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Computational Discovery of Gene
Regulatory Binding Motifs:
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Abstract. The Bayesian approach together with Markov chain Monte Carlo
techniques has provided an attractive solution to many important bioinfor-
matics problems such as multiple sequence alignment, microarray analysis
and the discovery of gene regulatory binding motifs. The employment of
such methods and, more broadly, explicit statistical modeling, has revolution-
ized the field of computational biology. After reviewing several heuristics-
based computational methods, this article presents a systematic account of
Bayesian formulations and solutions to the motif discovery problem. Gener-
alizations are made to further enhance the Bayesian approach. Motivated by
the need of a speedy algorithm, we also provide a perspective of the problem
from the viewpoint of optimizing a scoring function. We observe that scoring
functions resulting from proper posterior distributions, or approximations to
such distributions, showed the best performance and can be used to improve
upon existing motif-finding programs. Simulation analyses and a real-data
example are used to support our observation.

Key words and phrases:Gene regulation, motif discovery, Bayesian
models, scoring functions, optimization, Markov chain Monte Carlo.

1. THE BIOLOGY OF TRANSCRIPTION
REGULATION

The complete information that defines the charac-
teristics of living cells within an organism is encoded
in the form of a moderately simple molecule, deoxyri-
bonucleic acid, or DNA. The building blocks of DNA
are four nucleotides, abbreviated by their attached or-
ganic bases as A, C, G and T. A–T and C–G are com-
plementary bases between which hydrogen bonds can
form. A DNA molecule consists of two long chains of
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nucleotides that are complementary to each other and
joined by hydrogen bonds twisted into a double helix.
This structure gives rise to the term “base pair” when
describing a DNA sequence. The specific ordering of
these nucleotides, the “genetic code,” is the means by
which information is stored that completely defines all
functions within a cell. With the recent development of
high-throughput sequencing technology, the National
Institutes of Health genetic sequence database, Gen-
Bank, has sustained an exponential growth rate since
1982. Right now GenBank contains the complete ge-
nomic sequences of over 1,000 organisms (Benson
et al., 2002) with approximately 22 billion DNA bases.

The central dogma of molecular biology dictates that
certain segments of the DNA (i.e., genes) are tran-
scribed into another molecule, RNA, which serves as
a transient template to make the basic building blocks
of cellular life, proteins. Although all the cells in the
same organism possess exactly the same DNA se-
quences (i.e., genetic information), they display dif-
ferent physiological characteristics in different tissues,
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developmental stages and environmental conditions.
This “differentiation” is caused by the differences
among the collections of proteins that are synthesized
in different cells or at different cell states. If a protein
is being synthesized at a certain state, its coding DNA
(called a gene) is termed as “active” or “expressed.”
Thus, a cell in a particular physiological state can be
roughly viewed as a mechanical system where each
different gene is switched either on (active) or off (in-
active).

In many organisms, the DNA that codes for proteins
(genes) is only a small portion of the total genomic
DNA. For example, genes make up only about 1.5%
of the human genome (International Human Genome
Sequencing Consortium, 2001). The noncoding com-
ponents of DNA, which were initially considered as
“junk” sequences, actually contain the control mech-
anisms for activating and deactivating the genes, and
thus the synthesis and nonsynthesis of proteins. Most
of the control sequences for a gene lie in theupstream
regulatory region, which is the region of a few thou-
sand base pairs directly before the gene [also called
the transcription regulatory region (TRR), or the pro-
moter]. Transcribing or activating a gene requires not
only the DNA sequence in the TRR, but also many
proteins called transcription factors (TFs). When these
TFs are present, they bind to specific DNA patterns in
the TRR of genes and either induce or repress the tran-
scription of these genes by recruiting other necessary
proteins (Lodish et al., 1995).

One transcription factor can bind to many different
upstream regions, thus regulating the transcription of
many genes. The binding sites of the same transcription
factor show a significant sequence conservation, which
is often summarized as a short (5–20 bases long)
common pattern called a transcription factor binding
motif (TFBM) or binding consensus, although some
variability is tolerated. It is the main focus of this paper
to discover the locations and common pattern of these
motif sites.

