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THE CIRCULAR LAW FOR RANDOM MATRICES

BY FRIEDRICH GOTZE! AND ALEXANDER TIKHOMIROV 2
University of Bielefeld and St. Petersburg State University

We consider the joint distribution of real and imaginary parts of eigen-
values of random matrices with independent entries with mean zero and unit
variance. We prove the convergence of this distribution to the uniform distri-
bution on the unit disc without assumptions on the existence of a density for
the distribution of entries. We assume that the entries have a finite moment of
order larger than two and consider the case of sparse matrices.

The results are based on previous work of Bai, Rudelson and the authors
extending those results to a larger class of sparse matrices.

1. Introduction. Let X, 1 < j, k < oo, be complex random variables with
EX i =0 and EIXjkI2 = 1. For a fixed n > 1, denote by Ay, ..., A, the eigenval-
ues of the n x n matrix

: , 1 ,
(L) X=Xu(j,k)km1s Xn(ob)=—F4Xj  forl <j k<n,

Jn

and define its empirical spectral distribution function by
1 n
(1.2) Gn(x,y)= ” D IRe(aj)<x.Im{ )<y}
j=1

where /{5y denotes the indicator of an event B. We investigate the convergence of
the expected spectral distribution function EG, (x, y) to the distribution function
G (x, y) of the uniform distribution in the unit disc in R2.

The main result of our paper is the following:

THEOREM 1.1. Let ¢(x) denote the function (In(1 + |x|))'**", n > 0, ar-
bitrary, small and fixed. Let X ji, j, k € N, denote independent complex random
variables with

EXjx =0, EXjpl>=1 and »:= sup E|Xi[*0(X 1) < oo.
j.keN

Then EG,,(x, y) converges weakly to the distribution function G(x,y) as n — oo.
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We shall prove the same result for the following class of sparse matrices. Let
€jk, Jok=1,...,n, denote a triangular array of Bernoulli random variables (tak-
ing values 0,1 only) which are independent in aggregate and independent of
(X jk)’}, x—1 With common success probability p, := Pr{e; = 1} depending on n.

Consider the sequence of matrices X©) = V:Pn (Eijjk);!,k:I' Let )\(18), . )L,(f)
(e)

denote the (complex) eigenvalues of the matrix X and denote by G, (x, y) the
empirical spectral distribution function of the matrix X®, that is,

1 n
@) =3
(1.3) Gn (e y)i= 1I{Re{xﬁ‘”}y,lm{xf}}sy}‘
Jj= ' '

THEOREM 1.2.  For n > 0 define ¢(x) = (In(1 + [x|))!°*". Let X jx, j, k €N,
denote independent complex random variables with

EX =0, E|X;x>=1 and »:= sup E|Xi|*0(X i) < 00.
Jj.keN

Assume that there is a 6 € (0, 1] such that pn_1 =0Om'"? as n — co. Then
EG,(ZE) (x, y) converges weakly to the distribution function G(x,y) as n — o0.

REMARK 1.3. The crucial problem of the proofs of Theorems 1.1 and 1.2

is to bound the smallest singular values s, (z), respectively, sy(,s) (z) of the shifted
matrices X — zI, respectively, X®) — zI. (See also [5], page 1561.) These bounds
are based on the results obtained by Rudelson and Vershynin in [18]. In a previ-
ous version of this paper [10] we have used the corresponding results of Rudel-
son [17] proving the circular law in the case of i.i.d. sub-Gaussian random vari-
ables. In fact, the results in [10] actually imply the circular law for i.i.d. random
variables with sup; ; E[X jk|4 < »4 < 00 in view of the fact (explicitly stated
by Rudelson in [17]) that in his results the sub-Gaussian condition is needed
for the proof of Pr{||X]|| > K} < C exp{—cn} only. Restricting oneself to the set
Qu(2) = {s0(z) < en3; |X|| < K} for the investigation of the smallest singular
values, the inequality Pr{€2,(z)¢} < cn~!/? follows from the results of Rudelson
[17] without the assumption of sub-Gaussian tails for the matrix X. A similar re-
sult has been proved by Pan and Zhou in [13] based on results of Rudelson and
Vershynin [18] and Bai and Silverstein [2].

The strong circular law assuming moment condition of order larger than 2 only
and comparable sparsity assumptions was proved independently by Tao and Vu in
[22] based on their results in [23] in connection with the multivariate Littlewood
Offord problem.

The approach in this paper though is based on the fruitful idea of Rudelson
and Vershynin to characterize the vectors leading to small singular values of ma-
trices with independent entries via “compressible” and “incompressible” vectors
(see [18], Section 3.2, page 15). For the approximation of the distribution of singu-
lar values of X — zI we use a scheme different from the approach used in Bai [1].
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The investigation of the convergence the spectral distribution functions of real
or complex (nonsymmetric and non-Hermitian) random matrices with independent
entries has a long history. Ginibre’s [7], in 1965, studied the real, complex and
quaternion matrices with i.i.d. Gaussian entries. He derived the joint density for
the distribution of eigenvalues of matrix. Applying Ginibre’s formula, Mehta [15],
in 1967, determined the density of the expected spectral distribution function of
random matrices with Gaussian entries with independent real and imaginary parts
and deduced the circle law. Pastur suggested in 1973 the circular law for the gen-
eral case (see [16], page 64). Using the Ginibre results, Edelman [4], in 1997,
proved the circular law for the matrices with i.i.d. Gaussian real entries. Rider
proved in [21] and [20] results about the spectral radius and about linear statistics
of eigenvalues of non-Hermitian matrices with Gaussian entries.

Girko [6], in 1984, investigated the circular law for general matrices with in-
dependent entries assuming that the distribution of the entries has densities. As
pointed out by Bai [1], Girko’s proof had serious gaps. Bai in [1] gave a proof of
the circular law for random matrices with independent entries assuming that the
entries had bounded densities and finite sixth moments. His result does not cover
the case of the Wigner ensemble and in particular ensembles of matrices with
Rademacher entries. These ensembles are of some interest in various applications
(see, e.g., [24]). Girko’s [6] approach using families of spectra of Hermitian ma-
trices for a characterization of the circular law based on the so-called V-transform
was fruitful for all later work. See, for example, Girko’s Lemma 1 in [1]. In fact,
Girko [6] was the first who used the logarithmic potential to prove the circular law.
We shall outline his approach using logarithmic potential theory. Let £ denote a
random variable uniformly distributed over the unit disc and independent of the
matrix X. For any r > 0, consider the matrix

X(r) =X — r£l,

where I denotes the identity matrix of order n. Let i, o (resp., () be empirical
spectral measure of matrix X (r) (resp., X) defined on the complex plane as empir-
ical measure of the set of eigenvalues of matrix. We define a logarithmic potential

of the expected spectral measure E,u,(,r) (ds, dt) as
Ul([n)(z) ——Elog\det(X(r)—zI ——ZEloglk —z—ré|,

where A, ..., A, are the eigenvalues of the matrix X. Note that the expected spec-

tral measure E/,L,([) is the convolution of the measure Eu; and the uniform distrib-
ution on the disc of radius r (see Lemma A.4 in the Appendix for details).

LEMMA 1.1. Assume that the sequence E/,Lflr) converges weakly to a measure
masn— oo andr — 0. Then

n= i B
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PROOF. Let J be a random variable which is uniformly distributed on the set
{1, ..., n} and independent of the matrix X. We may represent the measure E,u,(f)
as the distribution of a random variable Ay + r&€ where A; and £ are independent.
Computing the characteristic function of this measure and passing first to the limit
with respect to n — 0o and then with respect to r — 0 (see also Lemma A.5 in the
Appendix), we conclude the result. [J

Now we may fix r > 0 and consider the measures E/L,(f) . They have bounded
densities. Assume that the measures Eu, have supports in a fixed compact set
and that Eu, converges weakly to a measure p. Applying Theorem 6.9 (Lower
envelope theorem) from [14], page 73 (see also Section 3.8 in the Appendix), we
obtain that under these assumptions

i M =p®

l}lrggéfUM ) =U"(2),
quasi-everywhere in C (for the definition of “quasi-everywhere” see, e.g., [14],
page 24). Here U ") (z) denotes the logarithmic potential of the measure ") which

is the convolution of a measure p and of the uniform distribution on the disc of
radius r. Furthermore, note that U ") (z) may be represented as

2 r
UG =2 [ oLiuizo v,
r<Jo

where

1.4 L(u; = ! " U 10V do
(1.4) (M,Zo,v)—gf_n (20 + vexplif))
and

(15) Uu(2) =f1n|<: —2ldu@).

Applying Theorem 1.2 in [14], page 84, we get
; () () —
rlg% U (2) =Uu(2).

Let s1(X) > - - - > 5,(X) denote the singular values of the matrix X.

Since E% Tr XX* =1 the sequence of measures Eu,, is weakly relatively com-
pact. These results imply that for any n > 0 we may restrict the measures Eu,,
to some compact set K, such that sup, EM,,(K,gC)) < n. Moreover, Lemma A.2
implies the existence of a compact K such that lim,_,  sup, Eu, (K ©y=0.1f
we take some subsequence of the sequence of restricted measures Eu, which
converges to some measure u, then liminf,_ ,(LZ) (2) = Ul([)(z), r > 0, and
lim, _¢ U,([)(Z) = U, (z). If we prove that liminf,,_, o U,(fn) (2) exists and Uy, (z) is
equal to the logarithmic potential corresponding the uniform distribution on the
unit disc [see Section 3, equality (3.15)], then the sequence of measures Eu,
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weakly converges to the uniform distribution on the unit disc. Moreover, it is
enough to prove that for some sequence r=rn)—0,lim, oo U M”) (2) =Uu(2).
Furthermore, let s, )(z r)y>--->sp )(z r) denote the singular values of matrix
X©®(z,r) = X® (r) — zI. We shall investigate the logarithmic potential U,L,,) ().
Using elementary properties of singular values (see, e.g., [8], Lemma 3.3, page 35),
. (r) .
we may represent the function U, (z) as follows:

1 n 1 0
V=4 S bton o =] [l

where v, )( z, r) denotes the expected spectral measure of the matrix H( )(z r)=
(X©® () — zI)(X® (r) — zI)*, which is the expectation of the counting measure of
the set of eigenvalues of the matrix HY (z, r).

