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RIGHT INVERSES OF LÉVY PROCESSES

BY RON DONEY AND MLADEN SAVOV

University of Manchester and Oxford University

We call a right-continuous increasing process Kx a partial right inverse
(PRI) of a given Lévy process X if XKx

= x for at least all x in some ran-
dom interval [0, ζ ) of positive length. In this paper, we give a necessary and
sufficient condition for the existence of a PRI in terms of the Lévy triplet.

1. Introduction and results. In this paper, a real-valued Lévy process is stud-
ied. The problem of existence of a partial right inverse (PRI) is considered and an
explicit integral criterion is provided for testing whether any Lévy process pos-
sesses a PRI.

We continue work by Evans [3] and Winkel [5]. Evans has introduced the notion
of a full right inverse and has defined this process K as the minimal increasing
process that satisfies X(Kx) = x for all x ≥ 0; Winkel, in [5], has extended this
definition to X(Kx) = x on some random interval [0, ζ ) of positive length and has
named this process a PRI. In these two papers, it is shown that if K exists, it is a
(possibly killed) subordinator.

A Lévy process X = (Xt ; t ≥ 0) is a stochastic process which possesses station-
ary and independent increments, starts from zero and whose paths are a.s. right-
continuous. Each Lévy process is fully characterized by its Lévy triplet (γ, σ,�),
where γ ∈ R, σ ≥ 0 and the Lévy measure � has the property∫ ∞

−∞
(1 ∧ x2)�(dx) < ∞.

Also, each Lévy process X can be represented as follows:

Xt = γ t + σBt + X
(1)
t + ∑

0<s≤t

(Xs − Xs−)1(|Xs−Xs−|>1),(1)

where B is a standard Brownian motion, X(1) is a pure jump zero mean martingale
and all of the components in (1) are independent. In the class of Lévy processes, we
distinguish between Lévy processes with bounded variation and Lévy processes
with unbounded variation. The former are those for which σ = 0 and

∫ ∞
−∞(1 ∧

|x|)�(dx) < ∞. In this case, X can be represented as

Xt = bt + X+
t + X−

t ,(2)
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where b is the drift coefficient and X+ and X− are independent driftless subor-
dinators (i.e., increasing Lévy processes). In our setting, as well as in many other
situations, these two classes of processes exhibit quite different behaviors and need
separate attention.

We write Rt = sups≤t Xs − Xt . It is shown in [1], Chapter 6, that R is a strong
Markov process which possesses a local time at zero, L(t), and a corresponding
inverse local time L−1(t) = inf{s :L(s) > t} such that (L−1(t);X(L−1(t))) is a
bivariate subordinator: we denote its Lévy measure by μ(+)(dt;dy) and we use,
in particular, μ(+)(dy) = μ(+)((0;∞);dy). We also use the notation H+(t) :=
X(L−1(t)) and call H+ the upward ladder height process. Similarly, we can define
Zt = Xt − infs≤t Xs and, using the same arguments, we have an associated inverse
local time L−1− (t) and downward ladder height process H−(t) := X(L−1− (t)). We
denote the Lévy measure of H− by μ(−)(dy). Finally, with each of the subordina-
tors H+and H−, we associate the so-called renewal measure, defined as follows:

U+(x) = E

∫ ∞
0

1{H+
t ≤x} dt, U−(x) = E

∫ ∞
0

1{H−
t ≤x} dt.(3)

We refer to Bertoin [1] or Doney [2] for more information on Lévy processes.
Next, we briefly discuss the definition of a PRI, that is, K = (Kx, x ≥ 0). We

follow an approach developed in Evans [3]. Define, for each n ≥ 1 and k ≥ 0, the
stopping times

T0 = 0, T k+1
n = inf

{
t ≥ T k

n :Xt = k + 1

2n

}
(4)

and processes

Kn
x = T k

n ,
k

2n
≤ x <

k + 1

2n
.

