.

Note that by Hölder’s inequality,
√

E[f ]E[g] ≥ E[√fg] for any positive and in-
tegrable functions f and g. Using Fubini’s theorem, h(�,�,G) is not less than∫ [

E�

√(
EGf (x − μ − ξ)

) · (f (x − ξ)
)]

dx

= E�

[∫ √
EGf (x − μ − ξ)f (x − ξ) dx

]
.

Note that
∫ √

EGf (x − μ − ξ)f (x − ξ) dx ≡ ∫ √
EGf (x − μ)f (x) dx for any

fixed ξ . It follows that

h(�,�,G) ≥ E�

[∫ √
EGf (x − μ − ξ)f (x − ξ) dx

]

=
∫ √

EGf (x − μ)f (x)dx,

where the last term is the Hellinger distance corresponds to the first model of (3.1).
Combining these results gives the claim.

10.2. Proof of Theorem 3.1. It is sufficient to show that the Hellinger distance
between the joint density of X and Z converges to zero as n diverges to infin-
ity. By the assumption γ̄0r < ρ∗(β), we can choose a sufficiently small constant
δ = δ(r, β, γ0) such that γ̄0(1 − δ)−2r < ρ∗(β). Let μ̃ = μ/

√
1 − δ, let U be the

inverse of the Cholesky factorization of �, and let Ũ be the banded version of U ,

Ũ (i, j) =
{

U(i, j), |i − j | ≤ log2(n),
0, otherwise.
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Model (2.1) can be equivalently written as

X = μ̃ + Z where Z ∼ N
(
0, (1 − δ)−1 · �).(10.1)

The key to the proof is to compare model (10.1) with the following model:

X = μ̃ + Z where Z ∼ N(0, (Ũ ′Ũ )−1).(10.2)

In fact, by (3.2), to establish the claim it suffices to prove that (i) Ũ ′Ũ ≤ (1 −
δ)−1� for sufficiently large n, and (ii) the Hellinger distance between the joint
density of X and that of Z associated with model (10.2) tends to zero as n diverges
to infinity.

To prove the first claim, noting that � = (U ′U)−1, it suffices to show (1 −
δ)U ′U ≤ Ũ ′Ũ . Define W = U − Ũ and observe that there is a generic constant
C > 0 such that ‖Ũ‖ ≤ C and ‖W‖ ≤ C, whence ‖Ũ ′Ũ − Ũ ′Ũ‖ = ‖W ′W +
Ũ ′W + W ′Ũ‖ ≤ C‖W‖. Moreover, by [31], Theorem 5.6.9, for any symmetric
matrix, the spectral norm is no greater than the �1-norm. In view of the defini-
tions of W and 
∗

n(λ, c0,M), the �1-norm of W is no greater than (logn)−2(λ−1).
Therefore, ‖Ũ ′Ũ − Ũ ′Ũ‖ ≤ C‖W‖ ≤ C(logn)−2(λ−1). This, and the fact that all
eigenvalues of Ũ ′Ũ are bounded from below by a positive constant, imply the
claim.

We now consider the second claim. Model (10.2) can be equivalently written as
X = Ũ μ̃+Z where Z ∼ N(0, In). The key to the proof is that Ũ is a banded matrix
and μ is a sparse vector where with probability converging to 1, the inter-distances
of nonzero coordinates are no less than 3(logn)2 (see Lemma A.8 for the proof).
As a result the nonzero coordinates of Ũ μ̃ are disjoint clusters of sizes O(log2 n)

which simplifies the calculation of the Hellinger distance. The derivation of the
claim is summarized in Lemma A.7 which is stated and proved in the Appendix.

10.3. Proof of Theorem 4.1. Recall that Un is the function of �n defined by
Un�nU

′
n = In. Put Y = UnX, ν = Unμ and Z = Unz. Model (4.1) reduces to

Y = ν + Z, Z ∼ N(0, In).(10.3)

Recalling that HC∗
n/

√
2 log logn → 1 in probability under H0, it follows that

PH0{Reject H0} tends to zero as n diverges to infinity, and it suffices to show
P

H
(n)
1

{Accept H0} → 0.

The key to the proof is to compare model (10.3) with

Y ∗ = ν∗ + Z where Z ∼ N(0, In),(10.4)

with ν∗ having m nonzero entries of equal strength (1 − δn)An whose loca-
tions are randomly drawn from {1,2, . . . , n} without replacement. By (4.2) and
(4.3) and the way 
̃∗

n(δn, bn) is defined, we note that νj ≥ (1 − δn)An for all
j ∈ {�1, �2, . . . , �m}. Therefore,

signals in ν are both denser and stronger than those in ν∗.(10.5)
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Intuitively, standard HC applied to model (10.3) is no “less” than that applied to
model (10.4).

We now establish this point. Let F̄0(t) be the survival function of the central
χ2-distribution χ2

1 (0), and let F̄n(t) and F̄ ∗
n be the empirical survival function of

{Y 2
k }nk=1 and {(Y ∗

k )2}nk=1, respectively. Using arguments similar to those of Donoho
and Jin [18] it can be shown that standard HC applied to models (10.3) and (10.4),
denoted by HC(1)

n and HC(2)
n for short, can be rewritten as

HC(1)
n = sup

t : 1/n≤F̄0(t)≤1/2

{√
n(F̄n(t) − F̄0(t))√

F̄0(t)F0(t)

}
,

HC(2)
n = sup

t : 1/n≤F̄0(t)≤1/2

{√
n(F̄ ∗

n (t) − F̄0(t))√
F̄0(t)F0(t)

}
,

respectively. The key fact is now that the family of noncentral χ2-distribution
{χ2

1 (δ), δ ≥ 0} is a monotone likelihood ratio family (MLR), that is, for any fixed
x and δ2 ≥ δ1 ≥ 0, P {χ2

1 (δ2) ≥ x} ≥ P {χ2
1 (δ1) ≥ x}. Consequently, it follows

from (10.5) and mathematical induction that for any x and t , P {F̄ ∗
n (t) ≥ x} ≥

P {F̄n(t) ≥ x}. Therefore, for any fixed x > 0,

P
{
HC(1)

n < x
}≤ P

{
HC(2)

n < x
}
.(10.6)

Finally, by an argument similar to that of Donoho and Jin [18], Section 5.1, the
second term in (10.6) with x = (1 + a)

√
2 log logn tends to zero as n diverges to

infinity. This implies the claim.