In Section 2 we investigate convergence of the measure v, )( 2) :=v®(, z,0).
In Section 3 we study the properties of the limit measures v(-, z). But the crucial
problem for the proof of the circular law is the so-called “regularization of the
potential.” We solve this problem using bounds for the minimal singular values
of the matrices X (z) := X® — zI based on techniques developed in Rudelson
[17] and Rudelson and Vershynin [18]. The bounds of minimal singular values
of matrices X®) are given in Section 4 and in the Appendix, Theorem 1.2. In
Section 5 we give the proof of the main theorem. In the Appendix we combine
precise statements of relevant results from potential theory and some auxiliary
inequalities for the resolvent matrices.

In the what follows we shall denote by C and c or «, 8, §, p, n (without indices)
some general absolute constant which may be changed from line to line. To spec-
ify a constant we shall use subindices. By 74 we shall denote the indicator of an
event A. For any matrix G we denote the Frobenius norm by ||G/|2, and we denote
by |G|l the operator norm.

2. Convergence of v 8)( z). Denote by F,fg) (x, z) the distribution function
of the measure v, )( 7), that is,

1 n
(&) —
Fn (X,Z)— n _X:IEI{Sj('s)(Z)2<x},
j=

where s; )(z) > > s,(,s)(z) > (0 denote the singular values of the matrix

X©@(z) = X® — 7I. For a positive random variable & and a Rademacher ran-
dom variable (r.v.) k consider the transformed r.v. &€ = k4/€. If ¢ has distribution

function F,gg) (x, 7), the variable Z has distribution function l?n(g)(x, 7), given by
F(x,z) = $(1 + sgn{x} FP (x?, 2))

for all real x. Note that this induces a one-to-one corresponds between the respec-

tive measures vy, )( z) and v,f)( z). The limit distribution function of Fj e )(x 2)
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as n — 00, is denoted by F(-, z). The corresponding symmetrization F(x,z) is
the limit of I?n(e)(x, z) as n — 0o. We have

sup|F,*) (x,2) — F(x,2)| = 2sup|F" (x,2) — F(x,2)|.
X X

Denote by sr(,g) (o, 7) [resp., s(w, z)] and S,(f)(x, 7) [resp., S(x, z)] the Stieltjes
transforms of the measures v,(f)(-, 7) [resp., v(-, z)] and T)',(,e)(-, ) [resp., V(-, 2)]
correspondingly. Then we have

S, z) = as'® (o, 2), S(a, 7) = as(a?, 2).

REMARK 2.1. As shown in Bai [1], the measure v (-, z) has a density p(x, z)
with bounded support. More precisely, p(x, z) < C max{l, %}. Thus the measure
¥(-, z) has bounded support and bounded density p(x, z) = |x|p(x?, ).

THEOREM 2.2. Let EXj; = 0, E|Xjk|2 = 1. Assume for some function

@(x) > 0 such that ¢(x) — 00 as x — 0o and such that the function x/@(x) is
nondecreasing we have

2.1 sei= max E[Xj|?0(X 1) < oo.
1<j,k<oo ’
Then
2.2) sup| F®) (x, 2) — F(x, 2)| < Co(o(/apm)) ~/°.
X

COROLLARY 2.1. LetEXjx =0,E|Xjx|* =1, and

(2.3) »= max E|X | <oo.
1<j,k<oo
Then
(2.4) sup|F,§8)(x, 7)— F(x,2)| < C(np,)~ /12,
X

PROOF. To bound the distance between the distribution functions ﬁ,ge) (x,2)
and F(x, z) we investigate the distance between their the Stieltjes transforms. In-
troduce the Hermitian 2n x 2n matrix

B 0, (X® —2I)
W= ((X(S) — ZI)* 0, ’
where O, denotes n x n matrix with zero entries. Using the inverse of the partial
matrix (see, e.g., [11], Chapter 08, page 18) it follows that, fora =u +iv, v > 0,
X© (2)X® (2)* — @21) !
Wty = ROOXE |
2.5) X(S)(Z)*(X(S)(Z)X(S) (2)* —« I)
' X® (2)(X© (2)*X® () — 1) ! )
Ot(X(S) (Z)*X(e)(z) _ OlZI)_l s
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where X (z) = X® —zI and I,, denotes the unit matrix of order 2n. By definition
of S,(,S)(oz, z), we have

(e) 1 -1
Sy (e, 2) = —ETr(W —alp,) ™.
2n
Set R(e, ) := (Rj x(a, z))/ =1 = (W — alb,)~!. Itis easy to check that

1
1+aS®(a,z) = —ETrWR(oz 2).

We may rewrite this equality as

1 +oeS,(f)(oz, 2)

= cikX kR (o,
271\/@ ; jkA jk k—l—n,](a 2)
(2.6) _
+ &k X jk Rk, j1n (@, 2))

n n
Z z
=5, > ERj jin(t,2) — o > ERjinj(a,2).
n n

We introduce the notation

A=(XPX@ @) - ), B=XO(yC,

C=XP@)X@@) —a)~', D=X()*A.
With this notation we rewrite equality (2.5) as follows:
_ _ -1 _ oA B
@) R =W-ob) ™ =(9 Je):

Equalities (2.7) and (2.6) together imply
14+ aS,(f)(ot, Z)

1 n
= E(ejx X jk Ri+n, j(a, 2)
e 5 B R,

(2.8) _
+ &k X jk Rk, j1n(et, 2))

— —ETrD — —ETrB
2n 2n

In what follows we shall use a simple resolvent equality. For two matrices U
andVietRy = (U —oD)~,Ry,y =U+V—al)~!, then

Ry+v =Ry —RyVRy4v.
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Let {eq, ..., ey,} denote the canonical orthonormal basis in R2", Let WU denote
the matrix obtained from W by replacing both entries X ; x and X ; ; by 0. In our
notation we may write
T 1 bd T
gjkXjkejer , + —sijjkek+nej .
n

Using this representation and the resolvent equality, we get

(2.9) wW=wUh 4

R= R(j’k) - e.,-kakR(j’k)eje,{JrnR
npn
(2.10)

— . T
eijij(/’k)eHnej R.

n
Here, and in what follows, we omit the arguments « and z in the notation of resol-
vent matrices. For any vector a, let a’ denote the transposed vector a. Applying
the resolvent equality again, we obtain

R= R(j’k) — > e‘,-kXij(j’k)eje,{JrnR(j'k)
n
(2.11)
— L X ARUPe e RUD LU0
/1Pn g ’
where
TUR — £ X RUDe el (RUD _R)
n
1 . )
T e X kR Veje,(ROD —R)
(2.12)
+ e (X jRY Ve el RV —R)
n
+ 8jkXjkR(j’k)ek_;_ne}w (R(j’k) — R).

This implies

o _pUb L Rk
Rjin =R} ,—nanJkXJkRj,j Ry kn

¥ (J,k) \2 (J.k)
ek X jk(Ri i3 + T i

N/ MPn

N 1 () k)
Rin,j =Ry, — —Wﬁ‘jkxijk-i—n,j j.k+n
n

< (k) Uk | (b
EjkX kR R+ T -

(2.13)

A/ NPn
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Applying this notation to equality (2.8) and taking into account that X j; and RUK)
are independent, we get

14+ aS8'® (a, z)+ TrD—I——TrB

2n
1 2 p (k) (k)
=—— Z Eejicl X jk "R Ry ke
n pl’L j,k:l
(2.14) | ‘
k
- Z Eejr Re(X k)E(Rﬁjk—:n)
n’ Pn j.k=1
1 (k)
W Z E( EJkXJka+n J +8JkX/kTJ k+”)

From (2.10) it follows 1mmed1ately that forany p,g=1,...,2n, j,k=1,...,n

; CejilXjkl )k ik
k JkIX
215  |Rp, —RYP| < T_(IR’ [ Ritnpl + 1Ry o R D).
Since 7)) ;— |Rp1? <n/v?and Y7 =1 |R(J 12 < n/vz, equality (2.13) implies
1 )
(2.16) " kZlE|le+n} _nv4
Js

By definition (2.12) of TU-X) applying standard resolvent properties, we obtain
the following bounds, for any z =u +iv, v > 0,

2.17)

(k)
Eei | Xik||T
ﬁkz HAHIT L= wwm

For the proof of this inequality see Lemma A.3 in the Appendix. Using the last
inequalities we obtain, that for v > 0

1 1 (
Jk) (k)
. X} ERjj- ]; Rictnietn =3 X} ]; ER;\V Ry kn
= = J

(Jk) (k)
(2.18) ZZEe,k|X,k| (IR Ritn,j| + |R P 1R 1)
nZ\/m o JJ Jik+n
c
~ vt
Since %Z’}-:l Rjj = 1 = k=1 Ritnktn = % TrR(e, z), we obtain
2
(k) p (k)
(2.19) — ZZER R i E<2 TrR(a, z)) =3
j=lk=1




THE CIRCULAR LAW FOR RANDOM MATRICES 1453

Note that for any Hermitian random matrix W with independent entries on and
above the diagonal we have

2
(2.20) E <=

1 1
—TrR(a,z) — E-—TrR(«, 2) 5
n n nv

The proof of this inequality is easy and due to a martingale-type expansion already
used by Girko. Inequalities (2.19) and (2.20) together imply that for v > 0

Jk) p(jk) 2
2 2D ERGVR jn — (S8 (e, 2))
j=lk=1

(2.21)

<—.
~ nv?t

Denote by r(«, z) some generic function with |r(«, z)| < 1 which may vary from
line to line. We may now rewrite equality (2.8) as follows:

14+ aS® (@, 2) + (S© (. 2))?

(2.22) b
__CETD- SETB4 %Y
2n 2n vip(/npy)

where v > co(/np,)/n.