In prokaryotes (lower organisms without nuclei),
there are fewer TFs, their motifs tend to be relatively
long and the strength of regulation for a particular gene
often depends on how closely a particular site matches
the consensus for the motif. The more mismatches to
the consensus in a binding site, the less often the TF
will bind and therefore the less control it will exert
on the target gene. The variability between sites is
sometimes crucial to the regulatory process, since TF
binding sites that are perfect matches to the optimal

pattern would bind the TF too tightly, preventing the
subsequent steps of transcription (Pfahl, 1981).

In eukaryotes (higher organisms with nuclei), many
more transcription factors are involved in the regula-
tion of a gene, and their binding motifs tend to be
shorter. Eukaryotic upstream regions usually contain
regulatory modules, a collection of adjacent binding
sites (sometimes multiple binding sites) of several tran-
scription factors. Transcription regulation not only re-
lies on the combination of the TFs involved, but also
on the number of site copies in the upstream regions
(Werner, 1999).

Characterizing the motifs of TFs and locating TF
binding sites are crucial tasks for understanding how
the cell regulates its genes in response to develop-
mental and environmental changes. However, the gold
standard experimental procedures to determine bind-
ing sites are inefficient, sometimes impractical, and it
can only discover one transcription factor binding site
at a time. With the availability of complete genome
sequences, biologists are using techniques such as
DNA microarray (Schena, Shalon, Davis and Brown,
1995) or serial analysis of gene expression (SAGE;
Velculescu, Zhang, Vogelstein and Kinzler, 1995) to
measure the expression level of every gene in an or-
ganism in various conditions. A collection of expres-
sions of a gene measured under various conditions is
called the expression profile of the gene. A genome
can be divided into gene clusters according to simi-
larities in their expression profiles (Eisen, Spellman,
Brown and Botstein, 1998). Genes in the same expres-
sion cluster respond similarly to environmental and de-
velopmental changes and thus may be coregulated by
the same TF or the same group of TFs. Therefore, our
computational analysis can be focused on the search
for TF binding sites in the upstream of genes contained
in a particular cluster. Another experimental procedure
called chromatin immunoprecipitation followed by mi-
croarray (ChIP-array or ChIP-on-chip; Buck and Lieb,
2004) can measure where a particular TF binds to DNA
in the whole genome, although at a coarse resolution of
1–2 thousand base pairs. Again, computational analy-
sis is required to pinpoint the short binding sites of a
transcription factor from all the long TF binding tar-
gets.

With the ever expanding number of whole genomes
sequenced and high-throughput gene expression and
protein–DNA binding data, motif finding and tran-
scription regulatory network elucidation have become
major research topics in computational biology. In Sec-
tion 2, we describe the basic formulation of the mo-
tif finding problem and review discovery methods that
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are popular in the field. A formal Bayesian statisti-
cal model together with its various extensions is given
in Section 3. In particular, we discuss models that
allow for unknown motif width and unknown motif
abundance ratio. We then investigate the advantages
of using scoring functions for motif finding in Sec-
tion 4. Section 5 discusses the use of a Metropolis-
algorithm-based optimization method to improve the
results from a Gibbs-sampling-based algorithm, Bio-
Prospector, and examines a few simulation studies for
comparing different scoring functions. We observed
that those scoring functions resulting from a proper
Bayes model usually performed the best. Section 7
concludes with a brief discussion.

2. MOTIF FORMULATION AND GENERAL
DISCOVERY STRATEGIES

There are two ways of discovering novel binding
sites of a TF:scanningmethods andde novomethods.
In a scanning method, one uses a motif representation
resulting from experimentally determined binding sites
to scan the genome sequence to find more matches. In
de novo methods, one attempts to findnovel motifs
that are “enriched” in a set of upstream sequences.
This article focuses on the latter class of methods. The
de novo methods can also be divided into two classes,
according roughly to two general data formulations
for representing a motif: the consensus sequence or a
position-specific weight matrix (PSWM).

2.1 Consensus Sequence Methods

The consensus sequence shows the motif as a string
of IUPAC characters (Table 1; see IUPAC, 1986).
For example, the Mse motif consensus CRCAAAW
suggests that the Mse protein binds to sites starting
with a C, followed by A or G, followed by CAAA
and followed by A or T. In the following sections,
we useword andsegmentinterchangeably to mean a
short DNA sequence being tested by our motif model

TABLE 1
IUPAC nomenclatures for DNA consensus

A Adenine C Cytosine
G Guanine T Thymine
R Purines (A, G) Y Pyrimidines (C, T)
W Weak hydrogen bond (A, T) S Strong hydrogen bond (C, G)
M Amino group (A, C) K Keto group (G, T)
B Not A (C, G, T) D Not C (A, G, T)
H Not G (A, C, T) V Not T (A, C, G)
N Any (A, C, G, T)

as a potential binding site. When scanning a set of
sequences against a consensus, all words matching the
consensus are considered putative binding sites. This
sometimes results in many false positive sites, and it
may miss some true sites with variability that is not
represented by the consensus sequence.

