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Abstract. This paper is concerned with nonparametric estimation of the Lévy density of a pure jump Lévy process. The sample
path is observed at n discrete instants with fixed sampling interval. We construct a collection of estimators obtained by deconvo-
lution methods and deduced from appropriate estimators of the characteristic function and its first derivative. We obtain a bound
for the L

2-risk, under general assumptions on the model. Then we propose a penalty function that allows to build an adaptive
estimator. The risk bound for the adaptive estimator is obtained under additional assumptions on the Lévy density. Examples of
models fitting in our framework are described and rates of convergence of the estimator are discussed.

Résumé. Ce travail étudie l’estimation non paramétrique de la densité d’un processus de Lévy de saut pur. Les trajectoires sont
observées à n instants discrets de pas fixé. Nous construisons une collection d’estimateurs obtenus par des méthodes de type
déconvolution, et s’appuyant sur des estimateurs pertinents de la fonction caractéristique et de ses dérivées. Sous des hypothèses
assez générales sur le modèle, nous obtenons une borne pour le risque quadratique intégré. Nous proposons ensuite une pénalité
permettant de construire un estimateur adaptatif. La borne de risque de l’estimateur adaptatatif est obtenue sous des hypothèses
supplémentaires sur la densité de la mesure de Lévy. Nous donnons pour finir des exemples de modèles adaptés à notre contexte et
nous calculons dans chaque cas la vitesse de convergence de l’estimateur.

MSC: 62G05; 62M05; 60G51

Keywords: Adaptive estimation; Deconvolution; Lévy process; Nonparametric projection estimator

1. Introduction

In recent years, the use of Lévy processes for modelling purposes has become very popular in many areas and es-
pecially in the field of finance (see e.g. Eberlein and Keller [9], Barndorff-Nielsen and Shephard [1], Cont and
Tankov [7]; see also Bertoin [3] or Sato [21] for a comprehensive study for these processes). The distribution of
a Lévy process is usually specified by its characteristic triple (drift, Gaussian component and Lévy measure) rather
than by the distribution of its independent increments. Indeed, the exact distribution of these increments is most of-
ten intractable or even has no closed form formula. For this reason, the standard parametric approach by likelihood
methods is a difficult task and many authors have rather considered nonparametric methods. For Lévy processes, es-
timating the Lévy measure is of crucial importance since this measure specifies the jumps behavior. Nonparametric
estimation of the Lévy measure has been the subject of several recent contributions. The statistical approaches de-
pend on the way observations are performed. For instance, Basawa and Brockwell [2] consider nondecreasing Lévy
processes and observations of jumps with size larger than some positive ε, or discrete observations with fixed sampling
interval. They build nonparametric estimators of a distribution function linked with the Lévy measure. More recently,
Figueroa-López and Houdré [11] consider a continuous-time observation of a general Lévy process and study pe-
nalized projection estimators of the Lévy density based on integrals of functions with respect to the random Poisson
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measure associated with the jumps of the process. However, their approach remains theoretical since these Poisson
integrals are hardly accessible.

In this paper, we consider nonparametric estimation of the Lévy measure for real-valued Lévy processes of pure
jump type, i.e. without drift and Gaussian component. We rely on the common assumption that the Lévy measure
admits a density n(x) on R and assume that the process is discretely observed with fixed sampling interval �. Let (Lt )

denote the underlying Lévy process and (Z�
k = Lk� −L(k−1)�, k = 1, . . . , n) be the observed random variables which

are independent and identically distributed. Under our assumption, the characteristic function of L� = Z�
1 is given

by the following simple formula:

ψ�(u) = E
(
exp iuZ�

1

) = exp

(
�

∫
R

(
eiux − 1

)
n(x)dx

)
, (1)

where the unknown function is the Lévy density n(x). It is therefore natural to investigate the estimation of n(x) using
empirical estimators of the charasteristic functions. This approach is illustrated by Jongbloed and van der Meulen [12],
Watteel and Kulperger [22] and Neumann and Reiss [20]. In the last two papers, the authors consider general Lévy
processes, with drift and Gaussian component and use two derivatives of the characteristic function to reach the Lévy
density. In our case, under the assumption that

∫
R

|x|n(x)dx < ∞, we get the simple relation:

g∗(u) =
∫

eiuxg(x)dx = −i
ψ ′

�(u)

�ψ�(u)
(2)

with g(x) = xn(x). This equation indicates that we can estimate g∗(u) by using empirical counterparts of ψ�(u) and
ψ ′

�(u) only. Then, the problem of recovering an estimator of g looks like a classical deconvolution problem. We have
at hand the methods used for estimating unknown densities of random variables observed with additive independent
noise. This requires the additional assumption that g belongs to L

2(R). However, the problem of deconvolution set by
equation (2) is not standard and looks more like deconvolution in presence of unknown errors densities. This is due to
the fact that both the numerator and the denominator are unknown and have to be estimated from the same data. This
is why our estimator of ψ�(u) is not a simple empirical counterpart. Instead, we use a truncated version analogous to
the one used in Neumann [19] and Neumann and Reiss [20].

Below, we show how to adapt the deconvolution method described in Comte et al. [6]. We consider an adequate
sequence (Sm,m = 1, . . . ,mn) of subspaces of L

2(R) and build a collection of projection estimators (ĝm). Then
using a penalization device, we select through a data-driven procedure the best estimator in the collection. We study
the L

2-risk of the resulting estimator under the asymptotic framework that n tends to infinity. Although the sampling
interval � is fixed, we keep it as much as possible in all formulae since the distributions of the observed random
variables highly depend on �.

In Section 2, we give assumptions and some preliminary properties. Section 3 contains examples of models in-
cluded in our framework. Section 4 describes the statistical strategy. We present the projection spaces and define the
collection of estimators. Proposition 4.1 gives the upper bound for the risk of a projection estimator on a fixed projec-
tion space. This proposition guides the choice of the penalty function and allows to discuss the rates of convergence
of the projection estimators. Afterwards, we introduce a theoretical penalty (depending on the unknown characteristic
function ψ�) and study the risk bound of a false estimator (actually not an estimator) (Theorem 4.1). Then, we replace
the theoretical penalty by an estimated counterpart and give the upper bound of the risk of the resulting penalized es-
timator (Theorem 4.2). Proofs are gathered in Section 5. In the Appendix, a fundamental result used in our proofs is
recalled.

2. Framework and assumptions

Recall that we consider the discrete time observation with sample step � of a Lévy process Lt with Lévy density n

and characteristic function given by (1). We assume that (Lt ) is a pure jump process with finite variation on com-
pacts. When the Lévy measure n(x)dx is concentrated on (0,+∞), then (Lt ) has increasing paths and is called a
subordinator. We focus on the estimation of the real valued function

g(x) = xn(x).
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When the Lévy process is self-decomposable, this function is called the canonical function and is decreasing (see
Barnforff-Nielsen and Shephard [1] and Jongbloed et al. [13]).

We introduce the following assumptions on the function g:

(H1)
∫

R
|x|n(x)dx < ∞.

(H2(p)) For p integer,
∫

R
|x|p−1|g(x)|dx < ∞.

(H3) The function g belongs to L2(R).

Note that the usual assumption is:
∫
(|x| ∧ 1)n(x)dx < +∞. Assumption (H1) is stronger and is also a moment

assumption for Lt . Under the usual assumption, (H2(p)) for p ≥ 1 implies (H1) and (H2(k)) for k ≤ p.
Our estimation procedure is based on the random variables

Z�
i = Li� − L(i−1)�, i = 1, . . . , n, (3)

which are independent, identically distributed, with common characteristic function ψ�(u).
The moments of Z�

1 are linked with the function g. More precisely, we have:

Proposition 2.1. Let p ≥ 1 integer. Under (H2(p)), E(|Z�
1 |p) < ∞. Moreover, setting, for k = 1, . . . p, Mk =∫

R
xk−1g(x)dx, we have E(Z�

1 ) = �M1, E[(Z�
1 )2] = �M2 + �2M1, and more generally, E[(Z�

1 )l] = �Ml + o(�)

for all l = 1, . . . , p.

Proof. By the assumption, the exponent of the exponential in (1) is p times differentiable and, by derivating ψ�, we
get the result. �

Assumption (H1) together with (H3) are the basis of our estimation procedure. We complete with additional as-
sumptions concerning ψ� and g.

