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This paper is concerned with density estimation of directional data on
the sphere. We introduce a procedure based on thresholding on a new type of
spherical wavelets called needlets. We establish a minimax result and prove
its optimality. We are motivated by astrophysical applications, in particular in
connection with the analysis of ultra high-energy cosmic rays.

1. Introduction. We consider the problem of estimating the density f of an
independent sample of points X1, . . . ,Xn observed on the d-dimensional sphere
S

d of R
d+1. Obviously, the most immediate examples of applications appear in

the case d = 2. However, no major differences arise from considering the general
case.

There is an abundant literature about this type of problems. In particular, min-
imax L2 results have been obtained (see [14, 15]). These procedures are gener-
ally obtained using either orthogonal series methods associated with spherical har-
monics (providing an estimator having poor local performances, as the spherical
harmonics are spread all over the sphere) or kernel methods (which do not take
advantage of the Fourier structure of the space of square integrable functions on
the manifold).

In our approach we focus on two important points. We aim at a procedure of
estimation which is efficient from a L2 point of view (as it is a tradition in statistics
to evaluate the procedure with the mean square error). On the other hand, we would
like it to perform satisfactorily also from a local point of view (in infinity norm, for
instance). To have these two requirements together seems to us a warrant to have
good results in practice. In effect, it is very difficult to produce a loss function
which reflects at the same time the requirement of clearly seeing the bumps of the
density, of being able to well estimate different level sets, of testing whether there
is a difference between the northern and southern hemispheres and so on.

In addition, we require this procedure to be simple to implement, as well as
adaptive to inhomogeneous smoothness. This type of requirements is generally
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well handled using thresholding estimates associated to wavelets. The problem re-
quires a special construction adapted to the sphere, since usual tensorized wavelets
never reflect the manifold structure of the sphere and necessarily create unwanted
artifacts. Recently in [18, 19] a tight frame (i.e., a redundant family) was produced
which enjoys enough properties to be successfully used for density estimation.

The fundamental properties of wavelets are their concentration in the Fourier
domain as well as in the space domain. Here, obviously the “space” domain is
the sphere itself whereas the Fourier domain is now obtained by replacing the
“Fourier” basis by the basis of spherical harmonics which plays an analogous role
on the sphere.

The construction [18, 19] produces a family of functions which very much re-
semble wavelets, the needlets, and in particular have very good concentration prop-
erties.

We use these needlets to construct an estimation procedure, and prove that this
procedure attains optimal rates over various spaces of regularity.

Again, the problem of choosing appropriate spaces of regularity on the sphere is
a serious question, and we decided to consider the spaces which may be the closest
to our natural intuition: those which generalize to the sphere case the classical
Hölder spaces.

Of course the estimator can produce a function that takes negative values. It is
a well-known fact that, except for small regularity cases, it is impossible to find
minimax estimators satisfying the positivity constraint. The rates of convergence
ensure that this kind of artifacts rarely occur and of course in practice one replaces
the negative value by 0.

In the first section we present [19] needlets, and describe spaces of regularity
on the sphere. In the second one we define our estimation procedure, and describe
its properties.

The novelties of this paper lie in the application of thresholding to the needlet
coefficients, which gives a very simple and adaptive procedure which works on the
sphere. We also focus here on giving the results in L∞ norm, and obtain the rates
of convergence for many other loss functions as a consequence of the previous
ones.

Our results are motivated by many recent developments in the area of observa-
tional astrophysics. As an example, we refer to experiments measuring incoming
directions of Ultra High Energy Cosmic Rays, such as the AUGER Observatory
(http://www.auger.org). Here, efficient estimation of the density function of these
directional data may yield crucial insights into the physical mechanisms generat-
ing the observations. More precisely, a uniform density would suggest the high
energy cosmic rays are generated by cosmological effects, such as the decay of
massive particles generated during the Big Bang; on the other hand, if these cos-
mic rays are generated by astrophysical phenomena (such as acceleration into ac-
tive galactic nuclei), then we should observe a density function which is highly
nonuniform and tightly correlated with the local distribution of nearby galaxies.

http://www.auger.org
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Massive amount of data in this area are expected to be available in the next few
years. The Auger Observatory will be based on two arrays of detectors; the first
one covers an area larger than 3000 km2 in Pampa Amarilla (Argentina), and has
already started to collect observations. Some preliminary evidence was provided in
[4], and a nonuniform distribution seems to be favored. The whole celestial sphere
will actually be covered only when the construction of the northern hemisphere
array, due to be built in eastern Colorado, will be completed a few years from
now. Hence, in the immediate future efficient statistical techniques will be eagerly
requested for the analysis of the forthcoming datasets.

A survey of statistical methodologies dealing with directional data on the sphere
may be found in [10, 16, 17]. The generalization of estimation using orthogonal
series methods to the case of compact Riemannian manifold can be found in [8].
See related works in [7, 9, 20, 21] and [11]. Kernel methods on the sphere have
been investigated in [6]. Minimax rates for the equivalent of Sobolev spaces on the
sphere associated can be found in [13, 15] and [14].

The plan of the paper is as follows. In Sections 2 and 3 we review some back-
ground material on needlets and Besov spaces. Section 4 introduces our thresh-
olding estimator, whose minimax performances are stated in Section 5. Section 6
shows the performance of the estimators on some simulated data. Sections 7–9
contain the proofs.

2. Needlets. This construction is due to Narcowich, Petrushev and Ward [19].
Its aim is essentially to build a very well-localized tight frame constructed using
spherical harmonics, as discussed below. It was recently extended with fruitful
statistical applications to more general Euclidean settings (see [12]) and already
exploited for estimation and testing problems in [1] and [2].

Let us denote by Sd , the unit sphere of R
d+1. We denote dx the surface measure

of S
d , that is the unique positive measure on S

d which is invariant by rotation
and has total mass ωd = 2π(d+1)/2/�(d+1

2 ). The following decomposition is well
known:

L
2(dx) =

∞⊕
l=0

Hl ,(1)

where Hl is the restriction to S
d of the homogeneous polynomials on R

d+1 of
degree l which are harmonic (i.e., �P = 0, where � is the Laplacian on R

d+1).
This space is called the space of spherical harmonics of degree l (see [22], Chap-
ter 4 and [24], Chapter 5). Its dimension is equal to gl,d = (l+d

d

) − (l+d−2
d

)
and

is therefore of order ld−1. The orthogonal projector on Hl is given by the kernel
operator

∀f ∈ L
2(dx), PHl

f (x) =
∫

Sd
Ll(〈x, y〉)f (y) dy,(2)
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where 〈x, y〉 is the standard scalar product of R
d+1, and Ll is the Gegenbauer

polynomial with parameter d−1
2 of degree l, defined on [−1,+1] and normalized

so that ∫ 1

−1
Ll(t)Lk(t)(1 − t2)d/2−1 dt = gl,d2d/2�(d

2 )2

�(d)ω2
d

δl,k

(3)

= gl,d2d/2�(d+1
2 )2�(d

2 )2

4�(d)πd+1 δl,k.

For the main situation of interest, d = 2, the right-hand side above is equal to
2l+1
8π2 . Recall that if d = 2, the usual normalization of the Legendre polynomial

(Ll(1) = 1) gives the square of their L2 norm equal to 2
2l+1 . Therefore these must

be multiplied by (2l + 1)/(4π), in order to satisfy (3).
Let us point out the following reproducing property of the projection operators:∫

Sd
Ll(〈x, y〉)Lk(〈y, z〉) dy = δl,kLl(〈x, z〉).(4)

The construction of needlets is based on the classical Littlewood–Paley decompo-
sition and a subsequent discretization.

Let ϕ be a C∞ function on R, symmetric and decreasing on R
+ supported in

|ξ | ≤ 1, such that 1 ≥ ϕ(ξ) ≥ 0 and ϕ(ξ) = 1 if |ξ | ≤ 1
2 . We set

b2(ξ) = ϕ

(
ξ

2

)
− ϕ(ξ) ≥ 0

so that

∀|ξ | ≥ 1,
∑
j≥0

b2
(

ξ

2j

)
= 1.(5)

Remark that b(ξ) 	= 0 only if 1
2 ≤ |ξ | ≤ 2. Let us now define the operator 	j =∑

l≥0 b2( l
2j )Ll and the associated kernel

	j(x, y) =∑
l≥0

b2
(

l

2j

)
Ll(〈x, y〉) = ∑

2j−1<l<2j+1

b2
(

l

2j

)
Ll(〈x, y〉).

