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On Model Expansion, Model Contraction,
Identifiability and Prior Information:
Two Illustrative Scenarios Involving
Mismeasured Variables
Paul Gustafson

Abstract. When a candidate model for data is nonidentifiable, conventional
wisdom dictates that the model must be simplified somehow so as to gain
identifiability. We explore two scenarios involving mismeasured variables
where, in fact, model expansion, as opposed to model contraction, might be
used to obtain identifiability. We compare the merits of model contraction
and model expansion. We also investigate whether it is necessarily a good
idea to alter the model for the sake of identifiability. In particular, estima-
tors obtained from identifiable models are compared to those obtained from
nonidentifiable models in tandem with crude prior distributions. Both asymp-
totic theory and simulations with Markov chain Monte Carlo-based estima-
tors are used to draw comparisons. A technical point which arises is that the
asymptotic behavior of a posterior mean from a nonidentifiable model can
be investigated using standard asymptotic theory, once the posterior mean is
described in terms of the identifiable part of the model only.

Key words and phrases: Bayes analysis, identifiability, measurement error,
misclassification, nested models, prior information.

1. INTRODUCTION

Say that a particular statistical model withp un-
known parameters seems appropriate for a modeling
problem at hand, but this model is not identifiable. That
is, multiple values of the parameter vector correspond
to the same distribution of observable data. Conven-
tional wisdom dictates that a simpler submodel with
fewer thanp parameters must be selected so as to gain
identifiability. Of course this process ofmodel contrac-
tion may lead to a model that involves dubious assump-
tions or a model that is less realistic in some other way.
A less intuitive approach to gaining identifiability is
model expansion whereby the initial model is enlarged.
As we will see, there are natural situations where the
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initial nonidentifiable model has an identifiable super-
model with more thanp unknown parameters.

To be more specific, two inferential scenarios involv-
ing mismeasured variables are considered. The first
scenario involves two imperfect schemes for assess-
ing whether a study subject is “exposed,” where both
the misclassification probabilities describing these
schemes and the prevalence of exposure in the study
population are unknown. Three plausible models are
considered in this context, with nonidentifiable
Model A nested within identifiable Model B nested
within nonidentifiable Model C. Thus the identifiable
Model B might be arrived at by contraction of the non-
identifiable Model C or by expansion of the nonidenti-
fiable Model A.

The second scenario involves regression of a con-
tinuous response variable on a continuous explanatory
variable, where the explanatory variable is subject to
measurement error. Again a nested sequence of plau-
sible models is considered, with identifiable Model D
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nested within nonidentifiable Model E nested within
identifiable Model F. Thus if Model E is considered
initially, then either model contraction or model expan-
sion can be used to gain identifiability.

In addition to considering different models, the role
of prior information is also investigated in both sce-
narios. Particularly, we investigate how helpful a crude
subjective prior distribution can be when faced with a
nonidentifiable model. That is, the infusion of prior in-
formation into a nonidentifiable model is considered as
an alternative to gaining identifiability through either
model contraction or model expansion.

In both scenarios estimators based on the different
models are compared, under a variety of actual data
generating mechanisms. The motivation for these com-
parisons is curiosity about two questions. First, is the
uncommon strategy of gaining identifiability via model
expansion appealing, particularly in comparison to the
common strategy of gaining identifiability via model
contraction. Second, is the conventional wisdom that
something must be done to gain identifiability always
sound. The comparisons of estimator performance are
based on both asymptotic theory and simulation stud-
ies. In the former case, both “right-model” and “wrong-
model” asymptotic theory is employed. In the latter
case, Bayes estimators computed via Markov chain
Monte Carlo (MCMC) methods are compared on sim-
ulated data.

On the face of it one might think that standard as-
ymptotic theory cannot shed light on the performance
of estimators based on nonidentifiable models, so that
simulation is the only possibility for studying the es-
timators based on Models A, C and E. On the con-
trary, we show that standard asymptotic theory can
describe the behavior of posterior means that arise
from nonidentifiable models. To do so one must sim-
ply use iterated expectation to reexpress the original
posterior mean as a posterior mean with respect to the
identifiable part of the model alone.

Before proceeding to the first scenario, some care
with terminology and definitions surrounding identi-
fiability is required. Say that Model M postulates a
distribution F(·|θ) for the observable data, with the
unknown parameterθ being an element of the para-
meter space�. Let A be the subset of� defined as

A = {
θ ∈ � :F(·|θ) = F(·|θ∗)

(1)
for someθ∗ ∈ � \ {θ}}.

That is,A consists of all parameter values which do not

give rise to a distinctive distribution of observable data.
We will say that Model M is

• fully identified if A is empty;
• essentially identified (with respect to prior distribu-

tion � on�) if A is nonempty but�(A) = 0;
• nonidentified (with respect to prior�) if �(A) > 0.

With regard to these definitions, note that expand-
ing a nonidentified Model M to a supermodel M′ can
at best yield essential rather than full identifiability.
The parameter space for M′ will have a lower dimen-
sional subspace corresponding to Model M, and some
elements of this subspace will necessarily lie inA.
Thus the first question about model expansion strate-
gies is whether essential identifiability is strong enough
to equate with “practical” identifiability. Certainly if
we give credence to the prior distribution, then be-
ing able to definitely learn the parameter values from
a large enough sample with prior probability 1 seems
sufficient. Particularly if we take the view that in prac-
tice all models are somewhat misspecified, so that the
true parameter values are merely the values minimiz-
ing Kullback–Leibler divergence between the true and
modeled data distributions, then it seems reasonable to
regard the parameter values falling on the lower dimen-
sional subspace as being a probability 0 event.

2. SCENARIO I

In many epidemiological studies the classification
of subjects as “unexposed” or “exposed” cannot be
done perfectly. To mitigate this problem, it is com-
mon to employ several different imperfect classifica-
tion schemes to test for exposure. For instance, Hui and
Walter (1980) gave an example involving two tests (the
Mantoux test and the Tine test) for the detection of tu-
berculosis; Drews, Flanders and Kosinski (1993) con-
sidered both patient interviews and medical records to
measure various putative binary risk factors in a case-
control study of sudden-infant-death syndrome; and
Joseph, Gyorkos and Coupal (1995) considered a study
in which both a serology test and stool examination
were used to test for a particular parasitic infection.
In addition to the assessment schemes being imperfect,
often the classification probabilities that characterize
the degree of imperfection are not known precisely, al-
though there may be some reasonable prior knowledge
in this regard.

Let E denote the exposure variable (E = 0 for un-
exposed;E = 1 for exposed), and letT1 andT2 be two
imperfect surrogates (tests) forE. We consider the re-
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alistic scenario in which thesensitivity pj = Pr(Tj =
1|E = 1) and specificity qj = Pr(Tj = 0|E = 0) of
each test are unknown. Say that(T1, T2) are ob-
served for subjects sampled from the population of
interest, which has unknown exposure prevalence
r = Pr(E = 1). Model A postulates that

Pr(T1 = a,T2 = b|θ)

= rpa
1(1− p1)

1−apb
2(1− p2)

1−b(2)

+ (1− r)q1−a
1 (1− q1)

aq1−b
2 (1− q2)

b,

whereθ = (p1,p2, q1, q2, r) is the unknown parame-
ter vector. Note that Model A invokes the common
assumption that the two test outcomes(T1, T2) are
conditionally independent given the true exposure sta-
tus E. Clearly Model A is nonidentifiable, because
the (T1, T2) data comprise a 2× 2 table from which
at most three parameters can be estimated consis-
tently, whereas in fact five parameters are unknown.
Despite the nonidentifiability, Bayesian inference un-
der Model A is relatively straightforward to implement,
as exemplified by Joseph, Gyorkos and Coupal (1995).

Starting with Model A, one way to develop an
identifiable model is to pre- or poststratify the sam-
ple/population according to some binary covariateX,
which is thought to be associated with the exposureE.
For instance, say random samples of sizen1 and n2
are taken from theX = 0 and X = 1 subpopula-
tions, respectively. Model B postulates that (2) holds
with prevalencer = r1 in the first subpopulation and
with prevalencer = r2 in the second subpopulation.
As well, Model B implicitly assumes the exposure mis-
classification isnondifferential, in that (T1, T2) and
X are conditionally independent givenE. Less for-
mally, the mechanisms which yield misclassification
are assumed to operate identically in the two sub-
populations. Model B, with six unknown parameters,
θ = (p1,p2, q1, q2, r1, r2), is clearly an expansion of
Model A, but now the data can be summarized into
separate 2×2 tables for each subpopulation, so there is
hope of consistently estimating six parameters. Indeed,
Hui and Walter (1980) illustrated that, subject to some
minor caveats, Model B is a regular model that leads
to likelihood-based estimators with standard asymp-
totic properties. More precisely, in our terminology
Model B is essentially identifiable with respect to any
continuous prior distribution. Johnson, Gastwirth and
Pearson (2001) explicitly argued in favor of stratifica-
tion and the use of Model B for the sake of identifiabil-
ity. We will somewhat loosely phrase our comparisons

as being between models, but of course the choice to
prestratify or not is more accurately described as being
a design issue.

Of course, moving from Model A to Model B might
not be viewed as purely a model expansion, since in-
ferences from Model B are based on more data than
inferences from Model A. Thus it is perhaps not so
surprising that this kind of model and data expansion
can yield parameter identifiability. On the other hand,
we certainly have a nested model situation where the
submodel is nonidentifiable whereas the supermodel is
essentially identifiable. In particular, we can view both
models as describing the distribution of(T1, T2,X), but
Model A happens to posit thatX contributes no infor-
mation about the unknown parameters.

Another comment is that starting with Model A,
other model and data expansions can lead to identifia-
bility. For instance, the addition of a third conditionally
independent surrogateT3 for E leads to identifiability
without stratification. Indeed there is literature that ad-
dresses scenarios with a large number of surrogates;
see, for instance, Qu, Tan and Kutner (1996) for exam-
ples with up to seven surrogates!

The assumption thatT1 andT2 are conditionally in-
dependent givenE may not be reasonable in a given
application. Indeed, it is easy to imagine thatT1 andT2
will be positively correlated givenE in many practical
settings, because subjects who are particularly suscep-
tible to misclassification by one scheme may also be
particularly susceptible under the other scheme. More-
over, without observations onE, the assumption is not
amenable to formal empirical checking, because all the
degrees of freedom are used in the estimation ofθ .
The plausibility of the conditional independence as-
sumption and the effects of incorrectly invoking it were
discussed by Fryback (1978), Vacek (1985), Brenner
(1996) and Torrance-Rynard and Walter (1997).

As illustrated by Dendukuri and Joseph (2001)
and Georgiadis, Johnson, Gardner and Singh (2003),
Bayesian modeling can be used to relax the assump-
tion that two tests are conditionally independent given
the true exposure. In the present context we construct
Model C, an expansion of Model B, by modeling the
distribution ofT1, T2|E as

Pr(T1 = a,T2 = b|E)

=




(1− q1)
aq1−a

1 (1− q2)
bq1−b

2 + (−1)|a−b|δ0,

if E = 0,

pa
1(1− p1)

1−apb
2(1− p2)

1−b + (−1)|a−b|δ1,

if E = 1.



114 P. GUSTAFSON

Under this modelpj and qj retain their interpreta-
tions as the sensitivity and specificity of thej th test,
but now (δ0, δ1) are additional unknown parameters,
with δj = Cov(T1, T2|E = j). Model B is recovered
if δ0 = δ1 = 0. Whereas it is hard to imagine scenar-
ios under whichT1 and T2 are negatively associated
givenE, we restrict toδ0 ∈ [0, δMAX (q1, q2)] andδ1 ∈
[0, δMAX (p1,p2)], whereδMAX (s, t) = min{s, t} − st

is the maximal covariance between two binary ran-
dom variables with “success” probabilitiess and t .
For future reference, note that the dependence in
Model C can also be expressed in terms of correla-
tion, which is more interpretable but complicates the
requisite mathematical expressions. Specifically, let
ρj = Corr(T1, T2|E = j) for j = 1,2, with the range of
dependence now expressed asρ0 ∈ [0, ρMAX (q1, q2)]
andρ1 ∈ [0, ρMAX (p1,p2)].

Model C, with eight unknown parametersθC =
(p1,p2, q1, q2, δ0, δ1, r1, r2), is clearly not identifi-
able from the data which are still summarized by two
2× 2 tables. Thus while Model C may be appealing
on the grounds of realism, it is tempting to contract to
Model B for the sake of identifiability.

2.1 Performance of Model B Estimators

The behavior of estimates generated by fitting
Model B to data can be studied via regular asymptotic
theory. It is convenient to restrict the parameter space
θ ∈ � according topj + qj > 1 for j = 1,2 to avoid
the trivial nonidentifiability arising becausef (t1, t2|θ)

is unchanged upon replacingpj with 1 − qj , qj with
1− pj andrj with 1− rj . In practice the restriction is
very mild, because an assessment scheme that is worse
than chance (i.e.,pj + qj < 1) can usually be ruled
out a priori. While it is cumbersome to write down ex-
plicit expressions, there is no difficulty in evaluating
the Fisher information matrixI (θ) exactly (see, e.g.,
Hui and Walter, 1980). In situations where Model B
is correctly specified, a maximum likelihood or Bayes
estimator ofψ = ψ(θ) is consistent and has a readily
computed asymptotic variance.