(H4) There exist constants cψ,Cψ and β ≥ 0 such that ∀x ∈ R, we have

cψ

(
1 + x2)−�β/2 ≤ ∣∣ψ�(x)

∣∣ ≤ Cψ

(
1 + x2)−�β/2

.

(H5) There exists some positive a such that
∫ |g∗(x)|2(1 + x2)a dx < +∞.

(H6)
∫

x2g2(x)dx < +∞.

Note that it is not possible to formulate all assumptions in terms of either ψ� or g. Indeed, there may be no relation
at all between these two functions (see the Examples).

Assumptions (H4)–(H6) are used to compute rates of convergence for L2-risks. Note that, from this point of view,
exponential terms can also be considered (see examples in Section 4.5). But (H4)–(H6) are specifically required for the
adaptive version of the estimator. In particular, precise control of ψ� is needed. Assumption (H4) is also considered
in Neumann and Reiss [20]. Due to Lemma 6.1 in the latter paper, (H4) implies that

∫
[−1,1] |x|αn(x)dx < +∞ for

α > 0. Note that, in assumption (H5), which is a classical regularity assumption, the knowledge of a is not required.
At last, (H6) is a technical assumption which, in view of (H1)–(H3), is rather weak.

3. Examples

3.1. Compound Poisson processes

Let Lt = ∑Nt

i=1 Yi , where (Nt ) is a Poisson process with constant intensity c and (Yi) is a sequence of i.i.d. random
variables with density f independent of the process (Nt ). Then, (Lt ) is a compound Poisson process with character-
istic function

ψt(u) = exp

(
ct

∫
R

(
eiux − 1

)
f (x)dx

)
. (4)
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Its Lévy density is n(x) = cf (x) and thus g(x) = cxf (x). Assumptions (H1)–(H2(p)) are equivalent to E(|Y1|p) <

∞. Assumption (H3) is equivalent to
∫

R
x2f 2(x)dx < ∞, which holds for instance if supx f (x) < +∞ and E(Y 2

1 ) <

+∞. We can compute the distribution of Z�
1 = L� as follows:

PZ�
1
(dz) = e−c�

(
δ0(dz) +

∑
n≥1

f �n(z)
(c�)n

n! dz

)
. (5)

We have the following bound:

1 ≥ ∣∣ψ�(u)
∣∣ ≥ e−2c�. (6)

On this example, it appears clearly that we cannot link the regularity assumption on g and (H4) which holds with
β = 0. Indeed, g can be here of any regularity, as f is any density.

3.2. The Lévy Gamma process

Let α > 0, β > 0. The Lévy Gamma process (Lt ) with parameters (β,α) is a subordinator such that, for all t > 0, Lt

has distribution Gamma with parameters (βt, α), i.e. has density:

αβt

	(βt)
xβt−1e−αx1x≥0. (7)

The characteristic function of Z�
1 is equal to:

ψ�(u) =
(

α

α − iu

)β�

. (8)

The Lévy density is n(x) = βx−1e−αx1{x>0} so that g(x) = βe−αx1{x>0} satisfies our assumptions. We have:

ψ ′
�(u)

ψ�(u)
= i�

β

α − iu
,

∣∣ψ�(u)
∣∣ = αβ�

(α2 + u2)β�/2
. (9)

3.3. A general class of subordinators

Consider the Lévy process (Lt ) with Lévy density

n(x) = cxδ−1/2x−1e−βx1x>0,

where (δ,β, c) are positive parameters. If δ > 1/2,
∫ +∞

0 n(x)dx < +∞, and we recover compound Poisson processes.

If 0 < δ ≤ 1/2,
∫ +∞

0 n(x)dx = +∞ and g(x) = xn(x) belongs to L
2(R)∩L

1(R). The case δ = 0, which corresponds
to the Lévy inverse Gaussian process does not fit in our framework. For 0 < δ < 1/2, we find

g∗(x) = c
	(δ + 1/2)

(β − ix)δ+1/2

and ∣∣ψ�(x)
∣∣ = exp

(
−c

�	(δ + 1/2)

1/2 − δ

[(
β2 + x2)−(δ−1/2)/2 − β−(δ−1/2)

])
.

Note that∣∣ψ�(x)
∣∣ ∼x→+∞ K(β, δ) exp

(
−c�

	(δ + 1/2)

1/2 − δ
x−δ+1/2

)
, (10)

where K(β, δ) = exp(c
�	(δ+1/2)

1/2−δ
β−(δ−1/2)). Consequently, it has an exponential rate of decrease and does not satisfy

assumption (H4). Thus, only the nonadaptive part applies to this class of examples.
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3.4. The bilateral Gamma process

This process has been recently introduced by Küchler and Tappe [15]. Consider X,Y two independent random vari-
ables, X with distribution 	(β,α) and Y with distribution 	(β ′, α′). Then, Z = X − Y has distribution bilateral
Gamma with parameters (β,α,β ′, α′), that we denote by 	(β,α;β ′, α′). The characteristic function of Z is equal to:

ψ(u) =
(

α

α − iu

)β(
α′

α′ + iu

)β ′

= exp

(∫
R

(
eiux − 1

)
n(x)dx

)
(11)

with

n(x) = x−1g(x)

and, for x ∈ R,

g(x) = βe−αx1(0,+∞)(x) − β ′e−α′|x|1(−∞,0)(x).

The bilateral Gamma process (Lt ) has characteristic function ψt(u) = ψ(u)t .
The method can be generalized and we may consider Lévy processes on R obtained by bilateralisation of two

subordinators.

3.5. Subordinated processes

Let (Wt) be a Brownian motion, and let (Zt ) be an increasing Lévy process (subordinator), independent of (Wt ).
Assume that the observed process is

Lt = WZt .

We have

ψ�(u) = E
(
eiuL�

) = E
(
e−(u2/2)Z�

)
.

As Zt is positive, we consider, for λ ≥ 0,

ϑ�(λ) = E
(
e−λZ�

) = exp

(
−�

∫ +∞

0

(
1 − e−λx

)
nZ(x)dx

)
,

where nZ denotes the Lévy density of (Zt ). Now let us assume that gZ(x) = xnZ(x) is integrable over (0,+∞). We
have:

log
(
ϑ�(λ)

) = −�

∫ +∞

0

1 − e−λx

x
xnZ(x)dx = −�

∫ +∞

0

(∫ λ

0
e−sx ds

)
xnZ(x)dx

= −�

∫ λ

0

(∫ +∞

0
e−sxxnZ(x)dx

)
ds.

Hence,

ψ�(u) = exp

(
−�

∫ u2/2

0

(∫ +∞

0
e−sxgZ(x)dx

)
ds

)
.

Moreover, it is possible to relate the Lévy density nL of (Lt ) with the Lévy density nZ of (Zt ) as follows. Consider f

a nonnegative function on R, with f (0) = 0. Given the whole path (Zt ), the jumps δLs = WZs − WZs− are centered
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Gaussian with variance δZs := Zs − Zs− . Hence,

E

(∑
s≤t

f (δLs)

)
=

∑
s≤t

E

(∫
R

f (u) exp
(−u2/2δZs

) du√
2πδZs

)

= t

∫
R

f (u)du

(∫ +∞

0
exp

(−u2/2x
)nZ(x)dx√

2πx

)
.

This gives nL(u) = ∫ +∞
0 exp (−u2/2x)

nZ(x)dx√
2πx

. By the same tools, we see that

E

(∑
s≤t

|δLs |
)

= √
2/πE

(∑
s≤t

√
δZs

)
= t

∫ +∞

0

√
xnZ(x)dx.

Therefore, if the above integral is finite, the process (Lt ) has finite variation on compact sets and it holds that∫
R

|u|nL(u)du < ∞.

With (Zt ) a Lévy Gamma process, gZ(x) = βe−αx1x>0. Then
∫ +∞

0 e−sxβe−αx dx = β/(α + s), and

ψ�(u) =
(

α

α + (u2/2)

)�β

.