The following proposition is obvious.

PROPOSITION 1. For every f ∈ L2

f = lim
J→∞L0(f ) +

J∑
j=0

	j(f ).(6)

Moreover, if Mj(x, y) =∑
l≥0 b( l

2j )Ll(〈x, y〉), then

	j(x, y) =
∫

Mj(x, z)Mj(z, y) dz.(7)
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Let

Pl =
l⊕

m=0

Hm

the space of the restrictions to S
d of the polynomials of degree ≤ l. The following

quadrature formula is true: for all l ∈ N there exists a finite subset Xl ⊂ S
d and

positive real numbers λη > 0, indexed by the elements η ∈ Xl , such that

∀f ∈ Pl ,

∫
Sd

f (x) dx = ∑
η∈Xl

ληf (η).(8)

Then the operator Mj defined in the subsection above is such that z �→ Mj(x, z) ∈
P[2j+1], so that

z �→ Mj(x, z)Mj(z, y) ∈ P[2j+2],

and we can write

	j(x, y) =
∫

Mj(x, z)Mj(z, y) dz = ∑
η∈X[2j+2]

ληMj(x, η)Mj(η, y).

This implies

	jf (x) =
∫

	j(x, y)f (y) dy =
∫ ∑

η∈X[2j+2]

ληMj(x, η)Mj(η, y)f (y) dy

= ∑
η∈X[2j+2]

√
ληMj(x, η)

∫ √
ληMj(y, η)f (y) dy.

We denote

X[2j+2] = Zj , ψj,η(x) :=
√

ληMj(x, η) for η ∈ Zj .

The choice of the sets Zj of cubature points is not unique, but one can impose the
conditions

1

c
2dj ≤ #Zj ≤ c2dj ,

1

c
2−dj ≤ λη ≤ c2−dj(9)

for some c > 0. Actually in the simulations of Section 6 we make use of some sets
of cubature points for d = 2 such that #Zj = 22j+4 exactly (the corresponding
weights being however not identical). We have, using (6),

f = L0(f ) +∑
j

∑
η∈Zj

〈f,ψj,η〉L2(Sd )ψj,η.(10)
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FIG. 1. The value of the needlet ψj,ξ as a function of the distance from the cubature point ξ for
j = 3 (dots) and j = 4 (solid). This emphasizes the localization properties of needlets as j increases.

The main result of Narcowich, Petrushev and Ward [19] is the following local-
ization property of the ψj,η, called needlets: for any k there exists a constant ck

such that, for every ξ ∈ S
d :

|ψj,η(ξ)| ≤ ck2jd/2

(1 + 2jd/2 dist(η, ξ))k
,(11)

where d is the natural geodesic distance on the sphere [for d = 2, d(ξ, η) =
arccos〈η, ξ〉] (see Figure 1). In other words needlets are almost exponentially lo-
calized around any cubature point, which motivates their name. From this local-
ization property it follows (see [19]) that for 1 ≤ p ≤ +∞ there exist a positive
constant Cp such that

1

Cp

2jd(1/2−1/p) ≤ ‖ψjη‖p ≤ Cp2jd(1/2−1/p).(12)

Also, the following holds:

LEMMA 2. (1) For every 0 < p ≤ +∞∥∥∥∥ ∑
ξ∈Zj

λξψj,ξ

∥∥∥∥
p

≤ c2jd(1/2−1/p)

( ∑
ξ∈Zj

|λξ |p
)1/p

.(13)

(2) For every 1 ≤ p ≤ +∞( ∑
ξ∈Zj

|〈f,ψjξ 〉|p
)1/p

2jd(1/2−1/p) ≤ c‖f ‖p.(14)
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PROOF. Let us prove (13) for p = +∞. Using (11) and Lemma 6 of [1]

sup
x∈Sd

∣∣∣∣ ∑
ξ∈Zj

λξψj,ξ

∣∣∣∣≤ sup
ξ∈Zj

|λξ | sup
x∈Sd

∑
ξ∈Zj

|ψj,ξ (x)|

≤ sup
ξ∈Zj

|λξ |c3 sup
x∈Sd

∑
ξ∈Zj

2jd/2

(1 + 2jd/2d(ξ, x))3

≤ c̃32jd/2 sup
ξ∈Zj

|λξ |.

If 1 ≤ p < +∞, by Hölder inequality, if 1
p

+ 1
p′ = 1 so that p

p′ = p − 1,( ∑
ξ∈Zj

|λξψj,ξ (x)|
)p

=
( ∑

ξ∈Zj

|λξ ||ψj,ξ (x)|1/p|ψj,ξ (x)|1/p′
)p

≤
( ∑

ξ∈Zj

|λξ |p|ψj,ξ (x)|
)( ∑

ξ∈Zj

|ψj,ξ (x)|
)p−1

≤ c̃
p−1
3 2jd/2(p−1)

∑
ξ∈Zj

|λξ |p|ψj,ξ (x)|,

where the last inequality comes again from (11) and Lemma 6 of [1]. Now inte-
grating and using (12) for p = 1,∥∥∥∥ ∑

ξ∈Zj

λξψj,ξ (x)

∥∥∥∥p

p

≤ 2jd/2(p−1)
∑

ξ∈Zj

|λξ |p‖ψj,ξ‖1 ≤ 2jd/2(p−2)
∑

ξ∈Zj

|λξ |p

from which (13) follows. The remaining case 0 < p ≤ 1 follows immediately by
subadditivity, as ∥∥∥∥ ∑

ξ∈Zj

λξψj,ξ (x)

∥∥∥∥p

p

≤ ∑
ξ∈Zj

|λξ |p‖ψj,ξ (x)‖p
p.

As for (2) clearly if p = +∞
C2jd/2 sup

ξ∈Zj

|〈f,ϕj,ξ 〉| ≤ C2jd/2 sup
ξ∈Zj

∫
|f (x)||ϕj,ξ (x)|dx

≤ C2jd/2‖f ‖∞ sup
ξ∈Zj

‖ϕj,ξ‖1 ≤ C′‖f ‖∞

and if p = 1∑
ξ∈Zj

|〈f,ϕj,ξ 〉|2−jd/2 ≤ 2−jd/2
∑

ξ∈Zj

∫
|f (x)||ϕj,ξ (x)|dx

= 2−jd/2
∫

|f (x)| ∑
ξ∈Zj

|ϕj,ξ (x)|dx ≤ C‖f ‖1.
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Let now 1 < p < ∞∑
ξ∈Zj

|〈f,ϕj,ξ 〉|p2jd(p/2−1) ≤ 2jd(p/2−1)
∑

ξ∈Zj

(∫
|f (x)||ϕj,ξ (x)|dx

)p

.

But, by Hölder’s inequality, for p′ such that 1
p

+ 1
p

′ = 1, then p
p′ = p − 1 and(∫

|f (x)||ϕj,ξ (x)|dx

)p

=
(∫

|f (x)||ϕj,ξ (x)|1/p|ϕj,ξ (x)|1/p′
dx

)p

≤
∫

|f (x)|p|ϕj,ξ (x)|dx

(∫
|ϕj,ξ (x)|dx

)p−1

=
∫

|f (x)|p|ϕj,ξ (x)|dx‖ϕj,ξ‖p−1
1 .

So∑
ξ∈Zj

|〈f,ϕj,ξ 〉|p‖2jd(p/2−1) ≤ 2−jd/2(p−1)2jd(p/2−1)
∑

ξ∈Zj

∫
|f (x)|p|ϕj,ξ (x)|dx

= 2−jd/2
∫

|f (x)|p ∑
ξ∈Zj

|ϕj,ξ (x)|dx ≤ C‖f ‖p
p.

�

EXAMPLE 3. Relation (12) for p = 2 states that the L2 norm of ψjξ is
bounded with respect to j and also bounded away from 0 from below. As-
sume d = 2. Then using (4) it is actually easy to see that, keeping in mind that
Ll(1) = 2l+1

4π
,

‖ψjξ‖2
2 = λξ

∑
l≥0

b2
(

l

2j

)
Ll(1) = λη

4π

∑
l≥0

b2
(

l

2j

)
(2l + 1).