10.4. Proof of Theorem 4.2. In view of Lemma A.5, it suffices to show that
P

H
(n)
1

{Accept H0} → 0. Put Ū = Ū (bn), V = Vn(bn), Y = V X, ν = V μ, Z̃ =
V Z. Model (4.7) reduces to

Y = ν + Z̃ where Z̃ ∼ N(0, Ū ′Ū ).(10.7)

Let F̄n(t) and F̄0(t) be the empirical survival function of {Y 2
k }nk=1 and the survival

function of χ2
1 (0), respectively. Let q = q(β, r) = min{(β + γ̄0r)

2/(4γ̄0r),4γ̄0r}
and set t∗n = √

2q logn. Since γ̄0r < ρ∗(β), then it can be shown that 0 < q < 1
and n−1 ≤ F̄0(t

∗
n) ≤ 1/2 for sufficiently large n. Using an argument similar to that

in the proof of Theorem 4.1,

iHC∗
n = sup

s : 1/n≤F̄0(s)≤1/2

√
n(F̄n(s) − F̄0(s))√

(2bn − 1)F̄0(s)(1 − F̄0(s))

≥
√

n(F̄n(t
∗
n) − F̄0(t

∗
n))√

(2bn − 1)F̄0(t∗n)(1 − F̄0(t∗n))
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and it follows that

P {iHC∗
n ≤ log3/2(n)} ≤ P

{ √
n(F̄n(t

∗
n) − F̄0(t

∗
n))√

(2bn − 1)F̄0(t∗n)(1 − F̄0(t∗n))
≤ log3/2(n)

}
.(10.8)

It remains to show that the right-hand side of (10.8) is algebraically small. The
proof needs detailed calculations summarized in Lemma A.11 which is stated and
proved in the Appendix.

10.5. Proof of Theorem 6.1. Inspection of the proof of Theorems 3.1 and 4.2
reveals that the condition that �n is a correlation matrix and that �n ∈ 
∗

n(λ, c0,
M) in those theorems can be relaxed. In particular, �n need not have equal diago-
nal entries, and the decay condition on �n can be replaced by a weaker condition
that concerns the decay of Un (the inverse of the Cholesky factorization of �n),
specifically

|Un(i, j)| ≤ M(1 + |i − j |λ)−1.

Let Un(f ) be the inverse of the Cholesky factorization of �n(f ), and define
Ũn = Un(f )�n(g). Since �n(g) is a lower triangular matrix with positive diagonal
entries, then it is seen that Ũn is the inverse of the Cholesky factorization of �̃n.
By Lemma A.1, Un(f ) has polynomial off-diagonal decay with the parameter λ.
It follows that Ũn decays at the same rate. Applying Theorems 3.1 and 4.2, we see
that all that remains to prove is that

max√
n≤k≤n−√

n
|�̃−1

n (k, k) − C(f,g)| → 0.(10.9)

By [5], Theorem 2.15, for any
√

n ≤ k ≤ n − √
n, k − K ≤ j ≤ k + K and

1 ≤ λ′ < λ, ∣∣�−1
n (f )(k, j) − (�n(1/f )

)
(k, j)

∣∣= o
(
n−(1−λ′)/2).

Since �̃−1
n = �n(ḡ) ·�−1

n (f ) ·�n(g), it follows that sup√
n≤k≤n−√

n |�̃−1
n (k, k)−

(�n(ḡ) · �n(1/f ) · �n(g))(k, k)| → 0. Moreover, direct calculations show that
(�n(ḡ) · �n(1/f ) · �n(g))(k, k) = C(f,g),

√
n ≤ k ≤ n − √

n. Combining these
results gives (10.9) and concludes the proofs.

10.6. Proof of Theorem 7.1. Consider the first claim. It suffices to show that
the Hellinger distance between X̃ and Z̃ in model (7.3) tends to zero as n diverges
to infinity. Since C(fα, g0) · r < ρ∗(β), there is a small constant δ > 0 such that
(1 − δ)−1 · C(fα, g0) · r < ρ∗(β). Using Lemma A.13, we see that �n−1(fα) is
a positive matrix the smallest eigenvalue of which is bounded away from zero. It
follows from Lemma A.6 and basic algebra that �̃ ≥ (1 − δ)�̄n for sufficiently
large n. Compare model (7.3) with

X∗ = μ̃ + Z∗ where Z∗ ∼ N
(
0, (1 − δ)�̄

)
.(10.10)
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By the monotonicity of Hellinger distance at (3.2), it suffices to show that the
Hellinger distance between X∗ and Z∗ tends to zero as n diverges to infinity.

Now, by the definition of μ̃, μ̃ − √
an · �n(g0) · μ = (μn,

√
an · μn,0, . . . ,0)′.

Since P {μn �= 0} = o(1) then, except for an event with negligible probability,
μ̃ = μ̄. Therefore, replacing μ̃ by

√
an · �n(g0) · μ in model (10.10) alters the

Hellinger distance only negligibly. Note that the first coordinate of X∗ is uncorre-
lated with all other coordinates, and its mean equals zero with probability converg-
ing to 1, so removing it from the model only has a negligible effect on the Hellinger
distance. Combining these properties, model (10.10) reduces to the following with
only a negligible difference in the Hellinger distance:

X∗(2 :n) = �n−1(g0)
(√

an · μ(2 :n)
)+ Z∗(2 :n),

Z∗(2 :n) ∼ N
(
0, (1 − δ)�n−1(fα)

)
,

where X(2 :n) denotes the vector X with the first entry removed. Dividing both
sides by

√
1 − δ, this reduces to the following model:

X̃(2 :n) = �n−1(g0)

√
an · μ(2 :n)√

1 − δ
+ Z̃(2 :n),

(10.11)
Z̃(2 :n) ∼ N(0,�n−1(fα)),

which is in fact model (6.1) considered in Section 6. It follows from (7.4)
that

√
an · μ(2 :n)/

√
1 − δ has m nonzero coordinates each of which equals√

2(1 − δ)−1r logn. Comparing model (10.11) with model (6.1) and recalling that

(1 − δ)−1 · r · C(fα, g0) < ρ∗(β), the claim follows from Theorem 6.1.
Consider the second claim. Since C(fα, g0) · r > ρ∗(β), then there is a small

constant δ > 0 such that (1 − δ) · r · C(fα, g0) > ρ∗(β). Let Un be the inverse of
the Cholesky factorization of �n, and let Ūn(bn) and Vn(bn) be as defined right
below (4.5). Write model (7.1) equivalently as

V X = V μ + V Z where V Z ∼ N(0, Ū ′(bn)Ū(bn)).

Recall that Ū ′(bn)Ū(bn) is a banded correlation matrix with bandwidth 2bn − 1.
Let �1, �2, . . . , �m be the m locations of nonzero means of μ. By an argument
similar to that in the proof of Theorem 4.2, all remains to show is that, except for
an event with negligible probability,

(V μ)k ≥
√

2r ′ logn
(10.12)

for some constant r ′ > ρ∗(β) and all k ∈ {�1, �2, . . . , �k}.
We now show (10.12). First, by Lemma A.3 and (7.4), except for an event with

negligible probability,

(V μ)k ≥ (1 − δ)1/4 · (an · �n(k, k)
)−1/2 · An, k ∈ {�1, �2, . . . , �m}.
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Second, by the way �̃n is defined,

(an�
−1
n )(k, k) = (�n(g0) · �̃−1

n · �n(ḡ0)
)
(k, k) for all k ≥ 2,

and by the way �̄n is defined and Lemma A.6, for sufficiently large n,

�̃−1
n ≥ (1 − δ)−1/2�̄−1

n ,

and so

�n(g0)�̃
−1
n �n(ḡ0) ≥ (1 − δ)1/2�n(g)�̄−1

n �n(ḡ).