This model is the Variance Gamma stochastic volatility model described by Madan and Seneta [17]. As noted in
Küchler and Tappe [15], the Variance Gamma distributions are special cases of bilateral Gamma distributions. We can
compute the Lévy density:

nL(u) =
∫ +∞

0
exp

(
−1

2

(
u2

x
+ 2αx

))
βx−3/2 dx√

2π
= β(2α)1/4|u|−1 exp

(−(2α)1/2|u|).
4. Statistical strategy

4.1. Notations

Subsequently we denote by u∗ the Fourier transform of the function u defined as u∗(y) = ∫
eiyxu(x)dx, and by ‖u‖,

〈u,v〉, u ∗ v the quantities

‖u‖2 =
∫ ∣∣u(x)

∣∣2 dx,

〈u,v〉 =
∫

u(x)v(x)dx with zz = |z|2 and u � v(x) =
∫

u(y)v̄(x − y)dy.

Moreover, we recall that for any integrable and square-integrable functions u,u1, u2,(
u∗)∗

(x) = 2πu(−x) and 〈u1, u2〉 = (2π)−1〈u∗
1, u

∗
2

〉
. (12)

4.2. Estimation strategy

We want to estimate g such that

g∗(x) = −i
ψ ′

�(x)

�ψ�(x)
= θ�(x)

�ψ�(x)
(13)

with

ψ�(x) = E
(
eixZ�

1
)
, θ�(x) = −iψ ′

�(x) = E
(
Z�

1 eixZ�
1
)
.
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We have at hand the empirical versions of ψ� and θ�:

ψ̂�(x) = 1

n

n∑
k=1

eixZ�
k , θ̂�(x) = 1

n

n∑
k=1

Z�
k eixZ�

k .

Although |ψ�(x)| > 0 for all x, this is not true for ψ̂�. Following Neumann [19] and Neumann and Reiss [20], we
truncate 1/ψ̂� and set, for κψ a constant (that can be taken equal to one):

1

ψ̃�(x)
= 1

ψ̂�(x)
1|ψ̂�(x)|>κψn−1/2 . (14)

This provides an estimator of g∗ given by θ̂�/(�ψ̃�). The natural idea is to take the Fourier inverse of the latter
function. Since this function may be not integrable, we use a positive cutoff parameter m and introduce

ĝm(x) = 1

2π

∫ πm

−πm

e−ixu θ̂�(u)

�ψ̃�(u)
du. (15)

The difficulty is to find an adequate and possibly optimal choice of m that should be data driven. To this end, we need
another formulation of the family of estimators (ĝm) using projection spaces and contrast minimization devices.

4.3. The projection spaces

We describe the projection spaces used in the deconvolution setting (see e.g. Comte et al. [6], Comte and Lacour [5]).
Let us define

ϕ(x) = sin(πx)

πx
and ϕm,j (x) = √

mϕ(mx − j),

where m is an integer, that can be taken equal to 2�. It is well known (see Meyer [18], p. 22) that {ϕm,j }j∈Z is
an orthonormal basis of the space of square integrable functions having Fourier transforms with compact support
included into [−πm,πm]. Indeed an elementary computation yields

ϕ∗
m,j (x) = eixj/m

√
m

1[−πm,πm](x). (16)

We denote by Sm such a space:

Sm = Span{ϕ
m,j

, j ∈ Z} = {
h ∈ L2(R), supp

(
h∗) ⊂ [−mπ,mπ]}.

For any function h ∈ L2(R), let hm denote the orthogonal projection of h on Sm, given by

hm =
∑
j∈Z

am,j (h)ϕm,j with am,j (h) =
∫

R

ϕm,j (x)h(x)dx = 〈ϕm,j , h〉. (17)

Using (16), and am,j (h) = (1/2π)〈ϕ∗
m,j , h

∗〉, we obtain

h∗
m = h∗1[−πm,πm].

Thus, it turns out that

ĝm =
∑
j∈Z

âm,jϕm,j with âm,j = 1

2π�

∫
θ̂�(x)

ϕ∗
m,j (−x)

ψ̃�(x)
dx. (18)
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For model selection, we need a third presentation of ĝm. Let t belong to a space Sm and define

γn(t) = ‖t‖2 − 1

π

〈
θ̂�

�ψ̃�

, t∗
〉
. (19)

Expanding t on the basis ϕm,j , we find that:

ĝm = arg min
t∈Sm

γn(t). (20)

Therefore, ĝm appears also as a minimum contrast estimator. Actually, γn(t) can be viewed as an approximation of
the theoretical contrast

γ th
n (t) = ‖t‖2 − 1

π

〈
θ̂�

�ψ�

, t∗
〉
.

The following sequence of equalities, relying on (12), explains also the relevance of using the constrast (19) for
estimating g:

E

(
1

2π�
Z�

k

∫
eixZ�

k
t∗(−x)

ψ�(x)
dx

)
= 1

2π�

∫
θ�(x)

t∗(−x)

ψ�(x)
dx = 1

2π

〈
t∗, g∗〉 = 〈t, g〉.

Therefore, we find that E(γ th
n (t)) = ‖t‖2 − 2〈g, t〉 = ‖t − g‖2 − ‖g‖2 is minimal when t = g.

We denote by (Sm)m∈Mn
the collection of linear spaces, where

Mn = {1, . . . ,mn}

and mn ≤ n is the maximal admissible value of m, subject to constraints to be precised later.
In practice, we should consider the truncated spaces S

(n)
m = Span{ϕ

m,j
, j ∈ Z, |j | ≤ Kn}, where Kn is an integer

depending on n, and the associated estimators. Under assumption (H6), it is possible and does not change the main
part of the study (see Comte et al. [6]). For the sake of simplicity, we consider here sums over Z.

4.4. Risk bound of the collection of estimators

First, we recall a key Lemma, borrowed from Neumann [19] (see his Lemma 2.1):

Lemma 4.1. It holds that, for any p ≥ 1,

E

(∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2p)
≤ C

(
1

|ψ�(x)|2p
∧ n−p

|ψ�(x)|4p

)
,

where 1/ψ̃� is defined by (14).

Neumann’s result is for p = 1 but the extension to any p is straighforward. See also Neumann and Reiss [20]. This
lemma allows to prove the following risk bound.

Proposition 4.1. Under assumptions (H1)–(H2(4))–(H3), then for all m:

E
(‖g − ĝm‖2) ≤ ‖g − gm‖2 + K

E
1/2[(Z�

1 )4] ∫ πm

−πm
dx/|ψ�(x)|2

n�2
, (21)

where K is a constant.
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It is worth stressing that (H4)–(H5) are not required for the above result. Therefore, it holds even for exponential
decay of ψ� or g∗.

Proof of Proposition 4.1. First with Pythagoras Theorem, we have

‖g − ĝm‖2 = ‖g − gm‖2 + ‖ĝm − gm‖2. (22)

Let

am,j (g) = 1

2π�

∫
θ�(x)

ϕ∗
m,j (−x)

ψ�(x)
dx.

Then, using Parseval’s formula and (16), we obtain

‖ĝm − gm‖2 =
∑
j∈Z

∣∣âm,j − am,j (g)
∣∣2 = 1

2π�2

∫ πm

−πm

∣∣∣∣ θ̂�(x)

ψ̃�(x)
− θ�(x)

ψ�(x)

∣∣∣∣2

dx.

It follows that

E
(‖ĝm − gm‖2) ≤ 1

π�2

{∫ πm

−πm

E

∣∣∣∣θ̂�(x)

(
1

ψ̃�(x)
− 1

ψ�(x)

)∣∣∣∣2

dx +
∫ πm

−πm

E|θ̂�(x) − θ�(x)|2
|ψ�(x)|2 dx

}

≤ 2

π�2

{∫ πm

−πm

E

(∣∣θ̂�(x) − θ�(x)
∣∣2

∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2)
dx

+
∫ πm

−πm

(
�2

∣∣g∗(x)ψ�(x)
∣∣2

E

(∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2)
+ 1

n

E[(Z�
1 )2]

|ψ�(x)|2
)

dx

}
. (23)

The Schwarz inequality yields

E

(∣∣θ̂�(x) − θ�(x)
∣∣2

∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2)
≤ E

1/2(∣∣θ̂�(x) − θ�(x)
∣∣4)

E
1/2

(∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣4)
.