Assuming that the cubature points are of cardinality 22j+4 and that they sum up
to 4π , λη ∼ 4π · 2−2j−4 as j → ∞. If the previous relation were an equality we
could recognize in the right-hand term the Riemann sum

1

8

(
1

2j

∑
l≥0

b2
(

l

2j

)
l

2j
+ 1

22j

∑
l≥0

b2
(

l

2j

))
that converges, as j → ∞, to the integral

I = 1

8

∫ 2

1/2
tb2(t) dt

which depends on the choice of the function b. This L2 norm shall appear fre-
quently in the sequel. For instance, in the development (10) of the function
f = ψj0ξ0 the coefficient βj0ξ0 = 〈f,ψj,η〉 would be exactly equal to ‖ψjξ‖2

2. As it
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is clear that it would be desirable for this coefficient to be as large as possible, the
value of the integral above can be seen as a measure of the localization properties
of the system of needlets and can be used as a criterion of goodness of the choice
of the function b. With the choice we made (see Section 6) the quantity I above
is � 0.107.

3. Besov spaces on the sphere and needlets. In this section we summarize
the main properties of Besov spaces and needlets, as established in [19].

Let f : Sd → R a measurable function. We define

Ek(f, r) = inf
P∈Pk

‖f − P‖r

the infimum of the distances in Lr of f from the polynomials of degree k. Then
the Besov space Bs

r,q is defined as the space of functions such that

f ∈ Lr and

( ∞∑
k=0

(ksEk(f, r))q
1

k

)1/q

< +∞.

Remarking that k → Ek(f, r)) is decreasing, by a standard condensation argu-
ment, as

(2jsE2j+1(f, r))q ≤
2j+1−1∑
k=2j

(ksEk(f, r))q
1

k
≤ 2

(
2(j+1)sE2j (f, r)

)q
this is equivalent to

f ∈ Lr and

( ∞∑
j=0

(2jsE2j (f, r))q

)1/q

< +∞.

THEOREM 4. Let 1 ≤ r ≤ +∞, s > 0, 0 ≤ q ≤ +∞. Let f a measurable
function and define

〈f,ψj,ξ 〉 =
∫

Sd
f (x)ψj,ξ (x) dx

def= βj,ξ

provided the integrals exists. Then f ∈ Bs
r,q if and only if, for every j = 1,2, . . . ,( ∑

ξ∈Xj

(βj,ξ‖ψj,ξ‖r )
r

)1/r

= 2−jsδj ,

where (δj )j ∈ �q .

As

c2jd(1/2−1/r) ≤ ‖ψj,ξ‖r ≤ C2jd(1/2−1/r)
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for some positive constants c,C, the Besov space Bs
r,q turns out to be a Banach

space associate to the norm

‖f ‖Bs
r,q

:= ∥∥(2j [s+d(1/2−1/r)]∥∥(βjη)η∈Zj
‖�r )j≥0‖�q < ∞.(15)

In the sequel we shall denote by Bs
r,q(M) the ball of radius M of the Besov space

Bs
r,q .

THEOREM 5 (The Besov embedding). If p ≤ r ≤ ∞ then Bs
r,q ⊆ Bs

p,q . If s >

d(1
r

− 1
p
),

r ≤ p ≤ ∞ ⇒ Bs
r,q ⊆ Bs−d(1/r−1/p)

p,q .

PROOF. By hypothesis

2jd(1/2−1/r)

( ∑
ξ∈Zj

|βj,ξ |r
)1/r

≤ δj 2−js, (δj )j ∈ �q.

Let p ≤ r ≤ ∞, then

2jd(1/2−1/p)

( ∑
ξ∈Zj

|βj,ξ |p
)1/p

= 2jd/2(2−jd card(Zj ))
1/p

(
1

card(Zj )

∑
ξ∈Zj

|βj,ξ |p
)1/p

≤ 2jd/2(2−jd card(Zj ))
1/p

(
1

card(Zj )

∑
ξ∈Zj

|βj,ξ |r
)1/r

= 2jd(1/2−1/r)(2−jd card(Zj ))
1/p−1/r

( ∑
ξ∈Zj

|βj,ξ |r
)1/r

≤ C2jd(1/2−1/r)

( ∑
ξ∈Zj

|βj,ξ |r
)1/r

≤ Cδj 2−js .

On the other hand, if r ≤ p ≤ ∞,

2jd(1/2−1/p)

( ∑
ξ∈Zj

|βj,ξ |p
)1/p

≤ 2jd(1/2−1/p)

( ∑
ξ∈Zj

|βj,ξ |r
)1/r

= 2jd(1/r−1/p)2jd(1/2−1/r)

( ∑
ξ∈Zj

|βj,ξ |r
)1/r

≤ 2jd(1/r−1/p)δj 2−js = δj 2−j (s−d(1/r−1/p)).
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It is easy to show (see [19]) that the Sobolev space Hs , defined through the norm

‖f ‖s = ‖f ‖2 + ‖�s/2f ‖2,

coincides with the Besov space Bs
22. �

4. Needlet estimation of a density on the sphere. Let us suppose that we
observe X1, . . . ,Xn, i.i.d. random variables taking values on the sphere having
common density f with respect to dx. f can be decomposed using the frame of
needlets described above.

f = 1

|Sd | + ∑
j≥0

∑
η

βjηψjη.

The needlet estimator is based on hard thresholding of a needlet expansion as
follows. We start by letting

β̂jη := 1

n

n∑
i=1

ψjη(Xi),(16)

f̂ := 1

|Sd | +
J∑

j=0

∑
η∈Zj

β̂jηψjη1{|β̂jη|≥κtn}.(17)

The tuning parameters of the needlet estimator are:

• The range J = J (n) of resolution levels (frequencies) where the approximation
(17) is used:

	n = {(j, η),0 ≤ j ≤ J,η ∈ Zj },

We shall see that the choice 2J = ( n
logn

)1/d is appropriate.
• The threshold constant κ . Evaluations of κ are given in the following section

and also discussed in Section 6.
• tn: is a sample size-dependent scaling factor. We shall see that an appropriate

choice is

tn =
(

logn

n

)1/2

.

EXAMPLE 6. In order to give a better intuition about the localization and near
absence of correlation of the needlet coefficients, let us consider the case of a sam-
ple X1, . . . ,Xn of i.i.d. r.v.’s uniform on the sphere S

2 of R
3. Then the distribution

of the r.v. 〈x,Xi〉 is uniform on the interval [−1,1] and, if β̂ηj , β̂ξj are the corre-
sponding needlet coefficients associated to the cubature points η, ξ then of course
they are centered r.v.’s and, thanks to (4), their covariance is equal to

E(β̂ηj β̂ξj ) =
√

ληλξ

∑
l≥0

b2
(

l

2j

)
Ll(〈ξ, η〉).
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FIG. 2. The decay of the covariance of β̂j,ξ and β̂j,η as a function of the distance between the
cubature points ξ and η for j = 3 (dots) and j = 4 (solid) (case of a uniformly distributed sample).

Setting η = ξ we find

Var(β̂ηj ) = ‖ψjξ‖2
2

which is a quantity already discussed in Example 3. As for the correlation be-
tween coefficients, it is given by the function θ → λη

∑
l≥0 b2( l

2j )Ll(cos θ), whose
graph, for some values of j is plotted in Figure 2.

REMARK 7. Whereas coefficients associated to cubature points that are not
too close are only slightly correlated, the random needlet coefficients β̂j,η, η ∈ Zj

are not independent and they even satisfy the linear relation∑
η∈Zj

√
ληβ̂j,η = 0.