Early research on discovering motifs was usually
simplified to finding a sequence pattern enriched or
overrepresented in the sequence dataset compared to
the genome background. Therefore, many computa-
tional algorithms for finding motif consensus sequences
adopted a “pattern-driven” or “word enumeration” ap-
proach by enumerating predefined consensus patterns
to see which is significantly enriched in the sequence
dataset.

The first consensus sequence enumeration method
was developed (Galas, Eggert and Waterman, 1985)
to search for a TATA-box motif that appears once in
each upstream region. They first align all the upstream
sequences at the transcription start site. Then for every
aligned position, they search in the nine-base windows
centered at that position of all the sequences. In this
window, every possible patternbi of width 6 is scored
according toS(bi) = (6/6)qi6 + (5/6)qi5 + (4/6)qi4,
where qik is the number of sequences whose best
matching 6-mer (subsequence of length 6) tobi in
the nine-base window hask matched positions. The
highest scoring pattern is considered as a potential
motif and the positions corresponding to this are
considered potential binding locations.

In most motif finding problems, the binding site
locations are unknown and their distances from the
transcription start site vary extensively. Therefore,
oligoanalysis (van Helden, Andre and Collado-Vides,
1998) was developed to find sequence patterns en-
riched in the whole upstream region. This method enu-
merates every possible patternbi of a certain width to
determine whether it occurs in the dataset more than
expected. Sinha and Tompa (2000) later extended this
method to allow for one-base mismatch and to use
the IUPAC alphabet to find motifs with more flexible
base substitutions. To speed up computation, Sinha and
Tompa calculated the mean and variance of the num-
ber of occurrences ofbi and determined its significance
by a Z-test. Their calculations were based on a third-
order Markov model for noncoding sequences in the
genome. As shown in Liu, Brutlag and Liu (2001), the
Markov model discriminates against meaningless pat-
terns such as AAAA or ATAT that are frequently found
in the noncoding sequences and therefore increases the
specificity of the discovered motifs.
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The time to enumerate all possible consensus pat-
terns increases exponentially as the pattern width in-
creases, so finding longer motif patterns is a challenge.
Since many long motifs are more conserved near the
two ends, van Helden, Rios and Collado-Vides (2000)
proposed to detect long motifs as spaced dyad patterns
such asw1 · ns · w2, wherew1 andw2 are the dyad
motif words with short enough widths, andns is the
s-base spacer of unspecified sequence. The expected
occurrences of a spaced dyad can be determined either
by calculating from the joint distribution ofw1 andw2
assuming thatw1 and w2 are conditionally indepen-
dent, or by countingw1 · ns · w2 occurrences in the
whole genome noncoding sequences.

Another method encodes nucleotides using a two-
bit binary number instead of an eight-bit character and
converts the sequence into a much shorter array for
quick access (Hampson, Baldi, Kibler and Sandmeyer,
2000). A third method uses a suffix tree to repre-
sent all patterns of all widths that exist in the whole
genome noncoding regions (Brazma, Jonassen, Vilo
and Ukkonen, 1998). Keich and Pevzner (2002) in-
troduce models for more refined consensus pattern
searching, which are useful in the case of very sub-
tle motifs. Each node contains a sequence pattern that
reflects the path from the root to the node and stores
information of the count and location of all the se-
quences matching that pattern. In addition, each node
can branch into A, C, G and T to form patterns one base
longer. Although building the full tree is extremely
time and memory intensive, one can trim many “rare”
nodes to speed up tree-building.

A recent method called MobyDick builds longer mo-
tifs from concatenating shorter ones (Bussemaker, Li
and Siggia, 2000). MobyDick models the sequence
dataset as being generated by concatenations of words

drawn independently from adictionary with their re-
spective “usage” frequencies. The initial motif dictio-
nary contains individual bases A, C, G and T, with
their frequencies estimated from genome noncoding
sequences. Longer patterns are formed by adding into
the dictionary those concatenated word pairs that have
occurred more than expected (e.g., “CG” would be
treated as a new word if its occurrence is significantly
more than what is expected from the independent pair-
ing). The frequencies are reestimated for all the words
in the new dictionary to maximize the likelihood of
generating the sequence dataset. The process is re-
peated until no new words can be added. This method
has recently been generalized to a stochastic dictionary
model (Gupta and Liu, 2003).