We now investigate the functions T («, z) = %E TrB and V(o, z) = %E TrD.
Since the arguments for both functions are similar we provide it for the first one
only. By definition of the matrix B, we have

TrB =

n
> Xk (X)X @) — 1) — 2 TrC.
npn _],k=1

According to equality (2.7), we have

TrB =

n

Z eikXixRisn j4n —zTrC.
J J n,jrn

a/npn 42

Using the resolvent equality (2.10) and Lemma A.3, we get, for v > ¢ X

o(/npn)/n

1 - (jk) (k) Z Cxr(a, z)
2.23 T(w,2) = ——— E ERY RY®  _ Z g , iy
( ) (e, 2) an’ et k+n,k+n""j, j+n n (0, 2) + o(Jipn)

Similar to (2.21) we obtain

1 & ik ik C
(2.24) = 2 BRI R iy~ T@9)SP@,9)| < .
jk=1

Inequalities (2.23) and (2.24) together imply, for v > co(\/np,)/n,
25 (@, 2) . Cser(a, )

(2.25) T(x,z) =— ® B .
a+ S8 (@, 2)  e(Jnp)vila+ S, (a, 2)]
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Analogously we get

78 @, 2) N Cr(a,z2)

+87 @2 p(yapnvia+ 8@ )]
Inserting (2.25) and (2.26) in (2.14), we get

(2.26) Vi, z) =

121258 (@, 2)

2
(2.27) (S, 2))” + @S (a,2) +1—
" " o+ 8, z)

=8n(2),

where

C
8 (e 2)] = =
o(/np)v3|Sn” (a, 2) + ]

or equivalently

S (a, z)(a + S (a, Z))2

(2.28) 5 ~
+ (@ + S, 2) — 12128 (@, 2) = 8u (@, 2),
g Conr(a, z)
where 6, (o, 7) = 0 ——==" NI

Furthermore, we introduce the notation
0¥ (a,z) = (a + 9 (a, z))2 —1z]* and
(2.29) 0(a,7) = (a + S(a, z))2 — |z,
P(a,7):=a+S(,z) and P9(a,z)i=a+ S,(f)(a, 7).

We may rewrite the last equation as

Pi@,2) |
(2.30) 5O = - %D L5 @.2),
On'(a,2)
where
231) By, z) = o2
0 (@, 2)

Furthermore, we prove the following simple lemma.

LEMMA 2.2. Leta=u+iv,v > 0. Let S(«, 7) satisfy the equation
P(a,z)

(2.32) ﬂmm:_Q@&Y

and Im{S(«, 2)} > 0. Then the inequality

FMENCE Z)I2 v
la + S(a, z)l2 v+ 1

1— S, 2)> -

holds.



THE CIRCULAR LAW FOR RANDOM MATRICES 1455

PROOF. For o = u +iv with v > 0, the Stieltjes transform S(w, z) satisfies the
following equation:

_ P, 2)
O, 2)
Comparing the imaginary parts of both sides of this equation, we get
1P, 2) + Iz
|0(a, 2)I?

(2.33) S, z) =

(2.34) Im{P(c, z)} =Im{P(c, z)}

+v.

Equations (2.32) and (2.34) together imply
_wmmﬁ+m3_
10(a, 2) |2
Since v > 0 and Im{a + S(«, z)} > O, it follows that
_IP@ )+ 2zl _ PIS@ ol
10(a, 2)I? o+ S, )1~

In particular we have

(2.35) Im{o 4+ S(«, z)}(l

=1—S(a,2)?

IS(a, 2)| = 1.
Equality (2.35) and the last remark together imply

P@P P v
10(a, 2)|? Im{P(a,2)} “v+1
The proof is complete. [

To compare the functions S(«, z) and S, (o, z) we prove:
LEMMA 2.3. Let
~ v
|8n (0, 2)| < >
Then the following inequality holds

B @ PP v
o @ T4

PROOF. By the assumption, we have
—~ v
Im{$, (e, 2) + a} > 3
Repeating the arguments of Lemma 2.2 completes the proof. [J

The next lemma provides a bound for the distance between the Stieltjes trans-
(¢)
forms S(w, z) and S’ (a, 7).
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LEMMA 2.4. Let
-~ v
18n (at, 2)| < e

Then

418, (at, 2)|

15 (at, 2) — S(a, 2)| < ;

PROOF. Note that S(«, z) and S,gs)(a, 7) satisfy the equations

. P(a, 2)

(2.36) S(a,z) = O@.2)

and
Pn(s) (a,2) =~

(2.37) S (e 2) = = (e, 2),
Qn (O[’Z)

respectively. These equations together imply

S(a, z) — S (a, 2)
(2.38)
_(S(@,2) = S (@, )P (@, ) P(er, 2) + [21P)

© + 3n (@, 2).
Q(Ol, Z) Ql’l (O[’ Z)

Applying inequality |ab| < %(a2 +b?%), we get

PP @ P+ P 1(1 1P @) + |z|2>
0@, 0 (@2 |2 1037 (@, )2

1 |P<a,z>|2+|z|2)
—1- .
+ ( 10(a, D)2

2
The last inequality and Lemmas 2.2 and 2.3 together imply

PO @ )P, 2) + Iz
0,205 (@, 2)
This completes the proof of the lemma. [

v
> —.

1 >
4

To bound the distance between the distribution function F;, (x, z) and the distri-
bution function F'(x, z) corresponding the Stieltjes transforms S, («, z) and S(«, 7)
we use Corollary 2.3 from [9]. In the next lemma we give an integral bound for the
distance between the Stieltjes transforms S(«, z) and S,(f) (o, 2).
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LEMMA 2.5. For v > vg(n) = c(p(, /npn))_l/6 the inequality

o0 C(1+z]?)5
S(a,7) — SO (a, 2)|du < ——= "=
/—00| " | 90(\/ npn)v7
holds.
PROOF. Note that
(2.39) 10| = [P (e, 2) — I2]| | PP (@, 2) + Iz]| = v*.

-~ c
It follows from here that |8, («, 2)| < S and

[8:(c, ) < /8
for v > c(@(/npy))~ /6. Lemma 2.4 implies that it is enough to prove the inequal-
ity

0o
/ 18, (ct, 2)| du <C¥n,
—00

where y, = "‘V%«/’Wn)' By definition of 3(01, z), we have
m —~
(2.40) / 18, (c, 2)| du < f
—o <0<¢npn> = IQ(s)(a )

Furthermore, representation (2.30) implies that

L _1s7@al | B2
10 (@)~ 1P (@) PP (@)
Note that, according to relation (2.27),

2.41)

1 215 (@, 8u(at,
- - || |(E)n (« ZZ)| +159) (@, 2)| + I(:)(oz Z)Iz'

This inequality implies

(2.42)

/ 155 (e, 2) < CA+ 1P

< S (@, 2)|" du
|P(é‘)(a Z)| vz | |

(2.43)
1S\ (@, 2)|
———du

1P (. 2)]
It follows from relation (2.27) that for v > c(<p(‘ /np,,))_l/6,

R

(2.44) 18n (e, 2)| < (o < 1/2.

plyn pn))v4
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The last two inequalities together imply that for sufficiently large n and v >

c(p(/npn)~ Y8,

(&) 2 2

x |S , Cc( S Cc(1

(2.45) / | n(e)m z)IduS ( +2Iz| )/ |S,<f)(a,z)|2du5 ( +3Iz| )‘
—oo [Py (e, 2)| v —00 v

Inequalities (2.42), (2.40) and the definition of gn (o, 7) together imply

o C(1+z% Cx 0
@46) [ B ldu= + | B oidu

e Vo /npn)  vie(ynpn) J-co

Cx 1 .
If we choose v such that W ) < 5 we obtain
o C(1+z1»)

2.47 / Sp(a, 2)|du < ——————.
(2.47) _OOI n(et, 2)| (P 0

In Section 3 we show that the measure V(-, z) has bounded support and bounded
density for any z. To bound the distance between the distribution functions

1?,58) (x,z) and F(x, 7) we may apply Corollary 3.2 from [9] (see also Lemma A.6
in the Appendix). We take V = 1 and vg = C (¢(, /npn))_1/6. Then Lemmas 2.2
and 2.3 together imply

(2.48) sup| F°)(x,2) = F(x, 2)] = Clgs fapn)) 0. .

3. Properties of the measure v(-, z). In this section we investigate the prop-
erties of the measure V(-, 7). At first note that there exists a solution S(«, z) of the
equation

S(a,2) +a
(S(a,2) +a)? — |z

(3.1 S, 2) =—

such that, for v > 0,
Im{S(a, 2)} >0

and S(«, z) is an analytic function in the upper half-plane o« = u + iv, v > 0.
This follows from the relative compactness of the sequence of analytic functions
Sq(a, z), n € N. From (2.36) it follows immediately that

(3.2) [S(a, 2)| < 1.
Set y = S(x, z) + x and consider equation (2.36) on the real line
y
(3.3) Y=Y 4x
y2 —z)?
or

(3.4) y3—xy2+(1—|z|2)y+x|z|2=0.
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Set
x2_5+2IzI2 (1+8|z]%)%% -1
(3.5) 1 2 8|z|2 ’
5 5H2zP (A +81z1)Y2+1
2 8|z]

It is straightforward to check that /3(1 — |z|?) < |x;| and x% <O for |z] <1 and
x5 =0for |z] =1, and x3 > 0 for |z| > 1.

LEMMA 3.1. Inthe case |z| <1 equation (3.4) has one real root for |x| < |x1]
and three real roots for |x| > |x1|. In the case |z| > 1 equation (3.4) has one real
root for |x2| < x < |x1| and three real roots for |x| < |x3| or for |x| > |x1].

PROOF. Set

L) =y —xy* + (1 =2y +xlz.
We consider the roots of the equation
(3.6) L'(y)=3y> —2xy+ (1 —[z[) =0.
The roots of this equation are

x £ /x2=3(1—|z]?)

3

yi2 =
This implies that, for |z| < 1 and for

Xl </3(1 = z1%)

equation (3.4) has one real root. Furthermore, direct calculations show that
L(yDL(y2) = 55 (—41z2x* + Blz|* +20z* — Dx* +4(1 — z2P)?).

Solving the equation L(y;)L(y2) = 0 with respect to x, we get for |z|] < 1 and
V3 =1z < x| < x|

L(y1)L(y2) =0,

|Z|2)3/2*1
8lz|2

and for |z| < 1 and |x| > \/2‘”881'2 4 (48

L(y1)L(y2) <0.

These relations imply that for |z| < 1 the function L(y) has three real roots for
|x| > |x1] and one real root for |x| < |xq].
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Consider the case |z| > 1 now. In this case yj 2 are real for all x and x% > 0.
Note that

L(y1)L(y2) <0

for |x| <|x3| and for |x| > |x{| and

L(y1)L(y2) >0

for |x3| < x < |x1|. These implies that for |z| > 1 and for |x2] < x < |x1]| the
function L(y) has one real root and for |x| < |x2| or for |x| > |x{| the function
L(y) has three real roots. The lemma is proved. [

REMARK 3.1. From Lemma 3.1 it follows that the measure V(x, z) has a den-
sity p(x, z) =limy_oIm S(e¢, z) and:

e p(x,z)<1,forall x and z;
e for |z| <1,if |x| > xy, then p(x, z) =0;
e for |z| > 1,if |x| > xj or |x| < x2, then p(x,z) =0;
e p(x,z) > 0 otherwise.