This comes from the fact that, as y → Ll(〈y, x〉) for l ≤ 2j is a polynomial of
degree ≤ 22j , one has∑

η∈Zj

ληLl(〈η, x〉) =
∫

Sd
Ll(〈y, x〉) dy = 0.(18)

Therefore

∑
η∈Zj

√
ληβ̂j,η = 1

n

n∑
i=1

∑
l>0

b

(
l

2j

) ∑
η∈Zj

ληLl(〈η,Xi〉)
︸ ︷︷ ︸

=0

= 0.
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Relation (18) also implies that, for a given square integrable function f on S
d ,∑

η∈Zj

√
ληβj,η = 0. Actually

∑
η∈Zj

√
ληβj,η =∑

l>0

b

(
l

2j

)∫
Sd

∑
η∈Zj

ληLl(〈η, x〉)
︸ ︷︷ ︸

=0

f (x) dx.

5. Minimax rates for L
p norms and Besov spaces on the sphere. We de-

scribe the performances of the procedure by the following theorem. Remark that
the condition s > d

r
implies f ∈ Bs

r,q ⊂ B
s−d/r∞,q so that f is continuous. By Ef we

denote the expectation taken with respect to a probability with respect to which the
r.v.’s (Xn)n are i.i.d. with common density f .

THEOREM 8. For 0 < r ≤ ∞, p ≥ 1, s > d
r

we have:

(a) For any z > 1, there exist some constants c∞ = c∞(s,p, r,M) such that if
κ > z+1

6 ,

sup
f ∈Bs

r,q (M)

Ef ‖f̂ − f ‖z∞ ≤ c∞(logn)z−1
[

n

logn

]−(s−d/r)/(2(s−d(1/r−1/2)))

.(19)

(b) For 1 ≤ p < ∞ there exist some constant cp = cp(s, r,p,M) such that if
κ >

p
12 ,

sup
f ∈Bs

r,q (M)

Ef ‖f̂ − f ‖p
p

(20)

≤ cp(logn)αp

[
n

logn

]−(s−d(1/r−1/p))p/(2(s−d(1/r−1/2)))

,

where αp = p − 1 + 1{r=dp/2s+d}, if r ≤ dp
2s+d

, whereas

sup
f ∈Bs

r,q (M)

Ef ‖f̂ − f ‖p
p ≤ cp(logn)p−1

[
n

logn

]−sp/2s+d

if r >
dp

2s + d
.(21)

REMARK 9. Compared to the results obtained in [5] for instance, we see that
the influence of the sphere do not appear in the minimax rates (although if does
appear in the statistical procedures). As in [5], we find rates of convergence which
compare to those obtained in [13, 14] in the homogeneous case (i.e., when p = r).
It is the multiresolution and localization properties of the needlets that allow to
obtain optimal rates in the nonhomogeneous case. Also note here that, contrary
to the kernel methods, our procedure do not need an a priori knowledge of the
regularity. It is fully adaptive.
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FIG. 3. Type of behavior of the minimax estimator as a function of s, r and p. The region with
the large dots is the one corresponding to the sparse case of (20). The region with the small dots
corresponds to the regular case so that (21) holds—see also Remark 10. It should be noticed that if
p ≤ 2 then the slope of the straight line starting at 1

p is smaller than the other one, so that the sparse
region is empty.

Usually the case (20) is referred to as the sparse case, whereas (21) is the reg-
ular case. Remark that if p ≤ 2, then we are always in the regular case (see also
Figure 3).

REMARK 10. A closer look to the proof shows that, in the regular case, if we
assume ‖f ‖∞ ≤ M , then we can drop the restriction s > d

r
without any modifica-

tion if 1 ≤ p ≤ 2. In the case p > 2, using an additional modification allowing J

to depend also in p, 2J = ( n
logn

)p/p−2 to be precise, we obtain the same rate under
the same conditions as in the lower bound (up to logarithmic terms).

THEOREM 11 (Lower bound). (a) If 1 ≤ p ≤ 2,

sup
f ∈Bs

rq (M)

Ef (‖f̂ − f ‖p
p) ≥ cn−sp/(2s+d).

(b) If 2 < p ≤ +∞,

sup
f ∈Bs

rq (M)

Ef (‖f̂ − f ‖p
p)

≥

⎧⎪⎪⎨⎪⎪⎩
cn−sp/(2s+d), if s > p

d

2

(
1

r
− 1

p

)
+

,

cn−p(s+d(1/p−1/r))/(2(s+d(1/2−1/r))), if
d

r
< s ≤ p

d

2

(
1

r
− 1

p

)
.
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REMARK 12. As already remarked, up to logarithmic terms, the rates ob-
served are minimax. It is known that in this kind of estimation, full adaptation
yields unavoidable extra logarithmic terms. The rates of the logarithmic terms ob-
tained in Theorem 8 are suboptimal (for instance, for obvious reason the case p = 2
yields much less logarithmic terms). We have focused on a simple proof giving all
the results in a rather clear and readable way. However, using a more intricate
proof, the rates could be improved up to be comparable with those in [5].

6. Simulations. In this section we produce the result of numerical experi-
ments on the sphere S

2. In both of them the major question concerns the choice
of the values of J and κ . Actually in practical (finite sample) situations the values
given in Theorem 8 should be considered just as a reasonable hint. The sets of
cubature points in the simulations that follow have been taken from the web site of
R. Womersley http://web.maths.unsw.edu.au/~rsw.

We realized the function ϕ of Section 2 by connecting the levels 0 and 1 with
a function that is the primitive, suitably rescaled, of the function x → e−(1−x2)−1

,
set to be equal to 0 outside [−1,1]. The shape of the resulting function b is given
in Figure 4.

For this choice of b, we have

1

8

∫ 2

1/2
tb2(t) dt � 0.107

which, as remarked above, gives an indication about the square of the value of
the L2 norm of a needlet ψjξ . In the first two examples below we considered
samples of cardinality n = 2000 and n = 8000. The hint for the value of J of
Theorem 8 is J = 1

2 log2(
n

logn
), which gives the values J ∼ 4.02 and J ∼ 4.9,

respectively. One should keep in mind that at a given level j it is necessary to
have enough cubature points in order to integrate exactly all polynomials up to
the degree 2(2j+1 − 1) = 2j+2 − 2, which means ∼ 22j+4 cubature points with

FIG. 4. The function b.

http://web.maths.unsw.edu.au/~rsw
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TABLE 1
Number of coefficients surviving thresholding for various values of k0, n = 2000

j = 0 j = 1 j = 2 j = 3

k0 = 1 8 (0.89) 29 (0.45) 96 (0.38) 471 (0.46)
k0 = 1.5 7 (0.78) 16 (0.25) 45 (0.18) 264 (0.26)
k0 = 2 4 (0.44) 4 (0.06) 29 (0.11) 126 (0.12)

Womersley’s set [recall that on the sphere the polynomials of degree d form a
vector space of dimension (2d + 1)2]. This gives 210 = 1024 cubature points for
j = 3, 212 = 4096 for j = 4 and 214 = 16384 for j = 5. To avoid to have more
coefficients than observations, we decided to set J = 3 for n = 2000 and J = 4 for
n = 8000.

As for the value of κ , we shall give the result with κ = k0
√

0.107M , where M

is a bound for ‖f ‖∞, trying different values of k0. Recall that this means that the

threshold kills all coefficients βjξ such that |βjξ | < κ

√
logn

n
.

EXAMPLE 13. f = 1
4π

, the uniform density. In this case in the development
(10) it holds βjξ = 〈f,ψjξ 〉L2 = 0 for every j and ξ . Therefore, a first simple
way of assessing the performance of the procedure is to count the number of co-
efficients that survive thresholding. Of course in this case a good estimate is such
that the coefficients βj,ξ fall below the threshold. Taking into account Lemma 2
the square root of the sum of the squares of the coefficients surviving thresholding
gives an estimate of ‖f̂ − f ‖2. Therefore a measure of the goodness of the fit is
obtained by taking the sum of their squares. Tables 1 and 2 give the number of
surviving coefficients for different values of the constant k0. In order to kill all the
coefficients one should choose k0 = 5.4 for n = 2000 and k0 = 2.8 for n = 8000.
The estimate of the L2 norm of the difference between f̂ and f by taking the
square root of the sum of the squares of the coefficients is

k0 1 1.5 2

n = 2000 0.146 0.131 0.107
n = 8000 0.108 0.0834 0.060.