A pathwise argument then shows that

Kx = inf
y>x

sup
n≥0

Kn
y .(5)

It is possible that for each x > 0, the definition above gives Kx
a.s.= ∞ and, in

this case, we say that a PRI does not exist. The question of the existence of a
PRI has been studied by Evans in [3] and Winkel in [5]. Evans has shown that
for any symmetric Lévy process with σ > 0, a full right-inverse exists. Winkel
[5] then showed that the same result holds for any oscillating Lévy process with
σ > 0 and also described all Lévy processes with bounded variation having a PRI.
Moreover, in the unbounded variation case, he provided a necessary and sufficient
condition (NASC) for the existence of a PRI, but this NASC is not satisfactory
since it requires knowledge about the second derivative at zero of the so-called
q-potentials of the given Lévy process, which are generally unknown. Therefore,
the main aim of this paper is to supply an NASC for the existence of a PRI in terms
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of the Lévy triplet, that is, (γ, σ,�), in the unbounded variation case. In fact, our
method, which is probabilistic in nature, also deals with the bounded variation case
and gives the following result.

THEOREM 1. Let X be a Lévy process with a Lévy measure � such that
�(R) > 0. Then:

(i) if X has unbounded variation, it has a partial right inverse (PRI) iff
σ > 0 or σ = 0, �(R−) = ∞ and J < ∞, where, with �(−)(s) = ∫ −s

−∞ �(dx),

J =
∫ 1

0

x2�(dx)

(
∫ x

0
∫ 1
y �(−)(s) ds dy)2

;(6)

(ii) if X has bounded variation, then it has a PRI iff �(R+) < ∞ and X has a
drift coefficient b > 0.

REMARK 2. If �(R) = 0, then Xt = γ t + σBt is a continuous process and
Tx = inf{t :Xt = x} will be a PRI on the set {Tx < ∞}. Note that, in this case,
{Tx < ∞} will be the empty set iff σ = 0 and γ < 0.

REMARK 3. A Lévy process X is said to “creep upward” if P(X(T +
x ) = x) >

0 for some (and then all) x > 0, where T +
x = inf(t > 0 :Xt > x). It is known that

this happens iff the ladder height process H+ has drift δ+ > 0; see, for example,
Theorem 19, page 174 of [1]. Since it is always the case that σ 2 = 2δ+δ−, where
δ− is the drift of H−, this certainly happens when σ > 0. If σ = 0 and J < ∞,
then the integral

L =
∫ 1

0

x2�(dx)∫ x
0

∫ 1
y �(−)(s) ds dy

(7)

is clearly finite and it is shown in [4] that this is the NASC for δ+ > 0 in the un-
bounded variation case when σ = 0. (See also Section 6.4 of [2] for an alternative
proof of this result.) Finally, in the bounded variation case, b > 0 is clearly equiv-
alent to δ+ > 0. We therefore conclude that our theorem is consistent with the
intuitively obvious claim that “upward creeping” is necessary, but not sufficient,
for the existence of a PRI.

The next corollary illustrates how our theorem yields specific information in
special cases. Here, and throughout the paper, we use the notation f ≈ g to denote
the existence of constants 0 < c < C < ∞ with cg(x) ≤ f (x) ≤ Cg(x), for all
sufficiently small x.

COROLLARY 4. Let X be a Lévy process with σ = 0 and Lévy measure �

such that �+(x) = ∫ ∞
x �(dy) ≈ x−β and �−(x) ≈ x−α , where 1 ≤ α < 2 and

0 ≤ β < 2. Then X has a PRI iff β < 2α − 2.

REMARK 5. This result extends Proposition 2 and Theorem 6 in [5].
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2. Proofs. Recall that we denote by H+ the ascending ladder height process
of a given Lévy process X. We use δ+ to denote the drift of H+ and μ(+)(dy) to
denote its Lévy measure. We also use U+ and U−, which are defined in (3). We
start the proof by disposing of some special cases.

Suppose, first, that �(R) < ∞. Then V = inf{t > 0 :Xt − Xt− �= 0} > 0 a.s.
since it is an exponentially distributed random variable with parameter �(R) and
the given process coincides up to time V with the process we get by removing all
of its jumps. The resulting process will be of the form σBt + bt , which possesses
a PRI iff σ > 0 or σ = 0 and b > 0, in accordance with Theorem 1. Next, suppose
that �(R) = ∞, but �(R+) < ∞. Removing all the positive jumps then gives a
spectrally negative Lévy process X̃. If X̃ has unbounded variation, or has bounded
variation and a positive drift b, then it passes continuously over positive levels.
Then with T̃ (x) = inf{t > 0 : X̃t = x}, we obviously have X̃

