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Abstract. We consider a large class of piecewise expanding maps T of [0,1] with a neutral fixed point, and their associated
Markov chains Yi whose transition kernel is the Perron–Frobenius operator of T with respect to the absolutely continuous invariant
probability measure. We give a large class of unbounded functions f for which the partial sums of f ◦T i satisfy both a central limit
theorem and a bounded law of the iterated logarithm. For the same class, we prove that the partial sums of f (Yi) satisfy a strong
invariance principle. When the class is larger, so that the partial sums of f ◦ T i may belong to the domain of normal attraction of
a stable law of index p ∈ (1,2), we show that the almost sure rates of convergence in the strong law of large numbers are the same
as in the corresponding i.i.d. case.

Résumé. On considère une classe de transformations dilatantes T de [0,1] ayant un point fixe neutre, ainsi que les chaînes de
Markov associées Yi , dont le noyau de transition est l’opérateur de Perron–Frobenius de T par rapport à l’unique mesure de
probabilité T -invariante possédant une densité. On montre une loi du logarithme itéré bornée pour les sommes partielles de f ◦T i ,
lorsque f appartient à une classe de fonctions non bornées. Pour la même classe, on montre un principe d’invariance fort pour les
sommes partielles de f (Yi). Lorsqu’on élargit la classe de fonctions, jusqu’à inclure des fonctions f pour lesquelles les sommes
partielles de f ◦ T i appartiennent au domaine d’attraction normal d’une loi stable d’indice p ∈ (1,2), on montre que les vitesses
de convergence dans la loi forte des grands nombres sont les même que dans le cas i.i.d. correspondant.
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1. Introduction and main results

1.1. Introduction

The Pomeau–Manneville map is an explicit map of the interval [0,1], with a neutral fixed point at 0 and a prescribed
behavior there. The statistical properties of this map are very well known when one considers Hölder continuous
observables, but much less is known for more complicated observables.

Our goal in this paper is twofold. First, we obtain optimal bounds for the behavior of functions of bounded variation
with respect to iteration of the Pomeau–Manneville map. Second, we use these bounds to get a bounded law of the
iterated logarithm for a very large class of observables, that previous techniques were unable to handle.

Since we use bounded variation functions, our arguments do not rely on any kind of Markov partition for the
map T . Therefore, it turns out that our results hold for a larger class of maps, that we now describe.
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Fig. 1. The graph of a GPM map, with d = 4.

Definition 1.1. A map T : [0,1] → [0,1] is a generalized Pomeau–Manneville map (or GPM map) of parameter
γ ∈ (0,1) if there exist 0 = y0 < y1 < · · · < yd = 1 such that, writing Ik = (yk, yk+1),

1. The restriction of T to Ik admits a C1 extension T(k) to Ik .
2. For k ≥ 1, T(k) is C2 on Ik , and |T ′

(k)| > 1.

3. T(0) is C2 on (0, y1], with T ′
(0)(x) > 1 for x ∈ (0, y1], T ′

(0)(0) = 1 and T ′′
(0)(x) ∼ cxγ−1 when x → 0, for some

c > 0.
4. T is topologically transitive.

The third condition ensures that 0 is a neutral fixed point of T , with T (x) = x + c′x1+γ (1 + o(1)) when x → 0.
The fourth condition is necessary to avoid situations where there are several absolutely continuous invariant measures,
or where the neutral fixed point does not belong to the support of the absolutely continuous invariant measure.

A well-known GPM map is the original Pomeau–Manneville map [21]. The Liverani–Saussol–Vaienti [16] map

Tγ (x) =
{

x
(
1 + 2γ xγ

)
, if x ∈ [0,1/2],

2x − 1, if x ∈ (1/2,1],
is also a much studied GPM map of parameter γ . Both of them have a Markov partition, but this is not the case in
general for GPM maps as defined above (see for instance Fig. 1).

Theorem 1 in Zweimüller1 [29] shows that a GPM map T admits a unique absolutely continuous invariant prob-
ability measure ν, with density hν . Moreover, it is ergodic, has full support, and hν(x)/x−γ is bounded from above
and below.

From the ergodic theorem, we know that Sn(f ) = n−1 ∑n−1
i=0 (f ◦ T i − ν(f )) converges almost everywhere to 0

when the function f : [0,1] → R is integrable. If f is Hölder continuous, the behavior of Sn(f ) is very well under-
stood, thanks to Young [28] and Melbourne–Nicol [17]: these sums satisfy the almost sure invariance principle for
γ < 1/2 (in particular, the central limit theorem and the law of the iterated logarithm hold). For the Liverani–Saussol–
Vaienti map, Gouëzel [9] shows that, when γ ∈ (1/2,1) and f is Lipschitz continuous, Sn(f ) suitably renormalized
converges to a Gaussian law (resp. a stable law) if f (0) = ν(f ) (resp. f (0) �= ν(f )).

On the other hand, when f is less regular, much less is known. If f has finitely many discontinuities and is
otherwise Hölder continuous, the construction of Young [28] could be adapted to obtain a tower avoiding the discon-
tinuities of f – the almost sure invariance principle follows when γ < 1/2. However, functions with countably many

1This theorem does not apply directly to our maps since they do not satisfy its assumption (A). However, this assumption is only used to show that

the jump transformation T̃ satisfies (AFU), and this follows in our setting from the distortion estimates of Lemma 5 in Young [28].
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discontinuities are not easily amenable to the tower method, and neither are very simple unbounded functions such
as g(x) = ln |x − x0| or ga(x) = |x − x0|a for any x0 �= 0. This is far less satisfactory than the i.i.d. situation, where
optimal moment conditions for the invariance principle or the central limit theorem are known, and it seems espe-
cially interesting to devise new methods than can handle functions under moment conditions as close to the optimum
as possible.

For the Liverani–Saussol–Vaienti maps, using martingale techniques, Dedecker and Prieur [3] proved that the
central limit theorem holds for a much larger class of functions (including all the functions of bounded variation
and several piecewise monotonic unbounded discontinuous functions, for instance the functions g and ga above up
to the optimal value of a) – our arguments below show that their results in fact hold for all GPM maps, not only
Markovian ones. Our main goal in this article is to prove the bounded law of the iterated logarithm for the same class
of functions. We shall also make use of martingale techniques, but we will also need a more precise control on the
behavior of bounded variation functions under the iteration of GPM maps.

The main steps of our approach are the following:

1. The main probabilistic tool. Let (Y1, Y2, . . .) be an arbitrary stationary process. We describe in Section 1.3 a co-
efficient α which measures (in a weak way) the asymptotic independence in this process, and was introduced in
Rio [23]. It is weaker than the usual mixing coefficient of Rosenblatt [24], since it only involves events of the form
{Yi ≤ xi}, xi ∈ R. In particular, it can tend to 0 for some processes that are not Rosenblatt mixing (this will be the
case for the processes to be studied below). Thanks to its definition, α behaves well under the composition with
monotonic maps of the real line. This coefficient α contains enough information to prove the maximal inequality
stated in Proposition 1.11, by following the approach of Merlevède [18]. In turn, this inequality implies (a state-
ment more precise than) the bounded law of the iterated logarithm given in Theorem 1.13, for processes of the
form (f (Y1), f (Y2), . . .) where (Y1, Y2, . . .) has a well behaved α coefficient, and f belongs to a large class of
functions.

2. The main dynamical tool. Let K denote the Perron–Frobenius operator of T with respect to ν, given by

Kf (x) = 1

h(x)

∑
T (y)=x

h(y)

|T ′(y)|f (y), (1.1)

where h is the density of ν. For any bounded measurable functions f , g, it satisfies ν(f ·g ◦T ) = ν(K(f )g). Since
ν is invariant by T , one has K(1) = 1, so that K is a Markov operator. Following the approach of Gouëzel [12],
we will study the operator K on the space BV of bounded variation functions, show that its iterates are uniformly
bounded, and estimate the contraction of Kn from BV to L1 (in Propositions 1.15 and 1.16).

3. Let us denote by (Yi)i≥1 a stationary Markov chain with invariant measure ν and transition kernel K . Since the
mixing coefficient α involves events of the form {Yi ≤ xi}, it can be read from the behavior of K on BV. Therefore,
the previous estimates yield a precise control of the coefficient α of this process. With Theorem 1.13, this gives a
bounded law of the iterated logarithm for the process (f (Y1), f (Y2), . . .).

4. It is well known that on the probability space ([0,1], ν), the random variable (f,f ◦T , . . . , f ◦T n−1) is distributed
as (f (Yn), f (Yn−1), . . . , f (Y1)). Since there is a phenomenon of time reversal, the law of the iterated logarithm
for (f (Y1), f (Y2), . . .) does not imply the same result for (f,f ◦ T , . . .). However, the technical statement of
Theorem 1.13 is essentially invariant under time reversal, and therefore also gives a bounded law of the iterated
logarithm for Sn(f ).

In the next three paragraphs, we describe our results more precisely. The proofs are given in the remaining sections.

Remark 1.2. The class of maps covered by our results could be further extended, as follows. First, we could allow
finitely many neutral fixed point, instead of a single one (possibly with different behaviors). Second, we could allow
infinitely many monotonicity branches for T if, away from the neutral fixed points, the quantity |T ′′|/(T ′)2 remains
bounded, and the set {T (Z)}, for Z a monotonicity interval, is finite (this is for instance satisfied if all branches but
finitely many are onto). Finally, we could drop the topological transitivity.

The ergodic properties of this larger class of maps is fully understood thanks to the work of Zweimüller [29]: there
are finitely many invariant measures instead of a single one, and the support of each of these measures is a finite
union of intervals. Our arguments still apply in this broader context, although notations and statements become more
involved. For the sake of simplicity, we shall only consider the class of GPM maps (which is already quite large).
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1.2. Statements of the results for intermittent maps

Definition 1.3. A function H from R+ to [0,1] is a tail function if it is nonincreasing, right continuous, converges to
zero at infinity, and x 
→ xH(x) is integrable.

Definition 1.4. If μ is a probability measure on R and H is a tail function, let Mon(H,μ) denote the set of functions
f : R → R which are monotonic on some open interval and null elsewhere and such that μ(|f | > t) ≤ H(t). Let
F (H,μ) be the closure in L

1(μ) of the set of functions which can be written as
∑L

�=1 a�f�, where
∑L

�=1 |a�| ≤ 1 and
f� ∈ Mon(H,μ).