EXAMPLE 14. Let us consider a mixture f of two densities of the form
fi(x) = cie

−ki |x−xi |2 , i = 1,2, for k1 = 0.6 and k2 = 4 and with weights 0.7 and
0.3, respectively. Here the centers xi of the two bell-shaped densities were taken

to be x1 = (0,1,0) and x2 = (−
√

2
2 ,−

√
2

2 ,0) = (−0.707,−0.707,0). With these
choices it turns out that ‖f ‖∞ = 0.4. The graph of f in the coordinates (ϕ, θ)
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TABLE 2
Number of coefficients surviving thresholding for various values of k0, n = 8000

j = 0 j = 1 j = 2 j = 3 j = 4

k0 = 1 4 (0.44) 28 (0.44) 96 (0.38) 413 (0.40) 1610 (0.39)
k0 = 1.5 2 (0.22) 12 (0.19) 50 (0.20) 207 (0.20) 921 (0.20)
k0 = 2 1 (0.11) 4 (0.06) 16 (0.06) 97 (0.09) 368 (0.09)

(ϕ = longitude, θ = colatitude) is given in Figure 5. The following Figures 6, 7
and 8 provide the graphs of the needlet estimators obtained with various choices
of the value of k0. The best results appear to be given by choosing k0 = 0.45, as at
k0 = 0.25 some ripples appear whereas for k0 = 0.7 the shape looks good, but the
graph is considerably flattened (see also Table 3 below).

Upon closer inspection, for k0 = 0.45 only 6 coefficients at level j = 3 where
not killed by thresholding (out of 1024) and only 1 survived for j = 4. All of these
were related to cubature points near the location of the highest peak and actually
the flat part of the graph is reconstructed essentially at the level J = 1 of resolution.
For k0 = 0.7 all coefficients for j = 3 and j = 4 were killed. The multiresolution
approach with threshold shows nicely its flexibility: finer levels of resolution are
used only at locations where they are needed.

As a comparison in Figures 9 and 10 we give the result of the reconstruction
using a Gaussian kernel f2(x) = c2e

−k|x−xi |2 , which is similar to those already
considered in the literature (see [13, 20] and [6]), and also similar to the form of
the original density. We tried different values of the bandwidth k. One can remark
that the value k = 10 produces an agreable shape, but also a large difference in L∞

FIG. 5. The target density.



DENSITY ESTIMATION USING NEEDLETS 3379

FIG. 6. The estimated density using needlets for k0 = 0.25.

norm (the top of the highest peak is really too low). Larger values of the bandwith
appear to improve the L∞ distance, but at the cost of the appearance of artifacts.

Table 3 gives the estimates of the L∞ distance with the different methods.
It is therefore easy to point out here the advantages of the multiresolution ap-

proach. For the kernel estimation it can be difficult to adjust the value of the band-
with parameter, even for a regular function. Indeed this value is fixed for all regions
of the sphere and in the example above it appears that the value that is good at the
points near the location of the highest peak are not the good ones in the flat regions.

FIG. 7. The estimated density using needlets for k0 = 0.45.
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FIG. 8. The estimated density using needlets for k0 = 0.7. The shape is good, but the height of the
highest peak is notably lower than the target.

Conversely, thresholding and multiresolution provide a very flexible tool when
dealing with this kind of situations.

To sum up, the multiresolution properties of the thresholding needlet estimator
allow for local adaptation in the presence of multiple peaks and different slopes,
whereas this possibility is ruled out for kernel estimators.

7. Proof of Theorem 8. In the sequel we note t (β̂j,ξ ) = β̂jη1{|β̂jη|≥κtn} with

tn =
√

logn
n

, so that the needlet estimator (17) is

f̂ = 1

|Sd | +
J∑

j=0

∑
η∈Zj

t (β̂jη)ψjη.

TABLE 3
Estimates of the L∞ distance with different

methods

Method L∞ distance

Needlets k0 = 0.25 0.073
Needlets k0 = 0.45 0.045
Needlets k0 = 0.7 0.066
Gaussian kernel k = 10 0.112
Gaussian kernel k = 20 0.064
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FIG. 9. The estimated density with a Gaussian kernel, bandwidth k = 10. The maximum is be-
low 0.3.

In this section and in the next one the density f is fixed and we shall write E

instead of Ef , as there is no danger of confusion.
The following proposition collects the main estimates needed in the proof.

PROPOSITION 15. Let J1 ≤ J be such that, for all J1 ≤ j ≤ J , |βjη| ≤ κ
2 tn

(possibly J1 = J ; obviously, when f belongs to a Besov class, J1 depends on the
“regularity” s). Then for any γ > 0, s > 0, z ≥ 1, we have:

FIG. 10. The estimated density with a Gaussian kernel, bandwidth k = 15.
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(1) If κ > 1
3(

γ
d

+ 1
2)

J∑
j=0

2γj
E

[
sup
η

|t (β̂jη) − βjη|z
]

(22)

≤ C

[
2J1γ (J1 + 1)zn−z/2 +

J∑
j=J1+1

2γj sup
η∈Zj

|βjη|z + n−z/2

]
.

(2) If κ >
γ
6d

J∑
j=0

2(γ−d)j
E
∑
η

|t (β̂jη) − βjη|z

≤ C

J1∑
j=0

2(γ−d)jn−z/2
∑

η∈Zj

1{|βjη|>κ/2tn}(23)

+ C

J1∑
j=0

2(γ−d)j
∑

η∈Zj

1{|βjη|≤2κtn} + Cn−z/2

and

J∑
j=0

2(γ−d)j
E
∑
η

|t (β̂jη) − βjη|z

≤ C

[
2J1γ (J1 + 1)zn−z/2(24)

+
J∑

j=J1+1

2(γ−d)j
∑

η∈Zj

|βjη|z + n−z/2

]
.

We delay the proof of Proposition 15 to Section 8 and derive from it the proof
of Theorem 8. In this proof C will denote an absolute constant which may change
from line to line. Let us now prove that Proposition 15 yields to the statements of
Theorem 8.

Let us prove the L∞ upper bound (19), first under the condition q = r = ∞
E‖f̂ − f ‖z∞

≤ C

[
E

∥∥∥∥∥
J∑

j=0

∑
η∈Zj

(
t (β̂jξ ) − βjη

)
ψjη

∥∥∥∥∥
z

∞
+
∥∥∥∥∑

j>J

∑
η∈Zj

βjηψjη

∥∥∥∥z

∞

]
(25)

:= I + II.
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The term II is easy to analyze: as f belongs to Bs∞,∞(M), we have using (12)
and (13),∥∥∥∥∑

j>J

∑
η∈Zj

βjηψjη

∥∥∥∥∞
≤ ∑

j>J

∥∥∥∥ ∑
η∈Zj

βjηψjη

∥∥∥∥∞
≤ C

∑
j>J

sup
η∈Zj

|βjη|‖ψjη‖∞

≤ C
∑
j>J

2−j [s+d/2]2jd/2 ≤
(

logn

n

)s/d

.

Then we only need to remark that s
d

≥ s
d+2s

for s > 0.
As for I , using the triangle inequality together with Hölder’s inequality, then

(12), and (22) with γ = dz
2 , z > 1, we get

I ≤ C(J + 1)z−1
J∑

j=0

2jdz/2
E sup

η∈Zj

|t (β̂jη) − βjη|z

≤ C(J + 1)z−1

[
2J1dz/2(J1 + 1)zn−z/2 + C

J∑
j=J1+1

2dz/2j sup
η∈Zj

|βjη|z + n−z/2

]
.

As f belongs to Bs∞,∞(M), |βjη| ≤ M2−j (s+d/2) and we can see that

2J1 = κ

2M

[
n

logn

]1/(2s+d)

∧ 2J

is adequate, it is easy to conclude.
For arbitrary q, r (19) is now easy to deduce from the previous computation by

the Besov embedding (Theorem 5) Bs
r,q(M) ⊂ B

s−d/r∞,∞ (M). Let us prove (21), that
is the regular case. We observe first that since Bs

r,q(M) ⊂ Bs
p,q(M) for r ≥ p, this

case will be assimilated to the case p = r , and from now on, we only consider
r ≤ p. We follow the same arguments as above. Equation (25) can be replaced by

E‖f̂ − f ‖p
p

≤ C

(
E

∥∥∥∥∥
J∑

j=0

∑
η∈Zj

(
t (β̂jη) − βjη

)
ψjη

∥∥∥∥∥
p

p

+
∥∥∥∥∑

j>J

∑
η∈Zj

βjηψjη

∥∥∥∥p

p

)
(26)

=: I + II.