To give a specific example, say that data are gen-
erated under Model B withp1 = 0.8, p2 = 0.8, q1 =
0.75, q2 = 0.9, r1 = 0.3 − �/2 andr2 = 0.3 + �/2.
For later reference this scenario is referred to as
DGM (i), where DGM stands fordata generating
mechanism. For simplicity we assume that Pr(X = 1)

is known, thereby giving slightly favorable assess-
ments of estimator variance relative to the more realis-
tic setting where Pr(X = 1) must also be estimated. In

fact we consider the balanced case of Pr(X = 1) = 0.5,
so that DGM (i) impliesr = (r1 + r2)/2 = 0.3, which
can be estimated bŷr = (r̂1 + r̂2)/2. As well, in the
case of prestratification we assume balanced stratum-
specific sample sizesn1 = n2 = n/2. We note in pass-
ing that the impact of Pr(X = 1) being closer to 0 or 1,
and/or(n1, n2) being unbalanced, is less than obvious,
because the complex nature of the model implies that
the estimator ofrj is not based only on the data from
thej th stratum.

The left sides of the panels in Figure 1 give the ap-
proximate (asymptotic) root-mean-squared error
(ARMSE) for maximum likelihood or Bayes estima-
tors of the classification probabilities(p1,p2, q1, q2)

and the prevalencer , assuming a large overall sample
size ofn = 2000. Specifically, the ARMSE is displayed
as a function of� = r2− r1, the difference between the
prevalences in the two subpopulations.

As suggested by Figure 1, each ARMSE diverges
to infinity as� approaches zero. This is not surpris-
ing if we think about ther1 = r2 scenario as corre-
sponding to a completely artificial stratification based
on randomization. We would be getting something
for nothing—a “free lunch”—if allocating subjects to
strata on the basis of coin flips would yield identifiabil-
ity and hence estimator consistency. Put another way,
if X andE are independent, then the Model B para-
meters lie on the lower dimensional subspace corre-
sponding to Model A. Mathematically it is clear that
when r1 = r2, the corresponding rows (columns) of
the Model B Fisher information matrixI (θ) are iden-
tical and, hence, the information matrix is singular in
the r1 = r2 limit. What is surprising, however, is that
� need not be very close to zero before each ARMSE
is quite large. When� = 0.1, for instance, ARMSE[r̂]
is about 0.12, perhaps large enough to render a study of
the population prevalence futile despite the large sam-
ple size. Moreover, this is about double the ARMSE
attained when� = 0.2. This sounds a cautionary note
about study design in the Model B framework. Unless
there is good prior knowledge to indicate that the sub-
populations will have markedly different prevalences,
there is a risk of obtaining very poor estimates even
with considerable sample sizes.

It should also be mentioned that our experience with
simulated data sets suggests that the sample size at
which the asymptotic estimator performance becomes
a good approximation to the actual performance it-
self increases as the difference in prevalences� gets
smaller. This cautions against taking the small� re-
gions of Figure 1 too literally, although it does not di-
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FIG. 1. ARMSE for p̂1, p̂2, q̂1, q̂2 (left panel)and r̂ (right panel)under Model B and DGM (i), with a sample size of n = 2000.The left
side of each panel corresponds to the true parameter values in DGM (i), with varying values of � = r2 − r1. The right side of each panel
corresponds to data generated under Model C, with � = 0.2 and varying values of ρ = Corr(T1, T2|E).

minish the point that estimator performance may be
very poor if � is small, even ifn is large. Another
manifestation of this point will be emphasized in Sec-
tion 2.4.1, namely that when� is small, the prior dis-
tribution may have considerable influence on posterior
quantities even at large sample sizes.

The right sides of the Figure 1 panels give the
ARMSE of estimators based on Model B when the
data are actually generated under Model C. Thus they
describe the impact of incorrectly assuming condi-
tional independence ofT1 and T2 given E. Standard
wrong-model asymptotic theory (e.g., White, 1982) is
used to compute the ARMSE in this scenario. In par-
ticular, Model B can be parameterized in terms ofν

instead ofθ , where ν comprises three probabilities
which characterize the distribution ofT1, T2|X = 0,
along with three probabilities which characterize the
distribution ofT1, T2|X = 1. We writeν = h(θ), where
the functionh(·) is easily evaluated. It is also pos-
sible to evaluateh−1(·), although the expressions
are extremely cumbersome (Hui and Walter, 1980).
For true parameter values(θ, δ0, δ1) under Model C,
we computeν∗, the probabilities that characterize
T1, T2|X under Model C. Thenθ∗ = h−1(ν∗) will
be the large-sample limit of̂θ obtained when fitting
the incorrect Model B to the data. Thus in estimat-
ing ψ = g(θ), the asymptotic bias incurred because of
model misspecification isg(θ∗) − g(θ). Moreover, fol-

lowing White (1982), the asymptotic variance ofθ̂ is
given asA(θ∗)−1B(θ∗)A(θ∗)−1, where

Aij (θ) = EC{∂2 logfB(T1, T2; θ)/∂θi ∂θj },
Bij (θ) = EC{∂ logfB(T1, T2; θ)/∂θi

· ∂ logfB(T1, T2; θ)/∂θj },
with the notation chosen to emphasize that thef inside
the expectations is from the incorrect Model B, while
the expectations themselves are with respect to the ac-
tual distribution of(T1, T2) given by Model C. Armed
with the asymptotic bias and asymptotic variance ofθ̂ ,
the ARMSE forψ̂ = g(θ̂) at a particular sample size is
readily computed.

As an aside, this route to determining the asymp-
totic behavior of Model B estimators when Model C
is correct is not fully general. For some Model C
parameter values, especially with larger values of
δ0 and δ1, the T1, T2|X probabilitiesν∗ can fall out-
side the Model B parameter space. That is,ν∗ can
lie outside the image underh(·) of the Model B pa-
rameter space forθ . In such a situationθ∗, the large-
sample limit of the Model B-based estimator, cannot
be determined ash−1(ν∗). We have not pursued this
here, but such instances require numerical methods
to find θ∗ as the value ofθ which minimizes the
Kullback–Leibler divergence between the actual distri-
bution of(T1, T2) and the distribution postulated under
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Model B. In fact, a similar problem can arise in fit-
ting Model B even when it is correct. That is, sampling
variability alone can lead to observed cell proportions
for the(T1, T2) table that lie outside the image ofh(·),
so thath−1(·) cannot be applied to these proportions
as a route to generating parameter estimates. For this
reason Drews, Flanders and Kosinski (1993) proposed
expectation–maximization (EM) algorithm fitting of
Model B rather than the closed-form approach of Hui
and Walter (1980).

Returning to Figure 1, the right sides of the panels
are again based on the DGM (i) values for(p1,p2, q1,

q2, r), with � fixed at � = 0.2. A common value
for both ρ0 andρ1 is varied fromρ = 0 to ρ = 0.5.
We note in passing thatρ0 = 0.5 is quite close to the
upper bound ofρ0 ≤ ρMAX (q1, q2) = 0.577 for the
specified values ofq1 and q2. Conversely, values up
to 1 are possible forρ1, sincep1 = p2. The right sides
of the panels in Figure 1 plot ARMSE as a function
of ρ.

The format of Figure 1 is chosen to contrast the
two potential pitfalls of using Model B for inference.
The center of each panel corresponds to a good situ-
ation, in that the subpopulation prevalences are quite
disparate (� = 0.2) and the conditional independence
assumption is satisfied (ρ = 0). Moving to the left,
the DGM approaches the nonidentifiable Model A as
� decreases to zero. Moving to the right, Model B be-
comes increasingly misspecified as the conditional cor-
relation between the two tests increases. Surprisingly,

the increase in ARMSE to the left tends to be more dra-
matic than the increase to the right. That is, Model B
being correct but with parameter values in the vicin-
ity of the nonidentifiable submodel is more damaging
than Model B being incorrect due to conditional depen-
dence between the two tests.

Of course Figure 1 pertains to specific underlying
values of(p1, q1,p2, q2, r). To suggest that the qualita-
tive behavior is similar for other values, Figure 2 gives
ARMSE values for DGM (ii), defined byp1 = 0.95,
p2 = 0.9, q1 = 0.65, q2 = 0.85 and r = 0.15. The
overall impression is again that Model B being cor-
rect with parameter values near Model A is worse
than Model B being incorrect because of dependence
between tests. Experimentation with further sets of un-
derlying parameter values (results not shown) also sup-
ports this view.

The concern about the performance of Model B un-
der moderately small values of� = r2 − r1 suggests
that stratifying the population to gain identifiability
is not a panacea. Thus we consider using Model A
for inference, its nonidentifiability notwithstanding.
Of course, it seems unreasonable to expect reasonable
inferences from a nonidentifiable model with a diffuse
prior distribution. We speculate, however, that a crude
subjective prior might go some distance toward pro-
ducing good inferences. Before looking specifically at
Model A, we develop an asymptotic approach to study-
ing the performance of posterior means that arise from
nonidentifiable models in general.

FIG. 2. ARMSE for p̂1, p̂2, q̂1, q̂2 (left panel)and r̂ (right panel)under Model B and DGM (ii). The format is the same as Figure 1.
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2.2 Asymptotic Behavior of Posterior Means in
Nonidentifiable Models

The asymptotic behavior of Bayes estimates arising
from nonidentifiable models has received very little at-
tention in the literature. Whereas Neath and Samaniego
(1997) and Gustafson, Le and Saskin (2001) studied
the issue in the context of specific models, here we de-
scribe a more general approach.

To gain insight into a nonidentified model we seek
to reparameterize from the original parameter vec-
tor θ to φ = (φI ,φN) in such a way thatf (data|φ) =
f (data|φI ). That is, the distribution of the data depends
only on the identifiable part of the parameter vec-
tor φI , and not on the nonidentifiable partφN . We call
such a parameterizationtransparent, because it is in-
tended to make apparent the impact of nonidentifiabil-
ity. We also assume that a proper prior distribution with
densityf (θ) has been specified in the original parame-
terization. Of course, this induces a prior densityf (φ)

in the transparent parameterization. Indeed, following
Dawid (1979) and Gelfand and Sahu (1999), it is use-
ful to think of the prior forφ in terms of the marginal
densityf (φI ) and the conditional densityf (φN |φI ).
Then immediately we have

f (φI |data) ∝ f (data|φI )f (φI ),(3)

f (φN |φI ,data) = f (φN |φI ).(4)

Thus (3), the posterior marginal distribution forφI ,
is typically governed by the usual asymptotic the-
ory which applies in the identifiable case. On the
other hand, (4), the posterior conditional distribution
for φN |φI , is identical to the prior conditional distribu-
tion. That is, there is no Bayesian learning whatsoever
about the conditional distribution ofφN |φI . We em-
phasize, however, that a natural or obvious prior forθ

will often lead to prior dependence betweenφI andφN ,
and consequently

f (φN |data) =
∫

f (φN |φI )f (φI |data) dφI �= f (φN).

That is, marginally there can be some learning
about φN . We refer to this asindirect learning, be-
cause it is learning aboutφN that results only because
of learning aboutφI . Also, note that under typical reg-
ularity conditions, (3) will concentrate to a point mass
at the true value ofφI as the sample size grows. Thus
the posterior marginal distribution ofφN will tend to
the (nondegenerate) prior conditional distribution (4)
evaluated at the true value ofφI . For general discus-

sion of regularity conditions governing the asymptotic
normality of posterior distributions and Bayes estima-
tors, see, for instance, Bernardo and Smith (1994, Sec-
tion 5.3) and Lehmann and Casella (1998, Section 6.8).
Outwardly it appears that the indirect learning is quite
subjective in nature, because it is driven by the condi-
tional prior distribution ofφN givenφI . In both scenar-
ios studied here, however, the nature of the transparent
parameterization is such that the support of this distri-
bution depends onφI , so that the indirect learning is
quite intrinsic to the problem at hand.

Now say that with respect to the transparent parame-
terization the parameter of interest can be expressed as
ψ = g(φ) = g(φI ,φN). Then

E(ψ |data)

=
∫ ∫

g(φI ,φN)f (φI ,φN |data) dφN dφI

=
∫ ∫

g(φI ,φN)f (φN |φI ) dφNf (φI |data) dφI

= E
(
g̃(φI )|data

)
,

where

g̃(φI ) =
∫

g(φI ,φN)f (φN |φI ) dφN.

In particular, the posterior mean of interest is now ex-
pressed as a posterior mean in the identifiable model
parameterized byφI alone. Thus its large-sample be-
havior will typically be described by the standard as-
ymptotic theory based on Fisher information. That is,
if the model is correct and an i.i.d. sample of sizen

yieldsψ̂(n) = E(ψ |data), then

n1/2{ψ̂(n) − g̃(φI )
}

⇒ N
[
0, {g̃′(φI )}T I (φI )

−1{g̃′(φI )}]
in distribution, asn → ∞. Thus the RMSE incurred
when estimatingψ by ψ̂(n) can be approximated as

ARMSE

= [{g̃(φI ) − g(φI ,φN)}2(5)

+ n−1{g̃′(φI )}T I (φI )
−1{g̃′(φI )}]1/2

,

where the first term describes the asymptotic bias and
the second term describes the asymptotic variance.
Although it is trivial to establish, this approach to quan-
tifying the frequentist performance of a posterior mean
in a nonidentified model does not seem to have been
used previously in the literature. We emphasize that
these asymptotic developments assume a proper joint
prior distribution, and extensions to improper priors are
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not altogether obvious. Indeed, subtle issues surround
nonidentified models and improper priors, as empha-
sized by Gelfand and Sahu (1999).