2.2 Position-Specific Weight Matrix and
Statistical Models

An alternative motif formulation is a position-
specific weight matrix, or simplymotif matrix, which
measures the desirability of each baseat each position
of the motif. The simplest matrix is an alignment
matrix njk , which records the occurrence of basek

at position j of all the aligned sites for this motif
(Table 2). Also shown in Table 2 are the corresponding
frequency matrix (fjk = njk/N ), where N is the
number of motif sites, and weight matrix log[fjk/θ0k]
(Hertz and Stormo, 1999), whereθ0k is the proportion
of basek in the nonmotif (background) positions.

A formal statistical model for the weight matrix
method was described in Lawrence and Reilly (1990)
and a complete Bayesian method was given in Liu
(1994) and Liu, Neuwald and Lawrence (1995). In this
model, the sequence data is represented as an arrayS,
whereSij is the base in positionj of sequencei. Each
base can take onK = 4 different values corresponding
to the nucleotides A, C, G and T. To reflect the fact that

TABLE 2
Matrix representation of transcription factor binding motif BCD

Alignment matrix Frequency matrix Weight matrix

Pos A C G T A C G T A C G T

1
2
3
4
5
6
7
8




0 4 7 1
2 1 8 1
0 0 12 0

12 0 0 0
0 0 0 12
0 0 0 12

12 0 0 0
6 1 2 3







0.00 0.33 0.58 0.08
0.17 0.08 0.67 0.08
0.00 0.00 1.00 0.00
1.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00
0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00
0.50 0.08 0.17 0.25







−2.56 0.27 0.80 −0.96
−0.37 −0.96 0.93 −0.96
−2.56 −2.56 1.33 −2.56

1.33 −2.56 −2.56 −2.56
−2.56 −2.56 −2.56 1.33
−2.56 −2.56 −2.56 1.33

1.33 −2.56 −2.56 −2.56
0.65 −0.96 −0.37 0.00



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the motif sites withinS are substrings of lengthw that
are conserved relative to each other, we model them as
independent realizations from a commonMotif model.
That is,

(s1, . . . , sw)

∼ ProductMultinomial
(
� = (θ1, θ2, . . . , θw)

)
if (s1, . . . , sw) is an observed motif site inS (a sub-
string of widthw), whereθ j = (θjA, θjC, θjG, θjT ) is
a probability vector for the preference of the nucleotide
types in positionj . This model means that, for exam-
ple, the motif site “TTACTAA” is generated with prob-
ability θ1T θ2T θ3Aθ4Cθ5T θ6Aθ7A. The remainder of the
sequences are classified as nonsites, for which the sim-
plest model is the i.i.d. multinomial distribution with
the “null” frequencyθ0 = (θ0A, . . . , θ0T ). Since the
motif sites are only a tiny fraction of the whole se-
quence data, we can estimateθ0 first (e.g., direct count-
ing of the four nucleotide types) and subsequently treat
it as known. It has been shown recently that using
a Markov chain to model the nonsite positions can
improve the motif specificity (Liu, Brutlag and Liu,
2001).

From the alignment of a set of binding sites, we
can easily derive a frequency matrixfjk, which is
the MLE of θjk, and the weight matrix given in
Table 2. These matrices can be used to scan the whole
genome sequence, by computing for each segment its
likelihood of being generated from the motif model, to
discover novel realizations of the binding motif. This
strategy tends to be more accurate in capturing the
correct sites than using the matching criterion based
upon the consensus sequence formulation.

In a majority of gene regulation analysis problems,
we know neither the locations of the motif sites nor
the motif pattern (i.e.,� or an estimate of it). Thus,
we need to simultaneously estimate the motif matrix
and locate the possible motif sites in the sequence
data. A particularly successful class of computational
algorithms for this problem adopts a “data-driven” or
“matrix update” approach based either on the EM algo-
rithm or Gibbs sampling (Lawrence and Reilly, 1990;
Lawrence et al., 1993; Liu, 1994). These methods typ-
ically initiate a motif matrix randomly and use the se-
quence dataset to gradually refine the motif. It is the
focus of this article to give an overview and extension
of this class of algorithms, providing for them a rigor-
ous Bayesian or likelihood foundation, and to discuss
possible improvements.