T̃ (x)
= x on {T̃ (x) <

∞} and we can choose Kx = T̃ (x). Alternatively, X̃ has bounded variation and
a drift b ≤ 0, and, clearly, no PRI exists for X̃ or X in this case. Noting that in
the unbounded variation case, we have

∫ 1
0 �(−)(s) ds = ∞ so that, necessarily,

J < ∞, we see that these results also accord with Theorem 1. Next, suppose that
�(R) = ∞, but �(R−) < ∞. If X has bounded variation, then removing all of
the negative jumps gives us a spectrally positive process of the form X̃t = X+

t +
bt , where X+ is a driftless subordinator. If b ≥ 0, then X̃ has monotone paths
and the assumption that �(R+) = ∞ implies the existence of points xn ↓ 0 with
P(T (xn) = ∞) = 1, which verifies Theorem 1 in this case. Finally, if b < 0 or
if X has unbounded variation, then the decreasing ladder height process is a pure
drift, possibly killed at an exponential time, and we see that the hypothesis of
Proposition 7 below holds.

The rest of our proof uses the following simple consequence of the construction
of K due to Evans [3].

LEMMA 6. Let X be an arbitrary Lévy process, and set Tx = inf{t > 0 :Xt =
x} and px = P(Tx = ∞) = P(X does not visit x). Then:

(i) a PRI exists for X if

lim sup
x↓0

1 − E(e−θTx )

x
< ∞ for some θ > 0;(8)

(ii) no PRI exists for X if

lim
x↓0

x−1px = ∞.(9)

PROOF. First, note that the sequence K(n) := T 2n

n , n ≥ 1, where T k
n are de-

fined in (4), is monotone increasing. If we denote its limit by K̃ , then it is
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immediate from (5) that K1 ≤ K̃ ≤ K2. Since we know that K is a (possi-
bly killed) subordinator, we see that existence of a PRI for X is equivalent to
P(K̃ < ∞) > 0. However, this is equivalent to

lim
n→∞E

(
e−θK(n)) = E(e−θK̃ : K̃ < ∞) > 0

for some (and then all) θ > 0. Since K(n) is the sum of 2n independent random
variables distributed as T2−n , we have

logE(e−θK̃ : K̃ < ∞) = lim
n→∞ 2n logE(e−θT2−n )

and this is clearly finite for any θ for which (8) holds. Since 1−E(e−θTx ) ≥ px , we
see that this limit is −∞ for all θ > 0 whenever (9) holds, and the result follows.

�

The crux of our proof is contained in the following result, in which μ+(x) =
μ((x,∞)) for x > 0.

PROPOSITION 7. Let X be a Lévy process having �(R+) = ∞ and U−(dx) >

0 for all small enough x > 0. Then X has a PRI iff δ+ > 0 and I < ∞, where

I =
∫ 1

0
μ+(x)U−(dx) =

∫ 1

0
μ+(dx)U−(x).(10)

PROOF. Since the existence of a PRI is a local property, we can truncate the
Lévy measure so that it is contained in [−1;1]. Indeed, the first jump of X larger
than 1 in absolute value occurs after an exponential time ζ and Kx is a subor-
dinator, therefore Kx < ζ pathwise for all x small enough. This shows that the
existence of K is independent of the large jumps, so we will assume, without loss
of generality, that �([1,∞)) = �((−∞,−1])) = 0. Moreover, the value of δ+ is
also a local property, so this is also unchanged by any alteration of the Lévy mea-
sure on closed intervals which do not contain 0. Note that our assumptions imply
that I > 0 and that these alterations do not change the finiteness/infiniteness of I .
Let us introduce some notation. For x > 0, we put T +

x = inf{t > 0 :Xt > x} and
T −

x = inf{t > 0 :Xt < −x} for the first passage times above x and below −x, re-
spectively, and O+(x) = XT +

x
− x, O−(x) = x − XT −

x
for the overshoot above x

and the undershoot below −x, respectively. Noting that O+(x) is also the over-
shoot of H+ above x, we can use Proposition 2, page 76 in [1] to deduce that for
x > 0, y > 0,

μ(+)(x + y)U+(x) ≤ P
(
O+(x) > y

) =
∫ x

0
μ(+)(x + y − z)U+(dz)

