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DISCUSSION OF: BROWNIAN DISTANCE COVARIANCE

BY ANDREY FEUERVERGER

University of Toronto

Concepts of dependence are central in the theory of statistics and to most of its
applications. It is therefore a pleasure to commend the authors—hereafter SR—for
their theoretical contributions to our understanding of some of its subtler aspects,
and for their provocatively interesting data analysis examples.

Standard measures, such as the product moment correlation, Spearman’s rank
correlation, Kendall’s tau or Fisher–Yates’ normal scores statistic, are all deficient.
These only measure dependence of a “monotone character” and will not be effec-
tive even in such simple situations as when Y has a nonmonotone regression on X

and X is sampled randomly. Another simple example where such measures fail is
when Xi = ViZi and Yi = ViZ

′
i , where the “innovations” Zi , Z′

i are, say, indepen-
dent standard normal variates, but the Xi , Yi share a common random scaling Vi ;
such structures arise in the stochastic volatility models of finance.

Owing to their importance, consistent measures of dependence—and, in partic-
ular, measures which in principle admit sample analogues on the basis of which
tests consistent against all dependence alternatives can be constructed—have ap-
peared previously, and at least as far back as Renyi (1953). Renyi’s measure has, of
course, ideal theoretical properties, but implementing its sample analogues is not
straightforward, and for that reason it has not become a mainstay in applications.
[See, e.g., Buja (1990).] In that respect the dependence measure (which predate’s
Renyi’s) introduced by Hoeffding (1948), and later rediscovered in a more trans-
parent form by Blum, Keifer and Rosenblatt (1961), has been more successful. See
also Csörgő (1985).

There is also some precedent for the measures proposed at (2.4) and (2.6) in
SR (at least for the case when α = 1), although these appear here in a substan-
tially extended form, and based on a novel approach with fresh interpretations. For
example, Feuerverger (1993)—hereafter F93—proposed measures based on

∫ ∫ |f n
X,Y (s, t) − f n

X(s)f n
Y (t)|2

(1 − e−s2
)(1 − e−t2

)
W(s, t) ds dt,(1)

with W(s, t) a suitable weight function. In F93, the denominator term in (1) was
suggested on the basis of its being (proportional to) the limiting variance of the
term within the modulus in the numerator, under the null hypothesis of indepen-
dence in the case of standard normality. The ratio within the integral in (1) is
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defined by continuity at the limiting values of s = 0 and/or t = 0. Using the bell-
shaped weight function

W(s, t) =
(

1 − e−s2

s2

)(
1 − e−t2

t2

)
(2)

leads to the form (2.6) of SR. In fact, simple modifications to the weight func-
tion (2) can lead to interesting and potentially useful variants of the T1, T2, T3 sta-
tistics defined by SR at (2.11), wherein the absolute value functions are replaced
by more general functions; see, for example, the computations leading up to (4.11)
in F93. It should be noted, however, that in F93 the variates X and Y are univari-
ate, while SR deal with the case where these are random vectors of dimensions p

and q .
The case of univariate X and Y affords another advantage, and, in particular,

with respect to desiderata one might wish to place on a dependence measure. Thus,
it is desirable that a dependence measure should not require moment conditions
on the variables—not even a finite first moment. And second, it is desirable to
go beyond the stated scale invariance (X,Y ) → (εX, εY ), not only so as to al-
low the values of ε applied to X and Y to differ, but also to have the invariance
(X,Y ) → (φ(X),ψ(Y )) with respect to strictly monotone transformations φ and
ψ . In the univariate case, this may be achieved by replacing the X’s and Y ’s by,
say, their normal scores. [In fact, this is the reason behind the choice of denomina-
tor in (1).] The resulting rank-type test will then also have the advantage of being
H0-distribution free as SR note in Section 4.3. Furthermore, since the empirical
marginal distributions will then no longer be random, the term T3 in (2.11) of SR
can then be dispensed with, while the term T2 can be reduced, resulting in sub-
stantially simplified computations. Of related note, the representation (2.8) of SR
is particularly interesting.

While it would certainly be of interest to examine what can be done along such
lines when X and Y are not restricted to be univariate, there is a further problem
of a multivariate character that arises. This refers to the case where we seek to
assess mutual independence among more than two variables, for example X, Y

and Z, with each of these being either univariate or multivariate. This problem
was alluded to briefly in F93, and perhaps some progress may be possible on the
basis of decompositions along lines indicated, for example, in Deheuvels (1981).
However, this further multivariate problem still remains largely unresolved.

Progress sometimes consists of seeing a familiar object in a totally new way,
and the notion of Brownian covariance—as indeed of covariances relative to other
stochastic processes, particularly the fractional Brownian motions—introduced in
this article by SR is particularly novel. Certainly the fact that W should equal V
seems at least as surprising as SR purport it to be. But no small part of that surprise
stems from the fact that Brownian covariance should lead to a statistic that happens
to be consistent against all alternatives. Why should this have happened? What
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role does normality of the process play in it? Could the essential condition for
consistency be that the process be of full rank in the sense of requiring a complete
set of basis functions to represent it? Or is it enough that some separating class of
functions [e.g., Breiman (1968), page 165ff] should underly the process in some
sense? Here SR leave us with a nice mystery which seems surely worthwhile to try
to resolve.
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CSÖRGŐ, S. (1985). Testing independence by the empirical characteristic function. J. Multivariate

Anal. 16 290–299. MR0793494
DEHEUVELS, P. (1981). An asymptotic decomposition for multivariate distribution-free tests of in-

dependence. J. Multivariate Anal. 11 102–113. MR0612295
FEUERVERGER, A. (1993). A consistent test for bivariate dependence. Int. Statist. Rev. 61 419–433.
HOEFFDING, W. (1948). A non-parametric test of independence. Ann. Math. Statist. 19 546–557.

MR0029139
Renyi, A. (1953). On measures of dependence. Acta Math. Hungar. 10 441–451.

DEPARTMENT OF STATISTICS

UNIVERSITY OF TORONTO

180 ST. GEORGE STREET

TORONTO, ONTARIO

CANADA M55 363
E-MAIL: andrey@utstat.toronto.edu

http://www.ams.org/mathscinet-getitem?mr=0125690
http://www.ams.org/mathscinet-getitem?mr=0229267
http://www.ams.org/mathscinet-getitem?mr=1062698
http://www.ams.org/mathscinet-getitem?mr=0793494
http://www.ams.org/mathscinet-getitem?mr=0612295
http://www.ams.org/mathscinet-getitem?mr=0029139
mailto:andrey@utstat.toronto.edu

	References
	Author's Addresses