2.3 Performance of Model A Estimators

In mismeasured variable scenarios, investigators of-
ten have a rough idea about the extent of the mismea-
surement. In the present context, for instance, say that
the investigators are comfortable with an assessment
that the two testsT1, T2 are “pretty good, but not per-
fect” surrogates for the actual exposureE. This might
be encapsulated by assigning the same prior distribu-
tion to each of(p1, p2, q1, q2). As an illustration, con-
sider assigning a Beta(18,4) prior distribution to each
of these parameters independently, along with the prior
r ∼ Unif(0,1) for the population prevalence. For later
reference we refer to this as prior (i). Also for refer-
ence, the Beta(18,4) density function appears in Fig-
ure 3. The crudeness in this prior specification derives
in part from the inherent uncertainty in the Beta(18,4)

distribution, but more from the lack of any discrimi-
nation between the two tests or any discrimination be-
tween the sensitivity and specificity of either test. In the
absence of very substantive prior knowledge, the four
classification probabilities(p1,p2, q1, q2) are treated
exchangeably. We note that as a special case of ex-
changeability the assumption of prior independence is
made for the sake of convenience. Conceivably, a more
realistic attempt to elicit an exchangeable prior distrib-

ution on these four parameters might result in positive
dependence a priori.

For Model A a transparent parameterizationφ =
(φI ,φN) obtains by taking

φI,1 = rp1p2 + (1− r)(1− q1)(1− q2),

φI,2 = rp1(1− p2) + (1− r)(1− q1)q2,

φI,3 = r(1− p1)p2 + (1− r)q1(1− q2),

which directly determine the distribution of(T1, T2).
It is then convenient to complete the parameterization
by takingφN = (r,p1). The prior densityf (φ) is de-
termined by transformation of prior (i) in the original
parameterization. In doing so it is quite messy to de-
termine the requisite Jacobian of theφ → θ mapping
directly. Thus we work with the simply determined
Jacobian of theθ → φ mapping instead, and use im-
plicit differentiation. The net result is that the prior
densityf (φ) is readily evaluated at any givenφ, but
it is not simple to give an expression for this density.

As previously we focus onr as the parameter of in-
terest. Following the development of Section 2.2, the
posterior mean ofr is identically the posterior mean of

g̃(φI ) =
∫ ∫

φN,1f (φN |φI ) dφN,1 dφN,2

(6)

=
∫ ∫

φN,1f (φI ,φN)dφN,1 dφN,2∫ ∫
f (φI ,φN)dφN,1 dφN,2

with respect to the identifiable submodel parameterized

FIG. 3. Prior distributions for the probability of correct classification. The solid curve is the Beta(18,4) density function and the dotted
curve is the Beta(10,1) density function.
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by φI alone. Unfortunately,̃g cannot be evaluated in
closed form. We can, however, use two-dimensional
numerical integration to evaluate both the numera-
tor and denominator integrals. Thus we can compute
g̃(φI ) − g(φI ,φN), the asymptotic bias incurred by
r̂A = E(r|data).

Of course the first derivatives ofg̃(φ) are also needed
to determine the asymptotic variance of the posterior
mean as in (5). Analytic differentiation of (6) is prob-
lematic because of the lack of a closed-form expression
for f (φ) alluded to above. Hence we content ourselves
with numerical differentiation, for instance, evaluat-
ing both g̃(φI ) and g̃(φI + ε(1 0 0)) using the same
quadrature points, so as to approximate∂g̃(φI )/∂φI,1.
In doing so we take care to check thatε is small enough
and the number of quadrature points is large enough to
obtain stable approximations to the derivatives. Also,
since we are interested in large sample sizes at which
the asymptotic variance is typically small relative to the
asymptotic bias, exacting precision in computing the
derivatives is not required. Thus the ARMSE (5) can
be computed in the present context, albeit with some
numerical effort.

We reconsider the DGM (i) parameter values given
in Section 2.1. With prior (i) and a sample size of
n = 2000 we compute ARMSE[r̂A] = 0.015. This
comparesvery favorably to the ARMSE[r̂B] values
given in Figure 1, being considerably smaller when
� = r2 − r1 is large and very much smaller when� is
small. Even at this large sample size, infusing crude
prior information into Model A may be preferable to
stratifying the population and using Model B for the
sake of identifiability.

Of course this comparison may reflect some luck in
choosing a crude prior that happens to yield a small
asymptotic bias for the DGM (i) parameter values.
Thus prior (ii) is considered, under which all four clas-
sification probabilities are assigned Beta(10,1) prior
distributions. This prior has a much different shape as
indicated in Figure 3, although it still reflects a crude
notion of the two tests being good but perhaps not per-
fect. It does turn out that̂rA performs less well under
prior (ii), with ARMSE= 0.037. However, this is still
quite favorable relative to ARMSE[r̂B] as displayed in
Figure 1, especially when� = r2− r1 is not very large.

We also reconsider DGM (ii) used in Section 2.1.
With this DGM we obtain ARMSE[r̂A] = 0.079 with
prior (i) and ARMSE[r̂A] = 0.050 with prior (ii). In the
former case this is better than the Model B performance
given in Figure 2 if� is less than about 0.1, and in

the latter case it is better if� is less than about 0.15.
Again, crude prior information infused into Model A
can guard against the small� pitfall associated with
the Model B estimator.

We have concentrated on the performance of preva-
lence estimators, although the same approach can be
employed to assess the performance of sensitivity and
specificity estimators under Model A. An interesting
finding in related nonidentified models is that under
low prevalence the data provide much more informa-
tion about specificity than about sensitivity (Johnson
and Gastwirth, 1991; Johnson, Gastwirth and Pearson,
2001; Gustafson, Le and Saskin, 2001).

2.4 Simulation Comparisons

2.4.1 Performance of Model A and B estimators.
A small simulation study is carried out to augment
the asymptotic comparisons made thus far. Data gen-
erating mechanisms (i) and (ii) are considered again,
with the difference between subpopulation prevalences
taken to be� = 0.07. This corresponds to a setting
where there is a practical difference between the sub-
population prevalences, but the asymptotic analysis
suggests that the difference may not be large enough
to yield good estimates. We simulate 200 data sets
of size n = 2000 under each DGM, and for each
data set we estimate the prevalencer using Model A
with prior (i), Model A with prior (ii), Model B with
uniform priors on all six parameters and Model B
with prior (i) suitably extended [i.e., with uniform
distributions on(r1, r2)]. Each estimate is obtained
from 25,000 Gibbs sampler iterations after 1000 burn-
in iterations. Under both Models A and B the Gibbs
sampler is simple to implement once the parameter
space is expanded to include the unobserved true ex-
posure status of the subjects, along the lines of Joseph,
Gyorkos and Coupal (1995) or Johnson, Gastwirth and
Pearson (2001), for instance. The simulation results are
summarized in Table 1.

As an aside, informal monitoring indicates that the
mixing behavior of the Gibbs sampler in Models
A and B is tolerable but not ideal. Gelfand and Sahu
(1999) noted that the Gibbs sampler can mix poorly
in posterior distributions based on nonidentifiable like-
lihoods, and this appears to be an issue of some con-
cern in the present situation, both for nonidentifiable
Model A and moderately identified Model B. While
the MCMC sample size of 25,000 seems reasonable
given the mixing behavior, there is some possibility of
slightly improving the reported performance in Table 1
by further increasing the MCMC sample size or by
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TABLE 1
Performance of four posterior means for r in a simulation study

DGM Model Prior Bias RMSE (SIM SE) COV ALEN

(i) A (i) −0.012 0.0186 (0.0009) 100% 0.13
A (ii) −0.032 0.0366 (0.0012) 100% 0.19
B Uniform 0.047 0.0638 (0.0028) 93% 0.22
B (i) −0.005 0.0208 (0.0010) 98% 0.12

(ii) A (i) 0 .074 0.0755 (0.0011) 4% 0.11
A (ii) 0 .050 0.0536 (0.0013) 91% 0.15
B Uniform 0.122 0.1332 (0.0038) 23% 0.22
B (i) 0.069 0.0717 (0.0015) 6% 0.11

NOTE. Performance is summarized by bias and RMSE, along with the coverage (COV) and average length
(ALEN) of the nominal 80% equal-tailed credible interval. These quantities are estimated via 200 simulated
data sets. In the case of RMSE, a simulation standard error is also given. The upper half of the table concerns
data generated under DGM (i); the lower half concerns DGM (ii). In both cases� = r2 − r1 = 0.07 and
n = 2000.

choosing a different MCMC algorithm in light of the
identifiability issue. For an example of designing an
MCMC algorithm to work well in a nonidentified con-
text similar to Model A, see Gustafson, Le and Saskin
(2001).

In examining Table 1, note first that the empiri-
cal RMSE observed for the Model A posterior mean
agrees quite closely with the ARMSE for both choices
of prior and both choices of DGM. Thus the asymp-
totic analysis of the posterior mean under a nonidenti-
fied model is reflecting actual estimator performance.
On the other hand, it is clear that for the Model B pos-
terior mean the asymptotics have not fully kicked in
yet, even withn = 2000. For DGM (i) the empirical
RMSE under the flat prior is far smaller than the as-
ymptotic value given in Figure 1. Moreover, the em-
pirical RMSE is clearly very sensitive to the choice of
a flat prior versus prior (i), although asymptotically the
prior does not matter. Thus another aspect of the “mod-
erate�” problem has emerged. Even though Model B
is governed by regular asymptotics, ifr1 and r2 are
moderately close together, then the asymptotic approx-
imation to the sampling distribution of estimators may
be very inaccurate unless the sample size is extremely
large.

In comparing across models in Table 1 we see that
Model A with either crude prior yields a lower RMSE
than Model B with a flat prior. However, Model B with
prior (i) yields very similar performance to Model A
with prior (i). Put succinctly, in this scenario the key
to successful inference is a reasonable prior. Whether
or not identifiability obtains seems to be of little im-
port. In this regard, a referee has raised an interesting

question. Is there a sense in which Models A and B
can be shown to yield the same estimator performance
if the same prior distributions are employed. If in fact
� �= 0, then in one sense the answer is clearly no, be-
cause we have seen that the two estimators are gov-
erned by quite different asymptotic behavior. Model B
gives asymptotically unbiased estimators, but they may
have high variance if� is not far from zero, and the
finite sample bias and variance may be influenced by
the choice of prior until the sample size is very large.
In contrast, Model A gives asymptotically biased esti-
mators, but the bias and variance may both be modest.
On the other hand, it may be possible to develop argu-
ments which quantify the behavior of Model B estima-
tors when� = 0, and it may be possible to link this
to the corresponding performance of Model A estima-
tors, because presumably if� = 0, then the impact of
the prior distribution on Model B estimators will not
diminish with sample size.

With regard to the credible intervals described in Ta-
ble 1, we simply note that extreme undercoverage and
overcoverage arise. Of course, with a nonidentifiable
model there is no reason to expect Bayesian credible
intervals to have approximately matching frequentist
coverage. Theory dictates that the credible intervals
from identifiable Model B have asymptotic matching
frequentist coverage, yet with DGM (ii) we see ex-
treme undercoverage. Again this speaks to the asymp-
totics not yet being accurate for Model B, even with
n = 2000.

Of course both the asymptotic and simulation com-
parisons between Model A and Model B estimators are
based on illustrative values of the true parameter val-
ues and, particularly for Model A, illustrative values of
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the hyperparameters. Clearly the choice of prior distri-
bution will impact the performance of estimators from
nonidentified models even at very large sample sizes.
Thus remarks about the surprisingly good performance
of Model A estimators and surprisingly poor perfor-
mance of Model B estimators must be tempered some-
what. We note, however, that the two prior distributions
considered are arguably of somewhat modest preci-
sion. Moreover, the true parameter values in the DGMs
considered are not strikingly consistent with these prior
distributions. In essence, we have tried to illustrate with
priors of practical accuracy, in terms of both variability
and closeness to true parameter values. In fact, a com-
panion manuscript (Gustafson, 2005) greatly extends
the comparison of Model A and Model B estimators,
considering many more combinations of prior distribu-
tions and true parameter values, in what are intended to
be realistic configurations. The findings are quite con-
sistent with the limited comparisons drawn here.

2.4.2 Bayes performance. Our asymptotic and sim-
ulation comparisons thus far have considered average
performance of estimators in repeated sampling with
fixed underlying parameter values in the true model.
For several reasons we now turn attention to average
performance across different underlying parameter val-
ues. One reason for so doing is to verify that our find-
ings are not overly sensitive to the parameter values
which have been arbitrarily chosen for the sake of il-
lustration. Second, we wish to contrast the frequen-
tist coverage of credible intervals with their Bayesian
coverage.

We adopt the decision-theoretic point of view that
nature generates parameter values (and consequently
data sets) from a prior distribution, while the inves-
tigator uses a possibly different prior distribution to
construct a posterior distribution. For each choice of
nature’s prior we simulate 200 data sets, in each in-
stance first drawing a parameter vector from the prior
and then simulating a data set of sizen = 2000 under
Model B. Bearing in mind that nature’s prior assigns
a uniform distribution to(r1, r2), � = r2 − r1 has a
symmetric triangular-shaped prior density on(−1,1).
For each data set the posterior mean and the 80%
equal-tailed credible interval forr are computed un-
der three different model–prior combinations: Model A
with prior (i), Model A with prior (ii) and Model B with
a flat prior. The results appear in Table 2.