For II using the embedding Bs
r,q(M) ⊂ B

s−d/p+d/p
p,q (M), for r ≤ p, we have

II1/p ≤ C

∥∥∥∥∑
j>J

∑
η∈Zj

βjηψjη

∥∥∥∥
p

≤ C2−J (s−d/r+d/p).

And it is easy to verify that s
d

− 1
r
+ 1

p
≥ s

2s+d
on the zone that we are considering

in this part. In effect as s ≥ p
2 (d

r
− d

p
), s

2s+d
≤ sr

dp
we have s

d
− 1

r
+ 1

p
− sr

dp
=

(1
r

− 1
p
)( s

d
r − 1) ≥ 0.
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For I , we have using the triangle inequality together with Hölder’s inequality,

E

∥∥∥∥∥
J∑

j=0

∑
η∈Zj

(
t (β̂jη) − βjη

)
ψjη

∥∥∥∥∥
p

p

≤ C(J + 1)p−1
J∑

j=0

2jd(p/2−1) × ∑
η∈Zj

E|t (β̂jη) − βjη)|p.

Then we need only to use (24), with γ = dp
2 , z = p, to obtain

I ≤ C(J + 1)p−1

[
2J1dp/2(J1 + 1)pn−p/2

+
J∑

j=J1+1

2d(p/2−1)j
∑

η∈Zj

|βjη|p + n−p/2

]
.

It is easy to realize that again

2J1 = κ

2M

[
n

logn

]1/(2s+d)

∧ 2J

is adequate, and to observe that the first term in the sum has the right order. For the
second term, it can be bounded (as p ≥ r) by

C(J + 1)p−1
J∑

j=J1+1

2d(p/2−1)j
∑

η∈Zj

|βjη|r [κtn]p−r

≤ C(J + 1)p−1
J∑

j=J1+1

2d(p/2−1)jMp2−jr(s+d/2−d/r)tp−r
n

≤ Ctp−r
n 2−J1(sr−d/2(p−r))

as, sr − d
2 (p − r) ≥ 0. Now, this term obviously is of the right order.

Again we proceed as above and observe first that in order to have s > 0 as well
as s ≤ pd

2 (1
r

− 1
p
), it is necessary that p ≥ r .

E‖f̂ − f ‖p
p

≤ CE

∥∥∥∥∥
J∑

j=0

∑
η∈Zj

(
t (β̂jη) − βjη

)
ψjη

∥∥∥∥∥
p

p

+
∥∥∥∥∑

j>J

∑
η∈Zj

βjηψjη

∥∥∥∥p

p

(27)

=: I + II.
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For II using the embedding, Bs
r,q(M) ⊂ B

s−d/r+d/p
p,q (M), for r ≤ p, we have

II1/p ≤ C

∥∥∥∥∑
j>J

∑
η∈Zj

βjηψjη

∥∥∥∥
r

≤ C2−J (s−d/r+d/p).

And it is easy to verify that s
d
− 1

r
+ 1

p
≥ (s−d(1/r−1/p))

2(s−d(1/r−1/2))
, since 2(s−d(1

r
− 1

2)) ≥ d ,

when s > d
r

.
For I , again, we have using the triangle inequality together with Hölder’s in-

equality,

E

∥∥∥∥∥
J∑

j=0

∑
η∈Zj

(
t (β̂jη) − βjη

)
ψjη

∥∥∥∥∥
p

p

≤ C(J + 1)p−1
J∑

j=0

2jd(p/2−1)
∑

η∈Zj

E|t (β̂jη) − βjη)|p.

Then we need to use (23), with γ = d
p
2 , z = p, to obtain

I ≤ C(J + 1)p−1
∑
j≤J1

2jd(p/2−1)
∑

η∈Zj

1{|βjη|>κ/2tn}|βjη|r
[
κ

2
tn

]−r

n−p/2

+ C(J + 1)p−1
∑
j≤J

2jd(p/2−1)
∑

η∈Zj

1{|βjη|≤2κtn}|βjη|p + n−z/2

≤ 2C(J + 1)p−1
∑
j≤J1

2jd(p/2−1)Mr2−jr{s+d(1/2−1/r)}n(r−p)/(2)

+ C(J + 1)p−1
∑
j≥J1

2jd(p/2−1)
∑

η∈Zj

1{|βjη|≤2κtn}|βjη|p + n−z/2

≤ 2C(J + 1)p−12J1{d(p/2−r/2)−sr}n(r−p)/(2)

+ C(J + 1)p−1
∑
j≥J1

2jd(p/2−1)
∑

η∈Zj

1{|βjη|≤2κtn}|βjη|p + n−z/2

as we are in the sparse region. It is easy to realize that now, again because we are
in the sparse region

2J1 = κ

2M

[
n

logn

]1/(2s+2d(1/2−1/r))

,

is adequate, and to observe then that the first term in the sum has the right order.
For the second term, let us introduce

m := d(p/2 − 1)

s + d/2 − d/r
.



3386 BALDI, KERKYACHARIAN, MARINUCCI AND PICARD

We easily observe that p − m = p(s+d/p−d/r)
s+d/2−d/r

> 0, and that m − r =
−sr+(p−r)d/2

s+d/2−d/r
≥ 0. Then, as Bs

r,q(M) ⊂ B
s−d/r+d/m
m,q (M)∑

J≥j≥J1

2jd(p/2−1)
∑

η∈Zj

1{|βjη|≤2κtn}|βjη|p

≤ ∑
J≥j≥J1

2jd(p/2−1)
∑

η∈Zj

|βjη|mtp−m
n ≤ ∑

J≥j≥J1

Mmtp−m
n

≤ J tp(s+d/p−d/r)/(s+d/2−d/r)
n ,

which gives the right order. Observe that the term J (which is of logarithmic order),
can be avoided by choosing m̃ instead of m in such a way that m̃ > m, but r < m̃.
This can be done except for the case where r = dp

2s+d
where this logarithmic term

is unavoidable.

8. Proof of Proposition 15. The proof of Proposition 15 relies on the follow-
ing lemma:

LEMMA 16. There exist constants σ 2 > 0,C, c, such that, as soon as 2j ≤
[ n

logn
]1/d ,

P{|β̂jη − βjη| ≥ v} ≤ 2 exp
{
− nv2

2(σ 2 + vc2jd/2/3)

}
∀v > 0,(28)

E|β̂jη − βjη|q ≤ sqn−q/2 ∀q ≥ 1,(29)

E sup
η

|β̂jη − βjη|q ≤ s′
q(j + 1)qn−q/2 ∀q ≥ 1,(30)

P

(
|β̂jη − βjη| ≥ κ

2
tn

)
≤ C2n−6κ ∀κ ≥ 6σ 2.(31)

PROOF. Equation (28) is simply Bernstein’s inequality, noticing that

E(ψjη(Xi))
2 ≤ ‖f ‖∞‖ψjη‖2

2 ≤ MC =: σ 2

and ‖ψjη(Xi)‖∞ ≤ c2jd/2. The following inequality directly follows from (28),
when 2jd ≤ n:

P{|β̂jη − βjη| ≥ v} ≤ 2
[
e−nv2/(4σ 2) + e−3

√
nv/(4c)].(32)

Equation (29) follows from (32):

E|β̂jη − βjη|q =
∫

R
+∗

vq−1
P(|β̂jη − βjη| ≥ v) dv

≤
∫

R
+∗

vq−12
[
e−nv2/(4σ 2) + e−3

√
nv/(4c)]dv ≤: sqn−q/2,

using the change of variables u = √
nv.
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Equation (30) also follows from (32): take a = max{8cd
3 ,2

√
2dσ }

E sup
η

|β̂jη − βjη|q

=
∫

R
+∗

vq−1
P

(
sup
η

|β̂jη − βjη| ≥ v
)
dv

≤
∫

0≤v≤aj/
√

n
vq−1 dv

+2c

∫
v≥aj/

√
n
vq−12jd[e−nv2/(4σ 2) + e−3

√
nv/(4c)]dv.