Note that a function belonging to F (H,μ) is allowed to blow up at an infinite number of points. Note also that
any function f with bounded variation (BV) such that |f | ≤ M1 and ‖df‖ ≤ M2 belongs to the class F (H,μ) for
any μ and the tail function H = 1[0,M1+2M2) (here and henceforth, ‖df‖ denotes the variation norm of the signed
measure df ). Moreover, if a function f is piecewise monotonic with N branches, then it belongs to F (H,μ) for
H(t) = μ(|f | > t/N). Finally, let us emphasize that there is no requirement on the modulus of continuity for functions
in F (H,μ)

Our first result is a bounded law of the iterated logarithm, when 0 < γ < 1/2.

Theorem 1.5. Let T be a GPM map with parameter γ ∈ (0,1/2) and invariant measure ν. Let H be a tail function
with ∫ ∞

0
x
(
H(x)

)(1−2γ )/(1−γ ) dx < ∞. (1.2)

Then, for any f ∈ F (H, ν), the series

σ 2 = ν
((

f − ν(f )
)2) + 2

∑
k>0

ν
((

f − ν(f )
)
f ◦ T k

)
converges absolutely to some nonnegative number. Moreover,

1. There exists a nonnegative constant A such that

∞∑
n=1

1

n
ν

(
max

1≤k≤n

∣∣∣∣∣
k−1∑
i=0

(
f ◦ T i − ν(f )

)∣∣∣∣∣ ≥ A

√
n ln

(
ln(n)

))
< ∞, (1.3)

and consequently2

lim sup
n→∞

1√
n ln(ln(n))

∣∣∣∣∣
n−1∑
i=0

(
f ◦ T i − ν(f )

)∣∣∣∣∣ ≤ A, almost everywhere.

2. Let (Yi)i≥1 be a stationary Markov chain with transition kernel K and invariant measure ν, and let Xi = f (Yi) −
ν(f ). Enlarging if necessary the underlying probability space, there exists a sequence (Zi)i≥1 of i.i.d. Gaussian
random variables with mean zero and variance σ 2 such that∣∣∣∣∣

n∑
i=1

(Xi − Zi)

∣∣∣∣∣ = o
(√

n ln
(
ln(n)

))
, almost surely. (1.4)

In particular, we infer that the bounded law (1.3) holds for any BV function f provided that γ < 1/2. Note also
that (1.2) is satisfied provided that H(x) ≤ Cx−2(1−γ )/(1−2γ )(ln(x))−b for x large enough and b > (1 − γ )/(1 − 2γ ).
Let us consider two simple examples. Since the density hν of ν is such that hν(x) ≤ Cx−γ on (0,1], one can easily
prove that:

2See e.g. Stout [26], Chapter 5.
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1. If f is positive and nonincreasing on (0, 1), with

f (x) ≤ C

x(1−2γ )/2| ln(x)|b near 0, for some b > 1/2,

then (1.3) and (1.4) hold.
2. If f is positive and nondecreasing on (0, 1), with

f (x) ≤ C

(1 − x)(1−2γ )/(2−2γ )| ln(1 − x)|b near 1, for some b > 1/2,

then (1.3) and (1.4) hold.

In fact, if f ∈ F (H, ν) for some H satisfying (1.2) then the central limit theorem and the weak invariance principle
hold. This can be easily deduced from the proof of Theorem 4.1 in Dedecker and Prieur [3] and by using the upper
bound for the coefficient α1,Y(k) given in Proposition 1.17 (which improves on the corresponding bound in Dedecker
and Prieur [3]). Hence, if f is as in Item 1 above, both the central limit theorem and the bounded law of the iterated
logarithm hold.

An open question is: can we obtain the almost sure invariance principle (1.4) for the sequence (f ◦ T i)i≥0 instead
of (f (Yi))i≥1? According to the discussion in Melbourne and Nicol [17], this appears to be a rather delicate question.
Indeed, to obtain Item 2 of Theorem 1.5, we use first a maximal inequality for the partial sums

∑k
i=1 f (Yi) and next

a result by Volný and Samek [27] on the approximating martingale. As pointed out by Melbourne and Nicol (cf. [17],
Remark 1.1), we cannot go back to the sequence (f ◦ T i)i≥0, because the system is not closed under time reversal.
Using another approach, going back to Philipp and Stout [19] and Hofbauer and Keller [15], Melbourne and Nicol
[17] have proved the almost sure invariance principle for (f ◦ T i)i≥0 when γ < 1/2 and f is any Hölder continuous
function, with a better error bound O(n1/2−ε) for some ε > 0. As a consequence, their result imply the functional law
of the iterated logarithm for Hölder continuous function, which is much more precise than the bounded law. However,
our approach is clearly distinct from that of Melbourne and Nicol [17], for we cannot deduce the control (1.3) from
an almost sure invariance principle.

In the next theorem, we give rates of convergence in the strong law of large numbers under weaker conditions than
(1.2), which do not imply the central limit theorem.

Theorem 1.6. Let 1 < p < 2 and 0 < γ < 1/p. Let T be a GPM map with parameter γ and invariant measure ν. Let
H be a tail function with∫ ∞

0
xp−1(H(x)

)(1−pγ )/(1−γ ) dx < ∞. (1.5)

Then, for any f ∈ F (H, ν) and any ε > 0, one has

∞∑
n=1

1

n
ν

(
max

1≤k≤n

∣∣∣∣∣
k−1∑
i=0

(
f ◦ T i − ν(f )

)∣∣∣∣∣ ≥ n1/pε

)
< ∞. (1.6)

Consequently, n−1/p
∑n−1

k=0(f ◦ T i − ν(f )) converges to 0 almost everywhere.

Note that (1.5) is satisfied provided that H(x) ≤ Cx−p(1−γ )/(1−pγ )(ln(x))−b for x large enough and b > (1 −
γ )/(1 − pγ ). For instance, one can easily prove that, for 1 < p < 2 and 0 < γ < 1/p,

1. If f is positive and nonincreasing on (0,1), with

f (x) ≤ C

x(1−pγ )/p| ln(x)|b near 0, for some b > 1/p,

then (1.6) holds.
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2. If f is positive and nondecreasing on (0,1), with

f (x) ≤ C

(1 − x)(1−pγ )/(p−pγ )| ln(1 − x)|b near 1, for some b > 1/p,

then (1.6) holds.

The condition (1.5) of Theorem 1.6 means exactly that the probability μH,p,γ on R+ such that μH,p,γ ((x,∞)) =
(H(x))(1−pγ )/(1−γ ) has a moment of order p. Let us see what happen if we only assume that μH,p,γ has a weak
moment of order p.

Theorem 1.7. Let 1 < p ≤ 2 and 0 < γ < 1/p. Let T be a GPM map with parameter γ and invariant measure ν. Let
H be a tail function with(

H(x)
)(1−pγ )/(1−γ ) ≤ Cx−p. (1.7)

Then, for any f ∈ F (H, ν), any b > 1/p and any ε > 0, one has

∞∑
n=1

1

n
ν

(
max

1≤k≤n

∣∣∣∣∣
k−1∑
i=0

(
f ◦ T i − ν(f )

)∣∣∣∣∣ ≥ n1/p
(
ln(n)

)b
ε

)
< ∞. (1.8)

Consequently, n−1/p(ln(n))−b
∑n−1

i=0 (f ◦ T i − ν(f )) converges to 0 almost everywhere.

Applying Theorem 1.7, one can easily prove that, for 1 < p ≤ 2 and 0 < γ < 1/p,

1. If f is positive and nonincreasing on (0,1), with f (x) ≤ Cx−(1−pγ )/p then (1.8) holds.
2. If f is positive and nondecreasing on (0,1), with f (x) ≤ C(1 − x)−(1−pγ )/(p−pγ ) then (1.8) holds.

This requires additional comments. Gouëzel [9] proved that if f is exactly of the form f (x) = x−(1−pγ )/p for
1 < p < 2 and 0 < γ < 1/p, then n−1/p

∑n−1
i=0 (f ◦ T i − ν(f )) converges in distribution on ([0,1], ν) to a centered

one-sided stable law of index p, that is a stable law whose distribution function F (p) is such that xpF (p)(−x) → 0
and xp(1 − F (p)(x)) → c, as x → ∞, with c > 0. Our theorem shows that n−1/p(ln(n))−b(

∑n−1
i=0 (f ◦ T i − ν(f )))

converges almost everywhere to zero for b > 1/p. This is in total accordance with the i.i.d. situation, as we describe
now. Let (Xi)i≥1 be a sequence of i.i.d. centered random variables satisfying n−1/p(X1 + · · · + Xn) → F (p). It is
well known (see for instance Feller [6], p. 547) that this is equivalent to xp

P(X1 < −x) → 0 and xp
P(X1 > x) → c

as x → ∞. For any nondecreasing sequence (bn)n≥1 of positive numbers, either (X1 + · · · + Xn)/bn converges to
zero almost surely or lim supn→∞ |X1 + · · · + Xn|/bn = ∞ almost surely, according as

∑∞
n=1 P(|X1| > bn) < ∞ or∑∞

n=1 P(|X1| > bn) = ∞ – this follows from the proof of Theorem 3 in Heyde [14]. If one takes bn = n1/p(ln(n))b

we obtain the constraint b > 1/p for the almost sure convergence of n−1/p(ln(n))−b(X1 + · · · + Xn) to zero. This is
exactly the same constraint as in our dynamical situation.

Let us comment now on the case p = 2. In his paper, Gouëzel [9] also proved that if f is exactly of the form
f (x) = x−(1−2γ )/2 then the central limit theorem holds with the normalization

√
n ln(n). As mentioned above such

an f belongs to the class F (H, ν) for some H satisfying (1.7) with p = 2, which means that μH,2,γ has a weak
moment of order 2. This again is in accordance with the i.i.d. situation. Let (Xi)i≥1 be a sequence of i.i.d. centered
random variables such that x2

P(X1 < −x) → c1 and x2
P(X1 > x) → c2 as x tends to infinity, with c1 + c2 = 1. Then

(n ln(n))−1/2(X1 + · · · + Xn) converges in distribution to a standard Gaussian distribution, but according to Theorem
1 in Feller [7],

lim sup
n→∞

1√
n ln(n) ln(ln(n))

n∑
i=1

Xi = ∞.