Since we are now considering average performance
across small and large underlying values of�, we no

TABLE 2
Bayes performance of r estimators under various settings

Nature’s Investigator’s
prior Model prior RMSE COV ALEN

(i) A (i) 0.057 77% 0.14
A (ii) 0.063 90% 0.21
B Uniform 0.065 82% 0.12

(ii) A (i) 0.043 62% 0.07
A (ii) 0.047 82% 0.11
B Uniform 0.025 80% 0.06

NOTE. Nature employs either prior (i) or prior (ii) to generate
200 data sets under Model B. The investigator uses either Model A
with prior (i), Model A with prior (ii) or Model B with a uniform
prior to obtain a posterior distribution forr . The RMSE of the pos-
terior mean and the coverage (COV) and average length (ALEN) of
the 80% equal-tailed credible interval are reported.

longer expect to see Model A with a crude prior sub-
stantially outperform Model B with a flat prior. In-
deed, when nature uses prior (i), all three model–prior
combinations result in a similar RMSE for estimat-
ing r , and when nature uses prior (ii), Model B with
a flat prior has a lower RMSE than Model A with
either crude prior. Thus in aggregate the advantage
of identifiability which arises when� is quite large
slightly outweighs the benefit of crude prior informa-
tion. Of course this does not mitigate the fact that esti-
mates generated from Model B with a flat prior can be
quite poor for data sets generated under small values
of �. Figure 4 plots the absolute error|r̂ − r| versus
|�| for the simulated data sets under the various sce-
narios considered in Table 2. Clearly the error varies
much less with� under Model A and a crude prior
than under Model B with a flat prior, especially when
nature employs prior (i).

Of course if nature and the investigator use the same
prior, then credible intervals will have exactly their
nominal frequentist coverage, irrespective of whether
the model is identifiable or not. The results in Table 2
are in accord with this fact. The coverage does vary
when the investigator’s prior does not match nature’s
prior, although the deviations from nominal coverage
are much less extreme than those exhibited for frequen-
tist coverage in Table 1.

2.4.3 Performance of Model C estimators. In prin-
ciple the approach of Section 2.2 could be used to
quantify the performance of posterior means based
on nonidentifiable Model C and to determine whether
there is appreciable indirect learning. However, the
requisite expressions are extremely unwieldy, so we do
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FIG. 4. Absolute estimation error |r̂ − r| versus absolute difference in subpopulation prevalences |�| for the simulated data sets in Sec-
tion 2.4.2.

not pursue this here. Rather, we carry out a small sim-
ulation study.

We consider fitting Model C to data, using a uni-
form prior on (p1,p2, q1, q2, r1, r2) along with a
crude prior on (δ0, δ1|p1,p2, q1, q2, r1, r2) that re-
flects a belief of “not too much” dependence be-
tween the two tests given the true exposure status.
Specifically,δ0 is assigned an exponential distribution
with rate parameterk(q1, q2), truncated to the interval
[0, δMAX (q1, q2)]. Similarly, δ1 is assigned an expo-
nential distribution with ratek(p1,p2), truncated to
the interval [0, δMAX (p1,p2)]. To give this prior an
interpretation in terms of downweighting higher corre-
lation betweenT1 andT2 given E, we takek(a, b) =
c/[{a(1 − a)b(1 − b)}1/2]. Then a value ofδj cor-
responding to conditional correlationρj has a prior
density which is exp(−cρj ) times the prior density of
δj = 0, which corresponds toρj = 0. For the sake of
illustration we takec = 4 log4, so thatρj = 0.25 is
four times less likely a priori thanρj = 0 in this sense.
By specifying prior densities forδj which are posi-

tive at zero and monotonically decreasing, we hope to
avoid spurious inferential claims of dependence when,
in fact, none is present. A referee has suggested assign-
ing some prior probability to negative values ofδj as
a further safeguard against this problem.

The investigation in Section 2.1 suggests that esti-
mation of prevalence using Model B is adversely af-
fected by between-test correlation under DGM (ii),
but not under DGM (i). Thus data are simulated un-
der DGM (ii) with different values ofρj . The re-
sults appear in Table 3. We see that in the absence of
correlation the Model C estimator is worse than the
Model B estimator by about a factor of 2 in terms of
RMSE, and by about a factor of 3 in terms of cred-
ible interval length. As the correlation increases, the
difference in RMSE decreases but does not disappear,
while the difference in credible interval length persists.
The advantage of using Model C when there is, in fact,
dependence is a better coverage rate for credible inter-
vals, as one might expect from a model which admits
the possibility of dependence.
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TABLE 3
Comparison of prevalence estimators based on Models B and C,

with the prior distributions described in Section 2.4.3

Model B Model C

ρ RMSE COV ALEN RMSE COV ALEN

0 0.033 72% 0.070 0.074 93% 0.230
0.125 0.064 4% 0.070 0.093 74% 0.230
0.25 0.093 0% 0.070 0.101 23% 0.200

NOTE. The three rows correspond to DGM (i) with three different
underlying values ofρ, the conditional correlation ofT1, T2|E for
both values ofE. For the posterior mean ofr under both models,
the RMSE and the coverage (COV) and average length (ALEN) of
the nominal 80% equal-tailed are reported, based on 200 simulated
data sets of sample sizen = 2000. Each posterior distribution is
based on 25,000 MCMC iterations after 1000 burn-in iterations.

While brevity precludes a full description of the
MCMC algorithm used to fit Model C, we note that
the algorithm is designed to limit the impact of non-
identifiability on MCMC performance. Specifically,
(q1, q2, δ0) and(p1,p2, δ1) are both updated in blocks
given the other parameters and the true exposure status.
Thus our approach to admitting dependence between
tests differs from that of Dendukuri and Joseph (2001),
both in the prior downweighting of higher correlations
and in the approach to MCMC fitting. For some data
sets, particularly those generated under larger values
of ρj , we do see somewhat poor mixing of the MCMC
algorithm. Again, more research on good MCMC al-
gorithms for nonidentified models is required.

As a final comment on Model C, we note that in
a recent paper Black and Craig (2002) considered
Bayesian model averaging across Models B and C (and
several other models as well). That is, they assigned
prior probabilities to the competing models which are
then updated to posterior probabilities. These consti-
tute weights for averaging across models to obtain final
inferences. This approach seems interesting, although
presumably it cannot obviate the nonidentifiability of
Model C. In particular, there is no reason to expect the
posterior probability on the correct model to increase
to 1 as the sample size grows.

3. SCENARIO II

Our second scenario involves a continuous response
variable and a continuous predictor variable subject to
measurement error. LetY be the response variable, let
X be the unobservable predictor variable of interest

and letX∗ be the observable surrogate variable forX.
A typical normal measurement error model might pos-
tulate that the joint distribution of(X∗, Y,X) follows

X∗|X,Y ∼ N(X, rλ2),

Y |X ∼ N(β0 + β1X,σ 2),

X ∼ N(µ,λ2).

We refer to this model as Model E. Note that this
model invokes the common assumption of nondiffer-
ential measurement error, becauseX∗ andY are con-
ditionally independent givenX. Note as well that the
given parameterization makesr = Var(X∗|X)/Var(X)

interpretable as the measurement error variance ex-
pressed as a fraction of the variance in the predictor
itself.

Of course Model E implies a joint distribution for the
observable quantities(Y,X∗) and thus yields a like-
lihood function. However, it is well known that if all
six parametersθ = (β0, β1,µ, r, σ 2, λ2) are unknown,
then the model is nonidentifiable. Intuitively, one can
consistently estimate only five parameters: an inter-
cept, slope and residual variance that describe the dis-
tribution ofY |X∗, along with a mean and variance that
describe the distribution ofX∗. Therefore, contracting
the model by taking the value of one parameter to
be known is a route to identifiability. For instance, if
enough is known about the measurement error process,
then r might be presumed known. We refer to the
model obtained by fixing the value ofr as Model D.

An alternative route to gaining identifiability is
through model expansion. In a recent paper, Huang and
Huwang (2001) demonstrated that the model

X∗|X,Y ∼ N(X, rλ2),

Y |X ∼ N(β0 + β1X + β2X
2, σ 2),

X ∼ N(µ,λ2)

is identifiable, even if all seven parametersθ = (β0, β1,

β2,µ, r, σ 2, λ2) are unknown. Henceforth we refer to
this model as Model F. We also clarify that in our ter-
minology Model F is essentially identified, because
its parameter space does contain the lower dimen-
sional subspace that corresponds to the nonidentified
Model E. Initially it seems remarkable that replac-
ing the linear regression function in Model E with the
quadratic regression function in Model F leads to es-
sential identifiability. The key is that under Model F,
Var(Y |X∗) is no longer constant. It is now a quadratic
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function of X∗. Roughly speaking then, we can
consistently estimate two parameters that describe
Var(Y |X∗), three parameters that describeE(Y |X∗)
and two parameters that describe the marginal distrib-
ution of X∗. Unfortunately, the distribution of(Y,X∗)
implied by Model F does not have a closed form, so
the Fisher information matrix is not readily evaluated
to describe the performance of Model F estimators.
However, Model F is readily fit to data via MCMC
algorithms.

Of course identifiable Model F reduces to noniden-
tifiable Model E whenβ2 = 0. Thus it may not be
wise to use Model F if one suspects thatβ2 is close to
zero. Alternatively, if some prior information aboutr

is available, then one might use Model E, its lack of
identifiability notwithstanding. Alternatively, to avoid
the specification of a prior one might simply fixr at a
“best guess” value and use the identifiable Model D.

As an illustrative example we consider a subset
of data from the HARVEST study (Palatini, Pessina
and Dal Palu, 1993) as described and reported by
Schork and Remington (2000). Along the lines of an
example considered by the latter authors, we exam-
ine the relationship between systolic blood pressure
(SBP) and heart rate (HR) among then = 311 sub-
jects with clinical measurements of both at the 5-year
follow-up examination. In fact we takeY and X∗ to
be linearly rescaled versions of the recorded HR and
log(SBP− 50) values, where the latter transformation
is commonly applied to blood pressure measurements
(Carroll, Ruppert and Stefanski, 1995, Section 4.5).
The rescaling is for the sake of convenience, so that
both variables have sample mean 0 and sample vari-
ance 1. Recognizing that there is substantial short-term
fluctuation in blood pressure measurements, we are im-
plicitly viewing the unobservedX as a long-term aver-
age ofX∗. A scatterplot of the data appears in Figure 5.
While the plot does not indicate obvious curvature, one
point emphasized in Gustafson (2002) is that measure-
ment error reduces the power of diagnostic plots to de-
tect departures from model assumptions.

In fitting Models D, E and F to these data, we as-
sign independent N(0,1) priors to the regression co-
efficients. In light of the data standardization, these
are relatively diffuse priors. The variance components
σ 2 andλ2 are taken to have IG(1/2,1/2) priors. In the
spirit of Kass and Wasserman (1995) these can be in-
terpreted as unit-information priors, with prior guesses
of 1 for both variances.

FIG. 5. Scatterplot of standardized heart rate (Y ) versus stan-
dardized transformed systolic blood pressure (X∗) from the
HARVEST study.

As an initial guess forr we note that in a some-
what similar study discussed by Carroll, Ruppert and
Stefanski (1995, Section 4.5), repeated SBP measure-
ments produced an estimated value ofr = 0.17 for the
ratio of Var(X∗|X) to Var(X). Thus in fitting Model D
we taker = 0.17 as known. As an alternative which
acknowledges the uncertainty in this guess, we fit
Model E with the priorr ∼ Beta(3.21,11.79). This
prior has its mode atr = 0.17 but encapsulates consid-
erable uncertainty around this value. Finally Model F
is fit with both (i) r ∼ Beta(3.21,11.79) and (ii) r ∼
Unif(0,1). The latter choice is made to investigate
whether the essential identifiability of Model F obvi-
ates the need for an informative prior onr .

We note that with these choices of priors Models
D, E and F are readily fit to the data via MCMC
methods. In particular, most quantities can be up-
dated via the Gibbs sampler, although more specialized
Metropolis–Hastings updates are needed to updater

in Models E and F, and alsoX in Model F. Informal
monitoring of the MCMC output indicates reasonable
Markov chain mixing. The following results are based
on 50,000 MCMC iterations.

Kernel-density estimates of posterior densities forβ1

are given in the left panel of Figure 6. Clearly the pos-
terior distribution ofβ1 is very similar under Models
D, E and F with the informative prior (i). In particular,
there is only a slight increase in posterior variance as-
sociated with the loss of identifiability in moving from
Model D to Model E. Further expanding to Model F
while keeping the same prior onr leaves the posterior
distribution ofβ1 virtually unchanged, despite the for-
mal gain of identifiability. In addition, using Model F
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FIG. 6. Posterior distributions on β1 (left panel)and β2 (right panel)for the HARVEST example.

with a flat prior onr yields a substantial increase in
posterior variance, indicating that the gain in identifi-
ability cannot replace the strength of the informative
prior. The lack of advantage with Model F is surprising
given that the posterior distribution ofβ2 is centered
away from zero (right panel of Figure 6), particularly
under prior (ii). In all, it seems that prior information
is quite important in this example, while identifiabil-
ity may not be particularly crucial. The remainder of
Section 3 aims to shed more light on these notions.