2.3 Motif Discovery Methods Based on Motif
Matrix Updating

The first algorithm for discovering novel motifs
was CONSENSUS (Stormo and Hartzell, 1989). As-
suming that each sequence contains one motif site,
the algorithm starts by examining all possible loca-
tions of the motif sites in the first two sequences
[a total of (n1 − w + 1)(n2 − w + 1) comparisons],
and chooses the topX pairs of motif sites according
to the relative entropy scores of their corresponding
motif matrix, where the score is defined asψENT =∑w

j=1
∑T

k=A fjk logfjk/θ0k , wherefjk is the observed
frequency of base typek in the j th position and
logfjk/θ0k is the weight matrix given in Table 2. Later,
another scoring function was deduced to estimate the
p-value of each motif, which is the probability of ob-
serving a motif from random alignment of the same
size that scores equally or higher (Hertz and Stormo,
1999). Only motifs with high information content or
low p-value are retained, and each is aligned with
every possiblew-mer (subsequence of lengthw) in
the third sequence to form a set of new matrices and
the topK matrices are retained. The algorithm cycles
through all the sequences in the same fashion and the
best-scoring motifs are reported at the end as poten-
tial TFBMs. When there are more motif sites in the
first few sequences in the dataset, especially the first
two sequences, CONSENSUS is effective. Otherwise,
a number of runs using different sequence orders are
needed.

Another matrix motif discovery algorithm is based
on a missing data formulation, which will be detailed
in the next section, and the EM algorithm (Lawrence
and Reilly, 1990). The original algorithm restricts each
sequence to contain one TF site. A later method called
MEME overcomes this limitation (Bailey and Elkan,
1994; Grundy, Bailey and Elkan, 1996) by introducing
a prior probability for every position to be the start of
a motif site. The algorithm also uses every existing
w-mer in the sequence dataset to initialize the EM
iteration, thus improving the convergence properties of
the original method of Lawrence and Reilly (1990).

About the same time, a Bayesian method and several
related Gibbs sampling algorithms for motif discov-
ery were also developed (Lawrence et al., 1993; Liu,
1994; Liu, Neuwald and Lawrence, 1995), and these
Bayesian approaches together with powerful Markov
chain Monte Carlo tools demonstrate more model-
ing and computational flexibilities. For example, many
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new methods have been explored to extend the func-
tionality of Gibbs sampling. Gibbs Motif Sampler in-
corporates a prior probability of motif occurrence in
the sampling, thus allowing variable number of mo-
tif sites in each input sequence (Liu, Neuwald and
Lawrence, 1995). By only considering thek posi-
tions out of w in the motif with the richest infor-
mation content, it allows the motif to contain small
gaps. AlignACE continues to improve the Gibbs Mo-
tif Sampler by iteratively masking out aligned sites to
find multiple different motifs (Roth, Hughes, Estep and
Church, 1998). BioProspector uses a Markov model es-
timated from the whole genome noncoding sequences
to represent the nonmotif background in order to im-
prove the motif specificity (Liu, Brutlag and Liu,
2001). It can also find motifs that have two conserved
blocks separated by a nonconserved gap of variable
length.

Algorithms based on word matches are usually
exhaustive in finding motifs, but are limited by the
maximum width of the motif that can be enumerated.
Algorithms based on matrix update algorithms can find
motifs of any specified width, but none can guarantee
convergence or a globally optimal motif. To strike a
balance of the two, a recent algorithm, MDscan (Liu,
Brutlag and Liu, 2002), first uses a word enumeration
method to search motifs from the topL sequences that
biologists are most confident contain the motif. Using
every existingw-mer in these sequences as a seed,
MDscan finds allw-mers in theL sequences that are
similar to the seed and constructs from them a motif
matrix. All the motif matrices are evaluated by a semi-
Bayesian scoring function and the best ones are further
refined using all the sequences in the dataset. When
the motif is weak and the data are noisy, searching
for motifs first from sequences with high signal-to-
background ratio increases the chance of success.