Moreover, if (bn)n≥1 is a nondecreasing sequence such that bn/
√

n ln(n) ln(ln(n)) → ∞ (plus the mild conditions
(2.1) and (2.2) in Feller’s paper), then either (X1 +· · ·+Xn)/bn converges to zero almost surely or lim supn→∞ |X1 +
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· · · + Xn|/bn = ∞ almost surely, according as
∑∞

n=1 P(|X1| > bn) < ∞ or
∑∞

n=1 P(|X1| > bn) = ∞. If one takes
bn = n1/2(ln(n))b we obtain the constraint b > 1/2 for the almost sure convergence of n−1/2(ln(n))−b(X1 +· · ·+Xn)

to zero. This is exactly the same constraint as in our dynamical situation.

1.3. A general result for stationary sequences

Before stating the maximal inequality proved in this paper, we shall introduce some definitions and notations.

Definition 1.8. For any nonnegative random variable X, define the “upper tail” quantile function QX by QX(u) =
inf{t ≥ 0: P(X > t) ≤ u}.

This function is defined on [0,1], nonincreasing, right continuous, and has the same distribution as X. This makes
it very convenient to express the tail properties of X using QX . For instance, for 0 < ε < 1, if the distribution of X

has no atom at QX(ε), then

E(X1X>QX(ε)) = sup
P(A)≤ε

E(X1A) =
∫ ε

0
QX(u)du.

Definition 1.9. Let μ be the probability distribution of a random variable X. If Q is an integrable quantile function,
let M̃on(Q,μ) be the set of functions g which are monotonic on some open interval of R and null elsewhere and such
that Q|g(X)| ≤ Q. Let F̃ (Q,μ) be the closure in L

1(μ) of the set of functions which can be written as
∑L

�=1 a�f�,
where

∑L
�=1 |a�| ≤ 1 and f� belongs to M̃on(Q,μ).

This definition is similar to Definition 1.4, we only use quantile functions instead of tail functions. There is in fact
a complete equivalence between these two points of view: if Q is a quantile function and H is its càdlàg inverse, then
M̃on(Q,μ) = Mon(H,μ) and F̃ (Q,μ) = F (H,μ).

Let now (Ω, A,P) be a probability space, and let θ :Ω 
→ Ω be a bijective bimeasurable transformation preserving
the probability P. Let M0 be a sub-σ -algebra of A satisfying M0 ⊆ θ−1(M0).

Definition 1.10. For any integrable random variable X, let us write X(0) = X − E(X). For any random variable
Y = (Y1, . . . , Yk) with values in R

k and any σ -algebra F , let

α(F , Y ) = sup
(x1,...,xk)∈Rk

∥∥∥∥∥E

(
k∏

j=1

(1Yj ≤xj
)(0)

∣∣∣F
)(0)∥∥∥∥∥

1

.

For a sequence Y = (Yi)i∈Z, where Yi = Y0 ◦ θi and Y0 is an M0-measurable and real-valued random variable, let

αk,Y(n) = max
1≤l≤k

sup
n≤i1≤···≤il

α
(

M0, (Yi1 , . . . , Yil )
)
. (1.9)

The following maximal inequality is crucial for the proof of Theorem 1.13 below.

Proposition 1.11. Let Xi = f (Yi) − E(f (Yi)), where Yi = Y0 ◦ θi and f belongs to F̃ (Q,PY0) (here, PY0 denotes
the distribution of Y0, and Q is a square integrable quantile function). Define the coefficients α1,Y(n) and α2,Y(n) as
in (1.9). Let n ∈ N. Let

R(u) = (
min

{
q ∈ N: α2,Y(q) ≤ u

} ∧ n
)
Q(u) and S(v) = R−1(v) = inf

{
u ∈ [0,1]: R(u) ≤ v

}
.

Let Sn = ∑n
k=1 Xk . For any x > 0, r ≥ 1, and sn > 0 with s2

n ≥ 4n
∑n−1

i=0

∫ α1,Y(i)

0 Q2(u)du, one has

P

(
sup

1≤k≤n

|Sk| ≥ 5x
)

≤ 4 exp

(
− r2s2

n

8x2
h

(
2x2

rs2
n

))
+ n

(
6

x
+ 16x

rs2
n

)∫ S(x/r)

0
Q(u)du, (1.10)

where h(u) := (1 + u) ln(1 + u) − u.
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Remark 1.12. Note that a similar bound for α-mixing sequences in the sense of Rosenblatt [24] has been proved in
Merlevède [18], Theorem 1. Since h(u) ≥ u ln(1 + u)/2, under the notation and assumptions of the above theorem,
we get that for any x > 0 and r ≥ 1,

P

(
sup

1≤k≤n

|Sk| ≥ 5x
)

≤ 4

(
1 + 2x2

rs2
n

)−r/8

+ n

(
6

x
+ 16x

rs2
n

)∫ S(x/r)

0
Q(u)du. (1.11)

Theorem 1.5 is in fact a corollary of the following theorem, which gives both a precise control of the tail of the
partial sums by applying Proposition 1.11, and a strong invariance principle for the partial sums.

Let I be the σ -algebra of all θ -invariant sets. The map θ is P-ergodic if each element of I has measure 0 or 1.

Theorem 1.13. Let Yi , Xi and Sn be as in Proposition 1.11. Assume that the following condition is satisfied:

∑
k≥1

∫ α2,Y(k)

0
Q2(u)du < ∞. (1.12)

Then the series σ 2 = ∑
k∈Z

Cov(X0,Xk) converges absolutely to some nonnegative number σ 2, and

∑
n>0

1

n
P

(
sup

k∈[1,n]
|Sk| ≥ A

√
2n ln

(
ln(n)

))
< ∞, with A = 20

(∑
k≥0

∫ α1,Y(k)

0
Q2(u)du

)1/2

. (1.13)

Assume moreover that θ is P-ergodic. Then, enlarging Ω if necessary, there exists a sequence (Zi)i≥0 of i.i.d.
Gaussian random variables with mean zero and variance σ 2 such that∣∣∣∣∣Sn −

n∑
i=1

Zi

∣∣∣∣∣ = o
(√

n ln
(
ln(n)

))
, almost surely. (1.14)

Remark 1.14. The strong invariance principle for α-mixing sequences (in the sense of Rosenblatt [24]) given in Rio
[22], Theorem 2, can be easily deduced from (1.14). Note that the optimality of Rio’s result is discussed in Theorem 3
of his paper.

1.4. Dependence coefficients for intermittent maps

Let θ be the shift operator from R
Z to R

Z defined by (θ(x))i = xi+1, and let πi be the projection from R
Z to R

defined by πi(x) = xi . Let Y = (Yi)i≥0 be a stationary real-valued Markov chain with transition kernel K and invariant
measure ν. By Kolmogorov’s extension theorem, there exists a shift-invariant probability P on (RZ, (B(R))Z), such
that π = (πi)i≥0 is distributed as Y. Let M0 = σ(πi, i ≤ 0). We define the coefficient αk,Y(n) of the chain (Yi)i≥0
via its extension (πi)i∈Z: αk,Y(n) = αk,π (n).

Note that these coefficients may be written in terms of the kernel K as follows. Let f (0) = f − ν(f ). For any
nonnegative integers n1, n2, . . . , nk , and any bounded measurable functions f1, f2, . . . , fk , define

K(0)(n1,n2,...,nk)(f1, f2, . . . , fk) = (
Kn1

(
f1K

n2
(
f2K

n3
(
f3 · · ·Knk−1

(
fk−1K

nk (fk)
) · · ·))))(0)

.

Let BV1 be space of bounded variation functions f such that ‖df‖ ≤ 1, where ‖df‖ is the variation norm on R of the
measure df . We have

αk,Y(n) = sup
1≤l≤k

sup
n1≥n,n2≥0,...,nl≥0

sup
f1,...,fl∈BV1

ν
(∣∣K(0)(n1,n2,...,nl )

(
f

(0)
1 , f

(0)
2 , . . . , f

(0)
l

)∣∣). (1.15)

Let us now fix a GPM map T of parameter γ ∈ (0,1). Denote by ν its absolutely continuous invariant probability
measure, and by K its Perron–Frobenius operator with respect to ν. Let Y = (Yi)i≥0 be a stationary Markov chain
with invariant measure ν and transition kernel K .

The following proposition shows that the iterates of K on BV are uniformly bounded.
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Proposition 1.15. There exists C > 0, not depending on n, such that for any BV function f , ‖dKn(f )‖ ≤ C‖df‖.

The following covariance inequality implies an estimate on α1,Y.

Proposition 1.16. There exists B > 0 such that, for any bounded function ϕ, any BV function f and any n > 0∣∣ν(
ϕ ◦ T n · (f − ν(f )

))∣∣ ≤ B

n(1−γ )/γ
‖df‖‖ϕ‖∞. (1.16)

Putting together the last two propositions and (1.15), we obtain the following:

Proposition 1.17. For any positive integer k, there exists a constant C such that, for any n > 0,

αk,Y(n) ≤ C

n(1−γ )/γ
.

Proof. Let f ∈ BV1 and g ∈ BV with ‖g‖∞ ≤ 1. Then, applying Proposition 1.15, we obtain for any n ≥ 0,∥∥d
(
f (0)Kn(g)

)∥∥ ≤ ‖df‖‖g‖∞ + ∥∥dKn(g)
∥∥∥∥f (0)

∥∥∞ ≤ 1 + C‖dg‖. (1.17)

For f1, . . . , fk ∈ BV1, let f = f
(0)
1 Kn2(f

(0)
2 Kn3(f

(0)
3 · · ·Knk−1(f

(0)
k−1K

nk (f
(0)
k )) · · ·). Iterating Inequality (1.17), we

obtain, for any n2, . . . , nk ≥ 0, ‖df‖ ≤ 1 + C + C2 + · · · + Ck−1. Together with the bound (1.15) for αk,Y(n), this
implies that

αk,Y(n) ≤ (
1 + C + C2 + · · · + Ck−1)α1,Y(n).

Now the upper bound (1.16) means exactly that α1,Y(n) ≤ Bn(γ−1)/γ , which concludes the proof of Proposi-
tion 1.17. �

Proposition 1.17 improves on the corresponding upper bound given in Dedecker and Prieur [3]. Let us mention that
this upper bound is optimal: the lower bound αk,Y(n) ≥ C′n(γ−1)/γ was given in Dedecker and Prieur [3] for Liverani–
Saussol–Vaienti maps, and is a consequence in this Markovian context of the lower bound for ν(ϕ ◦ T n · (f − ν(f )))

given by Sarig [25], Corollary 1. Our techniques imply that this lower bound also holds in the general setting of GPM
maps.