3.1 Performance of Model E Estimators

Clearly Model E postulates joint normality of(X∗,
X,Y ) and, hence, joint normality of the observable
quantities(X∗, Y ), with parameters readily determined
as functions of the six parameters governing Model E.
In fact, standard multivariate normal theory yields the
distributions ofY |X∗ andX∗, which form the basis for
a transparent parameterizationφ = (φI ,φN), with the
components ofφI taken to be

β∗
0 = β0 + µβ1/(1+ r),

β∗
1 = β1/(1+ r),

µ∗ = µ,

σ 2∗ = σ 2 + β2
1λ2r/(1+ r),

λ2∗ = λ2(1+ r),

while φN = r . Then the distribution of the observable
data (X∗, Y ) depends onφ only throughφI accord-
ing to

Y |X∗ ∼ N(β∗
0 + β∗

1X∗, σ 2∗ ),

X∗ ∼ N(µ∗, λ2∗).

The developments of Section 2.2 can be applied to
study the asymptotic performance of posterior means
arising from Model E. As an illustrative example,
suppose the analyst assigns independent priors to
the six original parameters, specificallyβ0 ∼ N(0,1),
β1 ∼ N(0,1), µ ∼ N(0,1), σ 2 ∼ IG(0.5,0.5), λ2 ∼
IG(0.5,0.5) and r ∼ Beta(α1, α2). We consider three
particular choices of hyperparameters(α1, α2) for the
prior on r . Prior (i) sets(α1, α2) = (1,1); that is,r is
assigned a uniform prior in the absence of any subjec-
tive knowledge. Prior (ii) sets(α1, α2) = (7.6,14.1),
giving E(r) = 0.35, SD(r) = 0.10, while the more
concentrated prior (iii) sets(α1, α2) = (24.9,58.1),
giving E(r) = 0.30, SD(r) = 0.05.

We consider what happens when the data are gener-
ated according toβ0 = 0, β1 = 1, σ 2 = 0.25, µ = 0,
λ2 = 1 andr = 0.25. Note that for this DGM the true
value ofr is 1 standard deviation below the mean with
respect to both priors (ii) and (iii). Thus in a rough
sense both priors are typically representative of the
truth, although of course prior (iii) represents stronger
knowledge.
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Following Section 2.2, the key to describing the as-
ymptotic behavior of Model E estimators is the prior
distribution ofφN |φI . In the present context it is easy
to check that the Jacobian of theφ → θ mapping is 1
and, consequently,

f (r|β∗
0, β∗

1,µ∗, σ 2∗ , λ2∗)

∝ fN(β∗
1(1+ r))fIG

(
σ 2∗ − r(β∗

1)2λ2∗
)

(7)
· fIG

(
λ2∗/(1+ r)

)

· rα1−1(1− r)α2−1I(0,m(β∗
1 ,σ2∗ ,λ2∗))(r),

wherefN(·) is the N(0,1) density function,fIG(·) is
the IG(0.5,0.5) density function andm(β∗

1, σ 2∗ , λ2∗) =
min[σ 2∗ /{(β∗

1)2λ2∗},1]. Thus for a given quantity of in-
terestψ = g(φ), one can easily evaluate both the value
and the first derivatives of

g̃(β∗
0, β∗

1,µ∗, σ 2∗ , λ2∗)

=
∫

g(β∗
0, β∗

1,µ∗, σ 2∗ , λ2∗, r)

· f (r|β∗
0, β∗

1,µ∗, σ 2∗ , λ2∗) dr

via one-dimensional numerical integration. Thus the
bias and asymptotic variance of̂ψ = E(ψ |data) as
in (5) are readily evaluated.

Of course (7) evaluated at the true value ofφI is the
large-sample limiting posterior density ofr . For each

prior (i)–(iii) the prior density and limiting posterior
density ofr under the illustrative DGM appear in Fig-
ure 7. In the case of the uniform prior (i) there is a sur-
prising amount of indirect learning aboutr . There is
slightly less such learning under prior (ii), and almost
none at all under the sharper prior (iii).

To be more specific, consider estimatingr and β1

by their posterior means. Whiler is not likely to be
of direct inferential interest, it is clearly the crucial in-
termediary quantity in learning about the(Y,X) rela-
tionship from observations on(Y,X∗). Following up
on Figure 7, it would be useful to have a quantification
of how much can be learned about this parameter. Of
course, in most problems inference aboutβ1 is likely
to be more scientifically relevant.

For priors (i)–(iii) the asymptotic bias, variance and
RMSE for a sample size ofn = 250 appear in Ta-
ble 4. As expected, both the bias and variance of
r̂ = E(r|data) decrease as the prior distribution forr

improves. The surprising feature, which relates back
to the indirect updating witnessed in Figure 7, is that
the performance of̂r under the uniform prior (i) is not
terrible, either in absolute terms or relative to priors
(ii) and (iii). For the sake of comparison, Table 4 also
gives the RMSE if Model D is employed, with the fixed
value ofr taken to be the prior mean ofr . For instance,
with prior (i) we simply havêr = 0.5, regardless of the

FIG. 7. Prior (dashed curve) and limiting posterior (solid curve) densities for r under Model E, with the illustrative DGM and priors
(i)–(iii). The true value of r is 0.25.
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TABLE 4
Asymptotic bias and variance of posterior means under Model E under the illustrative DGM and priors (i)–(iii)

Estimating r Estimating β1

Prior Bias SD RMSE (RMSE-D) Bias SD RMSE (RMSE-D)

(i) −0.056 0.036 0.066 (0.250) −0.045 0.038 0.059 (0.208)
(ii) 0.044 0.028 0.052 (0.100) 0.036 0.041 0.055 (0.095)
(iii) 0 .040 0.008 0.041 (0.050) 0.032 0.046 0.056 (0.064)

NOTE. Results are given for botĥr = E(r|data) and β̂1 = E(β1|data). The approximate standard deviation
(SD) and RMSE are based on a sample size ofn = 250. The RMSE incurred under Model D, withr assumed
known and equal to the prior mean, also appears in parentheses.

data. The RMSE under Model E with a prior is consis-
tently lower than under Model D with a corresponding
best guess, with the difference being very large in some
cases. Thus it is clearly worthwhile to formulate a prior
and use Model E rather than simply fixr at a best guess
value in Model D. Particularly, the use of a prior allows
one to benefit from indirect learning aboutr .

Table 4 also shows that the bias in estimatingβ1

decreases as the prior distribution forr improves. In
terms of RMSE, however, this improvement is offset
by a corresponding increase in variance. To understand
this, note that in terms of the transparent parameteri-
zation,β1 = β∗

1(1 + r). The asymptotic variance of̂r
decreases as the prior improves, and by definition the
asymptotic variance of̂β∗

1 is unaffected by the prior.
However, there is a negative asymptotic covariance be-
tween r̂ and β̂∗

1. This covariance decreases in mag-
nitude as the prior improves, thereby producing the
overall increase in variance. Surprisingly then,β1 can
be estimated about as well under the flat prior (i) as
under the sharp prior (iii).

3.2 Performance of Model F Estimators

Model F, while identifiable, does not have a closed-
form Fisher information matrix. Thus a simulation
study is undertaken to evaluate the performance of
Model F estimators obtained via MCMC methods. The
illustrative Model E priors are extended by takingβ2 ∼
N(0,1). Three DGMs are constructed by extending the
DGM of the previous section. In particular, the same
values of(β0, β1,µ, r, σ 2, λ2) are used in tandem with
(i) β2 = 0, (ii) β2 = 0.125 and (iii)β2 = 0.25. The last
value is deliberately chosen to maximize the curvature
of the true regression function subject to the function
being monotone on the interval fromµ − 2λ to µ + 2λ

that contains the bulk of theX distribution. To be more

specific, it is easy to verify that the regression func-
tion will be monotone on(−c, c) if |β2| ≤ (2c)−1|β1|.
Since many relationships of interest are monotone, in a
practical sense DGM (iii) represents an extreme degree
of curvature.

Under each DGM (i)–(iii), we simulate 200 data sets
of sizen = 250. Posterior means and credible intervals
for r andβ1 are computed for each data set under each
prior (i)–(iii). The results are summarized in Table 5.
We note that the MCMC algorithm seems to mix quite
well in most cases, but less well in the case of DGM (i)
and prior (i), that is, no curvature and no prior informa-

TABLE 5
Performance of Model F posterior distributions in estimating

r and β1

Estimating r Estimating β1
DGM DGM

Prior (i) (ii) (iii) (i) (ii) (iii)

(i) RMSE 0.064 0.083 0.080 0.055 0.064 0.062
ALEN 0.337 0.276 0.212 0.274 0.227 0.185
COV 0.970 0.910 0.795 0.980 0.925 0.855

(ii) RMSE 0.055 0.062 0.063 0.052 0.056 0.056
ALEN 0.202 0.187 0.165 0.189 0.178 0.167
COV 1.000 0.870 0.810 0.960 0.915 0.885

(iii) RMSE 0.039 0.041 0.041 0.051 0.051 0.051
ALEN 0.119 0.116 0.109 0.152 0.150 0.151
COV 1.000 0.900 0.805 0.885 0.860 0.875

NOTE. DGMs (i)–(iii) correspond to increasing curvature in the
regression function and priors (i)–(iii) correspond to increasing
prior information aboutr as described in the text. Under each con-
dition the RMSE of the posterior mean, as well as the average
length (ALEN) and coverage (COV) of the 80% equal-tailed cred-
ible interval are reported, based on 200 simulated data sets of size
n = 250. Each posterior mean and credible interval is computed
using 20,000 MCMC iterations after 1000 burn-in iterations.
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tion. As mentioned earlier, this is not surprising in light
of other MCMC experience in nonidentified or weakly
identified scenarios.

Table 5 reveals that, for both estimands, increased
curvature in the regression function leads to shorter
credible intervals with closer to nominal coverage.
Thus a benefit does accrue when the Model F pa-
rameter values are further away from the submodel
that corresponds to Model E. On the other hand, the
RMSE of the posterior mean actually increases some-
what withβ2. Given this and given that DGM (iii) rep-
resents an extreme degree of curvature in the sense
described above, we conclude that the benefit asso-
ciated with curvature in the regression function that
leads to identifiability is quite modest. As in Scenario I,
model expansion is not a panacea.

Table 5 also indicates that the Model F estimators
under the three priors perform quite similarly to their
Model E counterparts, particularly under DGM (i).
Again this speaks to prior information, and not iden-
tifiability, being the key to successful inference.

4. DISCUSSION

The conventional view of identifiability might be
crudely summarized as “identifiability good, noniden-
tifiability bad.” The findings in this paper, however,
indicate that sometimes a more nuanced view is re-
quired. We have exhibited realistic scenarios where a
moderate amount of prior information leads to reason-
able inferences from a nonidentified model, and sce-
narios where ridiculously large sample sizes may be
required to obtain reasonable inferences from an iden-
tified model. These issues are particularly germane to
problems involving measurement error and misclassi-
fication, where a lack of knowledge about the extent of
mismeasurement often raises questions about identifi-
ability. Indeed, what-if analyses, which give inferences
under a variety of assumed magnitudes of mismeasure-
ment, are common. If a more definitive analysis is re-
quired, our findings support the “honest” approach of
formulating the most realistic model and prior possi-
ble, without particular regard for whether the model
is identifiable or not. If it happens to be nonidentified,
then either contracting or expanding the model for the
sake of identifiability can in fact lead to poorer estima-
tor performance, particularly if one resorts to flat prior
distributions for the sake of objectivity.

It is self-evident that gaining identifiability by model
expansion cannot be very beneficial if the true para-

meter values in the expanded model lie close to the
original submodel. That is, there is a “danger zone” of
parameter values in the expanded model under which
estimators will perform poorly. More precisely, the
danger zone corresponds to parameter values close to
the lower dimensional parameter subspace given in (1).
What has been demonstrated, in Scenario I particularly,
is that these danger zones can be surprisingly large.
Thus the appropriateness of model expansion can only
be judged relative to prior knowledge. If there is good
reason to believe a priori that the true parameter val-
ues will lie outside the danger zone, then use of the
expanded model and a flat prior will likely be effec-
tive. Without such prior knowledge, however, this is a
risky strategy. Put another way, using model expansion
to gain identifiability does not equate with unfettered
freedom to use flat priors.

While the development in Section 2.2 is very sim-
ple, it may come as a surprise that one can use stan-
dard asymptotic theory to describe the performance of
estimators obtained from a nonidentifiable model and
a particular prior distribution, and to characterize how
much indirect learning about nonidentifiable parame-
ters can occur. The notion of indirect learning speaks in
favor of assigning a crude subjective prior to noniden-
tifiable parameters rather than fixing such parameters
at best guess values. We might describe this as a “soft”
rather than “hard” model contraction. In Scenario II,
for instance, Model E with a crude prior forr substan-
tially outperforms Model D with a corresponding best
guess forr .