Then, with the Rosenthal inequality E(|θ̂�(x) − θ�(x)|4) ≤ cE[(Z�
1 )4]/n2 and by using Lemma 4.1,

E

(∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣4)
≤ C

|ψ�(x)|4

so that∫ πm

−πm

(
E

1/2(∣∣θ̂�(x) − θ�(x)
∣∣4)

E
1/2

∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣4)
dx ≤

√
cCE

1/2[(Z�
1 )4]

n

∫ πm

−πm

dx

|ψ�(x)|2 .

For the second term, we use Lemma 4.1, to get

E

(∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2)
≤ Cn−1

|ψ�(x)|4 .

We obtain

E
(‖ĝm − gm‖2) ≤ K

n�2

(
E

1/2[(Z�
1

)4] + �2‖g‖2
1 + E

[(
Z�

1

)2]) ∫ πm

−πm

dx

|ψ�(x)|2 , (24)

where ‖g‖1 = ∫ |g(x)|dx. Therefore, gathering (22) and (24) implies the result. �
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Remark 4.1. In papers concerned with deconvolution in presence of unknown error densities, the error characteristic
function is estimated using a preliminary and independent set of data. This solution is possible here: we may split the
sample and use the first half to obtain a preliminary and independent estimator of ψ�, and then estimate g from the
second half. This would simplify the above proof, but not the study of the adaptive case.

4.5. Discussion about the rates

Let us study some examples and use (21) to get a relevant choice of m. Suppose that g belongs to the Sobolev class

S(a,L) =
{
f,

∫ ∣∣f ∗(x)
∣∣2(

x2 + 1
)a dx ≤ L

}
.

We have ‖g − gm‖2 = ∫
|x|≥πm

|g∗(x)|2 dx. Then, the bias term satisfies

‖g − gm‖2 =
∫

|x|≥πm

[∣∣g∗(x)
∣∣2(1 + x2)a](1 + x2)−a dx ≤ L

(1 + π2m2)a
= O

(
m−2a

)
.

Under (H4), the bound of the variance term satisfies∫ πm

−πm
dx/|ψ�(x)|2

n�
= O

(
m2β�+1

n�

)
.

The optimal choice for m is O((n�)1/(2β�+2a+1)) and the resulting rate for the risk is (n�)−2a/(2β�+2a+1). It is worth
noting that the sampling interval � explicitely appears in the exponent of the rate. Therefore, for positive β , the rate
is worse for large � than for small �. Thus we can state the following corollary of Proposition 4.1:

Corollary 4.1. Under assumptions (H1)–(H2(4))–(H3)–(H5), then

E
(‖ĝm − g‖2) = O

(
(n�)−2a/(2β�+2a+1)

)
when m = O

(
(n�)1/(2β�+2a+1)

)
.

• Let us consider the example of the compound process. In this case β = 0 and, if g belongs to the Sobolev class
S(a,L), the upper bound of the mean integrated squared error is of order O((n�)−2a/(2a+1)).

If g is analytic, i.e. belongs to a class

A(γ,Q) =
{
f,

∫ (
eγ x + e−γ x

)2∣∣f ∗(x)
∣∣2 dx ≤ Q

}
,

then the bias satisfies ‖g − gm‖2 = O(e−2γπm). Choosing m = ln(n�)/(2πγ ), we obtain that the risk is of order
O(ln(n�)/(n�)).

• For the Lévy Gamma process, we have a more precise result since we have

∣∣ψ�(u)
∣∣ = αβ�

(α2 + u2)β�/2
, g∗(x) = β

α − ix
.

Therefore
∫
|x|≥πm

|g∗(x)|2 dx = O(m−1) and
∫
[−πm,πm] dx/|ψ�(x)|2 = O(m2β�+1). The resulting rate is of order

(n�)−1/(2β�+2) for a choice of m of order O((n�)1/(2β�+2)).
• For the bilateral Gamma process with (β,α) = (β ′, α′), we have

ψ�(u) = αβ�

(α2 + u2)β�
, g∗(x) = 2iβαx

α2 + x2
.

Therefore
∫
|x|≥πm

|g∗(x)|2 dx = O(m−1) and
∫
[−πm,πm] dx/|ψ�(x)|2 = O(m4β�+1). The resulting rate is of order

(n�)−1/(4β�+2) for a choice of m of order O((n�)1/(4β�+2)).
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These examples illustrate that the relevant choice of m depends on the unknown function, in particular on its
smoothness. The model selection procedure proposes a data driven criterion to select m.

• Consider now the process described in Section 3.3. In that case, it follows from (10) that
∫
[−πm,πm] dx/|ψ�(x)|2 =

O(mδ+1/2 exp(κm1/2−δ)) and
∫
|x|≥πm

|g∗(x)|2 dx = O(m−2δ). In this case, choosing κm1/2−δ = ln(n�)/2 gives
the rate [ln(n�)]−2δ which is thus very slow, but known to be optimal in the usual deconvolution setting (see
Fan [10]). This case is not considered in the following for the adaptative strategy since it does not satisfy (H4).

4.6. Study of the adaptive estimator

We have to select an adequate value of m. For this, we start by defining the term

Φψ(m) =
∫ πm

−πm

dx

|ψ�(x)|2 , (25)

and the following theoretical penalty

pen(m) = κ
(
1 + E

[(
Z�

1

)2]
/�

)Φψ(m)

n�
. (26)

We set

m̂ = arg min
m∈Mn

{
γn(ĝm) + pen(m)

}
,

and study first the “risk” of ĝm̂.
Moreover we need the following assumption on the collection of models Mn = {1, . . . ,mn}, mn ≤ n:

(H7) ∃ε,0 < ε < 1,m
2β�
n ≤ Cn1−ε ,

where C is a fixed constant and β is defined by (H4).
For instance, assumption (H7) is fulfilled if:

(1) pen(mn) ≤ C. In such a case, we have mn ≤ C(n�)1/(2β�+1).
(2) � is small enough to ensure 2β� < 1. In such a case we can take Mn = {1, . . . , n}.

Remark 4.2. Assumption (H7) raises a problem since it depends on the unknown β and concrete implementation
requires the knowledge of mn. It is worth stressing that the analogous difficulty arises in deconvolution with unknown
error density (see Comte and Lacour [5]). In the compound Poisson model, β = 0 and nothing is needed. Otherwise
one should at least know if ψ� is in a class of polynomial decay. The estimator ψ̂� may be used to that purpose and
to provide an estimator of β (see e.g. Diggle and Hall [8]).

Let us define

θ
(1)
� (x) = E

(
Z�

1 1|Z�
1 |≤kn

√
�eixZ�

1
)
, θ

(2)
� (x) = E

(
Z�

1 1|Z�
1 |>kn

√
�eixZ�

1
)

so that θ� = θ
(1)
� + θ

(2)
� and analogously θ̂� = θ̂

(1)
� + θ̂

(2)
� . For any two functions t, s in Sm, the contrast γn satisfies:

γn(t) − γn(s) = ‖t − g‖2 − ‖s − g‖2 − 2ν(1)
n (t − s) − 2ν(2)

n (t − s) − 2
4∑

i=1

R(i)
n (t − s) (27)

with

ν(1)
n (t) = 1

2π�

∫
t∗(−x)

θ̂
(1)
� (x) − θ

(1)
� (x)

ψ�(x)
dx,
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ν(2)
n (t) = 1

2π�

∫
t∗(−x)

θ�(x)

[ψ�(x)]2

(
ψ�(x) − ψ̂�(x)

)
dx,

R(1)
n (t) = 1

2π�

∫
t∗(−x)

(
θ̂�(x) − θ�(x)

)( 1

ψ̃�(x)
− 1

ψ�(x)

)
dx,

R(2)
n (t) = 1

2π�

∫
t∗(−x)

θ�(x)

ψ�(x)

(
ψ�(x) − ψ̂�(x)

)( 1

ψ̃�(x)
− 1

ψ�(x)

)
dx,

R(3)
n (t) = 1

2π�

∫
t∗(−x)

θ̂
(2)
� (x) − θ

(2)
� (x)

ψ�(x)
dx,

R(4)
n (t) = − 1

2π�

∫
t∗(−x)

θ�(x)

ψ�(x)
1|ψ̂�(x)|≤κψ/

√
n

dx.