In the rest of the paper, we prove the previous results. First, in Section 2, we prove the results of Section 1.3,
which are essentially of probabilistic nature. In Section 3, we study the transfer operator of a GPM map T , to prove
the dynamical results of Section 1.4. Finally, in the last section, we put together all those results (and arguments of
Dedecker and Merlevède [2]) to prove the main theorems of Section 1.2.

In the rest of this paper, C and D are positive constants that may vary from line to line.

2. Proofs of the probabilistic results

2.1. Proof of Proposition 1.11

Assume first that Xi = ∑L
�=1 a�f�(Yi) − ∑L

�=1 a�E(f�(Yi)), with f� belonging to M̃on(Q,PY0) and
∑L

�=1 |a�| ≤ 1.
Let M > 0 and gM(x) = (x ∧ M) ∨ (−M). For any i ≥ 0, we first define

X′
i =

L∑
�=1

a�gM ◦ f�(Yi) −
L∑

�=1

a�E
(
gM ◦ f�(Yi)

)
and X′′

i = Xi − X′
i .

Let S′
n = ∑n

i=1 X′
i and S′′

n = ∑n
i=1 X′′

i . Let q be a positive integer and for 1 ≤ i ≤ [n/q], define the random
variables U ′

i = S′
iq − S′

iq−q and U ′′
i = S′′

iq − S′′
iq−q .
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Let us first show that

max
1≤k≤n

|Sk| ≤ max
1≤j≤[n/q]

∣∣∣∣∣
j∑

i=1

U ′
i

∣∣∣∣∣ + 2qM +
n∑

k=1

∣∣X′′
k

∣∣. (2.1)

If the maximum of |Sk| is obtained for k = k0, then for j0 = [k0/q],

max
1≤k≤n

|Sk| ≤
∣∣∣∣∣

j0∑
i=1

U ′
i

∣∣∣∣∣ +
j0∑

i=1

∣∣U ′′
i

∣∣ +
k0∑

k=qj0+1

∣∣X′
k

∣∣ +
k0∑

k=qj0+1

∣∣X′′
k

∣∣.
Since |X′

k| ≤ 2M
∑L

�=1 |a�| ≤ 2M , and
∑j0

i=1 |U ′′
i | ≤ ∑qj0

k=1 |X′′
k |, this concludes the proof of (2.1).

For all i ≥ 1, let F U
i = Miq , where Mk = θ−k(M0). We define a sequence (Ũi)i≥1 by Ũi = U ′

i − E(U ′
i |F U

i−2).

The sequences (Ũ2i−1)i≥1 and (Ũ2i )i≥1 are sequences of martingale differences with respect respectively to (F U
2i−1)

and (F U
2i ). Substituting the variables Ũi to the initial variables, in the inequality (2.1), we derive the following upper

bound

max
1≤k≤n

|Sk| ≤ 2qM + max
2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣ + max
1≤2j−1≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i−1

∣∣∣∣∣ +
[n/q]∑
i=1

∣∣U ′
i − Ũi

∣∣ +
n∑

k=1

∣∣X′′
k

∣∣. (2.2)

Since
∑L

�=1 |a�| ≤ 1, |U ′
i | ≤ 2qM almost surely. Consequently |Ũi | ≤ 4qM almost surely. Applying Proposition A.1

of the Appendix with y = 2s2
n , we derive that

P

(
max

2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣ ≥ x

)
≤ 2 exp

(
− s2

n

8(qM)2
h

(
2xqM

s2
n

))

+ P

([[n/q]/2]∑
i=1

E
(
Ũ2

2i |F U
2(i−1)

) ≥ 2s2
n

)
. (2.3)

Since E(Ũ2
2i |F U

2(i−1)) ≤ E((U ′
2i )

2|F U
2(i−1)),

P

([[n/q]/2]∑
i=1

E
(
Ũ2

2i |F U
2(i−1)

) ≥ 2s2
n

)
≤ P

([[n/q]/2]∑
i=1

E
((

U ′
2i

)2|F U
2(i−1)

) ≥ 2s2
n

)
. (2.4)

By stationarity

[[n/q]/2]∑
i=1

E
((

U ′
2i

)2) = [[n/q]/2
]
E

(
S ′

q

)2 = [[n/q]/2
] ∑

|i|≤q

(
q − |i|)E(

X′
0X

′|i|
)
.

Now,

E
(
X′

0X
′|i|

) =
L∑

�=1

L∑
k=1

a�ak Cov
(
gM ◦ f�(Y0), gM ◦ fk(Y|i|)

)
.

Applying Theorem 1.1 in Rio [23] and noticing that Q|gM◦f�(Y|i|)|(u) ≤ Q|f�(Y|i|)|(u) ≤ Q(u), we derive that

∣∣Cov
(
gM ◦ f�(Y0), gM ◦ fk(Y|i|)

)∣∣ ≤ 2
∫ 2ᾱ(gM◦f�(Y0),gM◦fk(Y|i|))

0
Q2(u)du,
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where

ᾱ
(
gM ◦ f�(Y0), gM ◦ fk(Y|i|)

) = sup
(s,t)∈R2

∣∣Cov(1gM◦f�(Y0)≤s ,1gM◦fk(Y|i|)≤t )
∣∣.

Since gM ◦ fk is monotonic on an interval and zero elsewhere, it follows that {gM ◦ fk(x) ≤ t} is either some interval
or the complement of some interval. Hence

ᾱ
(
gM ◦ f�(Y0), gM ◦ fk(Y|i|)

) ≤ 2ᾱ
(
gM ◦ f�(Y0), Y|i|

) ≤ α1,Y
(|i|).

Consequently since
∑L

�=1 |a�| ≤ 1, we get that

E
(
X′

0X
′|i|

) ≤ 2
∫ 2α1,Y(|i|)

0
Q2(u)du ≤ 4

∫ α1,Y(|i|)

0
Q2(u)du, (2.5)

so that

[[n/q]/2]∑
i=1

E
((

U ′
2i

)2) ≤ 4n

q−1∑
i=0

∫ α1,Y(i)

0
Q2(u)du ≤ s2

n.

This bound and Markov’s inequality imply that

P

([[n/q]/2]∑
i=1

E
((

U ′
2i

)2|F U
2(i−1)

) ≥ 2s2
n

)
≤ 1

s2
n

[[n/q]/2]∑
i=1

E
∣∣E((

U ′
2i

)2|F U
2(i−1)

) − E
((

U ′
2i

)2)∣∣. (2.6)

Obviously similar computations allow to treat the quantity max1≤2j−1≤[n/q] |∑j

i=1 Ũ2i−1|. Hence we get that

P

(
max

2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣ + max
1≤2j−1≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i−1

∣∣∣∣∣ ≥ 2x

)
≤ 4 exp

(
− s2

n

8(qM)2
h

(
2xqM

s2
n

))

+ 1

s2
n

[n/q]∑
i=1

E
∣∣E((

U ′
i

)2|M(i−2)q

) − E
((

U ′
i

)2)∣∣.
By stationarity we have

[n/q]∑
i=1

∥∥E
((

U ′
i

)2|M(i−2)q

) − E
((

U ′
i

)2)∥∥
1 ≤ n

q

∥∥E
((

S′
q

)2|M−q

) − E
((

S′
q

)2)∥∥
1

≤ n

q

2q∑
i=q+1

2q∑
j=q+1

∥∥E
(
X′

iX
′
j |M0

) − E
(
X′

iX
′
j

)∥∥
1. (2.7)

Let us now prove that∥∥E
(
X′

iX
′
j |M0

) − E
(
X′

iX
′
j

)∥∥
1 ≤ 16M2α2,Y(q). (2.8)

Setting A := sign{E(X′
iX

′
j |M0) − E(X′

iX
′
j )}, we have that∥∥E

(
X′

iX
′
j |M0

) − E
(
X′

iX
′
j

)∥∥
1

= E
{
A

(
E

(
X′

iX
′
j |M0

) − E
(
X′

iX
′
j

))} = E
(
(A − EA)X′

iX
′
j

)
=

L∑
�=1

L∑
k=1

a�akE
(
(A − EA)

(
gM ◦ f�(Yi) − EgM ◦ f�(Yi)

)(
gM ◦ fk(Yj ) − EgM ◦ fk(Yj )

))
.
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From Proposition 6.1 and Lemma 6.1 in Dedecker and Rio [4], noticing that QA(u) ≤ 1 and Q|gM◦f�(Yi )|(u) ≤ M , we
have that∣∣E(

(A − EA)
(
gM ◦ f�(Yi) − EgM ◦ f�(Yi)

)(
gM ◦ fk(Yj ) − EgM ◦ fk(Yj )

))∣∣
≤ 8M2ᾱ

(
A,gM ◦ f�(Yi), gM ◦ fk(Yj )

)
,

where for real valued random variables A,B,V ,

ᾱ(A,B,V ) = sup
(s,t,u)∈R3

∣∣E((
1A≤s − P(A ≤ s)

)(
1B≤t − P(B ≤ t)

)(
1V ≤u − P(V ≤ u)

))∣∣.
For all i, j ≥ q ,

ᾱ
(
A,gM ◦ f�(Yi), gM ◦ fk(Yj )

) ≤ 4ᾱ(A,Yi, Yj ) ≤ 2α2,Y(q).

This concludes the proof of (2.8). Together with (2.7), this yields

[n/q]∑
i=1

E
∣∣E((

U ′
i

)2|M(i−2)q

) − E
(
U ′

i

)2∣∣ ≤ 16nqM2α2,Y(q). (2.9)

It follows that

P

(
max

2≤2j≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i

∣∣∣∣∣ + max
1≤2j−1≤[n/q]

∣∣∣∣∣
j∑

i=1

Ũ2i−1

∣∣∣∣∣ ≥ 2x

)

≤ 4 exp

(
− s2

n

8(qM)2
h

(
2xqM

s2
n

))
+ 16nqM

s2
n

Mα2,Y(q). (2.10)

Now by using Markov’s inequality, we get that

P

([n/q]∑
i=1

∣∣U ′
i − Ũi

∣∣ +
n∑

k=1

∣∣X′′
k

∣∣ ≥ x

)
≤ 1

x

([n/q]∑
i=1

∥∥E
(
U ′

i |M(i−2)q

)∥∥
1 +

n∑
k=1

∥∥X′′
k

∥∥
1

)
.