Last, by [5], Theorem 2.15, |(�n(g0) · �̄−1
n · �n(ḡ0))(k, k) − C(fα, g0)| = o(1)

when min{k,n − k} is sufficiently large. Combining these results gives (10.12)
with r ′ = (1 − δ) · r · C(fα, g0), and the claim follows directly.

APPENDIX

A.1. Statement and proof of Lemma A.1.

LEMMA A.1. Fix λ > 1, c0 > 0, and M > 0. For any sequence of matrices
�n, n ≥ 1, such that �n ∈ 
∗

n(λ, c0,M), let Un be the inverse of the Cholesky
factorization of �n. Then there is a constant C = C(λ, c0,M) > 0 such that, for
any n and any 1 ≤ j, k ≤ n,

|�−1
n (j, k)| ≤ C · (1 + |j − k|)−λ, |Un(j, k)| ≤ C · (1 + |j − k|)−λ.

PROOF. When λ = 1, the first inequality continues to hold, and the second
holds if we adjoin a logn factor to the right-hand side.

As a prelude to giving the proof we state the following result, taken directly
from [51]. Let Z be the set of all integers. Write �2 for the set of summable
sequences x = {xk}k∈Z, and let A = (A(j, k))j,k∈Z be an infinite matrix. Also,
let |x|2 be the �2-vector norm of x, and ‖A‖ be the operation norm of A:
‖A‖ = supx : |x|2=1|Ax|2. Fixing positive constants λ, M and c0, we define the
class of matrices


∞(λ, c0,M) =
{
A = (A(j, k))j,k∈Z : |A(j, k)|

(A.1)

≤ M

(1 + |j − k|)λ ,‖A‖ ≥ c0

}
.

LEMMA A.2. Fix λ > 1, c0 > 0, and M > 0. For any matrix A ∈ 
∞(λ,M),
there is a constant C > 0, depending only on λ, M and c0, such that |A−1(j, k)| ≤
C · (1 + |j − k|)−λ.
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Next we consider the first claim in Lemma A.1. Construct an infinite matrix
�∞ by arranging the finite matrices along the diagonal, and note that the inverse
of �∞ is the matrix formed by arranging the inverse of the finite matrices along the
diagonal. Since �∞(i, j) ≤ M(1 + |i − j |λ)−1, then applying Lemma A.2 gives
the claim.

Consider the second claim. It suffices to show that |Un(k, j)| ≤ C/(1+|k−j |λ)
for all 1 ≤ j < k ≤ n. Denote the first k × k main diagonal sub-matrix of �n by
�(k), the kth row of �(k) by (ξ ′

k−1,1), and the kth row of Un by u′
k . It follows from

direct calculations that

u′
k = (1 − ξ ′

k−1�
−1
(k−1)ξk−1

)−1/2 · (ξ ′
k−1�

−1
(k−1),1

)
.(A.2)

At the same time, by (A.2) and basic algebra,
(
1 − ξ ′

k−1�
−1
(k) ξk−1

)−1 ≤ u′
kuk = �−1

(k) (k, k).(A.3)

Combining (A.2) and (A.3) gives

|Un(k, j)| = |uk(j)| ≤ C
∣∣(�−1

(k−1)ξk−1
)
j

∣∣, 1 ≤ j ≤ k − 1.(A.4)

Now, by Lemma A.2, |�−1
(k−1)(j, s)| ≤ C(1 + |j − s|λ)−1 for all 1 ≤ i, j ≤ k − 1.

Note that |ξk−1(s)| ≤ C(1 + |s − k|λ)−1, 1 ≤ s ≤ n and λ > 1. It follows from
basic algebra that

∣∣(�−1
(k−1)ξk−1

)
j

∣∣≤ n∑
s=1

C

(1 + |j − s|λ)(1 + |s − k|λ) ≤ C

1 + |k − j |λ .(A.5)

Inserting (A.5) into (A.4) gives the claim. �

A.2. Statement and proof of Lemma A.3.

LEMMA A.3. Fix c0 > 0, λ ≥ 1, and M > 0. Consider a sequence of band-
widths bn that tends to infinity. Let {�1, �2, . . . , �m} be the m random locations
of signals in μ, arranged in the ascending order. For sufficiently large n, there
is a constant C = C(c0, λ,M) such that, except for an event with asymptotically
vanishing probability,

(Vn(bn)μ)k ≥ (1 − Cb1/2−λ
n + o(1)

) ·√�−1
n (k, k) · An ∀k ∈ {�1, �2, . . . , �m},

for all �n ∈ 
∗
n(λ, c0,M), where o(1) tends to zero algebraically fast.

PROOF. To derive the lemma, note that we may assume without loss of gen-
erality that �1 < �2 < · · · < �m. By Lemma A.8, except for an event with negligi-
ble probability, �1 ≥ bn, �m ≤ n − bn, and the inter-�j distances are not less than
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C logn · n2β−1. For any k ∈ {�1, �2, . . . , �m}, let dk = (
∑k+bn−1

j=k u2
jk)

−1/2. By the

way Ū (bn) is defined,

(Ū ′(bn)Uμ)k = dk

n∑
s,j=1

ũksusjμj

(A.6)

= dk

[
n∑

s,j=1

uksusjμj −
n∑

s,j=1

(uks − ũks)usjμj

]
.

Consider dk first. Write

1/d2
k =

k+bn−1∑
j=k

u2
jk =

n∑
j=k

u2
jk −

n∑
j=k−bn

u2
jk.

First, U ′U = �−1,
∑n

j=k u2
jk = (U ′U)(k, k) = (�−1)(k, k). Second, by the poly-

nomial off-diagonal decay of U and basic calculus,

n∑
j=k+bn

u2
jk ≤ C

n∑
j=k+bn

1

1 + |j − k|λ ≤ Cb1−2λ
n .

Last, note that the quantities �−1(k, k) are uniformly bounded away from zero and
infinity. Combining these results gives

∣∣dk −
√

�−1(k, k)
∣∣≤ Cb1−2λ

n .(A.7)

Consider
∑n

s,j=1 uksusjμj next. Recall that μj = An when j ∈ {�1, �2, . . . , �m}
and μj = 0 otherwise. Since U ′U = �−1,

n∑
s,j=1

uksusjμj =
n∑

j=1

(�−1)(k, j)μj = An�
−1(k, k) + An

∑
�s �=k

�−1(k, �s).