Now, if v ≥ aj√
n

, 2jde−nv2/(4σ 2) ≤ e−nv4/(8σ 2)−nv4/(8σ 2)+jd ≤ e−nv4/(8σ 2). Simi-

larly 2jde−3
√

nv/(4c) ≤ e−3
√

nv/(8c), so that

E sup
η

|β̂jη − βjη|q

≤ 1

q

[
aj√
n

]q

+ 2c

∫
v≥aj/

√
n
vq−1[e−nv4/(8σ 2) + e−3

√
nv/(8c)]dv. �

Let us now turn to the proof of the proposition. We partition our sum in four
regions:

J∑
j=0

2jγ
E sup

η∈Zj

|t (β̂jη) − βjη|z

=
J∑

j=0

2jγ
E sup

η∈Zj

|t (β̂jη) − βjη|z{1{|β̂jη|≥κtn} + 1{|β̂jη|<κtn}
}

≤
J∑

j=0

2jγ
E sup

η∈Zj

|β̂jη − βjη|z1{|β̂jη|≥κtn}1{|βjη|≥κ/2tn}

+
J∑

j=0

2jγ
E sup

η∈Zj

|β̂jη − βjη|z1{|β̂jη|≥κtn}1{|βjη|<κ/2tn}

+
J∑

j=0

2jγ
E sup

η∈Zj

|βjη|z1{|β̂jη|<κtn}1{|βjη|≥2κtn}

+
J∑

j=0

2jγ
E sup

η∈Zj

|βjη|z1{|β̂jη|<κtn}1{|βjη|<2κtn}

=: Bb + Bs + Sb + Ss.
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We use extensively Lemma 16 in order to bound separately each of the four
terms Bb,Ss,Sb,Bs.

Using (30)

Bb ≤
J∑

j=0

2jγ
E sup

η∈Zj

|β̂jη − βjη|z1{|βjη|≥κ/2tn}

≤
J∑

j=0

1{∃η∈Zj ,|βjη|≥κ/2tn}2jγ
E sup

η∈Zj

|β̂jη − βjη|z

≤
J∑

j=0

1{∃η∈Zj ,|βjη|≥κ/2tn}2jγ s′
1(j + 1)zn−z/2

≤ C2J1γ (J1 + 1)zn−z/2,

where J1 is chosen such that for j ≥ J1, |βjη| ≤ κ/2tn. Also

Ss ≤
J∑

j=0

2jγ sup
η∈Zj

|βjη|z1{|βjη|<2κtn}

≤
J1∑

j=0

2jγ [2κtn]z +
J∑

j=J1+1

2jγ sup
η∈Zj

|βjη|z

which gives the proper rate of convergence. Moreover, using (30) and (31),

Bs ≤
J∑

j=0

2jγ
E sup

η∈Zj

|β̂jη − βjη|z1{|β̂jη−βjη|≥κ/2tn}1{|βjη|<κ/2tn}

≤
J∑

j=0

2jγ
E sup

η∈Zj

|β̂jη − βjη|z1{∃η∈Zj ,|β̂jη−βjη|≥κ/2tn}

≤
J∑

j=0

2jγ
[
E sup

η∈Zj

|β̂jη − βjη|2z
]1/2

× P

{
∃η ∈ Zj , |β̂jη − βjη| ≥ κ

2
tn

}1/2

≤
J∑

j=0

2jγ [s′
2(j + 1)2zn−z]1/2[c2jdn−6κ ]1/2 ≤ n−z/2,
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where κ > 1
3(

γ
d

+ 1
2). Finally, using (31), and the fact that for f bounded, |βjη| ≤

C2−jd/2

Sb ≤
J∑

j=0

2jγ
E sup

η∈Zj

|βjη|z1{|βjη−β̂jη|≥κtn}1{|βjη|≥2κtn}

≤
J∑

j=0

2jγ M2−jzd/2
P{∃η ∈ Zj , |βjη − β̂jη| ≥ κtn}

≤
J∑

j=0

[
c2j [d(1−z/2)+γ ]n−6κ ]≤ C

[
2J [d(1−z/2)+γ ]n−6κ]≤ n−z/2,

for κ > 1
6(

γ
d

+ 1).

8.1. Proof of (23) and (24). This proof follows along the lines of the previous
one. Equation (24) is a consequence of (23), and the two inequalities will be proved
together. We again separate the four cases:

J∑
j=0

2j (γ−d)
E

∑
η∈Zj

|t (β̂jη) − βjη|z

≤
J∑

j=0

2j (γ−d)
E

∑
η∈Zj

|β̂jη − βjη|z1{|β̂jη|≥κtn}1{|βjη|≥κ/2tn}

+
J∑

j=0

2j (γ−d)
E

∑
η∈Zj

|β̂jη − βjη|z1{|β̂jη|≥κtn}1{|βjη|<κ/2tn}

+
J∑

j=0

2j (γ−d)
E

∑
η∈Zj

|βjη|z1{|β̂jη|<κtn}1{|βjη|≥2κtn}

+
J∑

j=0

2j (γ−d)
E

∑
η∈Zj

|βjη|z1{|β̂jη|<κtn}1{|βjη|<2κtn}

=: Bb + Bs + Sb + Ss.

Let us now bound separately each of the four terms Bb,Ss,Sb,Bs. Using (29),

Bb ≤
J∑

j=0

2j (γ−d)
E

∑
η∈Zj

|β̂jη − βjη|z1{|βjη|≥κ/2tn}

≤
J∑

j=0

∑
η∈Zj

1{|βjη|≥κ/2tn}2j (γ−d)
E|β̂jη − βjη|z
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≤
J∑

j=0

∑
η∈Zj

1{|βjη|≥κ/2tn}2j (γ−d)szn
−z/2 (∗)

≤ C2J1γ n−z/2,

where J1 again is chosen such that for j ≥ J1, |βjη| ≤ κ/2tn. To prove (23), we
stop in (∗), the next bound yields (24):

Ss ≤
J∑

j=0

2j (γ−d)
∑

η∈Zj

|βjη|z1{|βjη|<2κtn} (∗)

≤
J1∑

j=0

2j (γ )[2κtn]z +
J∑

j=J1+1

2j (γ−d)
∑

η∈Zj

|βjη|z

which gives the proper rate of convergence. Again, to prove (23), we stop in (∗),
the next bound yields (24). Moreover, using (30) and (31),

Bs ≤
J∑

j=0

2j (γ−d)
E

∑
η∈Zj

|β̂jη − βjη|z1{|β̂jη−βjη|≥κ/2tn}1{|βjη|<κ/2tn}

≤
J∑

j=0

2j (γ−d)
E

∑
η∈Zj

|β̂jη − βjη|z1{|β̂jη−βjη|≥κ/2tn}

≤
J∑

j=0

2j (γ−d)
∑

η∈Zj

[E|β̂jη − βjη|2z]1/2
P

{
|β̂jη − βjη| ≥ κ

2
tn

}1/2

≤
J∑

j=0

2j (γ )[s2zn
−z]1/2[c2jdn−6κ ]1/2 ≤ Cn−z/2

for κ >
γ
6d

. Finally, using (31), and the fact that for f bounded, |βjη| ≤ C2−jd/2,

Sb ≤
J∑

j=0

2j (γ−d)
E

∑
η∈Zj

|βjη|z1{|βjη−β̂jη|≥κtn}1{|βjη|≥2κtn}

≤
J∑

j=0

2j (γ−d)M2−jzd/2
P{|βjη − β̂jη| ≥ κtn}

≤
J∑

j=0

[
c2j [−dz/2+γ ]n−6κ]≤ C

[
2J [−dz/2+γ ]n−6κ]≤ Cn1/2,

for κ > 0.
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9. Proof of the lower bound. Let us recall that given two probabilities P , Q

on some measure space their Kullback–Leibler distance is

K(P,Q) =
⎧⎨⎩
∫

log
dP

dQ
dP =

∫
dP

dQ
log

dP

dQ
dQ, if P � Q,

+∞, otherwise.