By stationarity, we have that

[n/q]∑
i=1

∥∥E
(
U ′

i |M(i−2)q

)∥∥
1 ≤ n

q

2q∑
i=q+1

∥∥E
(
X′

i |M0
)∥∥

1.

Setting A = sign{E(X′
i |M0)}, we get that

∥∥E
(
X′

i |M0
)∥∥

1 = E
(
(A − EA)X′

i

) =
L∑

�=1

a�E
(
(A − EA)

(
gM ◦ f�(Yi) − EgM ◦ f�(Yi)

))
.

Now applying again Theorem 1.1 in Rio [23], and using the fact that Q|gM◦f�(Yi )|(u) ≤ Q(u), we derive that

∣∣E(
(A − EA)

(
gM ◦ f�(Yi) − EgM ◦ f�(Yi)

))∣∣ ≤ 2
∫ 2ᾱ(A,gM◦f�(Yi ))

0
Q(u)du.

Since for all i ≥ q ,

ᾱ
(
A,gM ◦ f�(Yi)

) ≤ 2ᾱ(A,Yi) ≤ α1,Y(i) ≤ α2,Y(i),
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we derive that

∥∥E
(
X′

i |M0
)∥∥

1 ≤ 4
∫ α2,Y(i)

0
Q(u)du, (2.11)

which implies that

P

([n/q]∑
i=1

∣∣U ′
i − Ũi

∣∣ +
n∑

k=1

∣∣X′′
k

∣∣ ≥ x

)
≤ 4n

x

∫ α2,Y(q)

0
Q(u)du + 1

x

n∑
k=1

E
(∣∣X′′

k

∣∣). (2.12)

Then starting from (2.2), if q and M are chosen in such a way that qM ≤ x, we derive from (2.10) and (2.12) that

P

(
max

1≤k≤n
|Sk| ≥ 5x

)
≤ 4 exp

(
− s2

n

8(qM)2
h

(
2xqM

s2
n

))
+ 16nqM

s2
n

Mα2,Y(q)

+ 4n

x

∫ α2,Y(q)

0
Q(u)du + 1

x

n∑
k=1

E
(∣∣X′′

k

∣∣). (2.13)

Now choose v = S(x/r), q = min{q ∈ N: α2,Y(q) ≤ v} ∧ n and M = Q(v). Since R is right continuous, we have
R(S(w)) ≤ w for any w, hence

qM = R(v) = R
(
S(x/r)

) ≤ x/r ≤ x.

Note also that, writing ϕM(x) = (|x| − M)+,

n∑
k=1

E
(∣∣X′′

k

∣∣) ≤ 2
L∑

�=1

|a�|
n∑

k=1

E
(
ϕM

(
f�(Yk)

))
and that QϕM(f�(Yk)) ≤ Q|f�(Yk)|1[0,v] ≤ Q1[0,v]. Consequently

n∑
k=1

E
(∣∣X′′

k

∣∣) ≤ 2
L∑

�=1

|a�|
n∑

k=1

∫ v

0
Q|f�(Yk)|(u)du ≤ 2n

∫ v

0
Q(u)du. (2.14)

Assume first q < n. The choice of q then implies that α2,Y(q) ≤ v and Mα2,Y(q) ≤ vQ(v) ≤ ∫ v

0 Q(u)du. More-
over, as qM ≤ x/r , we have

1

(qM)2
h

(
2xqM

s2
n

)
≥ r2

x2
h

(
2x2

rs2
n

)
,

since the function t 
→ t−2h(t) is decreasing. Together with (2.13) and (2.14), this gives the desired inequality (1.10).
If q = n, the previous argument breaks down since we may have α2,Y(q) > v. However, a much simpler argument

is available. Indeed, bounding simply X′
i by 2M , we obtain max1≤k≤n |Sk| ≤ 2qM + ∑n

k=1 |X′′
k |. Since 2qM ≤ 2x,

this gives

P

(
max

1≤k≤n
|Sk| ≥ 5x

)
≤ 1

x

n∑
k=1

E
(∣∣X′′

k

∣∣).
With (2.14), this again implies (1.10).

The proposition is proved for any variable Xi = f (Yi) − E(f (Yi)) with f = ∑L
�=1 a�f� and f� ∈ M̃on(Q,PY0),∑ |a�| ≤ 1. Since these functions are dense in F̃ (Q,PY0) by definition, the result follows by applying Fatou’s

lemma. �
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2.2. Proof of Theorem 1.13

Let us first prove the inequality (1.13). We follow the proof of Theorem 6.4 page 89 in Rio [23], and we use the same
notations: Lx = ln(x ∨ e) and LLx = ln(ln(x ∨ e) ∨ e). Let A be as in (1.13). We apply Proposition 1.11 with

r = rn = 8LLn, x = xn = (
A

√
2nLLn

)
/5 and sn = xn/

√
rn.

We obtain∑
n>0

1

n
P

(
sup

1≤k≤n

|Sk| ≥ A
√

2nLLn
)

≤ 4
∑
n>0

1

n3LLn
+ 22

∑
n>0

1

xn

∫ S(xn/rn)

0
Q(u)du.

Clearly the first series on right hand converges. From the end of the proof of Theorem 6.4 in Rio [23], we see that the
second series on the right-hand side converges. This completes the proof of (1.13).

Note that the inequality (1.13) implies that

lim sup
n→∞

|Sn|√
2nLLn

≤ 20
(∑

k≥0

∫ α1,Y(k)

0
Q2(u)du

)1/2
almost surely. (2.15)

We turn now to the proof of (1.14). Assume that θ is P-ergodic. In 1973, Gordin [8] (see also Esseen and Janson
[5]) proved that if∑

k≥1

∥∥E(Xk|M0)
∥∥

1 < ∞ (2.16)

and

lim inf
n→∞

1√
n

E

(∣∣∣∣∣
n∑

k=1

Xk

∣∣∣∣∣
)

< ∞, (2.17)

then X0 = D0 + Z0 − Z0 ◦ θ, where ‖Z0‖1 < ∞, E(D2
0) < ∞, D0 is M0-measurable, and E(D0|M−1) = 0.

Notice now that by a similar computation than to get (2.11), we have that

∥∥E(Xk|F0)
∥∥

1 ≤ 4
∫ α1,Y(k)

0
Q(u)du. (2.18)

Hence (1.12) implies (2.16). Now clearly (2.17) holds as soon as
∑∞

k=0 |Cov(X0,Xk)| < ∞ which holds under (1.12)
by applying the upper bound (2.5) with M = ∞ (note that this also justifies the convergence of the series σ 2).

Consequently, if we set Di = D0 ◦ θi , and Zi = Z0 ◦ θi , we then obtain under (1.12) that

Sn = Mn + Z1 − Zn+1, (2.19)

where Mn = ∑n
j=1 Dj is a martingale in L

2 and Z0 is integrable. Now (1.14) follows by the almost sure invariance
principle for martingales (see Theorem 3.1 in Berger [1]) if we can prove that

Zn = o
(√

nLLn
)
, almost surely. (2.20)

According to the lemma, p. 428 in Volný and Samek [27], we have either (2.20) or

P

(
lim sup
n→∞

|Zn|√
nLLn

= ∞
)

= 1. (2.21)

Using the decomposition (2.19), the fact that Mn satisfies the law of the iterated logarithm and that Sn satisfies (2.15),
it is clear that (2.21) cannot hold, which then proves (2.20) and ends the proof of (1.14).
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3. Proofs of the dynamical estimates

If f is supported in [0,1], let V(f ) be the variation of the function f , given by

V(f ) = sup
x0<···<xN

N∑
i=1

∣∣f (xi+1) − f (xi)
∣∣,

where the xi ’s are real numbers (not necessarily in [0,1]). Note that V(·) is a norm and that V(f · g) ≤ V(f )V(g).
Let us fix once and for all a GPM map T : [0,1] → [0,1] of parameter γ ∈ (0,1). Let vk :T(k)Ik → Ik be the

inverse branches of T . Consider M = {m ∈ {1, . . . , d − 1}: 0 ∈ T(m)Im}, and let z0 ∈ (0, y1) be so small that vm is
well defined on [0, z0] for any m ∈ M , v′

0 is decreasing on (0, z0] (this is possible since v′′
0 (x) < 0 for small x), and

T(k)Ik ∩ [0, z0] = ∅ for k /∈ M . Note that M �= ∅, since T is topologically transitive.
Define a sequence zn inductively by zn = v0(zn−1). Let Jn = (zn+1, zn], so that T n is bijective from Jn to (z1, z0].

Following the procedure in Zweimüller [29], the invariant measure of T may be constructed as follows: we first
consider the first return map on (z1,1]. It is Rychlik and topologically transitive, hence it admits an invariant measure
ν0 on (z1,1] whose density h0 is bounded from above and below in (z1,1] and has bounded variation. Extending ν0
to the whole interval by the formula

ν(A) = ν0
(
A ∩ (z1,1]) +

∑
n≥1

ν0
(
T −n(A) ∩ {φ > n}),

where φ is the first return time to (z1,1], and then renormalizing, we obtain the invariant probability measure of T .
Denoting by h the density of ν, the previous formula becomes, for x ∈ [0, z1],

h(x) =
∞∑

n=0

∑
m∈M

∣∣(vmvn
0

)′
(x)

∣∣h(
vmvn

0x
)
. (3.1)

Our goal in this paragraph and the next is to study the Perron–Frobenius operator Kn acting on the space BV of
bounded variation functions. Let K(x,y) be the kernel corresponding to the operator K . It is given by K(x, vkx) =
h(vkx)|v′

k(x)|/h(x) for k ∈ {0, . . . , d − 1}, and K(x,y) = 0 if y is not of the form vkx. By definition,

Knf (x0) =
∑

x1,...,xn

K(x0, x1)K(x1, x2) · · ·K(xn−1, xn)f (xn).