(11)
≤ μ(+)(y)U+(x).
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To prove the result in one direction, we alter the Lévy measure by adding a mass
at {1}, if necessary, to make X drift to +∞. We then have the estimate

px ≥ P(O+
x > 0, and X stays above x)

=
∫ 1

0
P

(
O+(x) ∈ dy

)
P(T −

y = ∞)

= c

∫ 1

0
P

(
O+(x) ∈ dy

)
U−(y)

= c

∫ 1

0
P

(
O+(x) > y

)
U−(dy),

where the fact that P(T −
y = ∞) = cU−(y) comes from Proposition 17, page 172

of [1]. [It is obvious that, in fact, c = 1/U−(∞) since P(T −
y = ∞) → 1 as y →

∞.] From (11), it then follows that

lim
x↓0

infx−1px ≥ c lim
x↓0

infx−1U+(x)

∫ 1

0
μ(+)(x + y)U−(dy)

≥ cI lim
x↓0

infx−1U+(x).

Finally, we recall from Proposition 1, page 74 in [1] that U+(x) ≈ x/(δ+ +∫ x
0 μ(+)(y) dy) so that x−1U+(x) ≈ 1/δ+ as x ↓ 0, and thus (9) holds and no PRI

exists, whenever δ+ = 0, or δ+ > 0 and I = ∞. To argue in the other direction,
we assume that δ+ > 0 and I < ∞. Then, without loss of generality, we can take
δ+ = 1. Next, we denote by P θ the law of this process killed at an independent
exponential time τ with parameter θ and note that

pθ
x := P θ(Tx = ∞) = P(Tx > τ) = 1 − E(e−θTx ).

Our aim is to show that there exists some θ > 0 such that

lim sup
x↓0

x−1pθ
x < ∞(12)

since then the existence of a PRI for X will follow from Lemma 6. We decompose
pθ

x according to the number of upcrossings and downcrossings of level x that oc-
cur. To do so, we denote by T +(x, n) the time of nth crossing above x, by T −(x, n)

the time of nth crossing below x and for n ≥ 1, we put

pθ
x(n) = P θ{

Tx = ∞, T +(x, n) < ∞, T −(x, n) = ∞)
,

qθ
x (n) = P θ{

Tx = ∞, T −(x, n) < ∞, T +(x, n + 1) = ∞)
.

Since X creeps upward, it is then easy to see that

pθ
x = P θ(T +

x = ∞) +
∞∑
1

pθ
x(n) +

∞∑
1

qθ
x (n).(13)
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We start by noting that

P θ(T +
x = ∞) = c+(θ)Uθ+(x) where c+(θ) = 1

Uθ+(∞)
,

and Uθ+(x) is the renewal function of the ladder height process H+ under P θ . Of
course, under P θ , H+ is killed at some rate k+(θ) > 0 and has Lévy measure
μ+(θ, dx) ≤ μ+(dx). However, as we have mentioned, its drift is unchanged and
equals 1. Using a version of Erickson’s bound for killed subordinators, which can
be found in [4], we therefore have

Uθ+(x) ≤ c0x

1 + ∫ x
0 μ+(y, θ) dy + xk+(θ)

≤ c0x,(14)

where c0 is an absolute constant. Also,

Uθ+(∞) = lim
y→∞

∫ ∞
0

e−tk+(θ)P (H+
t ≤ y)dt = 1

k+(θ)

and this gives the bound

P θ(T +
x = ∞) ≤ c0k

+(θ)x.(15)

Next, using a similar notation, we see that

p(θ)
x (1) =

∫ 1

0
P θ (

O+(x) ∈ dy
)
P θ(T −

y = ∞)

= c−(θ)

∫ 1

0
P θ (

O+(x) ∈ dy
)
Uθ−(y)

= c−(θ)

∫ 1

0
P θ (

O+(x) > y
)
Uθ−(dy)

≤ c−(θ)Uθ+(x)

∫ 1

0
μ+(θ, y)Uθ−(dy)

:= c−(θ)I (θ)Uθ+(x),

where we have used the P θ version of (11). Using (14) again gives the bound

p(θ)
x (1) ≤ xc0c

−(θ)I (θ).(16)

Writing O±(n, x) for the successive overshoots upward and downward over
level x, we then have

p(θ)
x (n) =

∫ 1

0
P θ (

O−(n − 1, x) ∈ dz
)
p(θ)

z (1) ≤ c0c
−(θ)I (θ)Eθ (

O−(n − 1, x)
)
.