Introduce the function

2s
e 2 2
(37) g(S,t) = { S2 +t2, if s +1° > 1,
2s, otherwise.

It is well known that for z = s 4 i¢ the logarithmic potential of uniform distribution
on the unit disc is

1 :
(3.8) Uo@) = //ln%d(;(x,y): i SA—leP)., ifll <1,

— Xty ZInlzl, if 2] > 1,
and
3.9 i// ln;,dG(x,y) = —lg(s,t).
as lz —x +iy| 2

According to Lemma 4.4 in Bai [1], we have, for z = s + if,

(3.10) i(/oolong(alx, z)) = lg(s, t).
as \Jo 2

According to Remark 3.1, we have, for |z| > 1,
(3.11) In(|x2|/]z]) < Us(2) +1In|z| <In(x1|/]z]).

This implies that
(3.12) lim |Uy(z) — Uo(2)| =0.
|z]—> 00
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Since
o0 o0
(3.13) / log |x|§(dx,z):/ logxv(dx, z)
—00 0
we get
0 oo - 1
(3.14) —(/ log |x|V(dx, z)) =—g(s,1).
8S —00 2

Comparing equalities (3.10) and (3.8) and using relation (3.12), we obtain

(3.15) Up(z) = —/Ooo Inxv(dx, z) = —/oo In|x[V(dx, z) = Uu(2).

1
npn
matrix with independent entries €;x Xk, j,k =1,...,n. Assume that EX j; =0

and EX ?k =1 and let ¢ denote Bernoulli random variables with p, = Pr{ej; =

4. The smallest singular value. Let X©®) =

(gijjk)’},kzl beann x n

1}, j,k=1,...,n. Denote by sl(e)(z) > > s,S” (z) the singular values of the
matrix X©(z) := X® — zI. In this section we prove a bound for the minimal
singular value of the matrices X©)(z). We prove the following result.

THEOREM 4.1. Let X, j, k € N, be independent random complex variables
with EX jp =0 and E|Xjk|2 = 1, which are uniformly integrable, that is,

4.1 supE|X jx[*Ijx >y > 0 as M — oo.
j.k

Let €ji, j,k =1,...,n, be independent Bernoulli random variables with p, :=

Pr{e;i = 1}. Assume that ¢ ji are independent from X ji, j,k € N, in aggregate.

Let p,;l =Om'?) for some 0 <0 < 1. Let K > 1. Then there exist constants

¢, C, B > 0 depending on 6 and K such that for any z € C and positive € we have

C+/Inn
42) Pr{s'¥(z) <e/n?; sfe)(z) < Kn./p,} < exp{—cppn}+ —
n

REMARK 4.2. Let Xj; be iid. random variables with EX;; = 0 and
E|X jx|> = 1. Then condition (4.1) holds.

REMARK 4.3. Consider the event A that there exists at least one row with
zero entries only. Its probability is given by

(4.3) Pr{A} >1—(1—(1-p)")".
Simple calculations show that if np,, <Inn for all n > 1, then
4.4) Pr{A} >4 > 0.

Hence in the case np, <Inn and np, — oo we have no invertibility with positive
probability.
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REMARK 4.4. The proof of Theorem 4.1 uses ideas of Rudelson and Ver-
shynin [18], to classify with high probability vectors x in the (n — 1)-dimensional
unit sphere S"~! such that || X®) (z)x]|» is extremely small into two classes, called
compressible and incompressible vectors.

We develop our approach for shifted sparse and normalized matrices X (z).
The generalization to the case of complex sparse and shifted matrices X®)(z) is
straightforward. For details see, for example, the paper of Gotze and Tikhomirov
[10] and the proof of the Lemma 4.1 below.

REMARK 4.5. We may relax the condition p;l =00 to p;l =o(n/
In” n). The quantity B in Theorem 4.1 should be of order Inn in this case. See
Remark 4.9 for details.

LEMMA 4.1. Let X = (x1,...,x,) € 8"\ be a fixed unit vector and X© (z)
be a matrix as in Theorem 4.1. Then there exist some positive absolute constants
vo and cq such that for any 0 <t < g

(4.5) Pr{|X® (2)x], < 7} < exp{—conpa}.

PROOF. Recall that EX;; =0 and E|X;; | = 1. Assume first that X are real

independent r.v. with mean zero, and variance at least 1. Let X l(f) = X;j&ij with
independent Bernoulli variables which are independent of X;; in aggregate and let
7z =0. Assume also that x is a real vector. Then

& ?

1 X

n
> X jkej
Pn =

k=1

4.6 X®x|; =
(4.6) XPxlo =

By Chebyshev’s inequality we have

" ?np, 1<
Pr{Z;}<t2npn}=Pri > —§;§;>0
j:

=1

47 ! )
< exp{np,t°t>/2) [ | Eexp{—17¢7/2}.
Jj=1

Using e 1?2 = Eexp{it&}, where & is a standard Gaussian random variable, we
obtain

n

Pr{ Z ;jz < rznpn}

j=1

4.8) ’

n n
< explnpat’t/2) [ | Bg; [ ] Bejox;c explitgjxee e X jil,
j=1 k=1
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where §;, j =1,...,n, denote i.i.d. standard Gaussianr.v.s and Ez denotes expec-

tation with respect to Z conditional on all other r.v.s. For every «, x € [0, 1] and
p € (0, 1) the following inequality holds:

B/(1—Pp)

4.9) aox +1—«a §xﬁ\/(£)

o

(see [3], inequality (3.7)). Take a = Pr{|&;| < C;} for some absolute positive con-
stant C| which will be chosen later. Then it follows from (4.8) that

Pr{z g“jz < ‘L'ann]

j=1
(4.10)  <exp{npnt’t?/2}
n
X 1_[ (O[
j=l1

Furthermore, we note that

n
E¢, (H E: )\ x; CXP{if%'jxksijjk}‘lSjl < Cl)‘ +1- a).
k=1

|E¢ ;i x ;. explit§jxie ji X ji}|
1 .
< exp| 5 (Be oy explie xee X )~ 1)
4.11)
< eXp{—pn((l — pn) (1 —Re fjr(txr)))

+ %(1 - Ifjk(IXij)|2)>},

where fji(u) = Eexp{iuX ji}. Assuming (4.1), choose a constant M > 0 such that
(4.12) sup B X ji |2 Ix > my < 1/2.
jk
Since 1 —cosx > 11/24x? for |x| < 1, conditioning on the event 1€ < Cy, we get
forO<t<1/(MCy)
I —Re fir(txi&;) = Exjk(l — COS(tkajkéj))

@.13) 11,2.2
> ﬂt xké

2 2
FEIX I L x i<y

and similarly
1— | fix(txiEp)* =Ex, (1 — cos(txi X jx&))
(4.14) 11,2 2:20 % (2
> ot X T EIX kT x i <My
It follows from (4.11) for 0 < ¢ < 1/(MC1) and for some constant ¢ > 0

(4.15) |Ee;x; explitéjxie i X ji}| < exp{—cpat®xi€7}.
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This implies that conditionally on [§;| < Cj and for 0 <7 <1/(MCy)

n
(4.16) [ ] Eejox ;i explitgjxe i X ji}
k=1

< exp{—cpat’E}).

Let ®o(x) :=2P(x) — 1, x > 0, where ®(x) denotes the standard Gaussian distri-
bution function. It is straightforward to show that

E¢, (exp{—cpatE3 111§ < C1)
4.17)

1 @0(Cry/1 4+ 2t2cpy)

1+ 2ct?py Po(C1)

We may choose C large enough such that following inequalities hold:

(4.18) E;, (exp{—cpat*E1}]16j] < C1) < exp{—ct®pa/24)

for all |f] < 1/(MC}). Inequalities (4.8), (4.9), (4.11), (4.18) together imply that
for any 8 € (0, 1)

Pr:z g“jz < fznpn}
(4.19) =

np/(1—pB)
< explnp, 722 (expl—cpnipu2y+(E) ).

o
Without loss of generality we may take C; sufficiently large, such that o > 4/5
and choose 8 =2/5. Then we obtain

Pr{ Z ;jz < tznpn}

(4.20) =

< exp{npat’t3/2} (exp{—ctznpn/60} + (§>2n/3) .

Fort < Jii we conclude from here that for |t| <1/(MCy)
60
n
4.21) Pr{ Y ¢i< r2np,,} < exp{—ct’np,/120}.
j=1

Inequality (4.21) implies that inequality (4.5) holds with some positive constant
co > 0. This completes the proof in the real case.
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Consider now the general case. Let X = &jx + injr with i = /—1 with
E|Xjk|2 =1 and x; = uy + ivr and z = u + iv. In this notation we have

Pr{[| (X — zD)x, < 7}

< exp{t’npnt*/2)
n n
X min{Eexp{—t2 Z Z(Sjkuk — NjkVk)E jk
j=1lk=1
(4.22)
2
— /npu(uuj —vvj) /2},
n n
EGXP{—ZZ DD Ejrvr + mjrui)e ji
j=1lk=1
2
— /npn(vuj +uvj) /2} }
Note that for x = (x1, ..., x,) € S®~D (the unit sphere in C") and for any set
AcC{l,...,n}
(4.23) max{z el Y |xk|2} >1/2.
keA keAc
Forany j =1,...,n we introduce the set A; as follows:
(4.24) Aj={ke{l,....n}:ElEjrur — njevil® > Ixil?/2).
It is straightforward to check that for any k ¢ A ;
(4.25) Elnjuk + §jevel” = lxil?/2.
According to inequality (4.23), forany j =1, ..., n, there exists a set B; such that
(4.26) Y ulr=1/2
kGBj
and for any k € B;
4.27) E|&jcur — njevel® > |xk|*/2
or
(4.28) Elnjuk + §jevel” = lal?/2.
Introduce the following random variables for any j,k=1,...,n

(4.29) Ejk =&j Uk — Nk Vk
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and

(4.30) Cik =kt + Ejxvk.

Inequalities (4.27) and (4.28) together imply that one of the following two inequal-
ities

(4.31) card{; : for any k € B; E|Zjx|* > |x|*/2} = n/2
or
(4.32) card{;j :for any k € B E|Zj|* > |x¢|*/2} = n/2

holds. If (4.31) holds we shall bound the first term on the right-hand side of (4.22).
In the other case we shall bound the second term. In what follows we may repeat
the arguments leading to inequalities (4.10)—(4.16). Thus the lemma is proved. [

For any ¢, € (0,1) and K > 0 to be chosen later we define K, := Kn./pn,
Gn = ¢qn/(In(2/p,) InK,) and p, := p,/(n2/p,) In K,,). Without loss of gener-
ality we shall assume that

(4.33) InK,/|lInypy|>1 and InkK, >1.

