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Comment: Fuzzy and Randomized
Confidence Intervals and P -Values
Roger L. Berger and George Casella

1. INTRODUCTION

We thank Professor Geyer and Professor Meeden
for their thought-provoking article. We hope to also be
thought-provoking in response, for we pretty much dis-
agree with their position.

The fuzzy procedures proposed by the authors result
from examining the test function,φ(x,α, θ) in three
different ways, as a function of each of the three vari-
ables. This is an interesting exercise, which has not
been done before in this way, and the authors are to
be commended for their innovation. However, we think
the resulting procedures will be of limited practical in-
terest.

The authors start with the belief that discontinuous
coverage probability functions are somehow inherently
bad, saying that they “perform badly” and “behave very
badly,” and refer to their properties as “flaws.” The new
fuzzy procedures eliminate these flaws by having cov-
erage probabilities that are exactly equal to 1− α and
test sizes that are exactly equal toα. However, these
flaws are merely the properties of discrete data, show-
ing us the limit of the possible inference. To go beyond
the inherent limitations of the data is to base inference
on mathematical fictions. In particular, oscillations are
just a feature of coverage probability with discrete data,
and there is no principle that says coverage probability
functions should be continuous. Although it is proba-
bly good if a coverage probability function stays close
to 1−α, so the intervals of Blaker (2000) might be pre-
ferred to those of Clopper and Pearson, we do not see
a need (or a way!) to eliminate discontinuities.

Procedures already exist that have coverage proba-
bilities exactly equal to 1− α and sizes equal toα;
they are classical randomized procedures. However,
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randomized procedures are unpalatable in actual data
analysis, because, as the authors state, users object to
a procedure that can give different answers for the ex-
act same data. Unfortunately, the fuzzy procedures pro-
posed by these authors are closely related to, in some
cases almost indistinguishable from, randomized pro-
cedures. As such, we believe they will be equally un-
palatable for practical inference. The fuzzy procedures
do not give different answers for the same data; instead
they give a single, different, harder to interpret answer
for a given set of data. When the fuzzy procedures are
used to produce confidence intervals andP -values in
the usual sense, they simply result in classical random-
ized procedures.

2. WHAT IS FUZZY?

The description of the fuzzy confidence sets and
Figure 2 are interesting. Instead of stating an interval
of θ values as the inference, as classical nonrandom-
ized and randomized confidence intervals do, the in-
ference from a fuzzy confidence interval is a function,
examples of which are shown in Figure 2. They are
somewhat appealing, with their representation of the
uncertainty of the inclusion probabilities of the end-
points, but will these functions be useful to or inter-
pretable by researchers?

In classical confidence intervals there is one kind
of uncertainty quantified by the confidence coefficient,
1 − α. This still is present in fuzzy intervals, but in
fuzzy intervals there is a second uncertainty about the
endpoints of the interval, represented by the ascend-
ing and descending portions of the functions in Fig-
ure 2. We all know the difficulty in teaching students
the correct interpretation of the uncertainty quantified
in 1 − α. How much more open to misinterpretation
will be the uncertainty in the endpoints? The authors
say that randomization is a “notoriously tricky con-
cept,” but are “partial coverage,” “degree of member-
ship” and “degree of compatibility” any less tricky?

To overcome this difficulty in interpretation, one can
use the fuzzy interval to produce a realized randomized
interval as described in Section 2.1. However, a real-
ized randomized interval is just a classical randomized
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confidence interval. It has the fatal flaw: The same data
can lead to different intervals, which, of course, vio-
lates every reasonable principle of inference.

It is also not clear to us why we should not interpret
the fuzzy confidence interval as the conditional prob-
ability of including θ given thatX = x is observed.
The authors state “fuzzy set theorists have taken great
pains to distinguish their subject from probability the-
ory,” but then look at(1.3) or the second display in
Section 2.1. These say to us that 1− φ(x,α, θ) is the
conditional probability of includingθ in the interval
given X = x is observed. A few lines below (1.3) the
authors say any interpretation that reflects(1.3) is cor-
rect. Why not the conditional probability interpreta-
tion?

Thus, it is not clear to us (notice that we did not say,
“It is fuzzy to us. . . ”) if fuzzy= probability here. Al-
though the fuzzy set theorists claim to not do probabil-
ity, Geyer and Meeden admit they are not using the full
blown fuzzy set theory, only some definitions. A prin-
ciple aim of fuzzy confidence sets is to achieve a cov-
erage probability of exactly 1−α. To do this, the fuzzy
confidence set is interpreted as giving conditional prob-
abilities. With the few definitions the authors have
used, they have not distinguished themselves from con-
ditional probability and randomized procedures very
much.

3. A P -VALUE BY ANY OTHER NAME. . .

Fuzzy P -values are the companion to fuzzy inclu-
sion probabilities. The function (1.1c) is given two in-
terpretations by the authors. It can be interpreted as the
membership function of a fuzzy set, the set ofα values
for whichH0 can be rejected. Although this interpreta-
tion seems more in line with the topic of this paper, the
authors do not discuss this interpretation much in Sec-
tion 1.4.3. They spend most of the discussion on the
second interpretation, and so will we.

The second interpretation of (1.1c) is that it is the
distribution function of a random variable,P , called
the abstract randomizedP -value. Again, we find the
interpretation of this distribution, and its distinction
from classical randomizedP -values, as difficult as the
interpretation of fuzzy confidence intervals.

The authors’ interpretation of abstract randomized
P -values and how to use them is given in the last two
paragraphs of Section 1.4.3. They say, “The null hy-
pothesis is to be rejected for allα ≥ P .” Then in Sec-
tion 2.2 the authors describe the use of the realized
randomizedP -value as “the test that rejectsH0 when

P ≤ α is the traditional randomized test.” We see vir-
tually no distinction between these two descriptions.
Apparently, using their preferred abstract randomized
P -value, the authors want the researcher to define the
probability distribution ofP , but not actually sample
from it to determine ifα is greater than or equal to
the observed value. Somehow, one is to “interpret” this
probability distribution to provide some kind of degree
of evidence againstH0. We can not imagine the com-
mon researcher doing anything but one of two things:

1. Reject only ifα is greater than the complete support
of P . This is the classical nonrandomizedP -value.

2. Generate a realized valueP = p from the distribu-
tion and reject only ifα ≥ p. This is the classical
randomizedP -value.

Unfortunately, fuzzyP -values or abstract randomized
P -values do not add new insight in these cases.

The notion of interpreting the abstract randomized
P -value as degree of evidence againstH0, without
making an acceptH0 or rejectH0 decision, seems quite
Fisherian. As Christensen (2005) interpreted Fisher,
“an α level should never be chosen, a scientist should
simply evaluate the evidence embodied in thep value.”
However, this seems to ignore the large number of
practical situations in which accept or reject decisions
need to be made. We are thinking of quality control
decisions or drug approval decisions by the Food and
Drug Administration (FDA), for example. Any attempt
to objectively operationalize such decisions using ab-
stract randomizedP -values will result in a classical
randomized or nonrandomized test, as we described
in the previous paragraph. However, a randomized test
will not be used in any practical situation. (We hope
the FDA is not flipping coins!) So in the end, some
nonrandomized decision rule will be defined. Thus, it
seems that the effort of defining an abstract randomized
P -value will have little impact.

4. IN THE END

Although constructs such as randomization and
fuzziness may provide more eye-pleasing curves of
coverage probabilities andP -values, in the end they
do not provide the experimenter with an inference that
is an improvement over procedures which treat the data
as discrete. Is not improving the inference what it is all
about?
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