LÉVY INVERSES 1397

Also, Wald’s identity gives Eθ(O−(y)) ≤ mθ−Uθ−(y), where mθ− = Eθ(H−
1 ), and

so we have

Eθ (
O−(n − 1, x)|O−(n − 2, x) = y

)

= Eθ(O−(y)) ≤ m−(θ)

∫ 1

0
P θ(O+

y ∈ dz)Uθ−(z)

= m−(θ)

∫ 1

0
P θ(O+

y > z)Uθ−(dz)

≤ m−(θ)Uθ+(y)

∫ 1

0
Uθ−(dz)μ+(θ, z)

≤ c0m−(θ)I (θ)y,

where we have again used (11). Iterating this gives

Eθ (
O−(n − 1, x)

) ≤ {c1(θ)}n−1x,(17)

where c1(θ) = c0m−(θ)I (θ), and thus

p(θ)
x (n) ≤ c0c

−(θ)I (θ){c1(θ)}n−1x, n ≥ 1.

Moreover, using (15) and (17), we get the bound

q(θ)
x (n) =

∫ 1

0
P θ (

O−(n, x) ∈ dz
)
P θ(T +

z = ∞)

≤ c0k
+(θ)Eθ(O−(n, x)) ≤ c0k

+(θ){c1(θ)}n−1x.

So, (12) will follow, provided that θ can be chosen such that

c1(θ) = c0m−(θ)I (θ) < 1.(18)

To see this, we need to note first that m−(θ) ≤ E(H−
1 ). Also, provided that

k−(θ) → ∞, by applying bound (14) to H−, we get Uθ−(z) → 0 for each z ∈ (0,1]
as θ → ∞, and since Uθ−(z) ≤ U−(z) and I < ∞, dominated convergence will
give

I (θ) =
∫ 1

0
Uθ−(z)μ+(θ, dz) ≤

∫ 1

0
Uθ−(z)μ+(dz) → 0 as θ → ∞.

To see that k−(θ) → ∞, note that the killing time of H− under P θ is the same
as that of the ladder time subordinator L−1− and this has the distribution of L−(τ ),
which is exp(κ−(θ)), where κ− is the Laplace exponent of L− under P . The as-
sumption that U−(dx) > 0 for all small x > 0 implies that L− is not a compound
Poisson process so, by Corollary 3, page 17 of [1], κ−(∞) = ∞ and, thus, if we
choose θ large enough, (18) will hold and the proof is complete. �
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PROPOSITION 8. (i) Let X be a Lévy process having �(R+) = ∞ and σ > 0.
Then a PRI exists.

(ii) Let X be a Lévy process having σ = 0, �(R+) = ∞ and �(R−) < ∞. Then
no PRI exists.

PROOF. (i) Here, δ+ > 0 and δ− > 0, so U−(x) � x/δ− and since
∫ 1

0 xμ+(dx)

is automatically finite, we have I < ∞.
(ii) By the argument preceding Lemma 6, we can take �(R−) = 0 and assume

that δ− > 0, so that, again, I is necessarily finite. However, σ = 0 and δ− > 0
imply δ+ = 0, so the result follows. �

To deal with the remaining situations, we need the following lemma.

LEMMA 9. Let X be an oscillating Lévy process whose Lévy measure is sup-
ported by [−1,1] and satisfies �([−1,0)) = �((0,1])) = ∞. Suppose, addition-
ally, that σ = 0 and δ+ > 0. Then I = ∫ 1

0 μ+(x)U−(dx) < ∞ iff

J =
∫ 1

0

x2�(dx)

(
∫ x

0
∫ 1
y �(−)(s) ds dy)2

< ∞.(19)

PROOF. We use Vigons’ “équation amicale inversée” (see [4]), which, since
our Lévy measure lives on [−1;1], takes the form

μ+(x) =
∫ ∞

0
�+(x + y)U−(dy) =

∫ 1

x
U−(y − x)�(dy).