To understand the behavior of Kn, we will break the trajectories x0, . . . , xn of the random walk according to their
first and last entrance in the reference set (z1,1] – the interest of this set is that T is uniformly expanding there.
More precisely, let us define operators An,Bn,Cn and Tn as follows: they are defined like Kn but we only sum over
trajectories x0, . . . , xn such that

• For An, x0, . . . , xn−1 ∈ [0, z1] and xn ∈ (z1,1].
• For Bn, x0 ∈ (z1,1) and x1, . . . , xn ∈ [0, z1].
• For Cn, x0, . . . , xn ∈ [0, z1].
• For Tn, x0 ∈ (z1,1] and xn ∈ (z1,1].
By construction, one has the decomposition

Knf =
∑

a+k+b=n

AaTkBbf + Cnf. (3.2)

One can give formulas for An,Bn and Cn, as follows:

Anf (x) = 1[0,z1](x)
∑
m∈M

|(vmvn−1
0 )′(x)|h(vmvn−1

0 x)

h(x)
f

(
vmvn−1

0 x
)
, (3.3)
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Bnf (x) = 1(z1,z0](x)
(vn

0 )′(x)h(vn
0x)

h(x)
f

(
vn

0x
)
, (3.4)

Cnf (x) = 1[0,z1](x)
(vn

0 )′(x)h(vn
0x)

h(x)
f

(
vn

0x
)
. (3.5)

On the other hand, the operator Tn is less explicit, but it can be studied using operator renewal theory.

Proposition 3.1. The operator Tn can be decomposed as

Tnf =
(∫

(z1,1]
f dν

)
1(z1,1] + Enf, (3.6)

where the operator En satisfies V(Enf ) ≤ C

n(1−γ )/γ
V(f ).

Proof. Since this follows closely from the arguments in Sarig [25], Gouëzel [10] and Gouëzel [12], we will only
sketch the proof.

Define an operator Rn by Rnf (x0) = 1(z1,1](x)
∑

K(x0, x1) · · ·K(x1, xn)f (xn), where the summation is over all
x1, . . . , xn−1 ∈ [0, z1] and xn ∈ (z1,1]: this operator is similar to Tn, but it only takes the first returns to (z1,1] into
account. Breaking a trajectory into its successive excursions outside of (z1,1], it follows that the following renewal
equation holds: Tn = ∑∞

�=1
∑

k1+···+k�=n Rk1 · · ·Rk�
. In other words, I +∑

Tnz
n = (I −∑

Rkz
k)−1, at least as formal

series.
In the proof of Lemma 3.1 in Gouëzel [12], it is shown that the operators Rk act continuously on BV, with a norm

bounded by C/k1+1/γ – the estimates in Gouëzel do not deal with the factor h, but since this function as well as its
inverse have bounded variation on (z1,1] they do not change anything. Since this is summable, we can define, for
|z| ≤ 1, an operator R(z) = ∑

Rnz
n acting on BV. Moreover, Gouëzel [12] also proves that the essential spectral

radius of this operator is < 1 for any |z| ≤ 1. Thanks to the topological transitivity of T , it follows that R(1) has a
simple eigenvalue at 1 (the corresponding eigenfunction is the constant function 1), while I − R(z) is invertible for
z �= 1.

This spectral control makes it possible to apply Theorem 1.1 in Gouëzel [10], dealing with renewal sequences of
operators as above. Its conclusion implies (3.6). �

With (3.2), we finally obtain that

Knf =
∑

a+k+b=n

Aa(1(z1,1]) · ν(Bbf ) +
∑

a+k+b=n

AaEkBbf + Cnf, (3.7)

where

V(Ekf ) ≤ C

k(1−γ )/γ
V(f ). (3.8)

3.1. Proof of Proposition 1.15

We shall prove successively that, for n > 0,

V(Cnf ) ≤ CV(f ), (3.9)

V(Anf ) ≤ CV(f )/(n + 1), (3.10)

V(Bnf ) ≤ CV(f )/(n + 1)1/γ . (3.11)

The proof of Proposition 1.15 follows from the above upper bounds and from the following elementary lemma.



812 J. Dedecker, S. Gouëzel and F. Merlevède

Lemma 3.2. Let un and vn be two nonincreasing sequences such that u[n/2] ≤ Cun and v[n/2] ≤ Cvn. Then

∑
i+j=n

uivj ≤ Cun

(
n∑

j=0

vi

)
+ Cvn

(
n∑

i=0

ui

)
.

Proof. If i ≤ n/2, we use that vj is bounded by Cvn. If j ≤ n/2, we use that ui is bounded by Cun. �

We can now complete the proof, assuming the bounds (3.9), (3.10), and (3.11):

Proof of Proposition 1.15. Let f be such that ν(f ) = 0. We will bound V(Knf ) using the decomposition of Knf

given in (3.7). Using (3.10), (3.8) and (3.11), we get

V

( ∑
a+k+b=n

AaEkBbf

)
≤ CV(f )

∑
a+k+b=n

1

(a + 1)(k + 1)(1−γ )/γ (b + 1)1/γ
.

By Lemma 3.2,∑
k+b=j

1

(k + 1)(1−γ )/γ (b + 1)1/γ
≤ C

(j + 1)(1−γ )/γ

and ∑
a+j=n

1

(a + 1)(j + 1)(1−γ )/γ
≤ C

(
ln(n)

(n + 1)(1−γ )/γ
∨ 1

n

)
.

Consequently,

V

( ∑
a+k+b=n

AaEkBbf

)
≤ CV(f )

(
ln(n)

(n + 1)(1−γ )/γ
∨ 1

n

)
. (3.12)

It remains to bound up the first term in (3.7), which can be written

n∑
a=0

Aa(1(z1,1]) ·
(

n−a∑
b=0

ν(Bbf )

)
.

Now,
∑∞

b=0 ν(Bbf ) = ν(f ) = 0, so that∣∣∣∣∣
n−a∑
b=0

ν(Bbf )

∣∣∣∣∣ =
∣∣∣∣ ∑
b>n−a

ν(Bbf )

∣∣∣∣ ≤
∑

b>n−a

V(Bbf ) ≤
∑

b>n−a

CV(f )

(b + 1)1/γ
≤ DV(f )

(n + 1 − a)(1−γ )/γ
.

By (3.10), V(Aa1(z1,1]) ≤ C/(a + 1). Consequently,

V

(
n∑

a=0

Aa(1(z1,1]) ·
(

n−a∑
b=0

ν(Bbf )

))
≤ CV(f )

n∑
a=0

1

(a + 1)(n + 1 − a)(1−γ )/γ

≤ DV(f )

(
ln(n)

(n + 1)(1−γ )/γ
∨ 1

n

)
, (3.13)

the last inequality following from Lemma 3.2.
Starting from (3.7) and using (3.9), (3.12) and (3.13) we obtain that V(Knf ) ≤ CV(f ) for any f such that

ν(f ) = 0. Now let f be any BV function on [0,1], and let ‖df‖ be the variation norm of the measure df on [0,1]. To
conclude the proof, it suffices to note that ‖dKn(f )‖ = ‖dKn(f (0))‖ ≤ V(Kn(f (0))) ≤ CV(f (0)) ≤ 3C‖df‖. �
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It remains to prove the upper bounds (3.9), (3.10), and (3.11). We shall use the following facts, proved e.g. in
Liverani, Saussol and Vaienti [16] or Young [28]. We will denote Lebesgue measure by λ.

1. One has zn ∼ C/n1/γ for some C > 0. Moreover, λ(Jn) = zn − zn+1 ∼ C/n(1+γ )/γ for some C > 0. One has

h(zn) ∼ Cz
−γ
n ∼ Dn. (3.14)

2. There exists a constant C > 0 such that, for all n ≥ 0 and k ≥ 0, and for all x, y ∈ Jk ,∣∣∣∣1 − (vn
0 )′(x)

(vn
0 )′(y)

∣∣∣∣ ≤ C|x − y|.

Integrating the above inequality, we obtain that

C−1 λ(Jn+k)

λ(Jk)
≤ (

vn
0

)′
(x) ≤ C

λ(Jn+k)

λ(Jk)
. (3.15)

3. The function (vn
0 )′ is decreasing on [0, z1).

The following easy lemma follows from the definition of V.

Lemma 3.3. If f is nonnegative and monotonic on some interval I , then

V(1I f ) ≤ C sup
I

|f |. (3.16)

If f is positive on some interval I , then

V(1I /f ) ≤ CV(1I f )/min
I

|f |2. (3.17)

We shall also use the following lemma on the density h.

Lemma 3.4. There exists a constant C such that, for any 1 ≤ i < j ,

V(1[zj ,zi ]h) ≤ Cj and V(1[zj ,zi ]/h) ≤ Cj/i2. (3.18)

Proof. We start from the formula (3.1) for h, and the inequality V(fg) ≤ V(f )V(g), to obtain

V(1[zj ,zi ]h) ≤
∞∑

n=0

∑
m∈M

V
(
1[zj ,zi ]

(
vn

0

)′) · V
(
1[zj ,zi ]

∣∣v′
m ◦ vn

0

∣∣) · V
(
1[zj ,zi ]h ◦ vm ◦ vn

0

)
. (3.19)

Since the functions v′
m have bounded variation, and the function h has bounded variation on (z1,1] (which contains

the image of vmvn
0 (0, z1)), we get V(1[zj ,zi ]h) ≤ C

∑∞
n=0 V(1[zj ,zi ](vn

0 )′). Since the function (vn
0 )′ is decreasing on

[zj , zi], we get by using (3.16)

V(1[zj ,zi ]h) ≤ C

∞∑
n=0

(
vn

0

)′
(zj ) ≤ C

∞∑
n=0

λ(Jn+j )

λ(Jj )
= C

zj

zj − zj+1
≤ C

j−1/γ

j−1/γ−1
= Cj.

This proves the first inequality of the proposition.
To prove the second one, we use (3.17). Since min[zj ,zi ] |h| ≥ Cz

−γ

i ≥ Ci, the result follows. �

We can now prove the upper bounds (3.9), (3.10) and (3.11).
Since Cn is given by (3.5), the upper bound (3.9) follows from Lemma 3.5 below.
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Lemma 3.5. There exists C > 0 such that, for any n ≥ 1,

V

(
1[0,z1]

(vn
0 )′(x)h(vn

0x)

h(x)

)
≤ C. (3.20)

Proof. Since K1 = 1, we have h(x) = v′
0(x)h(v0x)+∑

m∈M |v′
m(x)|h(vmx) on [0, z1]. By iterating this equality, we

obtain for any n ∈ N,

h(x) = (
vn

0

)′
(x)h

(
vn

0x
) +

n−1∑
j=0

∑
m∈M

∣∣(vmv
j

0

)′
(x)

∣∣h(
vmv

j

0x
)
.