PROPOSITION 4.6. Assume there exist an absolute constant ¢ > 0 and values
Yus qn € (0, 1) such that for any x € C ¢ S#~D

(4.34) Pr{|X® (2)x], < yu and | X (2)| < K} < exp{—cng,}
holds. Then there exists a constant 8o > 0 depending on K and c only such that,

for k < ongp,

P inf [XO@x], <ya/2and |XO @) < K, | < expl—cnga/8).
xeSk-1nc

PROOF. Let > 0 to be chosen later. There exists an n-net A" in S¥~1 N ¢C
of cardinality |N| < (%)2]‘ (see, e.g., Lemma 3.4 in [17]). By condition (4.34), we
have for t <y,

Pr{there exists x € N': [X® (2)x|, < 7 and |[X®(2)|| < K, }
(4.35)

3 2k
< <—) exp{—cngqn}.
n

Let V be the event that | X©(2)|| < K, and | X© (2)yl» < %‘L’ for some point

y € S&=D'NC. Assume that V occurs and choose a point x € A such that |y —
x||2 < n. Then

436)  [X®@x|, < [X“@y], + X @[lIx = yl2 < 37 + Kan =1,
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if we set n = t/(2K},). Hence,

3 2680/(n Ky, In(2/ pn)) co ndqn
4.37) Pr(V) < <(—) exp{——}) .
n 4
Note that under assumption (4.33) we have
2In(3
(4.38) ELLC/L TS
In21n K,

Choosing 8y = g5 and T = y;,, we complete the proof. []

Following Rudelson and Vershynin [18], we shall partition the unit sphere
S®=D into the two sets of so-called compressible and incompressible vectors,
and we will show the invertibility of X on each set separately.

DEFINITION 4.7. Let §,p € (0,1). A vector x € R" is called sparse if
|supp(x)| < 8n. A vector x € S~ is called compressible if x is within Euclid-
ean distance p from the set of all sparse vectors. A vector x € S®~V is called
incompressible if it is not compressible.

The sets of sparse, compressible and incompressible vectors depending on é and
o will be denoted by
(4.39) Sparse(d), Comp($, p), Incomp($, p),
respectively.

LEMMA 4.2. Let X©)(2) be a random matrix as in Theorem 1.2, and let K,, =

Kn./pn with a constant K > 1. Assume there exist an absolute constant ¢ > 0 and
values vy, g, € (0, 1) such that for any x € C ¢ S®"—1

(4.40) Pr{[X® (2)x]5 < yu and |X® (2)| < K} < exp{—cng,)
holds. Then there exist 81, c that depend on K and c only, such that

. (&) (e)
(4.41) PF[XGCOmpfgfq*n,pmcHX @x[, = v and [XO @) = K

<exp{—cingn},

where p, := v,/ (4K,).

PROOF. At first we estimate the invertibility for sparse vectors. Let k =
[81ng,] with some positive constant §; which will be chosen later. According to
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Proposition 4.6 for any §; < §p and for any t < y,,/2, we have the following in-
equality:

1 (8) (g)
Pr{xeSparslerglﬁn)mc”X (Z)XHZ <t and ”X (2) ” =< Kn}
= i =k: i ()
= Pr{there exists o, |o| =k 'xeR"r\l(lzl,ﬁx”z:] Ix (Z)an <t

and [X© ()] < K, |

< (} ) expl=conga /s,

Using Stirling’s formula, we get for some absolute positive constant C
1

(4.42) ~In (Z) < —C81G, 1n(8Gy).
n

We may choose §; small enough that

1
(4.43) ~In (”) < coqn/16.
n\k

Thus we get

. (e) (&) —
(4.44) Pr{xeSparsleIglﬁ,,)ﬂC”X (x|, <7 and [X¥(2)| < Kn} <exp{—cing,}.

Choose p := y := y,/4. Let V be the event that | X (z)|| < K,, and || X© (2)y|l» <
y1 for some point y € Comp(81py, oK, 1), Assume that V occurs and choose a
point x € Sparse(81 p,) such that ||y — x| < pKn_l. Then

445 [X©@x], < |[XO@y], + [XO@[Ix—yl2 < v+ p=ya/2.

Hence,

co
(4.46) Pr(V) < exp{—gnqn}.
Thus the lemma is proved. [J

LEMMA 4.3. Let 8, p € (0,1). Let x € Incomp(§, p). Then there exists a set
o(x) C{l1,...,n} of cardinality |o (x)| > %né such that

2o 1 2
(4.47) k;@) l™ = Sp
and
(4.48) L < nl < 1 forany k € o (x),
2n V/né/2

which we shall call “spread set of x” henceforth.
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PROOF. See proof of Lemma 3.4 [18], page 16. For the reader’s convenience
we repeat this proof here. Consider the subsets of {1, ..., n} defined by

(4.49) m(x):={k:|xk|§ GZ(X):{k3|xk|Z P }

1
\/W}’ 2n

and put o (x) = o1(x) N 02(x). Denote by Py (x) the orthogonal projection onto
R?® in R”. By Chebyshev’s inequality |o7(x)¢| < 8n/2. Then y := Py (x)cX €
Sparse(8), so the incompressibility of x implies that || Py, x)X[l2 = [|X — yll2 > p.

By the definition of 0 (x), we have || Py, x)cX||> < ng = p?/2. Hence
(4.50) | P ox[l3 = | Poyox[3 = | Pocoxll3 = £7/2.

Thus the lemma is proved. [

REMARK 4.8. If x € Incomp(é p,,, p) then there exists a set o (x) with cardi-
nality |o (X)| > %néﬁn such that

P 1
(4.51) —— <l £ ———=
V2n Vnépn/2
and
(452) | Pocoxlly = 30°.

Let Q(n) = sup j; sup,ec Pr{| X jx — u| < n}. Introduce the maximal concentra-
tion function of the weighed sums of the rows of the matrix (X jk)’} k1>

<,

We shall now bound this concentration function and prove a tensorization lemma
for incompressible vectors.

n
Z Xjk€jkXk —u

..... n}ueC =1

(4.53) px(n) = max supPr{
je{l

LEMMA 4.4. Let §, and p, be some functions of n such that py, 5, € (0, 1).
Let no and rg as in Lemma A.7. Let X € Incomp(8,,, p,). Then there exists positive
constants r1 and ry depending on ro such that for any 0 < n < ng we have

(4.54) Px(10n/~/20) <1 —128,np,
for né,pn, <1/3 and

(4.55) px(mpn/v2n) <1—r1 <1
forné, p, > 1/3.
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PROOF. Putm =né,,. We have

m
supPr{ ZXijjkxk —u| < npn/\/ﬂ}
u k=1
m
(4.56) < Pr{Zsjk :o}
k=1
m m
+Pr{ ZXjksijk — u| < 1pa/V2n; ZSjk > 1}.
k=1 k=1

Introduce o (x) = {k € {1,...,n}:p,/v2n < |xx| < 1//m/2}. Since x €
Incomp($,, pn) the cardinality of o (x) is at least m/2. Using that the concen-
tration function of sum of independent random variables is less then concentration
function of its summands, we obtain

m
Z Xjk€jkXk —u

u k=1

supPr: < npn/x/ﬂ}

4.57)
<A =p)"+0mQ1—A1A-p)™).

According to Lemma A.7 in the Appendix for any n < 19, we have Q() <rg < 1.
Assume that mp,, > 1/3. Then we have

m
> X jke jixk — u
k=1

supPr{ < npn/v2n} <ro+ (1 —ro)e """

u

<1—(—-e"31~rg

(4.58)
=:1—-r <l1.

If mp, <1/3 then (1 — p,)" <1 —mp, /3 and

m
supPr{ Z Xjrejpxr —u| < npn/\/Zn} <1—({1—ro)mp,/3
" k=1
(4.59)
=:1—romp,.
The lemma is proved. [J
Now we state a tensorization lemma.
LEMMA 4.5. Let {y,...,¢, be independent nonnegative random variables.

Assume that

(4.60) Pr{é‘j <A} =1-— dn
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for some positive g, € (0, 1) and 1, > 0. Then there exists positive absolute con-
stants K| and K, such that

n
(4.61) Pr{ Y i< K%nqnxﬁ} < exp{—Kangy}.

j=l1

PROOF. We repeat the proof of Lemma 4.4 in [12]. Let t = K{./q,A,. For any
T > 0 we have

(4.62) Pr{Zg“jz §nt2} <" HEexp{—rg}/tz}.
j=1 j=1

Furthermore,
o0
EeXP{—Té'jZ/tz} = / Pr{exp{—tg‘jz/tz} >s}ds
0
1
:/ Pr{1/s > exp{v¢?/i%}} ds
0
exp{frk,%/tz} 1
(4.63) < / ds + (1 = g ds
0 exp{—tA2/t2}
<1 —gu(1 —exp{—tA,/1%})

=1—qu(1 —exp{—7/(Kiqn)}).
1

Choosing 7 := g, /4 and K? := Tin3» We get
n
(4.64) Pr{ Y i< mz} < exp{—ngn/2}.
j=1

Thus the lemma is proved. [

Recall that we assume p, I'=0m!'?),1>6 > 0. For this fixed # consider
L :=[}]. Hence by definition p, ; := (npn)! p» — 0,n - coforl=1,...,L — 1
and limsupnﬁoo(npn)Lpn > 0. We put p, 1 :=1.

We shall assume that n is large enough such that (np,,)L Pn > g1 > 0 for some
constant g; > 0. Starting with a decomposition of Cp := S =1 into compressible
vectors X in Cy := Cop N Comp(81 pp.1, Pn,1), Where pu 1 = Pus Pu,1 = Y0/ (4Ky),
and the constants yy and §; are chosen as in Lemmas 4.1 and 4.2, respectively.
Then Lemma 4.1 implies inequality (4.40) with g, replaced by p, and y, re-
placed by yp. Hence, using Lemma 4.2, one obtains the claim for the subset
of vectors CAl The remaining vectors x in Cy lie in C; := Incomp(81 py.1, Pn.1)-
According to Lemmas 4.4, 4.5 inequality (4.40) holds again for these vectors
but with new parameters g, = np,81py.1 and y, = con.1/01Pn.1.- Thus we may
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again subdivide the vectors in C; into the vectors within distance p,, > from these
sparse ones, that is, 52 :=C1 N Comp(82p, 2, pn,2) and the remaining ones, that
is, C2 := C1 N Incomp (82 pn.2, pn.2). Iterating this procedure L times we arrive at
the incompressible set Cy, of vectors x where Lemmas 4.4, 4.5 and Proposition 4.6
yield the required bound of order exp{—dn}, for a sufficiently small absolute con-
stant § > 0.