In the past decade, much effort has been made
in the area of regulatory motif analysis and many
algorithms have been developed. Although there may
still be debate and arguments over which algorithms
are “best” in a certain situation, the few most popular
motif-finding algorithms (e.g., CONSENSUS, MEME,
AlignACE, Gibbs Motif Sampler, BioProspector) are
all based on explicit statistical modeling, either fully or
partially, in contrast to the word enumeration methods
of van Helden and co-workers (van Helden, Andre and
Collado-Vides, 1998; van Helden, Rios and Collado-
Vides, 2000), Sinha and Tompa (2000), Hampson et al.
(2000) and Brazma et al. (1998).

We can comfortably claim that the introduction
of the full statistical model and the missing-data
formulation has played a pivotal role in revolutionizing
this particular research area as well as the field of
computational biology in general.

3. A BAYESIAN TREATMENT OF THE BINDING
MOTIF MODEL

3.1 A Complete Bayesian Model

As in the previous section, we letS denote the set
of sequences under investigation, where eachSij takes
value in an alphabet of sizeK (K = 4 for DNA se-
quences). WithinS we postulate that there are sub-
strings of lengthw that are sites of an unknownmotif
model. The locations of these sites are unknown, so we
introduce a missing array of indicatorsA, whereAij is
either one or zero indicating whether or not positionj

in sequencei is the starting point of a motif site. A par-
ticular realization ofA gives us a subset ofS, denoted
asS(A), which consists only of the bases in the motif
sites, and the complementary subsetS(Ac), which are
the remaining background bases. We can further break
down S(A) into S(A(1)),S(A(2)), . . . ,S(A(w)), where
S(A(j )) is the set of bases in thej th position of the
motif sites.

We let N(C) = (n1, n2, . . . , nK) be a vector of
the counts of the different base types in a particular
subsetC of S. With a slight abuse of notation, we
also let N(A(2)) be the vector of the base counts in
position 2 of all the motif sites, and we letN(Ac)

be the vector of all base counts that are not part of
a motif site. For two vectorsθ = (θ1, . . . , θK) and
N = (n1, . . . , nK), we define

θN =
K∏

j=1

θ
nj

j ,
θ

N
=

K∏
j=1

θj

nj

, �(N) =
K∏

j=1

�(nj ),

where�(·) is the Gamma function. For the moment we
assume that the motif widthw is known and we will
attempt a generalization to a variable motif width in a
later section.

With the statistical model introduced in Section 2.2,
we have{

N(A(1)), . . . ,N(A(w))
}

∼ ProductMultinomial
(
� = (θ1, θ2, . . . , θw)

)
,

which means that each vector of column totalsN(A(j ))

follows a multinomial distribution parameterized byθ j
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independent of the other columns. ViewingA as
missing data, we can write the likelihood ofS as

p(S|�, θ0,A) ∝ θ
N(Ac)
0 ×

w∏
j=1

θ
N(A(j ))

j .

To enable a Bayesian analysis, we employ the follow-
ing conjugate prior distributions for� andθ0:

� ∼ ProductDirichlet
(

B = (β1, . . . ,βw)
)

and

θ0 ∼ Dirichlet(β0),

where βj = (βj1, . . . , βjK). For a brief review of
multinomial models with Dirichlet prior distributions,
refer to Gelman, Carlin, Stern and Rubin (1995).
With these prior distributions, the conditional posterior
distribution is

p(�, θ0|S,A) ∝ θ
N(Ac)+β0
0 ×

w∏
j=1

θ
N(A(j ))+βj

j .

A nearly trivial but important improvement of this ba-
sic general model is to treat the “nonsite” background
bases as being generated by anlth-order Markov chain
(empirically l = 3 works the best). More generally, we
can write the above model as

p(�, θ0|S,A) ∝ p
(
S(Ac)|θ0

)
p

(
S(A)|�)

p(θ0,�),

where θ0 denotes the parameters in the background
Markov model. After prescribing a prior distribu-
tion p(A) to A independent ofθ0 and�, we have the
joint posterior distribution of all unknowns:

p(�, θ0,A|S)

∝ p
(
S(Ac)|θ0

)
p

(
S(A)|�)

p(θ0,�)p(A).