We want to stress that the above very precise decomposition is needed to obtain Theorem 4.2. The specific prob-
lem treated here raises unusual difficulties when compared with standard model selection problems. Of course, the
terms ν

(1)
n , ν

(2)
n are centered empirical processes which can be studied using Talagrand’s inequality (see the Appen-

dix). The remainder terms R
(3)
n , R

(4)
n are found to be negligible as could be expected. But the study of R

(1)
n , R

(2)
n is

surprisingly difficult.
We prove successively the two theorems below.

Theorem 4.1. Assume that assumptions (H1)–(H2(8))–(H3)–(H7) hold. Then

E
(‖ĝm̂ − g‖2) ≤ C inf

m∈Mn

(‖g − gm‖2 + pen(m)
) + K

ln2(n)

n�
,

where K is a constant.

Remark 4.3. Assumption (H6) is satisfied for the Lévy Gamma process. For the compound Poisson process, it is
equivalent to

∫
x4f 2(x)dx < +∞, where f denotes the density of Yi (see Section 3).

To get an estimator, we replace the theoretical penalty by:

p̂en(m) = κ ′
(

1 + 1

n�2

n∑
i=1

(
Z�

i

)2

)∫ πm

−πm
dx/|ψ̃�(x)|2

n
.

In that case we can prove:

Theorem 4.2. Assume that assumptions (H1)–(H2(8))–(H3)–(H7) hold and let g̃ = ĝ̂̂m be the estimator defined witĥ̂m = arg minm∈Mn
(γn(ĝm) + p̂en(m)). Then

E
(‖g̃ − g‖2) ≤ C inf

m∈Mn

(‖g − gm‖2 + pen(m)
) + K ′

�

ln2(n)

n
,

where K ′
� is a constant depending on � (and on fixed quantities but not on n).

Theorem 4.2 shows that the adaptive estimator automatically achieves the best rate that can be hoped. If g belongs to
the Sobolev ball S(a,L), and under (H4), the rate is automatically of order O((n�)−2a/(2β�+2a+1)) (see Section 4.5).

Remark 4.4. (1) It may be possible to extend our study of the adaptive estimator to the case ψ� having exponential
decay. This would imply a change of both (H4) and (H7) (see Comte and Lacour [5]). Note that the faster |ψ�| decays,
the more difficult it will be to estimate g.

(2) Few results on rates of convergence are available in the literature for this problem. The results of Neumann and
Reiss [20] are difficult to compare with ours since the point of view is different.
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5. Proofs

5.1. Proof of Theorem 4.1

Writing that γn(ĝm̂) + pen(m̂) ≤ γn(gm) + pen(m) in view of (27) implies that

‖ĝm̂ − g‖2 ≤ ‖gm − g‖2 + 2ν(1)
n (ĝm̂ − gm) + 2ν(2)

n (ĝm̂ − gm) + 2
4∑

i=1

R(i)
n (ĝm̂ − gm) + pen(m) − pen(m̂).

We have to take expectations of both sides and bound each r.h.s. term. This will be obtained through the following
propositions.

Proposition 5.1. Under the assumptions of Theorem 4.1, define

p1
(
m,m′) =

(
4E

[(
Z�

1

)2] ∫ π(m∨m′)

−π(m∨m′)

∣∣ψ�(x)
∣∣−2 dx

)/(
πn�2),

then ∑
m′∈Mn

E

(
sup

t∈Sm∨m′ ,‖t‖=1

∣∣ν(1)
n (t)

∣∣2 − p1
(
m,m′))

+ ≤ c

n
. (28)

Next we have:

Proposition 5.2. Under the assumptions of Theorem 4.1, define p2(m,m′) = 0 if −a + β� ≤ 0 and p2(m,m′) =
(
∫ π(m∨m′)
−π(m∨m′) |ψ�(x)|−2 dx)/n otherwise. Then

E

(
sup

t∈Sm∨m̂,‖t‖=1

∣∣ν(2)
n (t)

∣∣2 − p2(m, m̂)
)

+ ≤ c

n
. (29)

For the residual terms, two types of results can be obtained.

Proposition 5.3. Under the assumptions of Theorem 4.1, for i = 1,2,

E

(
sup

t∈Sm∨m̂,‖t‖=1

[
R(i)

n (t)
]2 − p1(m, m̂)

)
≤ C

n�
.

Proposition 5.4. Under the assumptions of Theorem 4.1, for i = 3,4,

E

(
sup

t∈Smn ,‖t‖=1

[
R(i)

n (t)
]2

)
≤ c

ln2(n)

n�
.

Relying on Proposition 5.1, and using 2xy ≤ 16x2 + (1/16)y2 for nonnegative x, y, we obtain

2
∣∣E(

ν(1)
n (ĝm̂ − gm)

)∣∣ ≤ 2E

(
‖ĝm̂ − gm‖ sup

t∈Sm+Sm̂,‖t‖=1

∣∣ν(1)
n (t)

∣∣)
≤ 1

16
E

(‖gm − ĝm̂‖2) + 16E

[
sup

t∈Sm+Sm̂,‖t‖=1

∣∣ν(1)
n (t)

∣∣2
]

≤ 1

8
E

(‖g − ĝm̂‖2) + 1

8
‖g − gm‖2

+ 16E

(
sup

t∈Sm∨m̂,‖t‖=1

∣∣ν(1)
n (t)

∣∣2 − p1(m, m̂)
)

+ + 16E
(
p1(m, m̂)

)
.



608 F. Comte and V. Genon-Catalot

The same kind of bounds are obtained for ν
(2)
n and the residuals. Gathering all terms ‖ĝm̂−g‖2 on the left-hand-side

and all terms ‖g − gm‖2 on the right-hand-side leads to(
1 − 6

8

)
E

(‖ĝm̂ − g‖2) ≤
(

1 + 6

8

)
‖g − gm‖2

+ 16
∑

m′∈Mn

E

(
sup

t∈Sm∨m′ ,‖t‖=1

∣∣ν(1)
n (t)

∣∣2 − p1
(
m,m′))

+

+ 16E

(
sup

t∈Sm∨m̂,‖t‖=1

∣∣ν(2)
n (t)

∣∣2 − p2(m, m̂)
)

+

+ 16
2∑

i=1

E

(
sup

t∈Sm∨m̂,‖t‖=1

∣∣R(i)
n (t)

∣∣2 − p1(m, m̂)
)

+ 16
4∑

i=3

E

(
sup

t∈Smn ,‖t‖=1

∣∣R(i)
n (t)

∣∣2
)

+ pen(m) + E
(
48p1(m, m̂) + 16p2(m, m̂) − pen(m̂)

)
. (30)

Next, definition of pen(·) comes from the following constraint:

48p1
(
m,m′) + 16p2

(
m,m′) ≤ pen

(
m′) + pen(m). (31)

This leads to

pen(m) + E
(
48p1(m, m̂) + 16p2(m, m̂) − pen(m̂)

) ≤ 2 pen(m).

Then the choice pen(m) given by (26) gives, following (30) and (31),

1

4
E

(‖ĝm̂ − g‖2) ≤ 7

4
‖g − gm‖2 + 2 pen(m) + C

ln2(n)

n�
,

which is the result.

5.2. Proof of Proposition 5.1

We apply Talagrand’s inequality recalled in Lemma A.1 to prove the result.
Let

ωt(z) = z1{|z|≤kn

√
�}

2π�

∫
eizx t∗(−x)

ψ�(x)
dx

and notice that

ν(1)
n (t) = 1

n

n∑
k=1

[
ωt

(
Z�

k

) − E
(
ωt

(
Z�

k

))]
.

To apply Lemma A.1, we compute M1,H1 and v1 defined therein. First, we have

E

(
sup

t∈Sm,‖t‖=1

∣∣ν(1)
n (t)

∣∣2
)

≤ E

(∑
j∈Z

∣∣ν(1)
n (ϕm,j )

∣∣2
)

= E

(
1

2π�2

∫ πm

−πm

∣∣∣∣ θ̂ (1)
� (x) − θ

(1)
� (x)

ψ�(x)

∣∣∣∣2

dx

)
≤ E[(Z�

1 )2]
2πn�2

Φψ(m),
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where Φψ(m) is defined in (25). We can take, for m� = m ∨ m′,

H 2
1 = E[(Z�

1 )2]
2πn�2

Φψ(m�).