Consequently,

1 − (vn
0 )′(x)h(vn

0x)

h(x)
=

n−1∑
j=0

∑
m∈M

(v
j

0 )′(x)|v′
m(v

j

0x)|h(vmv
j

0x)

h(x)
. (3.21)

Let s be such that 2s ≤ n < 2s+1. To prove (3.20), we will control, for any k,

V

(
1[z2k ,z2k−1 ]

(vn
0 )′(x)h(vn

0x)

h(x)

)
.

Assume first that k ≤ s. On [z2k , z2k−1 ], the function (vn
0 )′ is decreasing, so that its variation is bounded in terms of its

supremum (vn
0 )′(z2k ) ≤ Cλ(J2k+n)/λ(J2k ). The variation of the function h ◦ vn

0 on [z2k , z2k−1 ] is the variation of h on
[z2k+n, z2k−1+n], hence by Lemma 3.4 it is bounded by C(2k + n). This lemma also shows that the variation of 1/h is
bounded by C/2k . Hence,

V

(
1[z2k ,z2k−1 ]

(vn
0 )′(x)h(vn

0x)

h(x)

)
≤ C

λ(J2k+n)

λ(J2k )

2k + n

2k

≤ C
(2k + n)−(1+γ )/γ

(2k)−(1+γ )/γ

2k + n

2k
≤ C

(2k)1/γ

n1/γ
.

Summing on k, we get

V

(
1[z2s ,z1]

(vn
0 )′(x)h(vn

0x)

h(x)

)
≤ C

s∑
k=1

(2k)1/γ

n1/γ
≤ C2s/γ

n1/γ
≤ C, (3.22)

since 2s ≤ n.
Let now k > s. The previous upper bound gives a suboptimal control, hence we shall use the right-hand term in

(3.21). For 0 ≤ j ≤ n− 1 and m ∈ M , the variation of v′
m ◦ v

j

0 ·h◦ vm ◦ v
j

0 is uniformly bounded (since vm is C2 and h

has bounded variation on (z1,1]). Moreover, as above, the variation of (v
j

0 )′ is bounded by Cλ(J2k+j )/λ(J2k ), which
is uniformly bounded. Finally, the variation of 1/h is at most C/2k , by Lemma 3.4. Consequently,

V

(
1[z2k ,z2k−1 ]

(
1 − (vn

0 )′(x)h(vn
0x)

h(x)

))
≤

n−1∑
j=0

C

2k
= Cn

2k
.

Summing on k > s,

V

(
1[0,z2s ]

(
1 − (vn

0 )′(x)h(vn
0x)

h(x)

))
≤ Cn

∞∑
k=s+1

1

2k
≤ Cn

2s
≤ D. (3.23)
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Lemma 3.5 follows by combining (3.22) and (3.23). �

Since An is given by (3.3), the upper bound (3.10) follows from Lemma 3.6 below.

Lemma 3.6. There exists a positive constant C such that, for any n ≥ 1,

V

(
1[0,z1](x)

∑
m∈M

|(vmvn−1
0 )′(x)|h(vmvn−1

0 x)

h(x)

)
≤ C

n
. (3.24)

Proof. As in the proof of Lemma 3.5, we control the variation of the functions on [z2k , z2k−1 ]. On this interval, the
variation of (vmvn−1

0 )′ is at most Cλ(J2k+n)/λ(J2k ), the variation of h(vmvn−1
0 ) is bounded by C and the variation of

1/h is bounded by C/2k . Summing on k, we obtain

V

(
1[0,z1](x)

∑
m∈M

|(vmvn−1
0 )′(x)|h(vmvn−1

0 x)

h(x)

)

≤ C

∞∑
k=1

λ(J2k+n)

λ(J2k )

1

2k
≤ D

∞∑
k=1

2k(1+γ )/γ

(n + 2k)(1+γ )/γ

1

2k
.

Let s be such that 2s ≤ n < 2s+1. We split the sum on the sets k ≤ s and k > s, and we obtain the upper bound

C

s∑
k=1

2k(1+γ )/γ

(n + 1)(1+γ )/γ 2k
+ C

∞∑
k=s+1

1

2k
≤ C2s/γ

(n + 1)(1+γ )/γ
+ 1

2s
≤ D

n
.

�

It remains to prove (3.11). Recall that Bn is given by (3.4). On (z1, z0], the variation of the function (vn
0 )′ is bounded

by Cλ(Jn)/λ(J0) ≤ C/n(1+γ )/γ , the variation of 1/h is bounded by C, and the variation of h(vn
0x) is bounded by

V(1(zn+1,zn]h) ≤ Cn. This implies the upper bound (3.11). The proof of Proposition 1.15 is complete.

3.2. Proof of Proposition 1.16

To prove Proposition 1.16, we keep the same notations as in the previous paragraphs. The proof follows the line of that
of Theorem 2.3.6 in Gouëzel [11]. Let f be a function in BV with ν(f ) = 0, we wish to estimate ν(|Knf |) thanks to
the decomposition (3.7).

For the term Cnf , we have

ν
(∣∣Cn(f )

∣∣) ≤ C‖f ‖∞ν
(
Kn1[0,zn+1]

) = C‖f ‖∞ν(1[0,zn+1]).

Since ν(Jk) ≤ C/(k + 1)1/γ , it follows that

ν
(∣∣Cn(f )

∣∣) ≤ C‖f ‖∞
(n + 1)(1−γ )/γ

. (3.25)

We now turn to the term
∑

a+k+b=n AaEkBbf in (3.7). Let us first remark that, for any bounded function g,

ν
(∣∣An(g)

∣∣) ≤ C‖g‖∞ν
(
Kn1(z1,1]∩T −1[0,zn]

) = C‖g‖∞ν
(
(z1,1] ∩ T −1[0, zn]

)
.

Since the density of ν is bounded on (z1,1], this quantity is ≤C‖g‖∞zn. We obtain

ν
(∣∣An(g)

∣∣) ≤ C‖g‖∞
(n + 1)1/γ

. (3.26)
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Using successively (3.26), (3.8) and (3.11), we obtain

ν

(∣∣∣∣ ∑
a+k+b=n

AaEkBbf

∣∣∣∣) ≤ C
∑

a+k+b=n

‖EkBbf ‖∞
(a + 1)1/γ

≤ C
∑

a+k+b=n

V(f )

(a + 1)1/γ (k + 1)(1−γ )/γ (b + 1)1/γ

≤ CV(f )

(n + 1)(1−γ )/γ
. (3.27)

We finally turn to the term
∑

a+k+b=n Aa(1(z1,1]) · ν(Bbf ) in (3.7). From (3.13) and (3.26), we obtain

ν

(∣∣∣∣∣
n∑

a=0

Aa(1(z1,1]) ·
(

n−a∑
b=0

ν(Bbf )

)∣∣∣∣∣
)

≤ CV(f )

n∑
a=0

1

(a + 1)1/γ (n + 1 − a)(1−γ )/γ

≤ DV(f )

(n + 1)(1−γ )/γ
. (3.28)

We have shown that, if ν(f ) = 0, all the terms on the right-hand side of (3.7) are bounded by CV(f )/(n +
1)(1−γ )/γ . Therefore, ν(|Knf |) is bounded by the same quantity. Now let f be any BV function on [0,1], and let
‖df‖ be the variation norm of the measure df on [0,1]. To conclude the proof, it suffices to note that

ν
(∣∣Kn

(
f (0)

)∣∣) ≤ CV(f (0))

(n + 1)(1−γ )/γ
≤ 3C‖df‖

(n + 1)(1−γ )/γ
.

4. Proofs of the main results, Theorems 1.5, 1.6 and 1.7

It is well known that (T 0, T 1, T 2, . . . , T n−1) is distributed as (Yn,Yn−1, . . . , Y1) where (Yi)i≥0 is a stationary Markov
chain with invariant measure ν and transition kernel K (see for instance Lemma XI.3 in Hennion and Hervé [13]). Let
Xn = f (Yn) − ν(f ) for some function f : [0,1] → R. A common argument of the proofs of Theorems 1.5 and 1.6 is
the following inequality: for any ε > 0,

ν

(
max

1≤k≤n

∣∣∣∣∣
k−1∑
i=0

(
f ◦ T i − ν(f )

)∣∣∣∣∣ ≥ ε

)
≤ ν

(
2 max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ ε

)
. (4.1)

Indeed since(
f − ν(f ), f ◦ T − ν(f ), . . . , f ◦ T n−1 − ν(f )

)
is distributed as (Xn,Xn−1, . . . ,X1),

the following equality holds in distribution

max
1≤k≤n

k−1∑
i=0

(
f ◦ T i − ν(f )

) = max
1≤k≤n

n∑
i=k

Xi. (4.2)

Notice now that for any k ∈ [1, n],
n∑

i=k

Xi =
n∑

i=1

Xi −
k−1∑
i=1

Xi.

Consequently

max
1≤k≤n

∣∣∣∣∣
n∑

i=k

Xi

∣∣∣∣∣ ≤ max
1≤k≤n−1

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ +
∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣,
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which together with (4.2) entails (4.1).

4.1. Proof of Theorem 1.5

According to (4.1), item 1 of Theorem 1.5 holds as soon as

∞∑
n=1

1

n
P

(
2 max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ A

√
n ln

(
ln(n)

))
< ∞, (4.3)

for some positive constant A. Using the extension (πi)i∈Z of the chain (Yi)i≥0 given at the beginning of Section 1.4,
(4.3) follows from the inequality (1.13) of Theorem 1.13 by taking

A = 40
√

2

(∑
k≥1

∫ α1,Y(k)

0
Q2(u)du

)1/2

.

By Theorem 1.13, (1.13) holds as soon as f ∈ F̃ (Q,ν) and (1.12) holds. In the same way, Item 2 of Theorem 1.5
follows from (1.14) of Theorem 1.13 provided that (1.12) holds.

Now, by Proposition 1.17, α2,Y(n) = O(n(γ−1)/γ ). Hence (1.13) holds as soon as, for p = 2,

f ∈ F̃ (Q,ν) and
∫ 1

0
u−γ (p−1)/(1−γ )Qp(u)du < ∞. (4.4)

If H is the càdlàg inverse of Q, then f ∈ F (H, ν) iff f ∈ F̃ (Q,ν). Moreover (4.4) holds if and only if

f ∈ F (H, ν) and
∫ ∞

0
xp−1(H(x)

)(1−pγ )/(1−γ )
dx < ∞. (4.5)

Indeed, setting v = u(1−γp)/(1−γ ), we get that∫ 1

0
u−γ (p−1)/(1−γ )Qp(u)du = 1 − γ

1 − γp

∫ 1

0
Qp

(
v(1−γ )/(1−γp)

)
dv.