In the early methods (e.g., Lawrence and Reilly,
1990; Cardon and Stormo, 1992; Lawrence et al.,
1993) it has been assumed that each sequence must
contain one and only one motif site, which corresponds
to assuming thatAij = 0 for all but one entry in theith
row. Thus, no explicit prior distribution forA is needed
if we suppose that the motif site can be anywhere
in the sequence with equal probabilities. It has been
recently demonstrated, however, that incorporating a
model that takes into account the location of the motif
site relative to the end of each sequence can improve
the sensitivity of the algorithm (McCue et al., 2001).
Since biological reality calls for a relaxation of the
one-site-per-sequence assumption, Liu, Neuwald and
Lawrence (1995) propose an explicit prior forA and

propose a set of Markov chain Monte Carlo algorithms
for the computation.

3.2 Markov Chain Monte Carlo Algorithms for
Motif Discovery

In a typical data-augmentation-based Gibbs sam-
pling algorithm (Tanner and Wong, 1987), the de-
sired posterior distributionp(�, θ0,A|S) can be simu-
lated by starting with arbitrary initial values of the un-
known parameters�0 andθ0

0, and then fort = 0,1, . . .

iteratively sampling from the two conditional distribu-
tions:

1. p(At |�t , θ t
0,S);

2. p(�t+1, θ t+1
0 |At ,S).

Given enough time steps, the draws simulated in
this fashion will converge to draws from the desired
posterior distribution. Typically, we are most interested
in the draws fromp(A|S) which would indicate the
most likely positions of the unknown conserved sites.

However, sinceθ0 and especially� are of rather
high dimension, drawing these parameters at every
iteration can be both time-consuming and inefficient.
As demonstrated by Liu (1994), the algorithm can be
improved by integrating over� andθ0 so that we can
simulate draws via Gibbs sampling from the posterior
distributionp(A|S) directly, where

p(A|S) =
∫ ∫

p(�, θ0|S,A)p(A) dθ0 d�.

We now give variations on the basic motif model un-
der different assumptions and the algorithmic conse-
quences of these assumptions. First, we present the
simplest model, a site sampler where the total number
of sites is fixed. Then we present an improved model,
the Bernoulli sampler, where the total number of sites
is allowed to vary. We briefly discuss extending the
model to multiple motifs. Finally, we discuss relaxing
the assumptions of fixed motif abundance and width.

3.2.1 The site sampler—one site per sequence.This
algorithm, as described in Lawrence et al. (1993) and
Liu (1994), is based on the following assumptions:
(a) there is only one type of motif present in the
sequence data (with fixed known widthw); (b) there
is one and only one motif site per sequence. In this
case, the missing indicator arrayA can be reduced to
a vectorA = (a1, . . . , aN), whereai gives the location
of the single site within sequencei. As given in Liu
(1994), the collapsed distributionp(A|S) implies the
following conditional distribution for the locationai of
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the single siteAi in sequencei, conditional on the site
locations in the other sequences,A∗:

p(ai |A∗,S) ∝ �[N((A∗)c) − N(Ai) + β0]
�[N((A∗)c) + β0]

·
w∏

j=1

(
N(A∗

(j )) + βj

)N(Ai(j ))

≈
w∏

j=1

(
θ̂

∗
j

θ̂
∗
0

)N(Si,ai+j−1)

,

where θ̂
∗
j are the posterior means ofθ j conditional

on S andA∗, andθ̂
∗
0 are the corresponding means for

the background. More precisely, as given in Lawrence
et al. (1993),

θ̂∗
jk = Cjk + βjk

N − 1+ |βj |
,

where|βj | = ∑K
k=1βjk andCjk are the counts of base

type k in position j of all sites except for the site in
sequencei. Thus,ai can be randomly drawn from all
possible starting points in sequencei with probability
proportional top(ai |A∗,S) given above, in either exact
or approximate form. To avoid being trapped in a
phase-shift mode, they also included a Metropolis step
to allow for all the motif sites to move to the left or
right by a few positions. That is, a move of the type
A → A ± δ is considered.

3.2.2 Bernoulli sampler—unknown number of motif
sites. As pointed out in Liu, Neuwald and Lawrence
(1995), it is often too restrictive an assumption to hold
the total number of unknown sites as fixed and known.
If we allow an unknown number of motif sites per
sequence, this is equivalent to allowing multiple sites
in one long super sequence created by concatenating
all the sequences, that is,S = (S1, . . . , SL∗), where
L∗ is the total length of allN the sequences in the
dataset. Since the motif site is not allowed to overlap
with the endpoints of the original sequences, we let
L = L∗ − N(w − 1) be the adjusted total sequence
length. Thus, our missing data array can be written as a
long vectorA = (a1, a2, . . . , aL) of indicator variables,
where eachai is either 1 (site) or 0 (nonsite) with
a priori probabilityp0 and 1− p0, respectively, where
p0 is termed as the motifabundance ratio. Under this
model, the joint posterior distribution is

p(A,�, θ0|S,p0)