Then it is easy to see that if ‖t‖ = 1 and t ∈ Sm� ,∣∣ωt(z)
∣∣ ≤ kn

2π
√

�

∫ ∣∣∣∣ t∗(−x)

ψ�(x)

∣∣∣∣dx ≤ kn

2π
√

�

√
Φψ

(
m�

) := M1.

Lastly, for t ∈ Sm,‖t‖ = 1, t = ∑
j∈Z

tm,jϕm,j ,

Var
(
ωt

(
Z�

1

)) ≤ 1

(2π)2�2

∫ ∫
E

(
ei(u−v)Z�

1
(
Z�

1 1|Z�
1 |≤kn

√
�

)2) t∗(−u)t∗(v)

ψ�(u)ψ�(−v)
dudv

= 1

(2π�)2

∑
j,k

tm,j tm,k

∫ ∫
E

(
ei(u−v)Z�

1
(
Z�

1 1|Z�
1 |≤kn

√
�

)2)ϕ∗
m,j (−u)ϕ∗

m,k(v)

ψ�(u)ψ�(−v)
dudv.

Denoting by

h∗
�(u) = E

[
eiuZ�

1
(
Z�

1 1|Z�
1 |≤kn

√
�

)2]
, (32)

we obtain:

Var
(
ωt

(
Z�

1

)) ≤ 1

(2π�)2

(∑
j,k

∣∣∣∣∫ ∫
h∗

�(u − v)
ϕ∗

m,j (−u)ϕ∗
m,k(v)

ψ�(u)ψ�(−v)
dudv

∣∣∣∣2)1/2

= 1

2π�2

(∫ ∫
[−πm,πm]2

∣∣∣∣ h∗
�(u − v)

ψ�(u)ψ�(−v)

∣∣∣∣2

dudv

)1/2

,

where the last equality follows from the Parseval equality. Next with the Schwarz inequality and the Fubini theorem,
we obtain

Var
(
ωt

(
Z�

1

)) ≤ 1

2π�2

(∫ ∫
[−πm,πm]2

|h∗
�(u − v)|2
|ψ�(u)|4 dudv

)1/2

= 1

2π�2

(∫
[−πm,πm]

∣∣∣∣ du

ψ�(u)

∣∣∣∣4

du

∫ ∣∣h∗
�(z)

∣∣2 dz

)1/2

≤
√∫ πm

−πm
dx/|ψ�(x)|4
2π�

‖h∗
�‖

�
.

Now we use the following lemma:

Lemma 5.1. Under the assumptions of Theorem 4.1,

∥∥h∗
�

∥∥/� ≤ 2
√

π

(∫
x2g2(x)dx + E

[(
Z�

1

)2]‖g‖2
)1/2

:= ξ.

Thus, under (H5), ξ is finite. We set

v1 =
ξ

√∫ πm�

−πm� dx/|ψ�(x)|4
2π�

.

Therefore, setting ε2 = 1/2,

p1
(
m,m′) = 4E

[(
Z�

1

)2
/�

]Φψ(m�)

2πn�

(= 2
(
1 + 2ε2)H 2

1

)
.
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Using (H4) and the fact that E[(Z�
1 )2/�] is bounded, we find

E

(
sup

t∈Sm� ,‖t‖=1

∣∣ν(1)
n (t)

∣∣2 − p1
(
m,m′))

+ ≤ C

(
(m�)2β�+1/2

n�
e−K

√
m� + k2

nΦψ(m�)

n2�
e−K ′√n/kn

)
.

Here K = K(cψ,Cψ). Moreover, we take

kn = K ′√n/
(
(2β� + 3) ln(n)

)
(33)

and we obtain∑
m′∈Mn

E

(
sup

t∈Sm� ,‖t‖=1

[
ν(1)
n (t)

]2 − p1
(
m,m′))

+ ≤ K ′′

n�
.

5.3. Proof of Proposition 5.2

The study of ν
(2)
n is slightly different.

E

(
sup

t∈Sm,‖t‖=1

∣∣ν(2)
n (t)

∣∣2
)

≤ 1

2πn�2

∫ πm

−πm

|θ�(x)|2
|ψ�(x)|4 dx = 1

2πn

∫ πm

−πm

|g∗(x)|2
|ψ�(x)|2 dx.

With assumptions (H4) and (H5), we can see that if −a + β� ≤ 0, then∫ πm

−πm

|g∗(x)|2
|ψ�(x)|2 dx ≤

∫ πm

−πm

∣∣g∗(x)
∣∣2(1 + x2)a (1 + x2)−a+β�

c2
ψ

dx ≤ 1

c2
ψ

∫ ∣∣g∗(x)
∣∣2(1 + x2)a dx ≤ L

c2
ψ

.

In that case, we simply take p2(m,m′) = 0 and write

E

(
sup

t∈Sm∨m̂,‖t‖=1

[
ν(2)
n

]2
(t)

)
≤ E

(
sup

t∈Smn ,‖t‖=1

[
ν(2)
n

]2
(t)

)
≤ L

nc2
ψ

.

Now we study the case −a + β� > 0 and find the constants H = H2, v = v2, ε = ε2 to apply Lemma A.1. Consider

ω̃t (z) = (1/2π�)

∫
eizut∗(−u)

{
θ�(u)/

[
ψ�(u)

]2}du.

As ∫ πm

−πm

|g∗(x)|2
|ψ�(x)|2 dx ≤ L

c2
ψ

m−2a+2β�,

we take

H 2
2 = L

2πc2
ψ

(m�)−2a+2β�

n
.

Next, we have

M2 = √
nH2

and we use the rough bound v2 = nH 2
2 . Moreover, we take ε2

2 = (−2a + 2β� + 2) ln(m�)/K1. There exists m0, such
that for m� ≥ m0,

2
(
1 + 2ε2

2

)
H 2

2 ≤ Φψ

(
m�

)
/n.
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We set p2(m,m′) = Φψ(m�)/n. Introducing

Wn

(
m,m′) =

[
sup

t∈Sm∨m′ ,‖t‖=1

∣∣ν(2)
n

∣∣2
(t) − p2

(
m,m′)]

+,

we find that∑
m′∈Mn

E
(
Wn

(
m,m′)) =

∑
m′|m�≤m0

E
(
Wn

(
m,m′)) +

∑
m′|m�>m0

E
(
Wn

(
m,m′))

≤
∑

m′|m�≤m0

E

([
sup

t∈Sm� ,‖t‖=1

∣∣ν(2)
n (t)

∣∣2 − 2
(
1 + 2ε2

2

)
H 2

2

]
+

)
+

∑
m′|m�≤m0

∣∣p2
(
m,m′) − 2

(
1 + 2ε2

2

)
H 2

2

∣∣
+

∑
m′|m�>m0

E

([
sup

t∈Sm� ,‖t‖=1

∣∣ν(2)
n (t)

∣∣2 − 2
(
1 + 2ε2

2

)
H 2

2

]
+

)
.

Therefore∑
m′∈Mn

E
(
Wn

(
m,m′)) ≤ 2

∑
m′∈Mn

E

([
sup

t∈Sm� ,‖t‖=1

∣∣ν(2)
n (t)

∣∣2 − 2
(
1 + 2ε2

2

)
H 2

2

]
+

)
+

∑
m′|m�≤m0

∣∣p2
(
m,m′) − 2

(
1 + 2ε2

2

)
H 2

2

∣∣
≤ 2

∑
m′∈Mn

E

([
sup

t∈Sm� ,‖t‖=1

∣∣ν(2)
n (t)

∣∣2 − 2
(
1 + 2ε2

2

)
H 2

2

]
+

)
+ C(m0)

n
.

Talagrand’s inequality again can be then applied and gives that

∑
m′∈Mn

E

([
sup

t∈Sm� ,‖t‖=1

∣∣ν(2)
n (t)

∣∣2 − 2
(
1 + 2ε2

2

)
H 2

2

]
+

)
≤ C

n
.

The result for ν
(2)
n in this case follows then by saying as for ν

(1)
n that

E
(
Wn(m, m̂)

) ≤
∑

m′∈Mn

E
(
Wn

(
m,m′)).