Summarizing, we will determine iteratively constants &;, p, 4, fori =1,..., L
and the following sets of vectors:

l

(4.65) Cr:= (") Incomp(8; pa,i» p.i)
i=1
and
(4.66) Cr:=Ci—1 N Comp(8; put, pus)  with Co=S"~D,
Note that
L—1 .

=1

The main bounds to carry out this procedure are given in the following Lemmas 4.6
and 4.7.

LEMMA 4.6. Let 8,, pp € (0, 1) and let x € Incomp(8,,, pp) and X©(z) be
a matrix as in Theorem 4.1. Then there exist some positive constants ¢ and c;
depending on K, ro, no such that for any 0 < v <y,

(4.68) Pr{|X® (2)x|, < 7} < exp|—cin((pandn) A1)}
with
(4.69) Vi i= €20/ Sn,

where a A b denotes the minimum of a and b.

PROOF. Assume at first that nd, p, < 1/3. According to Lemma 4.4, we have,
forany j=1,...,n,

n
Z XikejxXx —u

(4.70) sup Pri
k=1

ueC

=< nopn/v2n} <1-—riéynpy.

Applying Lemma 4.5 with g, = r18,np,, we get
4.71) Pr{“X(s) ()X, < ¥u/2 and “X(s) ()| < Kn} < exp{—cnd,np,}.
Consider now the case né, p, > 1/3. According to Lemma 4.4, we have

n
> X jke jrx — u

4.72) sup Pr{
k=1

ueC

f’?Opn/Vzn}fl_rl-
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Applying Lemma 4.5 with g, = r18,np,, we get
(4.73) Pr{|X® (2)x], < yu/2 and |X®(2)| < K} < exp{—cn).

This completes the proof of the lemma. [

LEMMA 4.7. Forl=2,...,L assume that §;, p,.; have been already deter-
mined fori =1, ...,1 — 1. Then there exist absolute constants ¢; > 0 and ¢; > 0

and &; > 0 such that

Pr{ inf | X )x], < v and |X9 @) < Ka|
xeC;

4.74) =~ -1
<exp{—an(((npn)' " pn) A1)}

with yy. defined by

(4.75) Yol = ClPn,i—11/81-1Dni—1

and p, | defined by

(4.76) Pn,l ‘= Vn,l/(4Kn)’
where @ :=Ci—1 N Comp(&; pn.i, Pn.1)-

REMARK 4.9. There exists some absolute constant ¢ > 0 that
@.77) Vo, L = en 2 and On.L = cn~ /2,
PROOF.  Note that p, 11 = O(n'~"?). This implies that
_ _ 72
(4.78) Vot = Py O 02,

According to Lemmas 4.1 and 4.2, we have ,0”_11 = OnB=9/2), After simple cal-
culations we get

(4.79) Yo =0@"?). m

PROOF OF LEMMA 4.7. To prove of this lemma we may use arguments similar
to those in the proofs of Lemmas 2.6 and 3.3 in [18]. From x € (; it follows that
x € Incomp(8;—1pn.1—1, Pn.i—1). Applying Lemma 4.6 with §,, = p, ;-1 and p, =
On,i—1, We get

Pr{”X(e) (Z)XHZ < ¥Yn, and ”X(g)(Z)” = Kn}
(4.80)
< exp{—c1n((pnpni—1) A 1)}

with

(4.81) Yl = C20n,1—1+/81—1Pn,i—1-



1474 F. GOTZE AND A. TIKHOMIROV

Inequality (4.80) and Lemma 4.2 together imply

4.82)  Prf inf [ X9 @)x], < s and [XP ()] < Ku}| < expl—cinpn.)
1

with §; defined in Lemma 4.2 and
(4.83) Pn,l = Vn,l/(4Kn)~

Thus the lemma is proved. [
The next lemma gives an estimate of small ball probabilities adapted to our case.

LEMMA 4.8. Let x € Incomp(8, p,.1). Let X1, ..., X, be random variables
with zero mean and variance at least 1. Assume that the following condition holds:

(4.84) L(M) := max max E|Xk|21{|Xk|>M} —0 as M — oo.
n>1 1<k<n

Then there exist some constants C > 0 depending on & such that for every ¢ > 0

" C+/Inn
(4.85)  px(epn,1./v2n):= supPr{ Zkaka —v| < 8,0,1,L/\/2n} < —
v k=1 n

PROOF. Put Lj :=[—log,(pn,.+/28)]. Note that
Pn,L 1 2pn,L

< < )
2n T 2012 /ns T N 26

According to Remark 4.9, we have p,, | > cn~L/2 . This implies L1 < Clnn. Let
o (x) denote the spread set of the vector x, that is,

(4.86)

[ 2
(4.87) o(x):= ik:pn,L/\/2”§|xk|§ %}
By Lemma 4.3, we have
(4.88) o (x)| > n8/2.

We divide the spread interval of the vector x into L + 2 intervals A;, [ =
0,...,L1+1by

Pn,L 1
4. Ao 1= : < < "
@8 Ao {" m—'xk'—zmvzm}’

V2 V2
{k: —— < |x¢| < 7},
21/né 20-1/ns
Note that there exists an [y € {0, ..., L1 + 1} such that
4.91) |A| > nd8/(2(L1 +2)) > Cn/Inn.

4.90) A;:= I=1,...,L; +1.
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Lety= PAZOX. Put a; := mingep, |xk| and b; := maxyep, |xk|. Choose a constant
M such that L(M) < 1/2. By the properties of concentration functions, we have

(4.92) Px(epn.L/N2n) < py(epn.1./v/2n) < py(Mby,).

By definition of Ay, we have

(4.93) 3 x> af Ayl = pp L/ (20)| A
ke,
and
a 1
(4.94) ﬁ =2
Define
(4.95) D(&,0) =7 EIE [ Ijg<n

and introduce for a random variable &, ?,:' =& — E where ’5 denotes an independent
copy of &. Put & := xrer Xi. We use the following inequality for a concentration
function of a sum of independent random variables:

. —1/2
(4.96) py(Mby) < Cszo( S 2D Ak))
keA,O

with Ay < Mby,. See Petrov [19], page 43, Theorem 3. Put Ay = M|xi|. It is
straightforward to check that

@on Y 2D ) = pn( > P B - L) ).

kGA]O kGAIO

This implies

~ p p
(4.98) > MDDk ) = S 3 bl = A laj.
k€A10 kGA/O

Combining this inequality with (4.96) and (4.92) we obtain

CMb CM CV1
499 px(eon/V2n) < b -

< < .
- vV IAI()lpnalo - vV |Al()|pl’l - \/”Pn

The last relation concludes the proof. [J
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Invertibility for the incompressible vectors via distance.

LEMMA 4.9. Let X1,X3, ..., X, denote the columns of , /nan(S)(z), and let
‘Hy denotes the span of all column vectors except the kth. Then for every §, p €
(0, 1) and every n > 0 one has

Pr inf [X@xl, < n(on.1/v/n)’//pn)

< — ZPr dist(Xk, Hi) < npn..//n}.

n(SLkl

PROOF. Note that

Prf inf IX© @[y < n(on, /1) / /7P
(4.100) e X
<Pr{ inf XO@x], < n(pnr/vn)’//APa ).

xelncomp(8z,,pn,1.)

For the upper bound of the r.h.s. of (4.100) (see [18], proof of Lemma 3.5).
For the reader’s convenience we repeat this proof. Introduce the matrix G :=
MX(S)(z). Recall that Xy, ..., X,, denote the column vector of the matrix G
and H; denotes the span of all column vectors except the kth. Writing Gx =
> k=1 Xk Xk, we have

(4.101) IGx| > ; nllax dist(x, Xy, Hy) = . rrllax |xr | dist(Xg, Hy).
=1,...,n =l,...,n

Put
(4.102) pr :=Pr{dist(Xy, Hx) < non.L//n}.
Then

n
(4.103) E|{k : dist(Xg, Hi) < non,/v/n}| = px-

k=1

Denote by U the event that the set o] := {k: dist(Xy, Hi) > npn.1/+/n} contains
more than (1 — §7)n elements. Then by Chebyshev’s inequality

(4.104) Pr{U¢} < Z Dk
L 2

On the other hand, for every incompressible vector x, the set o2(X) := {k: |xx| >
Pn.L/+/n} contains at least nd;, elements. (Otherwise, since | Porx)cXll2 < on,L,
we have ||Xx—Yy/|l2 < pp,1 for the sparse vector y := Py, (x)X, which would contradict
the incompressibility of x.)

Assume that the event U occurs. Fix any incompressible vector x. Then
lo1] + |o2(xX)| > (1 — 8.)n 4+ ndp > n, so the sets o1 and o2(x) have nonempty
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intersection. Let k € o1 N o2(x). Then by (4.101) and by definitions of the sets o
and o, (Xx), we have

(4.105) 1GxIl2 = |xe| dist(Xe, He) = n(on,Ln™ /%),
Summarizing we have shown that
1 n
@106) Pr{ inf  Gxl2 < n(parn” VD) <PUY < Y pic
xelncomp(8y,, on.1 nér, =
This completes the proof. [

We now reformulate Lemma 3.6 from [18]. Let X be any unit vector orthogonal
to X1y, ..., X;—1. Consider the subspace H,, = span(Xy, ..., X;_1).

LEMMA 4.10. Let &1, p01,¢1, 1 =1,...,L — 1, be as in Lemma 4.2 and §;,
oL, cr as in Lemma 4.77. Then there exists an absolute constant ¢y, > 0 such that
(4.107) Pr{X* ¢ Cp and | X (2)| < K.} < exp{—CLnpn).