We then use this in the following computation:

I =
∫ 1

0
μ+(x)U−(dx) < ∞ =

∫ 1

0

∫ 1

x
U−(y − x)�(dy)U−(dx)

=
∫ 1

0
�(dy)

∫ y

0
U−(y − x)U−(dx) =

∫ 1

0
U∗2− (y)�(dy).

Next, we recall that the potential function U−(x) is increasing in x. This is enough
to show that

(
U−(y/2)

)2 ≤ U∗2− (y) =
∫ y

0
U−(y − x)U−(dx) ≤ (U−(y))2.

Moreover, since X oscillates, H− is an unkilled subordinator with zero drift and
we have that U−(y) ≈ y/A(y), where A(y) = ∫ y

0 μ(−)(s) ds satisfies A(y)/2 ≤
A(y/2) ≤ A(y). This implies that U−(y) ≈ U−(y/2) and therefore that U∗2− (y) ≈
(U−(y))2. We therefore conclude that

I =
∫ 1

0
U∗2− (y)�(dy) < ∞ ⇐⇒

∫ 1

0

y2�(dy)

A(y)2 < ∞.
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Next, we need the “équation amicale intégrée” of Vigon (see [4]), which, in our
case, takes the form

�(−)(x) =
∫ 1

x
�(−)(y) dy =

∫ 1

0
μ(+)(y)μ(−)(x + y)dy + δ+μ(−)(x).

Our assumptions imply that �(−)(0+) > 0. If �(−)(0+) < ∞, then it is obvi-
ous that 0 < μ(−)(0+) < ∞, and if �(−)(0+) = ∞, it is easy to deduce that
μ(−)(0+) = ∞. Then, from dominated convergence, it follows that

lim
x↓0

�(−)(x)

μ(−)(x)
= δ+.

Thus, in both cases, A(y) ≈ ∫ y
0 �(−)(z) dz and the result follows. �

PROOF OF THEOREM 1. We have already covered all cases except those hav-
ing σ = 0 and �(R+) = �(R−) = ∞. By the standard argument, we can find
another process, X̃, which oscillates and whose Lévy measure �̃ agrees with �

on (−1,1) and is supported by [−1,1], and is such that a PRI exists for X iff
a PRI exists for X̃. Note that �̃([−1,0)) = �̃((0,1])) = ∞ and that, in the ob-
vious notation, J̃ < ∞ iff J < ∞. Proposition 7 and Lemma 9 then apply and
show that a PRI exists iff δ+ > 0 and J < ∞. If X has bounded variation, then
�(−)(0+) ∈ (0,∞), and J = ∞ is then automatic. If X has unbounded variation,
then, as previously noted, J < ∞ implies δ+ > 0 and this completes the proof. �

PROOF OF COROLLARY 4. Since �−(x) ≈ x−α , where 1 < α < 2, we are in
the unbounded variation case and we need only check the value of the integral (6).
Clearly,

∫ x
0

∫ 1
y �(−)(s) ds dy ≈ x2−α , so this reduces to checking whether
∫ 1

0
x2α−2�(dx) = (2α − 2)

∫ 1

0
x2α−3�+(x) dx < ∞

and this holds iff β < 2α − 2. �

REMARK 10. A similar calculation for the integral L in (7) shows that in this
example, X creeps upward iff β < α.

3. The excursion measure. Evans [3] and Winkel [5] both observed that we
can associate an excursion theory with K .

They introduced �t = inf{x :Kx > t}, Z = X−� and showed that Z is a strong
Markov process with � as a local time at zero. It is clear that excursions away
from 0 of Z evolve in the same way as excursions away from 0 of X, namely, they
have the same semigroup, but their entrance laws will be different. For example, if
X = B , then all excursions of Z are negative and the characteristic measure nZ is
nX restricted to negative excursion paths.
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Winkel showed that when σ > 0, nZ is the restriction of nX to the set of ex-
cursion paths which start negative. (To do this, he had to demonstrate that all
excursion paths either start negative or start positive, that is, cannot leave 0 in an
oscillatory fashion.) Therefore, nZ is absolutely continuous w.r.t. nX .

However, this depends on both δ+ and δ− being positive. When σ = 0 and
δ+ > 0, we have δ− = 0, which means that excursions of X have to return to 0
from below. By time reversal, this means that they must start positive and since
excursions of Z start negative, the two measures must be mutually singular when-
ever σ = 0. We believe that the problem of describing the excursion measure nZ

in this case is both interesting and difficult.
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