Define Ln = nβ−1/2. By Lemma A.8, except for an event with negligible probabil-
ity, the inter-distance of �j is no less than Ln. So by the polynomial off-diagonal
decay of �−1, the second term is algebraically small. Therefore,

n∑
s,j=1

uksusjμj = An[(�−1)(k, k) + o(b1−λ
n )].(A.8)

Last, we consider
∑n

s,j=1(uks − ũks)usjμj . Direct calculations show that

∣∣((U − Ũ )′U
)
(k, j)

∣∣≤
⎧⎪⎪⎨
⎪⎪⎩

C

1 + |k − j |λ , λ > 1,

C logn

1 + |k − j |λ , λ = 1,
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so by a similar argument,∣∣∣∣∣
n∑

s,j=1

(uks − ũks)usjμj

∣∣∣∣∣=
∣∣∣∣∣

n∑
j=1

(
(U − Ũ )′U

)
(k, j)μj

∣∣∣∣∣
≤ An · ((U − Ũ )′U

)
(k, k) + o(1),

where o(1) is algebraically small. Moreover, by the inequality,

(
(U − Ũ )′U

)
(k, k) ≤

n∑
s=1

|(uks − ũks)usk| ≤ b1/2−λ
n

and the claim follows. �

A.3. Statement and proof of Lemma A.4. Let p1, . . . , pN be N independent
and identically distributed data from U(0,1), and FN(t) be the empirical cdf. The
normalized uniform stochastic process is defined as

WN(t) = √
N [FN(t) − t]/√t (1 − t).

LEMMA A.4. There is a generic constant C > 0 such that for sufficiently
large n,

P
{

sup
1/n≤t≤1/2

|WN(t)| ≥ C(logn)3/2
}

≤ Cn−C.

PROOF. To derive this result, note that by the Hungarian construction [14],
there is a Brownian bridge B(t) such that

P

{
sup

1/n≤t≤1/2

∣∣√N
(
FN(t) − t

)− B(t)
∣∣≥ C(logN + x)√

N

}
≤ Ce−Cx,

where C > 0 are generic constants. Noting that 1/
√

t (1 − t) ≤ √
n ≤ C

√
N logN

when 1/n ≤ t ≤ 1/2, it follows that

P

{
sup

1/n≤t≤1/2

∣∣∣∣
√

N(FN(t) − t) − B(t)√
t (1 − t)

∣∣∣∣≥ C(logN)1/2(logN + x)

}
(A.9)

≤ Ce−Cx.

At the same time, by [49], page 446,

P

{
sup

1/n≤t≤1/2

∣∣∣∣ B(t)√
t (1 − t)

∣∣∣∣≥ C(logN)1/2x

}
≤ C logN · e−Cx.(A.10)

Combining (A.9) and (A.10), taking x = C logN and using the triangle inequality,
we deduce the lemma. �
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A.4. Statement and proof of Lemma A.5.

LEMMA A.5. Take the bandwidth to be bn = logn and suppose H0 is true.
Then, except for an algebraically small probability, iHC∗

n(bn) ≤ C(logn)3/2 for
some constant C > 0, uniformly for all correlation matrices.

PROOF. To derive the lemma, note that we may assume without loss of
generality that n is divisible by 2bn − 1, and let N = N(n,bn) = n/(2bn − 1)

in Lemma A.4. Define Y = Ū ′UX. Under the null hypothesis, Y ∼ N(0, Ū ′Ū )

and the coordinates Yk are block-wise dependent with a bandwidth ≤ 2bn − 1.
Split the Yk’s into 2bn − 1 different subsets �j = {Yk :k ≡ j mod(2bn − 1)},
1 ≤ j ≤ 2bn − 1. Note that the Yk’s in each subset are independent, and that
|�j | = N , 1 ≤ j ≤ 2bn − 1.

Let F̄n(t) and F̄0(t) be as in the proof of Theorem 4.1, and let

F̄n,j = 2bn − 1

n

n∑
k=1

1{Y 2
k ≥t,Yk∈�j }, 1 ≤ j ≤ 2bn − 1.

Note that F̄n(t) = 1
2bn−1

∑2bn−1
j=1 F̄n,j (t). By arguments similar to that of Donoho

and Jin [18] and basic algebra, it follows that

iHC∗
n = sup

t

√
n(F̄n(t) − F̄0(t))√

(2bn − 1)F̄0(t)F0(t)

≤
2bn−1∑
j=1

sup
t

√
N(F̄n,j (t) − F̄0(t))√

F̄0(t)F0(t)

,

and so for any x > 0,

P {iHC∗
n ≥ x} ≤

2bn−1∑
j=1

P

{
sup

t

√
N(F̄n,j (t) − F̄0(t))√

F̄0(t)F0(t)

≥ x

}
.

Finally, since F̄n,j ’s are the empirical survival functions of N independent samples
from χ2

1 (0), then

sup
t : 1/n≤F̄0(t)≤1/2

√
N(F̄n,j (t) − F̄0(t))√

F̄0(t)F0(t)

= sup
1/n≤t≤1/2

WN(t) in distribution.

Therefore,

P {iHC∗
n ≥ x} ≤ (2bn − 1)P

{
sup

1/n≤t≤1/2
WN(t) ≥ x

}
.

Taking x = C(logn)3/2, the claim follows from Lemma A.4. �
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A.5. Statement and proof of Lemma A.6.

LEMMA A.6. The spectral norm of �̃n−�̄n tends to zero as n tends to infinity.

PROOF. To establish the lemma, note that by direct calculations and the way
�̃ is defined, we have

�̃ =
(

�∗ ξn−1
ξ ′
n−1 1

)
,(A.11)

where

ξ ′
n−1 = √

2n−α × (0, . . . , nα0 − k0(n)α,
(A.12)

k0(n)α − (k0(n) − 1
)α

, . . . ,2α − 1,1
)
,

and �∗ is a symmetric matrix with unit diagonal entries and with the following on
the kth sub-diagonal:

1
2 ·

⎧⎪⎪⎨
⎪⎪⎩

2kα − (k + 1)α − (k − 1)α, k ≤ k0(n) − 1,
1 + ((k − 1)α − 2kα

)
/nα0 = O(n−α0/α), k = k0(n),

−(1 − (k − 1)α/nα0
)= O(n−α0/α), k = k0(n) + 1,

0, k ≥ k0(n) + 2.

Note that �n−1(g0) and �∗ share the 2k0(n) − 1 sub-diagonals that are closest to
the main diagonal (including the main diagonal). Let H1 be the matrix containing
all other sub-diagonals of �n−1(g0), and let H2 be the matrix which contains the
k0(n)th and the (k0(n) + 1)th diagonals (upper and lower) of �∗. It is seen that

�̃ − �̄ =
(

H1 0
0 0

)
+
(

H2 0
0 0

)
+
(

0 ξ ′
n−1

ξ ′
n−1 0

)
≡ B1 + B2 + B3.