PROOF. Note that

L—1
(4.108) sV =Jqucy.
=1

The event {X* ¢ C; and |X® ()| < K,,} implies that the event

109 &= inf [X©@)x[, < cand [X© ()] < K,

xelUr ' Gt Ixlla=1
occurs for any positive c. This implies, for ¢ > 0,

(4.110)  Pr{X* ¢Cy and |X® (2)| < K}

L—1
(4.111) <>y Pr[ inf | X®(2)x| <cand [X®(2)] < K,,].
=1

xeCr - [x[2=1

Now choose ¢ := min{y, ;,[ =1,...,L — 1}. Applying Lemma 4.7 proves the
claim. [

LEMMA 4.11. Let X®(2) be a random matrix as in Theorem 1.2. Let

X1, ..., X, denote column vectors of the matrix ‘/nan(e)(z), and consider the
subspace 'H, = span(X{y, ..., X,—1). Let K;, = Kn./p,,. Then we have
C+/Inn

(4.112)  Pr{dist(X,,, Hy) < pn../~/n and | X©(2)| < K,} < .
{ pua /N and [XO@] < K} <
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PROOF. We repeat Rudelson and Vershynin’s proof of Lemma 3.8 in [18]. Let
X* be any unit vector orthogonal to X1, X, ..., X,,—1. We can choose X* so that
it is a random vector that depends on X1, X», ..., X,,—; only and is independent
of X,,. We have

dist(X,,, Hy) > (X, X5

We denote the probability with respect to X, by Pr, and the expectation with
respect to Xy, ..., X,—1 by E{ _ ,—1. Then

Pr{dist(X,, Hp) < pu../+/n and [ X (2)| < K,,)
(4.113) <Ei . a—1Pr{|{X*, X)) < pn,p./+/n and X* € Cp }
+Pr{X* ¢ C; and |X¥(2)| < K.}

.....

According to Lemma 4.10, the second term in the right-hand side of the last in-
equahty is less then exp{—cy.n}. Since the vectors X* = (ay, ..., a,) € S®=D and

X, = (¢1&1, ..., €,8,) are independent, we may use small ball probability esti-
mates. We have

S=(Xp, X*) = Z akeiék-

Let o denote the spread set of X* as in Lemma 4.3. Let P, denote the orthogonal
projection onto R? in R". Denote by S, = ) i, ekark&k. Using the properties of
concentration functions, we get

Pt {1{X, X*)| < pun,/v/n} < supPru{|S — vl < pu,/v/}
v
<supPr,{|Sy —v| < pn.//n}.
v

By Lemma 4.8, we have for some absolute constant C > 0

C+/Inn

(4.114) Pr 1%, X)) < .1/} < e

Thus the lemma is proved. [J

LEMMA 4.12. Let X®(z) be a random matrix as in Theorem 4.1. Let
O, pn.r € (0,1). Let Xy, ..., X, denote column vectors of matrix ./nan(g)(z).
Let K, = Kn./p,, with K > 1. Then we have

C+/Inn
NOZTH

Pr{ inf |X© @)x], < oy L/n| <Pr{|XO@)] > Ky} +
XGCL
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PROOF. Note that
- () 2
pel inf X @xl, < o1 /)

(4.115) <Prf inf [X©(2)x], < p7 1 /n and |[X© ()] < K}
xeCr, ’

+Pr{|XO @] > Ka}.

Applying Lemma 4.9 with n = ./p,, we get
,02 L 1 2
. n, .
Pr{xlench [X® )], < . } < k§:1: Pr{dlst(Xk, Hy) <

pn,L\/p_n}‘
Jn

Applying Lemma 4.11, we obtain

C+/Inn
: (e) 2
(4.116) Pr{xle%inx @x], < p? 1 /n} < —

Thus the lemma is proved. [

PROOF OF THEOREM 4.1. By definition of the minimal singular value, we
have

Pr{s®(z) < p2 ; /n and 5°) (2) < Ko}
< Pr{there exists x e S~V : | X® (x|, < ,o,f,L/n and s{g) (z) < Kn}.

Furthermore, using the decomposition of the sphere S~ = U1L=_11 C; UCy into
compressible and incompressible vectors, we get

Pr{s\(z) < py , /n and s (2) < K

L—-1
(4.117) <> Prf| inf [XO@x], < p2 ,/n and 5|7 (2) < K]
=1 xeC;

+Pr{ inf [X©(@)x[, < p} 1 /n and s (2) < K }.
xeCr, ’
According to Lemma 4.7, we have
Prf inf [ X @)x], < o5, /n and 51 @) < Ky} < exp{—cinpa(n1pa)' ).
Xel(;
Lemmas 4.12 and 4.7 together imply that
Pr{ inf |[X© (2)x], < p7 ;/n and 51 (2) < K, |
xeCr, ’

(4.118) < Pr{ inf IX® @)x|, < p2 1 /nand s\ (2) < Kn]

xelncomp(8z,0,,1.)

C+/Inn

<
/D

+ exp{—crn}.
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The last two inequalities together imply the result. [J

REMARK 4.9. To relax the condition p;l = Om'~?) of Theorem 4.1 to
p;l = o(n/In’n) we should put L = Inn. Then the value L; in Lemma 4.8 is
at most C(Inn)?, and hence we get the bound Clnn/,/np, in (4.85). This yields
the bound CInn/,/np, + exp{—cyn} in (4.118). Thus Theorem 4.1 holds with B
chosen to be of order C Inn.

5. Proof of the main theorem. In this section we give the proof of Theo-
rem 1.2. Theorem 1.1 follows from Theorem 1.2 with p, = 1. Let y := % and
let R > 0 and k; be defined as in Lemma A.2 with ¢ = 18. Using the nota-
tion of Theorem 4.1 we introduce for any z € C and absolute constant ¢ > 0
the set ©2,(z) = {w € Q:c/nf < s,gs)(z),sl(s) < n./pn, |)\,(;i)| < R}. According
to Lemma A.1

Pr{s{ (X) = ny/pa} < Clnpy) ™"

According to Theorem 4.1 with € = ¢, we have

CV1
Pr{c/n® = 5O ()} £ o +Pr{s\ = ny/pn).
N
According to Lemma A.2 with g = 18, we have
—1/18
(5.1) Pr{[+{| < R} < CAY < Clo(Vupn)] ™.
These inequalities imply
~1/18
(5.2) Pr{Q,(2)°} = (p(vpn)) /™.

Let r = r(n) be such that r(n) — 0 as n — oo. A more specific choice will be
made later. Consider the potential U, (rn) . We have

1
Ul = —;Elog|det(X(8) — I —ré&l)|

1 n
=~ > Eloglx[? —r& —z|lo,

j=1
— li:Elo A — g — 2|1
n 4 El4j 2 (@)
j=1

177" L gm

- U/*Ln + Ulan ’
where 14 denotes an indicator function of an event A and ,(z)¢ denotes the
complement of €2,,(z).
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LEMMA 5.1. Assuming the conditions of Theorem 4.1, for r such that

ln(l/r)((p(a/npn))_l/w—) 00 asn — oo

we have

(5.3) Ul)'—>0  asn— oc.

PROOF. By definition, we have

~ 1 &
r) _ (e
G4) U =% Z}Eloglkj — & —2llgo )
j=

Applying Cauchy’s inequality, we get, for any v > 0,

7 1 . 1 1
0 <~ 3 BV loghh ) — rg — || (e

(5.5) =

1o 1/(147)
< (; > Ellogla” —ré - zu“’) (Prig)) ).

j=1
Furthermore, since & is uniformly distributed in the unit disc and independent

of A, we may write

1
Ellog|x; —r& — 2| = t \;|<1|10g|k§'8) —r¢ -zl d¢

£ + B +EIP,

where
hoo 1
W= logs) — ¢ — ]| d,
27 Jigi=1,2 ) —re—z)ze !
hoo 1
== o) —re — 2"+ e,
21 Jig|st1/e>n —re—z|>e g
/ 1 1+
i = g/ log|a\ —rg — 2| .
CI=LIAj—ri—z|>1/e
Note that

; 1
()
97 <tog( ;).

Since for any b > 0, the function —u”logu is not decreasing on the interval
[0, exp{—%}], wehaveforO<u <e¢ < exp{—%},

1
—logu < gPu=b log(—>.
£
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Using this inequality, we obtain, for b(1 4+ 1) < 2,

1+
9| < Lgbaﬂ)(log(l)) !
- 27 e

(5.6)
% / © |)‘§'s) —re- Z’_h(lﬂ) ¢
jE1<1108 e~z <e
1 b 1 —b(1+7)
< 5ellog(<) [l
2mr? e/) Jie|<e
5.7

I+t
< C(r, b)le_2(10g<§>> .

If we choose ¢ = r, then we get

) 1 147
(5.8) FA |§C(r,b)(log(;>> )

The following bound holds for %Z?:l EJ3(j). Note that |logx|'*7 < &2 x
lloge|'*7x? for x > é and sufficiently small . Using this inequality, we obtain

L |
; ZEJg('/) < C(‘L’)gzllogﬂ; ZE|)‘§'8) —re— Z|2
Jj=1 =

(5.9) < C@) U+ |z]* 4+ rP)e?|loge|
< C(D)2+|z*)r?|logr].

1 141
<C <log(—)> .
r
Furthermore, inequalities (5.2), (5.4), (5.5) and (5.10) together imply
= 1 —1/18y7/(1
1051 = (1og( ;) ) (Clo(im) 570,
We choose 7 = 18 and rewrite the last inequality as follows:
~ _ 1 _
01 = ¢ (10g( ;) )oamm)"" = ¢ 105 ) ) (o) ™.

If we choose r = w% we obtain log(1/r) ((¢(/nipn))~ /1% — 0, then (5.3) holds

and the lemma is proved. [J

Inequalities (5.6)—(5.9) together imply that

1 n
(5.10) ‘; > Ellog[n! —rg —||'F
j=1

1

r
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We shall investigate Uffn) now. We may write

_ 1<
(&)
Uy ==~ Elog]h}” —z—ré|lg,q
j=1

1 n
(5.11) =—— > _Elog(s; (X, M) o,
j=1

Kn+lz| _
:—/ . logxdE F,(x,z,r),
n

where f;,g)(-, z,r) is the distribution function corresponding to the restriction of
the measure v,ge) (-, z, r) to the set 2,,(z). Introduce the notation

— Kn+lz|
(5.12) Uﬂz—/ " logxdF(x.2).

Integrating by parts, we get

Kn (€) —
UZB_UM:_/ +|Z|EFn (x,Z,r) F(Z,r)d_x

n—B X

(5.13)
+ Csup|EE® (x, z,7) — F(z,r)||log(n®th)|.
X

This implies that
(5.14) U —U,| < Clnnsup[EF (x,z,r) — F(x,2)].
X

Note that, for any r > 0, |s§-£) () — sj(-g)(z, r)| < r. This implies that

(5.15) EF®(x —r,z) <EF® (x,z,r) <EF® (x +r,2).
Hence, we get
sup|EF,f’s)(X, z,r)— F(x,2)|
(5.16)
< SI;p|EFn(£)(X, ) — F(x,2)|+ SI;p|F(x +r,2) = F(x,2)|.