5.4. Proof of Proposition 5.3

First define Ω(x) = Ω1(x) ∩ Ω2(x) with

Ω1(x) = {∣∣θ̂�(x) − θ�(x)
∣∣ ≤ 8E

1/2[(Z�
1

)2] log1/2(n)n−1/2},
Ω2(x) =

{∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣ ≤ 1/
(
log1/2(n)nω

∣∣ψ�(x)
∣∣2)}

.

Then split: R
(1)
n (t) = R

(1,1)
n (t) + R

(1,2)
n (t) where

R(1,1)
n (t) = 1

2π�

∫
t∗(−x)(θ̂� − θ�)(x)

(
1

ψ̃�(x)
− 1

ψ�(x)

)
1Ω(x) dx
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and R
(1,2)
n (t) the integral on the complement of Ω(x).

E

(
sup

t∈Sm∨m̂,‖t‖=1

∣∣R(1)
n (t)

∣∣2
)

≤ 2E

(
sup

t∈Sm∨m̂,‖t‖=1

∣∣R(1,1)
n (t)

∣∣2
)

+ 2E

(
sup

t∈Smn ,‖t‖=1

∣∣R(1,2)
n (t)

∣∣2
)
,

E

(
sup

t∈Sm∨m̂,‖t‖=1

∣∣R(1,1)
n (t)

∣∣2
)

≤ 1

2π�2
E

(∫ π(m∨m̂)

−π(m∨m̂)

∣∣θ̂�(x) − θ�(x)
∣∣2

∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2

1Ω(x) dx

)

≤ 8(E[(Z�
1 )2]/�)

2πn�
E

(∫ π(m∨m̂)

−π(m∨m̂)

n−2ω dx

|ψ�(x)|4
)

≤ 4E[(Z�
1 )2]

π�
E

(
Φψ(m ∨ m̂)

n�

)
≤ E

(
p1(m, m̂)

)
,

under the condition −2ω + (1 − ε) ≤ 0. Therefore we choose ω = (1 − ε)/2. Note that if β = 0 the decomposition is
useless and the residual is straightforwardly negligible.

On the other hand, Lemma 4.1 yields:

E
1/4

[∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣8]
≤ C�

n|ψ�(x)|4 .

Now, we find

E

(
sup

t∈Smn ,‖t‖=1

∣∣R(1,2)
n (t)

∣∣2
)

≤ 1

2π�2

∫ πmn

−πmn

P
1/2(Ω(x)c

)
E

1/4[(θ̂�(x) − θ�(x)
)8]

E
1/4

[∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣8]
dx

≤ CE
1/4[(Z�

1 )8]
2πn2

∫ πmn

−πmn

P
1/2(Ω(x)c)

|ψ�(x)|4 dx

≤ CE
1/4[(Z�

1 )8]n2(1−ε)+1−b

n2
≤ C′

�

n
if P

(
Ω(x)c

) ≤ n−2b and 2(1 − ε) − b ≤ 0.

We take b = 2(1 − ε). In fact,

P
(
Ω(x)c

) ≤ P
(
Ω1(x)c

) + P
(
Ω2(x)c

)
.

We use the Markov inequality to bound P(Ω2(x)c):

P
(
Ω2(x)c

) ≤ logp(n)n2pω
∣∣ψ�(x)

∣∣4p
E

(∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2p)
≤ logp(n)n2pω−p.

The choice of p is thus constrained by 2pω−p = −p(1−2ω) < −4(1−ε) that is p > 4(1−ε)/ε, e.g. p = 5(1−ε)/ε.
We use the decomposition of θ�(x) = θ

(1)
� (x) + θ

(2)
� (x) with

kn

√
� =

√
nE[(Z�

1 )2]
8
√

log(n)
.

We use the Bernstein inequality to bound P(Ω1(x)c). If X1, . . . ,Xn are i.i.d. variables with variance less than v2 and
such that |Xi | ≤ c, then for Sn = ∑n

i=1 Xi , we have:

P
(∣∣Sn − E(Sn)

∣∣ ≥ nε
) ≤ 2 exp

(
− nε2/2

v2 + cε

)
.
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This yields

P
(
Ω1(x)c

) ≤ P
(∣∣θ̂ (1)

� (x) − θ
(1)
� (x)

∣∣ ≥ 4
√

E
[(

Z�
1

)2] log(n)/n
)

+ P
(∣∣θ̂ (2)

� (x) − θ
(2)
� (x)

∣∣ ≥ 4
√

E
[(

Z�
1

)2] log(n)/n
)

≤ n−16/3 + n

16E[(Z�
1 )2] log(n)

E
(∣∣θ̂ (2)

� (x) − θ
(2)
� (x)

∣∣2)
≤ n−16/3 +

E[(Z�
1 )21|Z�

1 |≥kn

√
�]

16E[(Z�
1 )2] log(n)

≤ n−16/3 + 84
E[(Z�

1 )6] log2(n)

16E3[(Z�
1 )2]n2

≤ n−16/3 + c

n2�2
.

This gives the result of Proposition 5.3 for R
(1)
n . The study of R

(2)
n follows the same line and is omitted.

5.5. Proof of Proposition 5.4

First we study R
(3)
n .

E

(
sup

t∈Smn ,‖t‖=1

∣∣R(3)
n (t)

∣∣2
)

≤ 1

4π2�2
E

[
sup

t∈Smn ,‖t‖=1

∣∣∣∣∫ (
θ̂

(2)
� (x) − θ

(2)
� (x)

) t∗(−x)

ψ�(x)
dx

∣∣∣∣2]

≤ 1

2π�2

∫ πmn

−πmn

E
[∣∣θ̂ (2)

� (x) − θ
(2)
� (x)

∣∣2] dx

|ψ�(x)|2

= 1

2π�2

∫ πmn

−πmn

Var(Z�
1 1|Z�

1 |≥kn

√
�)

n

dx

|ψ�(x)|2

≤ E[(Z�
1 )8]Φψ(mn)

2πnk6
n�

4

≤ KE[(Z�
1 )8] ln6(n)

n2+ε�4
,

using the choice of kn given by (33).
Next,

E

(
sup

t∈Smn ,‖t‖=1

∣∣R(4)
n (t)

∣∣2
)

≤ 1

2π�

∫ πmn

−πmn

∣∣g∗(x)
∣∣2

P
(∣∣ψ̂�(x)

∣∣ ≤ κψ/
√

n
)

dx ≤ c

n�
.

If |ψ�(x)| ≥ 2κψ/
√

n, then

P
(∣∣ψ̂�(u)

∣∣ ≤ κψn−1/2) ≤ P
(∣∣ψ̂�(u) − ψ�(u)

∣∣ ≤ ∣∣ψ�(u)
∣∣ − κψn−1/2)

≤ P

(∣∣ψ̂�(u) − ψ�(u)
∣∣ ≥ 1

2

∣∣ψ�(u)
∣∣)

≤ exp
(−cn

∣∣ψ�(u)
∣∣2)

for some c > 0, where the last inequality follows from Bernstein’s inequality.
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Now, it follows from (H4) that |ψ�(u)| ≥ cψ(1+u2)−�β/2. Therefore, for |u| ≤ πmn with m
2β�
n ≤ Cn1−ε by (H7),∣∣ψ�(u)

∣∣ ≥ c′m−β�
n ≥ 2κψn−1/2.

Moreover, with the previous remarks, exp(−cn|ψ�(u)|2) ≤ exp(−cnε) and thus∫ πmn

−πmn

∣∣g∗(x)
∣∣2

P
(∣∣ψ̂�(x)

∣∣ ≤ κ/
√

n
)

dx ≤ ∥∥g∗∥∥2 exp
(−cnε

)
.

Therefore

E

(
sup

t∈Smn ,‖t‖=1

∣∣R(4)
n (t)

∣∣2
)

≤ c

n�
.

5.6. Proof of Lemma 5.1

Let us denote by P� the distribution of Z�
1 and define μ�(dz) = �−1zP�(dz). Let us set μ(dx) = g(x)dx. Equa-

tion (13) states that

μ∗
� = μ∗P ∗

�.

Hence, μ� = μ � P�. Therefore, μ� has a density given by∫
g(z − y)P�(dy) = Eg

(
z − Z�

1

)
.