Let ‖ ·‖1 and ‖ ·‖2 denote the �1 matrix norm and the �2 matrix norm, respectively.
First, by direct calculations, since α < 1/2, ‖B1 + B2‖1 ≤ Cnα0(α−1)/α ≤ Cn−α0 .
At the same time, by (A.12) and since α < 1/2,

‖B3‖2 ≤ C

nα0

n∑
k=1

[kα − (k + 1)α]2 ≤ C

nα0

n∑
k=1

k2α−2 ≤ C/nα0 .

Since the spectral norm is no greater than the �1-matrix norm and the �2-matrix
norm, the spectral norm of B1 +B2 +B3 is no greater than Cn−α0/2, and the claim
follows. �

A.6. Statement and proof of Lemma A.7.

LEMMA A.7. Fix β ∈ (1
2 ,1), r ∈ (0,1) and δ ∈ (0,1) such that γ̄0(1 −

δ)−2r < ρ∗(β). As n tends to infinity the Hellinger distance associated with model
(10.2) tends to zero.
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PROOF. To derive the lemma, let a = √
(1 − δ)/γ̄0, r ′ = γ̄0(1 − δ)−2r , U1 =

aŨ , and ˜̃μ = 1
a
μ̃. Model (10.2) can be equivalently written as

X = Ũ μ̃ + Z = U1 ˜̃μ + Z where Z ∼ N(0, In).(A.13)

Using the argument in the first paragraph of the proof of Theorem 3.1 it is not
difficult to verify that (I) ˜̃μ has m = n1−β nonzero entries; each of which is equal
to
√

2r ′ logn with r ′ < ρ∗(β), and whose locations are randomly sampled from
(1,2, . . . , n); (II) U1, where U1(k, j) = 0 if |k − j | > (logn)2, is a banded lower
triangular matrix and (III) limn→∞ max√

n≤k≤n−√
n(U

′
1U1)(k, k) = (1 − δ) < 1.

Below, write μ = ˜̃μ and r = r ′ for short. Note that the Hellinger distance as-
sociated with model (10.2) is E0(

√
W ∗

n ), where E0 denotes the law Z ∼ N(0, In),
and

W ∗
n = W ∗

n (r, β;Z1,Z2, . . . ,Zn) =
(

n

m

)−1 ∑
�=(�1,�2,...,�m)

eμ′
�U

′
1Z−‖U1μ�‖2/2.

Introduce the set of indices

Sn =
{
� = (�1, �2, . . . , �m),

(A.14)
min

1≤j≤m−1
|�j+1 − �j | ≥ 3(logn)2, �1 ≥ √

n,n − �m ≥ √
n
}
.

The following lemma is proved in Section A.7.

LEMMA A.8. Let �1 < �2 < · · · < �m be m distinct indices randomly sampled
from (1,2, . . . , n) without replacement. Then for any 1 ≤ K ≤ n, (a) P {�1 ≤ K} ≤
Km/n, (b) P {�m ≥ n − K} ≤ Km/n and (c) P {min1≤i≤m−1{|�i+1 − �i | ≤ K} ≤
Km(m + 1)/n. As a result, P {� = (�1, �2, . . . , �m) /∈ Sn} = O{(logn)2n1−2β} =
o(1).

Applying Lemma A.8, we make only a negligible difference by restricting � to
Sn and defining

Wn = 1(n
m

) ∑
�=(�1,�2,...,�m)∈Sn

eμ′
�U

′
1Z−‖Uμ�‖2/2,(A.15)

in which case

E(W 1/2
n ) = E(W ∗

n
1/2) + o(1).(A.16)

Define Y = U ′
1Z,

σ 2
j = var(Yj ) ≡ (U ′

1U1)(j, j), 1 ≤ j ≤ n,(A.17)

and the event

Dn = {Yj/σj ≤
√

2 logn,1 ≤ j ≤ n
}
.
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By direct calculation, P {Dc
n} = o(1), and so by Hölder’s inequality,

E
(
W 1/2

n 1{Dc
n}
)= E(W 1/2

n ) + o(1).

Combining this result and (A.16) we deduce that E(W
∗1/2
n ) = E(W

1/2
n 1{Dn}) +

o(1), and comparing this property with the desired result we see that it is is suffi-
cient to show that

E
(
W 1/2

n 1{Dn}
)= 1 + o(1).(A.18)

The key to (A.18) is the following lemma, which is proved in Section A.8.

LEMMA A.9. Consider the model (A.13) where U1 and μ satisfy (I)–(III). As
n → ∞, E(Wn1{Dn}) = 1 + o(1), and E(W 2

n 1{Dn}) = 1 + o(1).

Since

∣∣W 1/2
n 1{Dn} − 1

∣∣≤ |Wn1{Dn} − 1|
1 + W

1/2
n 1{Dn}

≤ ∣∣Wn1{Dn} − 1
∣∣,

then by Hölder’s inequality,

(
E
∣∣W 1/2

n 1{Dn} − 1
∣∣)2 ≤ ∣∣Wn1{Dn} − 1

∣∣2
(A.19)

= E
(
W 2

n 1{Dn}
)− 2E

(
Wn1{Dn}

)+ 1.

Combining (A.19) with Lemma A.9 gives (A.18). �

A.7. Proof of Lemma A.8. The last claim follows once (a)–(c) are proved.
Consider (a)–(b) first. Fixing K ≥ 1, we have

P {�1 = K} =
(n−K
m−1

)
(n
m

) = m
(n − m)(n − m − 1) · · · (n − m − K + 2)

n(n − 1) · · · (n − K + 1)
≤ m/n,

so P {�1 ≤ K} ≤ Km/n. Similarly, P {n − �m ≤ K} ≤ Km/n. This gives (a)
and (b).

Next we prove (c). Denote the minimum inter-distance of �1, �2, . . . , �m by

L(�) = L(�;m,n) = min
1≤i≤m−1

|�i+1 − �i |.

Note that

P {L(�) = K} ≤
m−1∑
j=1

P {�j+1 − �j = K} ≤
m−1∑
j=1

n∑
k=1

P {�j = k, �j+1 = k + K}.
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Writing P {�j = k, �j+1 = k + K} = (n
m

)−1(k−1
j−1

)(n−k−K
m−j−1

)
, we have

P {L(�) = K} ≤ 1(n
m

) m−1∑
j=1

n∑
k=j

(
k − 1
j − 1

)(
n − k − K

m − j − 1

)

= 1(n
m

) n∑
k=1

k∑
j=1

(
k − 1
j − 1

)(
n − k − K

m − j − 1

)
,

where the last term is no greater than

1(n
m

) n∑
k=1

(
n − K − 1

m − 2

)
≤ n(n−2

m

)
(

n

m − 2

)
≤ m2/n.