A limiting feature of our investigation is the inabil-
ity to make conclusions which hold broadly over large
ranges of underlying parameter values. In the case of
nonidentifiable models, estimator performance must be
evaluated on a prior by prior and DGM by DGM ba-
sis, and substantial variation can arise. Similarly, if
an identifiable model is obtained by expanding a non-
identifiable model, performance can vary considerably
with the distance of the underlying parameter values
in the identifiable model from the original submodel.
For the sake of brevity we have not attempted compre-
hensive evaluations of estimator performance across
many parameter values and prior distributions. How-
ever, our findings speak to the need for such evalua-
tions so as to make focused recommendations about
study design and analysis in scenarios akin to those
examined here. In the case of Models A and B from
Scenario I, Gustafson (2005) undertakes a more com-
prehensive comparison.
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Looking beyond mismeasured variable scenarios,
the issues raised here and the simple tools devel-
oped in Section 2.2, in particular, are probably rel-
evant to Bayesian analysis in many other contexts.
The MCMC methods permit Bayesian analysis without
much thought about important issues. A prime example
is that even the fundamental question of posterior pro-
priety can be swept under the rug, possibly with dis-
astrous consequences (see, e.g., Hobert and Casella,
1996). Similarly, MCMC methods can be applied with-
out thought about whether the model is identifiable,
whether a danger-zone problem might exist or which
parameters require a crude subjective prior rather than
a flat prior to make reasonable inferences. Many com-
plex models with numerous parameters that are fit with
MCMC methods may, in fact, be nonidentifiable or
close to nonidentifiable, and this issue seems deserv-
ing of closer scrutiny.
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Comment
Alan E. Gelfand and Sujit K. Sahu

This impressive paper presents two elaborately dis-
cussed examples that illustrate nested model settings
which relate model expansion and contraction to iden-
tifiability. The examples are novel in that they illumi-
nate identifiability in nonhierarchical settings. In most
Bayesian modeling, nonidentifiability is implicit in hi-
erarchical models where data and hyperparameters are
conditionally independent given first stage parameters.
Also attractive is the sandwiching of a nonidentifiable
model between two identifiable models in the first ex-
ample and vice versa in the second.

The conclusions drawn are very useful and have
some connection to results reported in Gelfand and
Sahu (1999). For instance, the author uses repara-
meterization to “the identifiable part” with iterated
expectation to argue for application of standard as-
ymptotic theory to posterior means. Such reparame-
terizations need not be straightforward for models that
are nonhierarchical. However, with this parameteriza-
tion Gelfand and Sahu considered posterior propriety.
They argued that an improper posterior forφI , where
φ = (φI ,φN), will have aunique proper posterior dis-
tribution if the likelihood can be written as a function
of φI only and the parameter space can be written as a
product of the spaces forφI andφN . The posterior dis-
tribution of φI , called theembedded posterior, is not
affected by the implied prior distribution on the non-
identifiable parametersφN .

In this case, a related question they investigated is,
“Will the MCMC output for the identifiable parame-
ters φI converge when a Gibbs sampler is run onφ

with φ having an improper posterior?” For generalized
linear models they showed that the embedded proper
posterior distributions can be reconstructed from the
output of an MCMC sampler implemented to obtain
“samples” from the joint improper posterior distribu-
tion, although some precaution (e.g., recentering of the
parameters) is needed.

It is perhaps worth reiterating that under proper
priors there is no identifiability problem within the

Alan E. Gelfand is Professor, Institute of Statistics and
Decision Sciences, Duke University, Durham, North
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Sahu is Senior Lecturer, School of Mathematics, S3RI,
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Bayesian framework, perhaps only that there may be
no Bayesian learning for some parameters. This sug-
gests that one should fit the model(s) that one is in-
terested in; the role of expansion or contraction would
be viewed primarily with regard to facilitating compu-
tation. Indeed this seems to be the author’s message
in Section 2.1, where the difficulties that can arise by
working with Model B are well demonstrated.

Section 2.3 illuminates this even further, noting that
even crude prior information in Model A can “guard
against the small� pitfall associated with Model B.” In
this regard, it would be interesting to see the implica-
tions of the crude prior in terms of the induced prior on
the identifiable part of the transformation. These priors
are not easily accessible analytically but can be studied
through simulation.

With nested nonhierarchical models it is often the
case that, when the reduced model is true, the Bayes
factor for the reduced model relative to the full model
tends to∞ as sample size grows large. Why do you
believe this is not the case for Models B and C?

In Scenario II the version of the measurement error
model you discuss is the so-called MEM model. It is in-
teresting to look at the alternative Berkson model here.
(See, e.g., Carroll, Ruppert and Stefanski, 1995, for
full discussion of the Berkson version.) In the setting
of the paper, it takes the formf (Y |X)f (X|X∗) with
X|X∗ ∼ N(X∗, rλ2). The distribution forX∗ need not
be modeled; theX∗’s can be taken as fixed. Then re-
gardless of whetherf (Y |X) is as in Model E or F, we
still have nonidentifiability unlessr is fixed; we cannot
separater andλ2. In some sense this is more natural
than the MEM specification.

Last, the use of the Kullback–Leibler (KL) diver-
gence as a distance between models is well-established.
In recent work which has some connection to the au-
thor’s, Sahu and Cheng (2003) used it to determine the
number of components in mixture distributions fitted to
data. They argue that if the data genuinely arise from a
model with a lower dimensional parameter space, then
the additional parameters in the expanded model with
a higher dimensional parameter space will not repre-
sent true structure, and as a result the expanded model
can be collapsed. Sahu and Cheng (2003) developed an
easy to implement upper bound on the KL divergence
measure between two mixture densities and performed
a Bayesian test to decide whether to contract the ex-
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panded model. This idea makes sense in the current
context as well. The KL divergence measure can be

used to characterize the danger zone between the ex-
panded model and its submodel.

Comment
Wesley O. Johnson and Timothy E. Hanson

1. INTRODUCTION

We congratulate Professor Gustafson on an excep-
tionally timely and interesting article. Historically
statisticians have tended to avoid models that lack iden-
tifiability for obvious reasons. However, it is clear that
realistic situations arise where there is simply insuffi-
cient data to estimate all quantities of interest, as in the
situations discussed here. Bayesian modeling is espe-
cially useful under these circumstances, provided sub-
ject matter experts are available to provide useful in-
formation for incorporation into the data analysis and
most particularly to provide information to make up for
missing data. The author has emphasized frequentist
properties of Bayesian point estimators under models
that lack identifiability, but which incorporate modest
prior information, and has argued that the incorpora-
tion of prior information may be preferable to expand-
ing the model and the data to achieve identifiability.
He cites Johnson, Gastwirth and Pearson (2001), who
argued for model expansion to achieve identifiability
and consistency.

We totally agree with Gustafson that a little (or a lot)
of prior information can be a very good thing. It is un-
fortunate that Johnson, Gastwirth and Pearson perhaps
underemphasized the role of the prior in the published
version due to final editing. We will attempt to rectify
this here by highlighting Gustafson’s argument. We be-
lieve that whengood prior information is available, it
should always be incorporated.

Section 2 comments on Models A, B and C from
our point of view. Section 3 discusses two simple il-
lustrations where the asymptotic conditional posteriors
of φN |φI are easily obtained. Section 4 discusses com-
putational issues. Section 5 presents a geometric argu-
ment for the lack of identifiability of Model C, even

Wesley O. Johnson is Professor, Department of Statis-
tics, University of California, Irvine, California 95697,
USA (e-mail: wjohnson@uci.edu). Timothy E. Hanson
is Assistant Professor, Department of Mathematics and
Statistics, University of New Mexico, Albuquerque,
New Mexico 87123, USA.

with the addition of more samples from distinct pop-
ulations, and discusses a hierarchical model for which
consistent estimates of the sensitivity and specificity
parameters exist. Section 6 gives concluding remarks.

2. MODELS A, B AND C REVISITED

Professor Gustafson’s main example illustrates the
potential difficulty that is associated with the use
of identifiable Model B to replace nonidentifiable
Model A, where Model A relies on the use of sub-
stantive, though not particularly precise, prior infor-
mation. He argues successfully that, with very large
samples, a little good prior information using Model A
(which does not wash out as the sample size increases)
can result in better (frequentist) point estimates than
if one uses the identifiable model B, with the sample
size so large (effectively infinity compared to perhaps
more realistic sample sizes) that the prior information
has washed out. We would like to emphasize his point
that part of the reason for the success of Model A over
Model B is that in making the comparison, the prior
information in Model A remains while the prior infor-
mation in Model B has been eliminated through the use
of standard asymptotics.

It is subsequently pointed out in Section 2.4 that the
asymptotics for Model B may require very large sam-
ple sizes before the information in the prior is actu-
ally eliminated. Of course, if the prior information is
of good quality (by good quality, we simply mean that
it is consistent with the truth, but not necessarily highly
focused on the truth), as is understood in Gustafson’s
arguments, the fair comparison between the two mod-
els would involve leaving the prior information in both
models, as is done in the comparisons based on simu-
lated data. It is noted in Section 2.4 that Model B seems
to fare much better than when the prior information
has been eliminated. We would argue that these com-
parisons, though not as elegant as the ones presented
earlier, are more appropriate. That is not to say that
we were not interested in the earlier results, since it is
the comparison between the analytic results and those
based on simulation that makes it clear that the asymp-
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totics may not be very useful and in fact may do harm
if real prior information is available.

There do exist formal asymptoticBayesian methods
that allow for the prior to remain as the sample size
tends to infinity, for models that are identifiable or not
(Yee, Johnson and Samaniego, 2002; Su and Johnson,
2005). Yee, Johnson and Samaniego (2002) also con-
sidered the two-test one-population diagnostic screen-
ing problem and data presented in Joseph, Gyorkos and
Coupal (1995). The two-population version could have
been similarly handled. We mention here that the exact
Bayesian methods developed by Johnson, Gastwirth
and Pearson (2001) for the two-test scenario only had
convergence problems when we considered large sam-
ple sizes. In this instance, the asymptotic methods in
Yee, Johnson and Samaniego (2002) gave very accu-
rate results virtually instantaneously since they only
involve algebraic manipulations and a simple iterative
scheme (somewhat like the expectation–maximization
algorithm) with, of course, no Monte Carlo sampling.

Moving on to nonidentifiable Model C, Georgiadis,
Johnson, Gardner and Singh (2003) have argued based
on a very large collection of simulated data, that mod-
erate precision in the prior for at least two parameters
is necessary in order to make reasonable inferences for
all eight parameters. Moreover, they also argued that if
the sensitivity and specificity of one of the tests are suf-
ficiently large (>0.98) or have relatively small correla-
tions (0.1–0.2), the effect of correlation between the
tests may be practically irrelevant. With larger correla-
tions (0.5–0.6) and smaller test accuracies, they found
that using Model B could be disastrous. They used in-
formative priors, both correctly and incorrectly spec-
ified and both precise and imprecise, on at least two
parameters.

Gustafson found an appreciable loss in mean squared
error associated with using Model C for estimating the
overall prevalence when Model B was appropriate and
found that with a correlation of 0.25, the frequentist
properties of point estimation using Models B and C
are comparable. He has used uniform priors on the
prevalences and on the test accuracies, and somewhat
informative priors on the test covariances. His simula-
tion invites this kind of prior since he considers per-
formance when averaged over a variety of different
circumstances. The real utility of this simulation ap-
plies to a scenario where a data analyst uses the above
models to analyze a variety of data sets, where the only
subject matter input is that there may be a little corre-
lation between the tests. The use of uniform priors on
the prevalences implies that it is expected that preva-
lences will cover the continuum with equal plausibility

and that, similarly, test accuracies are equally unpre-
dictable and can as easily be below 0.5 as above.

While we understand Gustafson’s purpose in per-
forming the simulation, and we find the results inter-
esting, we would like to assert our belief that in many if
not most real problems, the data analyst will be work-
ing with someone who is able to obtain independent
information about the test accuracies and/or the preva-
lences so that appropriate “prior” information can be
incorporated into the analysis. The author’s forceful
defense of Model A is implicitly based on this premise
and so we would simply like to emphasize this point
here as well. Clearly, good prior information is going
to enhance the frequentist properties of the Model C
estimators as it did for Model A estimators.

Our bottom line conclusion regarding the use of
Models A, B and C is that we would use the model that
seems most appropriate at the outset, whereas in the
past we might have worked harder to expand the model
to achieve consistency, which now seems somewhat
moot. So, if we only had data from a single popula-
tion and if the tests could be regarded a priori as condi-
tionally independent, we would use Model A. We thus
would now probably not go out of our way to find a
variable to use to create two populations. If an obvi-
ous one were available, we would probably not shy
away from using it, even if we thought the prevalences
might be within 0.1 of each other. We would either use
Model B or C, depending on whether or not the tests
could be regarded as conditionally independent based
on biological considerations, or we would modify the
model to allow for point mass at� = 0. We would
work hard to obtain independent information that could
be formulated as the prior.

3. TWO SIMPLE ILLUSTRATIONS OF THE
CONDITIONAL DISTRIBUTION OF φN |φI

A very interesting aspect of the article is the dis-
cussion of the parameterization(φI ,φN) and the sim-
ple characterization of the posterior forφN |φI . We
believe that the study of this distribution in specific
problems should warrant investigation as suggested by
Gustafson. In this section we highlight two very sim-
ple illustrations where no computation is necessary to
obtain this distribution, and in Section 4 we observe
the potential simplicity of exploring this distribution
for selected values ofφI by using WinBUGS.

First consider the classic model withx ∼ Bin(n,φI )

and wherex is the observed data. Then assume that
y is not observed but thaty|x ∼ Bin(x,φN/φI ), φI ∼
Beta(c, d) andφN/φI ∼ Beta(a, b), wherea + b = c.
This corresponds to the missing data problem where
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(y, x −y,n−x) ∼ Mult(n, {φN,φI −φN,1−φI }) and
{φN,φI −φN,1−φI } ∼ Dirichlet(a, b, d). Then it fol-
lows that the conditional distribution ofφN |φI is sim-
ply φI ∗ Beta(a, b). So if a = b = 1, the conditional
posterior is U(0, φI ).