Since H is the càdlàg inverse of Q, we get∫ 1

0
Qp

(
v(1−γ )/(1−γp)

)
dv =

∫ ∞

0

(
H

(
t1/p

))(1−pγ )/(1−γ ) dt = p

∫ ∞

0
xp−1(H(x)

)(1−pγ )/(1−γ ) dx,

which concludes the proof.

4.2. Proof of Theorem 1.6

By using (4.1), (1.6) will hold if we can prove that for any ε > 0 and any p ∈ (1,2), one has

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/pε

)
< ∞. (4.6)

According to Theorem 4 in Dedecker and Merlevède [2], we have that

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/pε

)
≤ C

∞∑
i=0

(i + 1)p−2
∫ γi

0
Q

p−1
|X0| ◦ G|X0|(u)du, (4.7)
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where γi = ‖E(Xi |M0)‖1 and G|X0| is the inverse of L|X0|(x) = ∫ x

0 Q|X0|(u)du. We will denote by L and G the same

functions constructed from Q, the càdlàg inverse of H . Assume first that Xi = f (Yi) − ν(f ) with f = ∑L
�=1 a�f�,

where f� ∈ M̃on(Q,ν) and
∑L

�=1 |a�| ≤ 1. According to (2.18)

γi ≤ 4
∫ α1,Y(i)

0
Q(u)du. (4.8)

Since Q|X0|(u) ≤ Q|f (Y0)|(u) + ν(f ), we see that
∫ x

0 Q|X0|(u)du ≤ 2
∫ x

0 Q|f (Y0)|(u)du. Since f = ∑
a�f�, we get,

according to item (c) of Lemma 2.1 in Rio [23],∫ x

0
Q|X0|(u)du ≤ 2

L∑
�=1

∫ x

0
Q|a�f�(X0)|(u)du ≤ 2

L∑
�=1

|a�|
∫ x

0
Q(u)du.

Since
∑L

�=1 |a�| ≤ 1, it follows that G(u/2) ≤ G|X0|(u), where G is the inverse of x 
→ ∫ x

0 Q(u)du. In particular,
G|X0|(u) ≥ G(u/4). Since Q|X0| is nonincreasing, it follows that∫ γi

0
Q

p−1
|X0| ◦ G|X0|(u)du ≤

∫ γi

0
Q

p−1
|X0| ◦ G(u/4)du = 4

∫ γi/4

0
Q

p−1
|X0| ◦ G(v)dv

= 4
∫ L(γi/4)

0
Q

p−1
|X0| (w)Q(w)dw ≤ 4

∫ α1,Y(i)

0
Q

p−1
|X0| (w)Q(w)dw,

where the last inequality follows from (4.8). Let α−1
1 (u) = ∑

i≥0 1u<α1,Y(i). Since (α−1
1 (u))p−1 = ∑

j≥0((j +1)p−1 −
jp−1)1u<α1,Y(j) and (j + 1)p−2 ≤ C((j + 1)p−1 − jp−1), we get

∞∑
i=0

(i + 1)p−2
∫ γi

0
Q

p−1
|X0| ◦ G|X0|(u)du ≤ C

∫ 1

0

(
α−1

1 (u)
)p−1

Q
p−1
|X0| (u)Q(u)du. (4.9)

Using Hölder’s inequality, we derive that∫ 1

0

(
α−1

1 (u)
)p−1

Q
p−1
|X0| (u)Q(u)du ≤

(∫ 1

0

(
α−1

1 (u)
)p−1

Qp(u)du

)1/p

×
(∫ 1

0

(
α−1

1 (u)
)p−1

Q
p
|X0|(u)du

)(p−1)/p

. (4.10)

Now note that Q
p
|X0| = Q|X0|p . By convexity and the fact that

∑L
�=1 |a�| ≤ 1,

Q|X0|p (u) ≤ Q∑L
�=1 |a�||f�(Y0)−ν(f�)|p (u).

Using again item (c) of Lemma 2.1 in [23], we get that∫ 1

0

(
α−1

1 (u)
)p−1

Q
p
|X0|(u)du ≤

L∑
�=1

|a�|
∫ 1

0

(
α−1

1 (u)
)p−1

Q|f�(Y0)−ν(f�)|p (u)du

≤ 2p+1
∫ 1

0

(
α−1

1 (u)
)p−1

Qp(u)du. (4.11)

It follows that

∞∑
i=0

(i + 1)p−2
∫ γi

0
Q

p−1
|X0| ◦ G|X0|(u)du ≤ C

∫ 1

0

(
α−1

1 (u)
)p−1

Qp(u)du. (4.12)
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From (4.7), (4.12) and the fact that α1,Y(n) = O(n(γ−1)/γ ) by Proposition 1.17, it follows that

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/pε

)
≤ C

∫ 1

0
u−γ (p−1)/(1−γ )Qp(u)du,

and the same inequality holds for any variable Xi = f (Yi)− E(f (Yi)) with f ∈ F̃ (Q,ν) by applying Fatou’s lemma.
Hence (4.6) holds as soon as (4.4) holds. Since (4.4) is equivalent to (4.5), the result follows.

4.3. Proof of Theorem 1.7

By using (4.1), (1.6) will hold if we can prove that for any ε > 0, any p in (1,2] and any b > 1/p, one has

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/p
(
ln(n)

)b
ε

)
< ∞. (4.13)

Let Q be the càdlàg inverse of H . Note that f ∈ F (H, ν) if and only if f ∈ F̃ (Q,ν), and that H satisfies (1.7) if and
only if Q(u) ≤ (Cu)−(1−pγ )/(p(1−γ )).

We keep the same notations as in the proof of Theorem 1.6. Assume first that Xi = ∑L
�=1 a�f�(Yi) −∑L

�=1 a�E(f�(Yi)), with f� ∈ F̃ (Q,ν) and
∑L

�=1 |a�| ≤ 1. Define the function (γ /2)−1(u) = ∑
i≥0 1u<γi/2, where

γi = ‖E(Xi |M0)‖1. Let R̄|X0|(u) = U|X0|(u)Q|X0|(u), with U|X0| = ((γ /2)−1 ◦ G−1
|X0|). We apply Inequality (3.9) in

Dedecker and Merlevède [2]:

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ 5x

)
≤ 14n

x

∫ 1

0
Q|X0|(u)1x<R̄|X0 |(u) du + 4n

x2

∫ 1

0
1x≥R̄|X0 |(u)R̄|X0|(u)Q|X0|(u)du.

Taking xn = εn1/p(ln(n))b/5, and summing in n, we obtain that

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/p
(
ln(n)

)b
ε

)
≤ C

∫ 1

0

R̄
p−1
|X0| (u)

(ln(R̄|X0|(u)) ∨ 1)bp
Q|X0|(u)du

≤ D

∫ 1

0

U
p−1
|X0| (u)

(ln(U|X0|(u)) ∨ 1)bp
Q

p
|X0|(u)du.

Now, we make the change of variables u = G|X0|(y), and we use that G(y/2) ≤ G|X0|(y). It follows that

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/p
(
ln(n)

)b
ε

)
≤ C

∫ ‖X0‖1

0

((γ /2)−1(y))p−1

(ln((γ /2)−1)(y) ∨ 1)bp
Q

p−1
|X0| ◦ G(y/2)dy.

Let U(u) = ((γ /2)−1 ◦ 2G−1)(u), and make the change of variables u = G(y/2). We obtain

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/p
(
ln(n)

)b
ε

)
≤ C

∫ 1

0

Up−1(u)

(ln(U(u)) ∨ 1)bp
Q

p−1
|X0| (u)Q(u)du.

From (4.8) we infer that U(u) ≤ Cu−γ /(1−γ ), so that

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/p
(
ln(n)

)b
ε

)
≤ C

∫ 1

0

u−γ (p−1)/(1−γ )

| ln(u)|bp ∨ 1
Q

p−1
|X0| (u)Q(u)du.
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Applying Hölder’s inequality as in (4.10), and next applying item (c) of Lemma 2.1 in Rio [23] as in (4.11), it follows
that

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/p
(
ln(n)

)b
ε

)
≤ C

∫ 1

0

u−γ (p−1)/(1−γ )

| ln(u)|bp ∨ 1
Qp(u)du.

Since Qp(u) ≤ (Cu)−(1−pγ )/(1−γ ), it follows that

∞∑
n=1

1

n
P

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n1/p
(
ln(n)

)b
ε

)
≤ C

∫ 1

0

1

u(| ln(u)|bp ∨ 1)
du, (4.14)

and the same inequality holds for any variable Xi = f (Yi)− E(f (Yi)) with f ∈ F̃ (Q,ν) by applying Fatou’s lemma.
Now the right-hand term in (4.14) is finite as soon as bp > 1, which concludes the proof.

Appendix

We recall a maximal exponential inequality for martingales which is a straightforward consequence of Theorem 3.4
in Pinelis [20].

Proposition A.1. Let (dj , Fj )j≥1 be a real-valued martingale difference sequence with |dj | ≤ c for all j . Let Mj =∑j

i=1 di . Then for all x, y > 0,

P

(
sup

1≤j≤n

|Mj | ≥ x,

n∑
j=1

E
(|dj |2|Fj−1

) ≤ y

)
≤ 2 exp

(
− y

c2
h

(
xc

y

))
,

where h(u) = (1 + u) ln(1 + u) − u.

Proof. Let Ai = {∑i
j=1 E(|dj |2|Fj−1) ≤ y}, and let M̄j be the martingale M̄j = ∑j

i=1 di1Ai
. Clearly

P

(
sup

1≤j≤n

|Mj | ≥ x,

n∑
j=1

E
(|dj |2|Fj−1

) ≤ y

)
= P

(
sup

1≤j≤n

|M̄j | ≥ x,

n∑
j=1

E
(|dj |2|Fj−1

) ≤ y

)

≤ P

(
sup

1≤j≤n

|M̄j | ≥ x
)
.

To conclude, it suffices to apply Theorem 3.4 in Pinelis [20] to the martingale M̄j . �
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