The claim follows.

A.8. Proof of Lemma A.9. We need the following lemma, proved in Sec-
tion A.9.

LEMMA A.10. Consider a bivariate zero mean normal variable (X,Y )′ that
satisfies Var(X) = σ 2

1 , Var(Y ) = σ 2
2 and corr(X,Y ) = �, where c0 ≤ σ1, σ2 ≤ 1 for

some constant c0 ∈ (0,1). Then there is a constant C > 0 such that, for sufficiently
large n,

E
[
exp(AnX − σ 2

1 A2
n/2) · 1{Y>σ2Tn}

]≤ C · n−(1−�
√

r)2

≤ Cn−(1−√
r)2

,

E

[
exp
(
An(X + Y) − σ 2

1 + σ 2
2

2
A2

n

)
· 1{X≤σ1Tn,Y≤σ2Tn}

]
≤ Cn−d(r),

where d(r) = min{2r,1 − 2(1 − √
r)2}.

Now we proceed with the derivation of Lemma A.9. Consider the first claim.
Note that for any � = (�1, �2, . . . , �m) ∈ Sn, the minimum inter-distance of �i is no
less than 3(logn)2, and so

‖U1μ�‖2 = A2
n

m∑
i=1

(U ′
1U1)(�i, �i) = A2

n

m∑
i=1

σ 2
�i

.

In view of the definition of Yj and σj [see (A.17)], we can rewrite Wn as

Wn = 1(n
m

) ∑
�=(�1,�2,...,�m)∈Sn

exp

(
An

m∑
i=1

Y�i
− A2

n

2

m∑
i=1

σ 2
�i

)
.(A.20)
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Note that

1{Dc
n} ≤

n∑
j=1

1{Yj /σj>Tn}.(A.21)

Combining (A.20) and (A.21) gives

E
(
Wn · 1{Dc

n}
)

≤ 1(n
m

) ∑
�=(�1,...,�m)∈Sn

n∑
k=1

E

[
exp

(
An

m∑
j=1

Y�j
− A2

n

2

m∑
j=1

σ 2
�j

)
(A.22)

× 1{Yk/σk>Tn}
]
.

We shall say that two indices j and k are near each other if |j − k| ≤ (logn)2.
In this notation, for each 1 ≤ k ≤ n, when k is near one �j , say �j0 , Yk must be
independent of all other Y�j

with j �= j0. It follows that

E

[
exp

(
An

m∑
j=1

Y�j
− A2

n

2

m∑
j=1

σ 2
�j

)
· 1{Yk/σk>Tn}

]

= E
[
exp(AnY�j0

− σ 2
j0

A2
n/2) · 1{Yk/σk>Tn}

]
.

By Lemma A.10, the right-hand side is no greater than Cn−(1−√
r)2

. Therefore,

E

[
exp

(
An

m∑
j=1

Y�j
− A2

n

2

m∑
j=1

σ 2
�j

)
· 1{Yk/σk>Tn}

]
≤ Cn−(1−√

r)2
.(A.23)

Moreover, for each fixed � = (�1, . . . , �m) ∈ Sn, there are at most 2m(logn)2 dif-
ferent indices k that can be near some of the �j ’s; and when they are, they can be
near only one such �j . Combining these results gives

E
[
Wn · 1{Dc

n}
]≤ 1(n

m

) ∑
�=(�1,...,�m)∈Sn

C(logn)2mn−(1−√
r)2

(A.24)
≤ C(logn)2n(1−β)−(1−√

r)2
.

By the definition of ρ∗(β) and the assumption of the lemma, r < ρ∗(β) ≤ (1 −√
1 − β)2, and so the first claim follows directly from (A.24).
We now consider the second claim. Fix 0 ≤ N ≤ m, and let S̃N (�) denote the

set of all k = (k1, k2, . . . , km) ∈ Sn such that there are exactly N kj ’s that are near
to one �i . (Clearly, any kj can be near to at most one �i .) The two sets of indices
(�1, �2, . . . , �m) and (k1, k2, . . . , km) form exactly N pairs where each contains one
candidate from the first set and one candidate from the second. These pairs are not
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near to each other and not near to any remaining indices outside the pairs. Using
(A.20), we write

E
[
W 2

n · 1{Dn}
]

=
(

n

m

)−2 ∑
�=(�1,�2,...,�m)∈Sn

(A.25)

×
m∑

N=0

∑
k=(k1,k2,...,km)∈S̃N (�)

E

[
exp

(
An

m∑
i=1

(Y�i
+ Yki

)

− A2
n

2

m∑
i=1

(σ 2
�i

+ σ 2
ki
)

)
· 1{Dn}

]
.

For any fixed � and k ∈ S̃N (�), by symmetry, and without loss of generality, we
suppose the N pairs are (�1, k1), (�2, k2), . . . , (�N, kN). By independence of the
pairs with other indices, and also by independence among the pairs,

E

[
exp

(
An

m∑
j=1

(Y�j
+ Ykj

) − A2
n

2

m∑
j=1

(σ 2
�j

+ σ 2
kj

)

)
· 1{Dn}

]

≤ E

[
exp

(
An

m∑
j=1

(Y�j
+ Ykj

) − A2
n

2

m∑
j=1

(σ 2
�j

+ σ 2
kj

)

)

× 1{Y�j
/σ�j

≤Tn,Ykj
/σkj

≤Tn, for all 1≤j≤N}
]

≤ E

[
exp

(
An

{
N∑

j=1

(Y�j
+ Ykj

) − A2
n

2

N∑
j=1

(σ 2
�j

+ σ 2
kj

)

})
(A.26)

× 1{Y�j
/σ�j

≤Tn,Ykj
/σkj

≤Tn, for all 1≤j≤N}
]

=
N∏

j=1

(
E

[
exp
{
An(Y�j

+ Ykj
) − A2

n

2
(σ 2

�j
+ σ 2

kj
)

}

× 1{Y�j
/σ�j

≤Tn,Ykj
/σkj

≤Tn}
])

.

Here, in the first inequality, we have used the fact that

1{Dn} ≤ 1{Y�j
/σ�j

≤Tn,Ykj
/σkj

≤Tn, for all 1≤j≤N};
in the second inequality, we have utilized the independence and the fact that

E[exp(AnYj − σ 2
j A2

n/2)] = 1 for all j = 1, . . . , n,
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and in the third equality, we have used again the independence. Moreover, in view
of the definition of U1, and Lemma A.1, there is a constant c0 ∈ (0,1) such that
σj ∈ [c0,1]. Using Lemma A.10, for sufficiently large n and each 1 ≤ j ≤ N ,

E

[
exp
(
An(Y�j

+ Ykj
) − A2

n

2
(σ 2

�j
+ σ 2

kj
)

)
(A.27)

× 1{Y�j
/σ�j

≤Tn,Ykj
/σkj

≤Tn}
]

≤ Cnd(r)

with d(r) being as in Lemma A.10. Combining (A.26) and (A.27) gives

E
[
W 2

n · 1{Dn}
]≤ ( n

m

)−2 ∑
�=(�1,...,�m)

m∑
N=0

(
Cnd(r))N |S̃N (�)|,(A.28)

where |S̃N (�)| denotes the cardinality of S̃N (�). By elementary combinatorics,

|S̃N (�)| ≤
(

m

N

)
(2 log2 n)N

(
n − N

m − N

)
(A.29)

≤ (2 log2 n)N
(

m

N

)(
n

m − N

)
.