Johnson and Gastwirth (1991) discussed Bayesian
inference for prevalence and test accuracy based on
use of a single screening test for HIV, and Johnson,
Gastwirth and Pearson (2001) discussed identifiability
in the context of Models A and B. These papers all dis-
cussed (asymptotic) approximations to posteriors for
prevalence and test accuracy under low prevalence and
high accuracy assumptions. It is particularly interest-
ing to note that under these assumptions, it is shown
that the posterior for the two sensitivities in the Hui and
Walter (1980) model is simply the prior, while there is
clearly direct information in the data for the two speci-
ficities and the prevalence. Thus (asymptotically) we
haveφN = (p1,p2) andφI = (r, q1, q2).

4. COMPUTATION IN MODELS A, B AND C

We have rarely had difficulty with convergence of
our algorithms. We believe that the parametrization de-
veloped in Georgiadis, Johnson, Gardner and Singh
(2003) is particularly useful for this purpose since
it leads to well-known full conditional distributions
(in conjunction with modeling the latent disease sta-
tus). Moreover, we also found that implementing the
parametrization developed by Dendukuri and Joseph
(2001) in WinBUGS (without accounting for the la-
tent data) also converged very nicely if slightly slower
than the parameterization in Georgiadis et al. In subse-
quent work (Branscum, Gardner and Johnson, 2005),
we implement the latter approach and have advertised
it broadly for use in the veterinary community due to
its simplicity and directness. We expect that part of our
lack of difficulty with convergence is due to having
reasonable prior information and also due to small–
moderate sample sizes. On the other hand, when we
used so-called flat priors for regression coefficients in
a logistic regression model with (diagnostic test) er-
ror in the response (McInturff, Johnson, Cowling and
Gardner, 2004), we had horrendous difficulties with
convergence, while using a mildly informative prior
of the form used by Bedrick, Christensen and Johnson
(1997) rendered convergence a nonissue.

It is possible to study the conditional distribution
of φN |φI , as discussed by Gustafson, in WinBUGS.
When sayx/n → φI , simply modelx with a very
large n, or use a standard normal approximation
to x/n, and inputx/n to be a valueφI of interest.
The posterior forφN is then approximately (4). For

example, with a standard one-test one-sample screen-
ing problem and withx ∼ Bin(n,φI ) with φI = rp +
(1 − r)(1 − q), so thatφN = (r, q), we have (approx-
imately) y ≡ x/n ∼ N(φI ,φI (1 − φI )/n). Sample
WinBUGS code is

model
{
µ ← n ∗ φI , τ ← 1/(µ ∗ (1− φI ))

y ∼ dnorm(µ, τ)

φI ← r ∗ p + (1− r) ∗ (1− q)

p ∼ dbeta(18,4)I (φI , ), φ̄I ← 1− φI

q ∼ dbeta(18,4)I (φ̄I , ), φI ∼ dbeta(a, b)
}
,

list(x = 50000, n = 100000),

where the indicator notation truncates the correspond-
ing distribution, for example,I (φI ) denotes that the
corresponding distribution is truncated below atφI .
With these data we have (for practical purposes) set
φI = x/n = 0.5. Adding a line of code to specify an
independent beta distribution for the prior, it is possible
to compare the conditional and marginal distributions
for φN . Any parameterg(φI ,φN) can be specified with
an additional line of code. Then one can simply take
different data sets to assess the effect of the “data” on
inferences forφN . The prior ong is also trivial to in-
duce and compare with the posterior.

5. IDENTIFIABILITY IN MODEL C WITH
MULTIPLE POPULATIONS AND ITS

HIERARCHICAL EXTENSION

We thought it might be interesting to present a geo-
metric argument that makes clear why Model C lacks
identifiability, even if it is extended to allow for say
k sampled populations. With two populations, the is-
sue is obvious as pointed out by Gustafson. However,
with three populations, there are degrees of freedom
and nine parameters, so it might be tempting to think
that identifiability could be bought, notwithstanding
Gustafson’s arguments against expanding, by expand-
ing the model and the data in this way.

We defineη to be the vector of four probabili-
ties of two-test outcomes conditional on being “dis-
eased,” and defineθ to be the corresponding vector
of probabilities conditional on being “not diseased.”
The components of each must sum to 1. Note that
there are bijections betweenη and (p1,p2, δ1), and
betweenθ and (q1, q2, δ0). The prevalence in popu-
lation i is ri for i = 1, . . . , k. Let r = (r1, . . . , rk).
The data consist ofk four-vectors of observations,
sayxi, i = 1, . . . , k, corresponding to the two-test out-
comes in each of the sampled populations. We assume
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thatxi ∼ Mult(ni, φIi) and note that

φIi = riη + (1− ri)θ.

We haveφI = {φIi : i = 1, . . . , k}. The φIi ’s are all
convex combinations ofη andθ , and as vectors, they
all lie on a line segment (on which components sum
to 1) in betweenη andθ (draw a picture of vectors in
two dimensions). The question is, “Is there a unique so-
lution in (η, θ, r) to thesek equations?” In fact, there
are an infinite number of solutions, so the model lacks
identifiability.

Let φI1 and φIk be the “outer” two vectors. Then
all φIi , 1 < i < k, lie on the line that connects
φI1 andφIk . Let l1 andl2 denote the line segments:

l1 = {y ∈ (0,1)4 : y = xφI1 + (1− x)φIk, x < 0},
l2 = {y ∈ (0,1)4 : y = xφI1 + (1− x)φIk, x > 1}.

Thenany combination ofη ∈ l1 andθ ∈ l2 (or η ∈ l2
and θ ∈ l1) can generate the vectorsφI1, . . . , φIk.
Corresponding to each pair(η, θ) is a uniquek vec-
tor r such that the above system is satisfied. There is
no unique solution here.

If the prevalences are known, this model can be used
to estimateη and θ with only two populations. Oth-
erwise, if good prior information is available for the
prevalences and the priors are fairly “tight” around
the ri ’s, posterior inferences should be fine;however,
posterior means will not be consistent.

It also may be the case that two of the cell-probability
maximum likelihood estimators MLEŝφIi = xi/ni

andφ̂Ij = xj/nj are at opposite ends near the bound-
ary of the parameter space(0,1)4. This effectively
“seals off” the possible maximal likely values forη
andθ , and inferences resulting from the Bayesian ap-
proach should be dead on.

Finally, consider an alternative model where every-

thing is as above only now we also haveri |µ,γ
i.i.d.∼

Beta(µγ, (1 − µ)γ ). Hanson, Johnson and Gardner
(2003) developed Bayesian methodology for this
model and also established that there exist (non-
Bayesian) consistent estimators of(η, θ, r), where the
limit is taken asni → ∞, k → ∞. This result is not
too surprising, since ask grows, under the assumption
on the ri ’s, we should be ultimately sampling popu-
lations with small and large prevalences. If the Beta
distribution is overly concentrated away from 0 or 1,
then it may be a very long time before that would hap-
pen however, so it is possible that extraordinarily large
sample sizes would be necessary.

6. CONCLUDING REMARKS

We thank Professor Gustafson for writing a very
stimulating paper. We hope it is clear that it was not
our intent to criticize, but to complement his work. We
believe that his elaboration on these issues was clear
and insightful, and will provide a basis for evaluating
models that lie on the boundary between identifiable
and not, and for obtaining insight into how much infor-
mation there is in the data forφN . We also look forward
to his future insights on these and other topics.

Comment
Lawrence Joseph

1. INTRODUCTION

Paul Gustafson has written a very provocative pa-
per with results that may surprise some statisticians.
The main conclusion, demonstrated through two illus-

Lawrence Joseph is Associate Professor, Divi-
sion of Clinical Epidemiology, Montreal General
Hospital, Department of Medicine, Montreal,
Quebec, Canada H3G 1A4, and Department of
Epidemiology and Biostatistics, McGill Univer-
sity, Montreal, Quebec, Canada H3A 1A2 (e-mail:
Lawrence.Joseph@mcgill.ca).

trative examples, is that under certain conditions, non-
identifiable models can sometimes outperform identifi-
able models. In this commentary I will focus on some
practical issues not given much attention by Gustafson.

2. BAYESIAN VERSUS FREQUENTIST ANALYSES
OF DIAGNOSTIC TEST DATA: PRIOR

DISTRIBUTIONS VERSUS POINT
ESTIMATES AS INPUTS

For identifiable models such as Model B in Section 2
of Gustafson, both maximum likelihood and Bayesian
estimation with a suitable choice of “flat” prior will
produce similar inferences, at least numerically. For
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nonidentifiable models such as Models A or C, how-
ever, Bayesian and frequentist inferences operate quite
differently.

Frequentist methods do not include prior distribu-
tions and, therefore, do not have the luxury of choos-
ing whether or not to use a nonidentified model: the
model must be made identifiable in order to estimate
the unknown parameters. The added flexibility in mod-
eling is a major advantage for Bayesians, as Gustafson
has shown that a Bayesian analysis of nonidentifiable
models using a “crude” prior can have lower mean
squared error compared to related expanded or con-
tracted models that are identifiable. In practice, what
are the frequentist options in such situations and how
should a Bayesian handle the problem of nonunique
“crude” prior distributions?

Consider the case of Model A. Gustafson expands
to Model B to produce identifiability, but this is not
the only option for a frequentist. With five unknown
parameters but only 3 degrees of freedom, frequen-
tists can still use Model A, inserting point estimates
for any two of the five unknown parameters (two sen-
sitivities, two specificities and the prevalence) in order
to estimate the other three parameters via maximum
likelihood (Walter and Irwig, 1988). As the two pa-
rameters given fixed values are almost never known
exactly, the analyst would typically do a sensitivity
analysis to this choice and, thus, the end result is a table
that displays different sets of estimates, one for each
choice of “fixed” parameter values. Overall conclu-
sions are difficult to derive from this collection of val-
ues, however, and total uncertainty is underestimated,
since confidence intervals from each line of the table
omit the inherent uncertainty in the fixed parameter
values (Joseph, Gyorkos and Coupal, 1995).

Bayesians do not need to fix these parameter val-
ues, so overall conclusions are available which in-
clude all inherent uncertainty. The situation is not as
ideal as it seems, however, because there is the ever-
present problem of choice of prior distribution. While
Gustafson claims the models work well with crude pri-
ors, how crude are they really? Section 3.2 suggests
a Beta(18,4) prior is crude, even though it is quite
peaked near 0.85. Starting from the entire[0,1] pa-
rameter space, the 95% highest density interval from
a Beta(18,4) distribution is (0.66,0.96), which has
length of 0.3. The Beta(10,1) density also used by
Gustafson has a 95% highest density interval of even
smaller length, at(0.74,1.0). “Crudeness” is surely a
relative term, and sensitivity to the prior distribution

is important in any analysis using a nonidentifiable
model.

Thus, in real practice we see that the Bayesian analy-
sis has similarities to the frequentist analysis, in that
sensitivity to prior inputs (whether point estimates or
prior distributions) is important. In either case a table
must be created that gives inferences across a range of
prior inputs, rendering overall conclusions difficult.

In the context of clinical trials, Spiegelhalter,
Freedman and Parmar (1994) have suggested creat-
ing a family of prior distributions, ranging from op-
timistic to pessimistic or, in this context, from highest
to lowest “reasonable” values for the prevalence, sen-
sitivities and specificities of the tests given the avail-
able prior information. While a “strict” interpretation
of Bayesian analysis mandates a single choice of prior
distribution, if results are to be reported and accepted
by a wide audience, a range of prior distributions is
usually needed. This, however, raises many questions:
If a nonidentifiable model is to be used, what range
of prior distributions should be input? How should
overall conclusions be derived given this range of rea-
sonable posterior inferences? One ad-hoc suggestion
might be to average over all results using some weight-
ing scheme on the various choice of priors, and another
might be to take the minimum lower and maximum up-
per highest density interval limits to derive a conserv-
ative or “all inclusive” interval, which should contain
all reasonable values. While this problem occurs in all
Bayesian analyses, it is especially pertinent in the con-
text of nonidentifiable models, where the importance
of prior information does not decrease as the sample
size increases and often posterior≈ prior for a subset
of parameters.

3. STUDY DESIGN

As Gustafson points out in Section 2.1, the choice
between using Models A or B is made easier by prior
knowledge about the prevalences of the subpopula-
tions. In general, if we are to analyze studies using
nonidentifiable models, we need to plan accordingly
at the design stage. Given prior distributions on the
subpopulation prevalences, an interesting optimal de-
sign problem arises about whether the extra data re-
quired for Model B should be collected. Further, if
Model A is chosen, how should a sample size be se-
lected? Standard sample size methods do not apply, and
in nonidentifiable models some marginal posterior dis-
tributions do not converge to a single point even with
an infinite sample size, so that a desired accuracy may
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never be reached (Rahme, Joseph and Gyorkos, 2000;
Dendukuri, Rahme, Bélisle and Joseph, 2004). Further
design questions arise if results are to be summarized
across a range of prior distributions and one wishes to
claim a certain accuracy will be attained at the end of
the study. Clearly, further work is required here.

4. CONCLUDING COMMENTS

As is often the case with the best scientific work,
this article opens many avenues for further research.
There is much to be done if statisticians are to con-
vince mainstream users to apply nonidentified models

in their analyses. The choice of prior distribution re-
mains a hurdle, even if almost any reasonable choice
provides better inferences compared to a contracted
or expanded identifiable model. Other than the two
commonly occurring situations discussed in detail by
Gustafson, there are probably many examples where
nonidentifiable models with some prior information
perform better than related identified models. Clearly,
further experience with these models is needed before
we can be confident that we are producing solid infer-
ences and before routine users will incorporate them
into their daily practice.