Since the distribution function F (x, z) has a density p(x, z) which is bounded (see
Remark 3.1) we obtain

(5.17)  sup|[EF®)(x,z,7) — F(x,2)| < sup|EF¥)(x,z) — F(x,2)| + Cr.
X X

1 .. .
Choose r = T Inequalities (5.17) and (2.48) together imply

(5.18) sup|[EF®(x,z,7) — F(x,2)| < c((w(M))—l/ls + %p)
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From inequalities (5.18) and (5.14) it follows that
UL Uyl < C(((ﬂ(\/npn))_l/18 + ;) log(n"®).
o TR No
Note that

—B
R n
‘U’(:’E_U”E‘./o logxdF(x,z)| < Cn BlIn(n=5)).

Let X ={z € C:|z|] < R} and let K¢ denote C \ . According to Lemma A.2
with ¢ = 18, we have, for k1 and R from Lemma A.2,

(5.19) 1—g, -—EM(’)UCC)< — + Pr{la | > R} < Clo(mpa))” /18,

Furthermore, let ,uf ) and & A( ") be probability measures supported on the compact
set K and K©, respectlvely, such that

(5.20) End) =g,y + (1 — g

Introduce the logarithmic potential of the measure M( )

Uy =~ [ ogle = ¢ 147 ©).
Similar to the proof of Lemma 5.1 we show that
lim U —U_| < Clnn(enpa)) ™",
This implies that
Jim U )= U@

for all z € C. According to equality (3.15), U, (z) is equal to the potential of uni-
form distribution on the unit disc. This implies that the measure @ coincides with

the uniform distribution on the unit disc. Since the measures ,u< ) are compactly
supported, Theorem 6.9 from [14] and Corollary 2.2 from [14] together imply that

(5.21) lim 7" =pu

n—oo
in the weak topology. Inequality (5.19) and relations (5.20) and (5.20) together
imply that
i (r —
nll>rgo Epy,”=n
in the weak topology. Finally, by Lemma 1.1 we get
(5.22) lim Ep, = pn

n—oo

in the weak topology. Thus Theorem 1.2 is proved.
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APPENDIX

In this appendix we collect some technical results.

The largest singular value. Recall that |)\§8)| > ... > A% denote the eigen-
values of the matrix X®) ordered via decreasing absolute values, and let sl(g) >

.. > 5 denote the singular values of the matrix X(.
We show the following:

LEMMA A.1. Under condition of Theorem 1.1 for sufficiently large K > 1 we
have

(A.1) Pr{s\® > n/p,} < C/np,

for some positive constant C > 0.

PROOF. Using Chebyshev’s inequality, we get

1
n%p

(A2) Pr{s\¥ > ny/pn} < ETr(X® (X)) < 1/(npy).

n

Thus the lemma is proved. [

LEMMA A.2. Assume that max; i E|X jk|?¢(X jx) < C with ¢(x) := (In(1 +

|x)4, g =7, and A, = sup, |Fr5€)(x, 7) — F(x,z)|. Then there exists some ab-
solute positive constant R such that

(A3) Pr{[2] > R} < (p(np,))~9=9/ 120,
where ki := [Afzq%)/(zq)nlnn].

PROOF. Let us introduce kg := [Aﬁq%)/ )

we obtain, for sufficiently large R > 0,
1 -EF,(R)
ko/n

n]. Using Chebyshev’s inequality

Pr{s) > R} < < AU=6)/Cq)

On the other hand,

k1
Pr{|| > R} < Pr{ [T12$] > Rkl}
v=1

(A.4)

kl kl
1
<Pr s@ S Rl <prl — E Ins® > 1InRY.
—_ :vl;[l v —_ k] v

v=1
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Furthermore, for any value Ry > 1, splitting into the events sg) > R and s,ﬁé) <R,
we get

k
1 1
Pr o Zlnss‘?) > lan}
1v:l

k
<Pr s© S R + Pr —Olns(a) +InR >InR;
ko kl 1

< A@=0/CD) 4 pelin®© o k_lln&
—n 1 ko R

Now choose R; := R2. Thus, since ki/ko ~1nn,
Pr{])\,(fl)] > R} < AY=9/CD 4 prlins'? > In RInn}.

Taking into account Lemma A.1 and inequality (2.48) we obtain

_ C o
Pr{|)L/E81)| > R} < A,(fj 0)/2q9) 4 — < C(p(npn)) (g—6)/(12¢)

n

for some positive constant C > 0, thus proving the lemma. [

LEMMA A.3. Let »x = max‘,-,kE|Xjk|2g0(X_,-k). The following inequality
holds:

1< (&) (k) C
> Eeji | X jil (1Tt | + T35 <

AS —_—.
N ] = V()

PROOEF. Introduce the notation

" : .
(Ao Bi= o 30 Be Xl (T 1+ 17

" nnpn i k+n,j Jok+n
and
2 5 2 pUH (| pUK)
o v J j ‘
By = 2 Z Eé ji| X jil |Rk+n,jHRk+n,j — Rkt j)
Pn k=1
2 ¢ 21 plik) (k)
o j J
By := n2 Z Ee ji| X jk| ‘Rk—l-n,k—l-nHRj,j —Rj,jl,
Pn k=1
(A7)
2 5 21 pUR || (0
B3 = Y Eeil X PR} VIR, kan — Rictn kel
P j =i
2 5 GO [ pUk)
o 21 pl j
By = n2p Z Ee k| X jkl ‘Rj,k+nHRj,k+n - Rj,k+n}-

k=1
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Since the function |x|/¢@(x) not decreasing, it follows from inequality (2.10) that

(b 1 1
A.8 R —R <-—-Iyx. —o(Xjx).
(A.8) | 1m| < 5 L= yapny + Uz(p(m)w( jk)
It is easy to check that
C

(A.9) max{B, k=1,...,8) < 5.

Ve (/npn)
This implies that

C
(A.10) <=
v o(/npn) O

LEMMA A.4. Let |1, be the empirical spectral measure of the matrix X and
v, be the uniform distribution on the dzsc of radius r. Let u ) be the empirical
spectral measure of the matrix X(r) = X — r&l, where & is a random variable
which is uniformly distributed on the unit disc. Then the measure Euf,r) is the
convolution of the measures Eu,, and v, that is,

(A.11) Ep” = Bpn) * (vy).

PROOF. Let J be a random variable which is uniformly distributed on the
set {1,...,n}. Let A1,..., A, be the eigenvalues of the matrix X. Then A; +
r&, ..., Ay + r§ are eigenvalues of the matrix X(r). Let §; be denote the Dirac
measure. Then

1 n
(A.12) U = — Z 83,
i
and
(A.13) i = Z(SA -

Denote by 1, the distribution of A ;. Then

(A.14) Eu, = Z Yonj
_] 1

and

1 n
(A15)  Ep, = p D Hnj kv = < Z Mnj> * (V) = (Eptn) * ().
j=1

j=1

Thus the lemma is proved. [



1488 F. GOTZE AND A. TIKHOMIROV

Let
o0 (e e]
(A.16) £, v) =/ / exp{itx +ivy}dG{’ (x,y)
—00 J—0O0
and
[e.e] o0
(A.17) fu(t,v) =/ f explitx +ivy}dGy(x,y),
—00 J—00
where
1 n
(A.18) GV (x,y)==> Pr{Rek;+ré <x,Imhj+r§ <y}
n -
j=1
and
] n
(A.19) Gn(x,y) ==Y Pr{Rer; <x,Imi; <y}
" .
j=1

Denote by h(¢, v) the characteristic function of the joint distribution of the real and
imaginary parts of &,

(A.20) h(t,v) = /oo /Oo exp{liux +ivy}dG(x,y).

LEMMA A.5. The following relations hold
(A.21) £, v) = fut, V)R, rv).
If for any t, v there exists lim,_,  f(t, v), then

; ; (r) — 1 ; (r)
fim tim £17¢,0) = fim, Lim £t )

(A.22)
= nli)ngo fn(t’ U).

PROOF. The first equality follows immediately from the independence of the
random variable £ and the matrix X. Since lim, .o A (rt, rv) = h(0, 0) = 1 the first
equality implies the second one. [

LEMMA A.6 ([9], Lemma 2.1). Let F and G be distribution functions with
Stieltjes transforms Sp(z) and Sg(z), respectively. Assume that ffooo |[F(x) —
G(x)|dx < o0o. Let G(x) have a bounded support J and density bounded by some
constant K. Let V > vg > 0 and a be positive numbers such that

1 1 3

=— du > —.
7 Jjuj<a u? +1 4
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Then there exist some constants C1, C2, C3 depending on J and K only such that

x
sup| F(x) — G(x)| < Cysup | |Spu+iV)—Scu+iV)|du
X xeJ J—0

(A.23) v
+ sup |SF(u+iv) — Sg(u+iv)|dv+ Csvg.

ueJ Jvo

LEMMA A.7. Let Xji, 1 < j, k <n, be independent complex random vari-
ables with EX j =0 and EIXj,kl2 = 1. Assume furthermore that

mEll<XE|Xjk|21{|Xik|>M}—>0 forM—> —+00.
i )

Then we have, for some positive ry and no,

supmax Pr{|X jx —u| <no} <ro < 1.
ueC J:k

PROOF. First we note, that there exists a positive number M such that
. 2
min B X "Ly x 1<) > 5

Let no be a small positive number. For |u| > M + ng we have

1
Pr{| X jk — ul = no} = Pr{|X ju| < M} = —SE(IX i 1x 1<)

(A.24) :

> —F.
8 M2
Consider now |u| < M + ng. Then

Pr{| X jk —ul = no} = E(I2m+50= X ji—ul=no))

2
= 4M2E(|Xjk — ul I{2M+1702|Xjk—u|2'io})

> W(l —E(|1Xx — u|21{|xjk—u|<no})
(A.25) —E(1Xjk — ul*Iyx ;p—uj>2M4m0))
> %(1 — 15 — E(IXjx — ul*Ijx 41> my))
1 /3 5 uf?
a(i - 3r)

> ! (3 4n? (1+,7(2))2)
= 16M2 o M) )

Combining inequalities (A.24) and (A.25) we obtain the claim. [

N

v
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