Direct calculations show that(m
N

)( n
m−N

)
(n
m

) = 1

N !
(

m!
(m − N)!

)2 (n − m)!
(n − m + N)! � 1

N !
(

m2

n

)N

.(A.30)

Substituting (A.29) and (A.30) into (A.28) and recalling that m = n1−β , we deduce
that

E
[
W 2

n · 1{Dn}
]

(A.31)

≤
(

n

m

)−1 ∑
�=(�1,�2,...,�m)∈Sn

m∑
N=0

1

N !
(

m2

n

)N (
(C log2 n)nd(r))N,

where the last term does not exceed
∑∞

N=0(N !)−1[C(log2 n)n1+d(r)−2β]N . By the
assumption of the lemma,

r < ρ∗(β) =
{

β − 1/2, 1/2 < β ≤ 3/4,(
1 − √

1 − β
)2

, 3/4 ≤ β < 1;

thus it can be seen that 1 + d(r) − 2β < 0 for all fixed β and r ∈ (0, ρ∗(β)).
Combining this with (A.31) gives the second claim.

A.9. Proof of Lemma A.10. Denote the density, cdf and survival function of
N(0,1) by φ, � and �̄. For the first claim, define W = X/σ1 and V = Y/σ2 if
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ρ ≥ 0 and V = −Y/σ2 otherwise. The proofs for two cases ρ ≥ 0 and ρ < 0 are
similar, so we only show the first one. In this case, it suffices to show that

E
[
exp(σ1AnW − σ 2

1 A2
n/2) · 1{V >Tn}

]≤ C · n−(1−�
√

r)2
.

Write W = (W − ρV ) + ρV , and note that (1 − ρ)2 + ρ2 ≤ 1. It is seen that

σ1AnW − σ 2
1 A2

n/2 ≤ [σ1An(W − ρV ) − σ 2
1 (1 − ρ)2A2

n/2]
(A.32)

+ [σ1AnρV − σ 2
1 ρ2A2

n/2].
Since W and V have unit variance and correlation ρ, then (W − ρV ) is indepen-
dent of V and is distributed as N(0, (1−ρ)2). Therefore, E[exp(σ1An(W −ρV )−
σ 2

1 (1 − ρ)2A2
n/2)] = 1. Combining this with (A.32) gives

E
[
exp(σ1AnW − σ 2

1 A2
n/2) · 1{V >Tn}

]
= E

[
exp(σ1ρAnV − σ 2

1 ρ2A2
n/2) · 1{V >Tn}

]
.

Now, by direct calculation,

E
[
exp(AnV − A2

n/2) · 1{V >Tn}
]= ∫ ∞

Tn

φ(x − σ1ρAn)dx = �̄(Tn − σ1ρAn).

Since �̄(x) ≤ Cφ(x) for all x > 0,

�̄(Tn − σ1ρAn) ≤ Cφ(Tn − σ1ρAn) = Cn−(1−ρ
√

r)2
.

Combining these results gives the claim.
We now establish the second claim. By Hölder’s inequality, it suffices to show

that

E
[
exp(2AnX − σ 2

1 A2
n) · 1{X≤σ1Tn}

]≤ Cn−d(r).

Recalling that W = X/σ1, we have

E
[
exp(2AnX − σ1A

2
n) · 1{X≤σ1Tn}

]= E
[
exp(2σ1AnW − σ 2

1 A2
n) · 1{W≤Tn}

]
.

By direct calculation,

E
[
exp(2σ1AnW − σ 2

1 A2
n) · 1{W≤Tn}

]= eσ 2
1 A2

n

∫ Tn

−∞
φ(x − 2σ1An)dx

= eσ 2
1 A2

n�(Tn − 2σ1An).

Since �(x) ≤ Cφ(x) for all x < 0 and �(x) ≤ 1 for all x ≥ 0,

eσ 2
1 A2

n�(Tn − 2σ1An)

≤
{

Ceσ 2
1 A2

n = Cn2σ 2
1 r , σ 2

1 r ≤ 1/4,

eσ 2
1 A2

nφ(Tn − 2σ1An) = Cn1−2(1−σ1
√

r)2
, σ 2

1 r > 1/4.

In view of the definition of d(r), eσ 2
1 A2

n�(Tn − 2σ1An) ≤ Cnd(σ 2
1 r). Since that

σ1 ≤ 1 and that d(r) is a monotonely increasing function, we have d(σ 2
1 r) ≤ d(r).

Combining these results gives the claim.
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A.10. Statement and proof of Lemma A.11.

LEMMA A.11. Under the conditions of Theorem 4.2, the right-hand side of
(10.8) converges to zero algebraically fast as n diverges to infinity.

PROOF. The key observation needed to establish the lemma is that there is a
sequence of positive numbers δn that tends to zero as n diverges to infinity such
that νk ≥ (1 − δn)An for all k ∈ {�1, �2, . . . , �m}, so it is natural to compare model
(10.7) with the following model:

Y ∗ = ν∗ + Z, Z ∼ N(0, In),(A.33)

where ν∗ has m nonzero entries of equal strength (1 − δn)An whose locations are
randomly drawn from {1,2, . . . , n} without replacement.

For short, write t = t∗n and

hn(t) =
√

n(F̄n(t) − F̄0(t))√
(2bn − 1)F̄0(t)(1 − F̄0(t))

.

Let F̄ ∗
n (t) be the empirical survival function of {(Y ∗

k )2}nk=1, and let F̄ (t) =
E[F̄n(t)] and F̄ ∗(t) = E[F̄ ∗

n (t)]. Recall that the family of noncentral χ2-
distributions has monotone likelihood ratio. Then F̄ (t) ≥ F̄ ∗(t) ≥ F̄0(t). Now,
first, since the Yk’s are block-wise dependent with a block size ≤ 2bn − 1, it fol-
lows by direct calculations that

Var(hn(t)) ≤ CF̄ (t)/F̄0(t).