Comment
Jaeyong Lee

I congratulate Paul Gustafson on carefully laying out
issues involved in Bayesian modeling with identifia-
bility. I think this paper is one of the few that has in-
vestigated the identifiability issue in Bayesian analysis
seriously.

In Bayesian statistical modeling, there seem to ex-
ist two slightly different views on identifiability. One
is the position, as the author describes, “identifiabil-
ity good, nonidentifiability bad,” in which identifiabil-
ity is considered as one of the minimum requirements.
This view seems to be based on the fact that one can-
not accurately pin down the actual parameter value
from which the data were generated even with infi-
nitely many observations. The other position is a rather
casual attitude toward identifiability because, in pos-
terior analysis of nonidentifiable statistical models,
the posterior can be computed without difficulty and
the meaning of posterior does not change, even with
nonidentifiability.

Paul Gustafson’s paper gives careful thought to this
issue of identifiability in Bayesian modeling using two
examples. In particular, using these examples, the au-
thor raises two interesting and potentially controversial
points:

POINT 1. As opposed to conventional wisdom
(i.e., to gain identifiability, the model needs to be sim-

Jaeyong Lee is Assistant Professor, Department of
Statistics, Seoul University, Sillimdong Kwanakgu,
Seoul, 151-742, Republic of Korea (e-mail: leej@stat.
psu.edu).

plified somehow), it is possible to gain identifiability
by expanding the model and to lose identifiability by
contracting it.

POINT 2. As opposed to conventional wisdom
(i.e., “identifiability good, nonidentifiability bad”), an
identifiable model can perform dramatically worse
than a nonidentifiable model.

Below I discuss the author’s points individually.

POINT 1

The author argues that identifiability can be ob-
tained by expanding an unidentifiable model, render-
ing Scenario I, as an example, where simpler Model A
is not identifiable while more complex Model B is
identifiable. The author argues that this contradicts
conventional wisdom. The conventional wisdom, as the
author calls it, comes from the following simple fact.
Suppose observabley follows a densityf0 with un-
known parameterθ and suppose modelMi postulates
θ ∈ �i for i = 1,2 and�1 ⊂ �2. When modelM1 is
not identifiable (i.e., there existθ1 �= θ2 in �1 with
fθ1 = fθ2), expanding the parameter space to�2 does
not help to gain identifiability. On the other hand,
if model M1 is identifiable, expansion of the model
to M2 may result in nonidentifiability. The author’s ex-
ample is clever in that it does not exactly fit this situ-
ation, because by adding an additional variableX, the
observable(T1, T2) changes from one 2× 2 table to
two 2× 2 tables.
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The situation in Scenario II is slightly different be-
cause the parameter space of Model E is the prior prob-
ability 0 subset of the expanded Model F, and Model F
gains “essential identifiability.”

POINT 2

In Scenario I the author considers estimation ofr =
Pr(E = 1) in nonidentifiable Model A and expanded
identifiable Model B with comparable priors for each
model which the author calls prior (i). For Model B
the author adopts the standard asymptotic theory and
shows the range of ARMSE( ˆrB) is from 0.05 to∞,
with ∞ occurring at� = 0, which corresponds to non-
identifiable Model A (see the left side of the right
panel in Figure 1). For Model A the author sets up a
framework to evaluate the performance of the Bayes
estimator for nonidentifiable models and shows that
ARMSE(r̂A) = 0.015. These numbers are remarkable,
because by taking nonidentifiable Model A over iden-
tifiable Model B, one can achieve almost four times
better results even than the best situation of Model B.
Based on this result, the author claims that “. . . either
contracting or expanding the model for the sake of
identifiability can in fact lead to poorer estimator per-
formance. . . .”

A closer look at the analysis casts doubt on this
claim. First of all, while Model A is exactly the same
as Model B with� = 0, how can two ARMSEs be
so different? The ARMSE ofr is ∞ under Model B
with � = 0 and is 0.015 under Model B. This is be-
cause the calculation of ARMSEs was not fair to these
models. In ARMSE calculation for Model A, the ef-
fect of the prior stays in asymptotic calculation, while
ARMSE calculation of Model B does not involve the
prior effect. In fact, if we adopt the standard ARMSE

calculation, which is used for Model B, for Model A
the ARMSE will be∞, because the corresponding di-
agonal element of the Fisher information will be 0.
On the other hand, had more accurate higher-order
asymptotic calculation been adopted for the ARMSE
calculation of Model B, I expect that both ARMSEs
would be similar. In fact, the author’s simulation re-
sults in Table 1 support my point. In Table 1 RMSEs of
Model A with prior (i) and Model B with prior (i) are
almost same in both DGM (i) and (ii). The small differ-
ence may be due to the difference in priors. Prior (i) for
Model A usesr ∼ U(0,1), while prior (i) for Model B
usesr1 ∼ U(0,1) and r2 ∼ U(0,1), resulting in a tri-
angular prior distribution forr = (r1 + r2)/2 which
is more concentrated at 1/2; note that the true value
is 0.3.

I hope the results in this paper, as the author also
emphasizes, sound a cautionary note on the issue of
identifiability. When an identifiability problem arises,
simply making the model identifiable by either con-
traction or expansion does not make the problem go
away. A lesson from this paper is that identifiability
is important. Practically nonidentifiable and theoreti-
cally identifiable models (which the author calls dan-
ger zone) are as dangerous as nonidentifiable models.
A similar example arises in a selection model setting
(Lee and Berger, 2001), where the model is theoreti-
cally identifiable but the posterior does not distinguish
two very different scenarios; however, reasonable prior
information can help us to draw a rather sound infor-
mative posterior. Another lesson from the paper with
which I agree with the author is that we should not
retreat from nonidentifiable models, because by care-
fully eliciting our prior, we can get an informative
posterior—of course, careful elicitation should be un-
derlined.

Rejoinder
Paul Gustafson

I thank all the discussants for making insightful
remarks and for sharing some of their own related find-
ings. I am pleased to detect considerable commonal-
ity in how these modeling issues are perceived. We all
seem to align on the point that identifiability can be a
rather nuanced issue. None of us argues that an iden-
tified model necessarily excuses one from formulating
and using prior information, nor do any of us subscribe
to the view that nonidentified models are necessarily

useless and that identifiabilitymust be “bought” at any
price. On more specific issues raised, I will respond to
the discussants in turn.

RESPONSE TO PROFESSORS GELFAND
AND SAHU

The ideas in Gelfand and Sahu (1999) are very in-
teresting. I am particularly intrigued by one of the con-
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ditions for a unique proper posterior arising from an
improper prior, namely that the parameter space for
φI andφN be a product space. A quirk of many situa-
tions involving mismeasured variables is that the sup-
port of φN depends onφI , and this can be the primary
source of “indirect learning” when it occurs.

Gelfand and Sahu asked about the marginal prior dis-
tribution induced onφI , noting that this could be as-
certained by simulation. To give an example of this,
Figure R1 displays this distribution for the first crude
prior used with Model A. There is considerable struc-
ture in this prior distribution. Note that sensibly the
prior distribution for the probabilities of discordant
observations,φI,2 = Pr(T1 = 1, T2 = 0) and φI,3 =
Pr(T1 = 0, T2 = 1), is centered at quite a low value,
whereas the prior distribution forφI,1 = Pr(T1 = 1,

T2 = 1) is rather diffuse. [By symmetry, the same prior
will describe Pr(T1 = 0, T2 = 0).]

It was presumptuous of me to say that in the model
averaging scenario there is no reason to expect the pos-
terior probability on the correct model to tend to 1 as

the sample size grows. More accurately, I have no idea
about the extent to which such results might still hold
when one of the models lacks identifiability, and I am
not aware of literature that addresses this question. This
seems like an obvious area for more research.

I agree that the identifiability issues with Models D,
E and F would be much different under a Berkson
measurement error model. I am puzzled though by
the suggestion that the Berkson formulation would
be more natural. I would think that generally the
choice between the two formulations must be driven
by the subject-area context and the data-gathering
mechanism. The Berkson model is appropriate when
modelingX givenX∗ makes sense, typically in a con-
trolled experiment. For instance, say the experimenter
sets an imperfect thermostat to temperatureX∗, but the
impact of this is to actually achieve temperatureX.
Conversely, the non-Berkson model is usually appro-
priate in an observational context. For instance, say the
actual temperature isX, but the observer’s imperfect
thermometer recordsX∗. While the distinction seems

FIG. R1. Prior distribution on φI for the first crude prior under Model A. Recall that φI,1 = Pr(T1 = 1, T2 = 1), φI,2 =
Pr(T1 = 1, T2 = 0), φI,3 = Pr(T1 = 0, T2 = 1).
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slight, its implications can be considerable. In partic-
ular, an analysis which ignores the measurement error
can be much more misleading in the non-Berkson sce-
nario.

RESPONSE TO PROFESSORS JOHNSON
AND HANSON

If the goal is to compare Models A and B with the
same amount of prior information infused in both, then
I agree that the simulations in Section 2.4 are much
fairer comparisons than the asymptotic comparisons
in Section 2.3 However, the asymptotics do establish
that (i) Model A plus somewhat crude prior informa-
tion can lead to reasonable inferences, and they suggest
that (ii) Model B may not perform well without prior
information and (iii) the asymptotics may not kick in
until prohibitive sample sizes. These points all push to-
ward a preference for a principled Bayesian analysis
without particular emphasis on whether the model is
identifiable or not.

The discussants’ remarks about computational issues
and the WinBUGS example are encouraging. I had
come to the view that MCMC for nonidentified mod-
els is generally hard and that special-purpose samplers
are often needed, but Professor Johnson and Professor
Hanson have a lot of experience with MCMC fitting of
models like these and they indicate that the situation is
not as dire as I imagined.

I found the discussion of nonidentifiability in Mod-
el C extended to more than two populations to be par-
ticularly insightful. I had wondered about this question,
to the point of trying to fit such a model in the three-
population case, without much success (Gustafson,
2003). There I had waffled on the question of identi-
fiability, simply noting that the number of parameters
was consistent with, but did not prove, identifiability.
Johnson and Hanson have elegantly resolved the ques-
tion, providing a good example of why it does not
suffice just to count parameters when assessing iden-
tifiability of a model.

RESPONSE TO PROFESSOR JOSEPH

I admit to hiding behind “illustrative” analyses, de-
ferring the real and difficult question of which prior to
actually use in a real problem to a subject-area spe-
cialist. I certainly agree that it is wise to try a few dif-
ferent prior distributions, or perhaps even undertake a
more formal assessment of prior influence. In the latter
vein, Gustafson and Clarke (2004) considered a parti-
tioning of posterior variance to assess prior influence,

using a context similar to Model A as one of their ex-
amples. In a more direct and practical vein, adaptation
of the Spiegelhalter, Freedman and Parmar three-prior
approach makes eminent sense.

If multiple priors are identified but an overall result is
required, I would argue in favor of averaging the priors
and letting the posterior fall where it may, rather than
combining the multiple posteriors in an ad hoc way.
I say this particularly because the unpredictable nature
of indirect learning in these sorts of models could im-
ply a nontrivial change in the weighting of the con-
stituent posterior distributions relative to the weighting
of the constituent prior distributions.

I certainly agree that design questions are difficult
in these sorts of models, and as far as I know Pro-
fessor Joseph and his colleagues are the only ones
who have been brave enough to tackle this head on.
Dendukuri, Rahme, Bélisle and Joseph (2004) should
be eye-opening for many readers, with its finding that
mismeasurement may imply that no finite sample will
be adequate under plausible design criteria.

Another aspect of the design question which has
interested me recently is as follows. The two-term
decomposition of ARMSE as in (5) indicates dimin-
ishing returns once the sample size suffices to make
the second (variance) term small relative to the first
(bias) term. Under some formulations of the design
problem this may call for relatively small sample sizes
to reach this point, with resources then conserved for
use elsewhere. This fits with one of the messages in
Greenland (2005) on what he terms “bias-modelling”
in epidemiological settings. Larger and/or more obser-
vational studies on a particular exposure–disease rela-
tionship will be of very limited value if there is already
enough data to control random variability relative to
biases arising from sources such as mismeasurement,
selection bias and unobserved confounding.

RESPONSE TO PROFESSOR LEE

I am not so convinced that the two examples differ
fundamentally in how essential identifiability is gained
from model expansion. In some sense a data expan-
sion accompanies the model expansion in both cases,
or, put in reverse, both model contractions involve data
contractions. If we start with Model B and setr1 = r2,
we obtain Model A and render the distinction between
the two separate(T1, T2) tables irrelevant. If we start
with Model F and setβ2 = 0, we obtain Model E and,
roughly speaking, make the(X∗)2 column of the de-
sign matrix irrelevant in the model forY |X∗. While this
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is imprecise since the model forY |X∗ lacks a closed
form, it seems clear that in both cases the model con-
traction makes part of the data structure redundant.

While the ARMSE comparisons are fair in the tech-
nical sense of beingo(n−1) approximations to the MSE
under either model, I agree they are not fair in the prac-
tical sense that it seems a larger sample size may be
needed for the approximation to kick in with Model B,
particularly when the parameter values fall in the dan-
ger zone. The fairer comparisons are probably those
in the simulation study. As mentioned in the response
to Professor Johnson and Professor Hanson though,
I think the asymptotics are informative in a number
of ways.

As for the small difference in the simulation between
the two models when the same prior is used, perhaps
this is induced by the slightly different prior onr .
However, there are other factors potentially at play as
well, such as the weak information conveyed byX ver-
sus the usual increase in estimator variance associated
with using a bigger model.
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