If P , Q are probabilities on S
d having densities f , g respectively with respect to

Lebesgue measure, then if g is bounded below by some constant c > 0

K(P,Q) =
∫

log
f

g
f dx =

∫
log

(
f − g

g
+ 1

)
f dx

(33)

≤
∫

f − g

g
f dx =

∫
(f − g)2

g
dx ≤ 1

c
‖f − g‖2

2.

We make use of Fano’s lemma below; see [23] and the references therein. We use
the point of view introduced in [3].

THEOREM 17 (Fano’s lemma). Let F be a sigma algebra on the space �. Let
Fi ∈ F , i ∈ {0,1, . . . ,m} such that ∀i 	= j , Fi ∩ Fj = ∅. Let Pi , i = 0, . . . ,m be
probability measures on (�,A ). If

p
def= sup

i=0,...,m

Pi(F
c
i ),(34)

κ(P0, . . . ,Pm)
def= inf

j=0,...,m

1

m

∑
i 	=j

K(Pi,Pj )(35)

then

p ≥ 1

2
∧ C

(√
me−κ(P0,...,Pm)), C = e3/e.(36)

We prove first that the minimax Lp-loss is � n−αp with α = s
2s+d

. For every j

let us consider the family Aj of densities

fε = 1

|Sd | + γ
∑

ξ∈Aj

εξψj,ξ ,(37)

where Aj is a subset of Zj to be made precise later, εξ ∈ {0,1} and γ is cho-
sen so that all these functions are positive. We are going to show that for every
estimator f̂ ,

sup
fε

Efε‖f̂ − fε‖p
p ≥ cn−sp/(2s+d).

Throughout this section we shall note x � y, x � y whenever it holds x ≤ cy

or x ≥ cy respectively, c being a strictly positive constant independent of j, ξ .
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We shall note x � y whenever both x � y and x � y hold. Thanks to (12) for
these functions to be positive it is enough that |γ | � 2−jd/2. Such a γ can even
be chosen in such a way that all the densities (37) are bounded from below by a
strictly positive constant. If the functions (ψjξ )ξ∈Zj

were orthonormal we would
have immediately that∥∥∥∥ ∑

ξ∈Zj

λξψj,ξ

∥∥∥∥
p

≥ c

( ∑
ξ∈Zj

|λξ |p‖ψj,ξ‖p
p

)1/p

.

Needlets are not a basis, but their scalar product is close enough to 0 if the respec-
tive cubature points are far enough. Hence one can get the following lemma that
states that a subset Aj ⊂ Zj can be chosen so that it is quite large and inequalities
(14) and (13), in a sense, can be reversed.

LEMMA 18. There exists a subset Aj ⊂ Zj such that cardAj � 2jd and

∥∥∥∥ ∑
ξ∈Aj

λξψj,ξ

∥∥∥∥
p

≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c sup

ξ∈Aj

|λξ |‖ψj,ξ‖∞, if p = ∞,

c

(∑
ξ∈Aj

|λξ |p‖ψj,ξ‖p
p

)1/p

, if p < +∞.

Let us now impose conditions that ensure that fε belongs to the ball Bs
r,q(M).

Now, recalling (15),

‖fε‖Bs
r,q

= |γ |2j (s+d(1/2−1/r))

( ∑
ξ∈Zj

|εξ |r
)1/r

� |γ |2j (s+d(1/2−1/r))2jd/r ,

where we use the fact that |εξ | = 1. Therefore the condition ‖fε‖Bs
r,q

≤ M follows
from

|γ | � M2−j (s+d/2).

In order to apply Fano’s lemma and get a lower bound of the left-hand side let
us first get an upper bound for the Kullback–Leibler distances K(fε;fε), which
comes from (33) and (12) for p = 2,

‖fε − fε′‖2
2 ≤ γ 2

∑
ξ∈Aj

|εξ − ε′
ξ |2 < γ 22jd ≤ 2−2js .(38)

By Lemma 18

‖fε − fε′‖p ≥
(∑

ξ∈Aj

|εξ − ε′
ξ |p‖ψj,ξ‖p

p

)1/p

.

Thanks to Lemma 18, the set of functions Aj has a cardinality that is ≥ 2c2jd
.

By the Varshanov–Gilbert lemma (e.g., [23]) there exists a subset A ′
j ⊂ Aj such
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that cardA ′
j ≥ 2c′2jd

and such that if fε, f
′
ε ∈ A ′

j , then
∑

ξ∈A′
j
|εξ − ε′

ξ | > 1
42jd .

Therefore, as |εξ − ε′
ξ | can be = 0 or = 1 only and by (12),

‖fε − fε′‖p � |γ |2jd(1/2−1/p)

(
2jd

4

)1/p

� 2−js

which implies that the events {‖f̂ −fε′‖p ≥ 1
22−js} are disjoint. The family of den-

sities fε ∈ A ′
j given by the Varshanov–Gilbert lemma has cardinality m � 2c′2jd

and by (39) and (38)

K(fε, fε′) � ‖fε − fε′‖2
2 � 2−2js .

We apply now Fano’s lemma to the probabilities Pε that are the n times product of
fεdx and to the events Aε = {‖f̂ − fε′‖p ≥ 1

22−js}. It is well known that

K(Pε;Pε′) = nK(fε;fε′).

By Markov inequality and Fano’s lemma,

sup
fε∈A ′

j

E‖f̂ − fε‖p
p ≥ 2−p2−jsp sup

i≤m

Pε(‖f̂ − fε‖p > δ)

� 2−jsp

(
1

2
∧ e−n2−2js

√
#Aj︸ ︷︷ ︸

�2c2jd

)
.

Now let j be so that n2−2js � 2jd , that is 2j � n1/(2s+d). With this choice one has

1
2 ∧ (e−n2−2js

ec2jd

) ≥ c > 0.

Therefore

sup
fε∈A ′

j

E‖f̂ − fε‖p
p � c2−jsp ∼ n−sp/(2s+d).

We prove now that

the minimax Lp-loss is � n−p(s+d(1/p−1/r))/(2(s+d(1/2−1/r))).

Let us consider the two densities

f0 = 1

|Sd | + γψj,ξ , f0 = 1

|Sd | + γψj,ξ ′

with γ such that the above are positive (|γ | � 2−jd/2 is enough). If |γ | ≤
2−js2−jd(1/2−1/r)M , then thanks to (15) both f0 and f1 belong to the ball
Bs

r,q(M). Remark that this condition implies |γ | � 2−jd/2, as we assume s ≥ d
r

.
Also

K(f0 dx,f1 dx) ≤ ‖f0 − f1‖2
2 ≈ γ 2
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so that, if we denote by P0,P1 the n-times product of f0 dx and f1 dx by itself
respectively, K(P0,P1) ≈ nγ 2. By (13) and Lemma 18 we have

‖f0 − f1‖p = |γ |‖ψj,ξ − ψj,ξ ′‖p ≥ |γ |2jd(1/2−1/p)

(39)
∼ 2−j (s+d(1/2−1/r)2jd(1/2−1/p) = r = 2−j (s+d(1/p−1/r)).

We choose γ = 1√
n

= 2−j (s+d(1/2−1/r)), so that K(P0,P1) ≈ n. Moreover with

this choice of n, j ≈ logn((2(s + d(1
2 − 1

r
)))−1, so that again by Fano’s lemma,

sup
i=1,2

E‖f̂ − fi‖p
p ≥ δp sup

i=1,2
Pi (‖f̂ − fi‖p ≥ δ).

Thanks to (39) the events {‖f̂ − fi‖p ≥ δ} are disjoint if δ � 2−j (s+d(1/p−1/r)).
Therefore by Fano’s lemma,

sup
i=1,2

E‖f̂ − fi‖p
p � δp � 2−j (s+d(1/p−1/r)) = n−p(s+d(1/p−1/r))/(2(s+d(1/2−1/r))).

We have therefore proved that supf ∈Bs
rq (M) min

f̂
Ef (‖f̂ − f ‖p

p) is

� n−sp/(2s+d) and � n−p(s+d(1/p−1/r))/(2(s+d(1/2−1/r))).

Putting things together and checking for which values of the parameters one rate is
larger than the other one concludes the proof of Theorem 11. Note that, as s > d

r
,

if 1 ≤ p ≤ 2

sp

2s + d
≤ p(s + d(1/p − 1/r))

2(s + d(1/2 − 1/r))
.
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