Moreover, we have, for any compactly supported function t :

1

�
E

(
Z�

1 t
(
Z�

1

)) =
∫

t (z)Eg
(
z − Z�

1

)
dz =

∫
E

(
t
(
x + Z�

1

))
g(x)dx.

Hence, we apply first Parseval formula:∥∥h∗
�

∥∥2 =
∫ ∣∣h∗

�(x)
∣∣2

dx = 2π

∫
h2

�(x)dx = 2π�

∫
z21|z|≤kn

√
�E

2(g(
z − Z�

1

))
dz

≤ 2π�E

(∫
z21|z|≤kn

√
�g2(z − Z�

1

)
dz

)
≤ 2π�E

(∫ (
x + Z�

1

)2
g2(x)dx

)
≤ 4π�E

(∫ (
x2 + (

Z�
1

)2)
g2(z)dz

)
≤ 4π�

(∫
x2g2(x) + E

[(
Z�

1

)2]‖g‖2
)

.

This ends the proof.

5.7. Proof of Theorem 4.2

Let us define the sets

Ω1 =
{
∀m ∈ Mn,

∫ πm

−πm

∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2

dx ≤ k1

∫ πm

−πm

dx

|ψ�(x)|2
}

and

Ω2 =
{∣∣∣∣ (1/n)

∑n
i=1[Z�

i ]2

E[(Z�
i )2] − 1

∣∣∣∣ ≤ k2

}
.
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Take 0 < k1 < 1/2 and 0 < k2 < 1. On Ω1, we have, ∀m ∈ Mn,∫ πm

−πm

dx

|ψ̃�(x)|2 ≤ (2k1 + 2)

∫ πm

−πm

dx

|ψ�(x)|2
and ∫ πm

−πm

dx

|ψ�(x)|2 ≤ 2

1 − 2k1

∫ πm

−πm

dx

|ψ̃�(x)|2
and on Ω2, we find

1

n

n∑
i=1

[
Z�

i

]2 ≤ (1 + k2)E
[(

Z�
1

)2] and E
[(

Z�
1

)2] ≤ 1

1 − k2

1

n

n∑
i=1

[
Z�

i

]2
.

Il follows that, on Ω1 ∩ Ω2 := Ω1,2, we can choose κ ′ large enough to ensure

48p1(m, ̂̂m) + 16p2(m, ̂̂m) + p̂en(m) − p̂en(̂̂m) ≤ C(a, b)pen(m).

This allows to extend the result of Theorem 4.1 as follows: ∀m ∈ Mn,

E
(‖g̃ − g‖21Ω1,2

) ≤ C
(‖g − gm‖2 + pen(m)

) + K ln2(n)

n�
.

Next we need to prove that

E
(‖g̃ − g‖21Ωc

1,2

) ≤ K ′

n
. (34)

First, we prove that P(Ωc
1,2) ≤ c/n2 by proving that P(Ωc

1) ≤ c/n2 and P(Ωc
2) ≤ c/n.

P
(
(Ω1)

c
) ≤

∑
m∈Mn

P

(∫ πm

−πm

∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2

dx > k1

∫ πm

−πm

dx

|ψ�(x)|2
)

≤
∑

m∈Mn

E

[(∫ πm

−πm

∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2

dx
/(

k1Φψ(m)
))p]

≤
∑

m∈Mn

(2πm)p−1

(k1Φψ(m))p
E

(∫ πm

−πm

∣∣∣∣ 1

ψ̃�(x)
− 1

ψ�(x)

∣∣∣∣2p

dx

)

≤
∑

m∈Mn

Cpmp−1n−p

∫ πm

−πm
dx/|ψ�(x)|4p

(Φψ(m))p

≤
∑

m∈Mn

C′
pn−pm(p−1)−p(2β�+1)+4pβ�+1 =

∑
m∈Mn

C′
pm2pβ�n−p

≤ C′′n1−p+p(1−ε) ≤ C′′n1−pε, ε = 1

(2β� + 1)
.

As m2β�+1/(n�) is bounded m2pβ�n−p = O(n2pβ�/(2β�+1)−p) = O(n−p/(2β�+1)). Therefore, choosing p = 3/ε

ensures that n1−pε = n−2 and P(Ωc
1) ≤ C/n2.

On the other hand,

P
[
Ωc

2

] ≤ 1

k
p

2 Ep[(Z�
1 )2]E

(∣∣∣∣∣1

n

n∑
i=1

[(
Z�

i

)2 − E
[(

Z�
1

)2]]∣∣∣∣∣
p)

.
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Here the choice p = 4 gives P[Ωc
2 ] = O(1/n2) with a simple variance inequality, provided that E[(Z�

1 )8] < +∞.
Next, we write that

‖g − g̃‖2 = ‖g − ĝ̂m‖2 + ‖ĝ̂m − ĝ̂̂m‖2 ≤ ‖g‖2 +
∑
j∈Z

∣∣â̂̂m,j − â̂m,j (g)
∣∣2

and ∑
j∈Z

∣∣â̂̂m,j − â̂m,j (g)
∣∣2

=
∑
j∈Z

∣∣∣∣∣ν(1)
n (ϕ̂̂m,j ) + ν(2)

n (ϕ̂̂m,j ) +
4∑

k=1

R(k)
n (ϕ̂̂m,j )

∣∣∣∣∣
2

≤ C
∑
j∈Z

{∣∣ν(1)
n (ϕ̂̂m,j )

∣∣2 + ∣∣ν(2)
n (ϕ̂̂m,j )

∣∣2 +
4∑

k=1

∣∣R(k)
n (ϕ̂̂m,j )

∣∣2

}

= C

{
sup

t∈Ŝ̂m,‖t‖=1

∣∣ν(1)
n (t)

∣∣2 + sup
t∈Ŝ̂m,‖t‖=1

∣∣ν(2)
n (t)

∣∣2 +
4∑

k=1

sup
t∈Ŝ̂m,‖t‖=1

∣∣R(k)
n (t)

∣∣2

}
.

It follows that, E(‖g‖21Ωc
1,2

) = ‖g‖2
P(Ωc

1,2) ≤ c/n, and for k = 3,4,

E

(
sup

t∈Ŝ̂m,‖t‖=1

∣∣R(k)
n (t)

∣∣21Ωc
1,2

)
≤ E

(
sup

t∈Smn ,‖t‖=1

∣∣R(k)
n (t)

∣∣2
)

≤ C/n

as it has been proved previously. Lastly,

E

(
sup

t∈Ŝ̂m,‖t‖=1

∣∣ν(1)
n (t)

∣∣21Ωc
1,2

)
≤ E

(
sup

t∈Ŝ̂m,‖t‖=1

{∣∣ν(1)
n (t)

∣∣2 − pen(̂̂m)
})

+ + E
(
pen(̂̂m)1Ωc

1,2

)
≤ c

(
1

n�
+ nP

(
Ωc

1,2

)) ≤ c′

n

using the proof of Theorem 4.1 and the fact that pen(·) is less than O(n). The same line can be followed for the other
terms.

Appendix

Lemma A.1 (Talagrand inequality). Let Y1, . . . , Yn be independent random variables, let νn,Y (f ) = (1/n) ×∑n
i=1[f (Yi)−E(f (Yi))] and let F be a countable class of uniformly bounded measurable functions. Then for ε2 > 0

E

[
sup
f ∈F

∣∣νn,Y (f )
∣∣2 − 2

(
1 + 2ε2)H 2

]
+ ≤ 4

K1

(
v

n
e−K1ε

2(nH 2/v) + 98M2

K1n2C2(ε2)
e−(2K1C(ε2)ε/(7

√
2))(nH/M)

)
with C(ε2) = √

1 + ε2 − 1, K1 = 1/6, and

sup
f ∈F

‖f ‖∞ ≤ M, E

[
sup
f ∈F

∣∣νn,Y (f )
∣∣] ≤ H, sup

f ∈F

1

n

n∑
k=1

Var
(
f (Yk)

) ≤ v.

This result follows from Ledoux and Talagrand [16], the concentration inequality given in Klein and Rio [14] and
arguments in Birgé and Massart [4] (see the proof of their Corollary 2, p. 354). It can be extended to the case where F
is a unit ball of a linear space.
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