Second, by F̄ (t) ≥ F̄ ∗
n (t),

E[hn(t)] =
√

n(F̄ (t) − F̄0(t))√
(2bn − 1)F̄0(t)(1 − F̄0(t))

(A.34)

≥
√

n(F̄ ∗(t) − F̄0(t))√
(2bn − 1)F̄0(t)(1 − F̄0(t))

,

where the right-hand side diverges to infinity algebraically fast by an argument
similar to that in [18]. Combining Chebyshev’s inequality, the identity bn = logn

and calculations of the mean and variance of hn(t), we deduce that

P {hn(t) ≤ (logn)2} ≤ C(logn)
F̄ (t)

n(F̄ (t) − F̄0(t))2
.(A.35)

It remains to show that the last term in (A.35) is algebraically small. We discuss
separately the cases F̄ (t)/F̄0(t) ≥ 2 and F̄ (t)/F̄0(t) < 2. For the first case,

F̄ (t)

n(F̄ (t) − F̄0(t))2
≤ C

nF̄ (t)
≤ C

nF̄0(t)
,
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which is algebraically small since t = √
2q logn and 0 < q < 1. For the second

case,

F̄ (t)

n(F̄ (t) − F̄0(t))2
≤ CF̄0(t)

n(F̄ (t) − F̄0(t))2
≤ CF̄0(t)

n(F̄ ∗(t) − F̄0(t))2
,(A.36)

which is seen to be algebraically small by comparing it to the right-hand side of
(A.34). �

A.11. Statement and proof of Lemma A.12.

LEMMA A.12. Let �n be as in (7.1). For sufficiently large n, necessary and
sufficient conditions for �n to be positive definite are, respectively, 0 ≤ α ≤ 2 and
0 < α0 ≤ α ≤ 1.

PROOF. We begin by establishing the first claim. Suppose such an autoregres-
sive structure exists for α ≥ α0 > 0. Let

Yk = √
an · (Xk+1 − Xk)/d, an = nα0/2, k = 1,2, . . . , n − 1.

Clearly, var(Yk) = 1. At the same time, direct calculation shows that the correlation
between Y1 and Yj+1 equals to [(j +1)α + (j −1)α −2jα]/2 for all 1 ≤ j ≤ n−2,
which is no larger than 1. Taking j = 2 yields (3α + 1 − 2 · 2α)/2 ≤ 1, and hence
α ≤ 2.

Consider the second claim. For any k ≥ 1, define the partial sum Sk(t) =
1 + 2

∑k
j=1(1 − jα

nα0 )+ cos(kt). By a well-known result in trigonometry [55], to
establish the positive-definiteness of �n, it suffices to show that

Sk0+1(t) ≥ 0 for all t ∈ [−π,π ] and
(A.37)

Sk0+1(t) > 0 except for a set of measure zero.

Here, k0 = k0(n;α,α0) is the largest integer k such that kα ≤ nα0 .
We now derive (A.37). Using a result from [55], page 183, if we let a0 = 2, and

aj = 2(1− jα

nα0 )+, 1 ≤ j ≤ n−1, then Sk0+1(t) =∑k0−1
j=0 (j +1)�2ajKj (t)+(k0 +

1)Kk0(t)�ak0 +Dn(t)ak0+1. Here, �aj = aj − aj+1, �2aj = aj + aj+2 − 2aj+1,
and Dj(t) and Kj(t) are the Dirichlet’s kernel and the Fejér’s kernel, respectively,

Dj(t) = sin((j + 1/2)t)

2 sin(t/2)
,

(A.38)

Kj(t) = 2

j + 1

(
sin((j + 1)/2t)

2 sin(t/2)

)2

, j = 0,1, . . . .

In view of the definition of k0, ak0+1 = (1 − (k0+1)α

nα0 )+ = 0. Also, by the

monotonicity of {aj }, �ak0 = ak0 − ak0+1 ≥ 0. Therefore, Sk0+1(t) ≥∑k0−1
j=0 (j +

1)�2ajKj (t).
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We claim that the sequence {a0, a1, . . . , an−1} is convex. In detail, since α ≤ 1,
the sequence {jα} is concave. As a result, the sequence {(1 − jα

nα0 )} is convex,
and so is the sequence {(1 − jα/nα0)+}. In view of the definition of aj , the claim
follows directly. The convexity of the aj ’s implies that �2aj ≥ 0, 0 ≤ j ≤ n − 2.
Therefore, Sk0+1(t) ≥ 0. This proves the first part of (A.37).

We now prove the second part of (A.37), and discuss separately the two cases
α < 1 and α = 1. In the first case, �a0 = n−α0(2 − 2α) > 0 and K0(t) = 1

2 . As a
result, Sk0+1(t) ≥ (2 − 2α)/(2nα0) > 0, and the claim follows. In the second case,
�aj = n−α0(2j − j − (j + 2)) = 0, and �ak0−1 = [1 − n−α0(k0 − 1)] − 2(1 −
n−α0k0) = n−α0(k0 + 1) − 1 > 0. Therefore, Sk0+1(t) ≥ (k0 + 1)[(k0 + 1)n−α0 −
1]Kk0(t). Clearly, Sk0+1(t) can only assume 0 when 1

2(k0 + 1)t is a multiple of π .
Since the set of such t has measure zero, the claim follows directly. �

A.12. Statement and proof of Lemma A.13.

LEMMA A.13. For 0 < α < 1, we have essinf−π≤θ≤π {fα(θ)} > 0.

PROOF. To derive the lemma, let a0 = 2, and ak = 2kα − (k + 1)α − (k − 1)α ,
1 ≤ k ≤ n−1. Clearly, ak > 0 for all k, so fα(0;α) > 0. Furthermore, when θ �= 0,
by [55], equation 1.7, page 183,

fα(θ) =
∞∑

ν=0

(ν + 1)[aν+2 + aν − 2aν+1]aνKν(θ),(A.39)

where Kν(θ) is the Fejér’s kernel as in (A.38). By the positiveness of the Fejér’s
kernel, all remains to show is that ak+1 + ak−1 − 2ak > 0, for all k ≥ 2.

Define h(x) = (1+2x)α + (1−2x)α −4(1+x)α −4(1−x)α +6, 0 ≤ x ≤ 1/2.
By direct calculations, for all k ≥ 2,

ak+1 + ak−1 − 2ak

= −kα

[(
1 + 2

k

)α

+
(

1 − 2

k

)α

− 4
(

1 + 1

k

)α

− 4
(

1 − 1

k

)α

+ 6
]

(A.40)

= −kαh(1/k).

Also, by basic calculus,

h′′(x) = 4α(α − 1)[(1 + 2x)α−2 + (1 − 2x)α−2 − (1 + x)α−2 − (1 − x)α−2].
Since 0 < α < 1, xα−2 is a convex function. It follows that h′′(x) < 0 for all x ∈
(0,1/2), and h(x) is a strictly concave function. At the same time, note that h(0) =
h′(0) = 0, so h(x) < 0 for x ∈ (0,1/2]. Combining this with (A.40) gives the
claim. �
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