∝ θ
N(Ac)+β0
0 ×

w∏
j=1

θ
N(A(j ))+βj

j p
|A|
0 (1− p0)

L−|A|,

where|A| is the total number of sites, now assumed to
be unknown. Integrating out� andθ0, we have

p(A|S,p0)

∝ �(N(Ac) + β0)

�(L − |A| + |β0|)
w∏

j=1

�(N(A(j )) + βj )

�(|A| + |βj |)
· p|A|

0 (1− p0)
L−|A|.

(1)

Based on this formula, Liu, Neuwald and Lawrence
(1995) constructed apredictive updatingalgorithm
based on the conditional distribution

p(ai = 1|A∗,S)

p(ai = 0|A∗,S)
∝ p0

1− p0

w∏
j=1

(
θ̂

∗
j

θ̂
∗
0

)N(Si,ai+j−1)

,

whereA∗, θ̂∗
j , θ̂

∗
0 are the same as in Section 3.2.1.

An immediate next question is how to find a proper
abundance ratiop0. Some earlier literature has letp0
be in the range of 1/200 to 1/2000 (Liu, Neuwald and
Lawrence, 1995; Neuwald, Liu and Lawrence, 1995;
Roth et al., 1998). However, our empirical studies have
found that the choice ofp0 can have a significant
effect on the motif discovery results. This issue will
be discussed in Section 3.3.

3.2.3 Dealing with multiple motif types.Although
this situation is not the focus of this paper, it is worth
mentioning that the above Bernoulli sampler model
can be extended to the situation where we suspect that
multiple distinct motif patterns exist in the same set of
sequences. The simplest strategy is to introduce more
motif matrices, one for each motif type, and to let the
variableAij indicate not only the start of a motif site,
but also the motif type (Liu, Neuwald and Lawrence,
1995). Another strategy is to mask out the discovered
sites of the first motif and repeat the Bernoulli sampler
(Roth et al., 1998).

As pointed out in Lawrence et al. (1993), searching
for several patterns simultaneously permits the sharing
of information between them to aid in the discovery
of unknown sites of each. They present a multiple-
motif version of the multinomial sampler, where the
multiple motifs are restricted to have the same or-
dering (collinearity) between different sequences. Po-
tential modeling of the spacing between motifs is
also mentioned but not implemented. Liu, Neuwald
and Lawrence (1999) mention that this early model
for collinearity is computationally inefficient and pro-
pose that the models for a single motif be combined
with a hidden Markov model (HMM) for insertions
and deletions between different motifs. This unified
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model, called thepropagation model, capitalizes on
the collinearity properties inherent to hidden Markov
models but does not require the large amount of free
parameters that a typical HMM would. There is the
additional model selection issue (Gelman et al., 1995;
Kass and Raftery, 1995) for determining the appropri-
ate total number of different motif patterns.

More recently, Xing, Wu, Jordan and Karp (2003)
presented LOGOS, a hidden Markov model for the
occurrence of multiple motifs combined with a sepa-
rate hierarchical Bayesian Markovian model for each
different motif. Frith et al. (2003) introduce software,
Cluster-Buster, which combines the information from
known motif patterns to find dense clusters of motifs
in genome-wide searches.

3.3 Flexible Motif Width and p0

If we assume that the motif abundance ratiop0 is
unknown with a Beta(a, b) prior distribution, then the
joint posterior distribution becomes

p(A,�, θ0,p0|S) ∝ θ
N(Ac)+β0
0 ×

w∏
j=1

θ
N(A(j ))+βj

j

· p|A|+a−1
0 (1− p0)

L−|A|+b−1.

Integrating out the parameters�, θ0 andp0, we have

p(A|S) ∝ �(N(Ac) + β0)

�(L − |A| + |β0|)
w∏

j=1

�(N(A(j )) + βj )

�(|A| + |βj |)
· Ba,b(|A|,L − |A|),

whereBa,b(c, d) is the Beta function∫ 1
0 xa+c−1(1− x)b+d−1 dx∫ 1

0 xa−1(1− x)b−1 dx
.

This expression can be used to construct a predictive
updating algorithm similar to that based on (1).

In the Bernoulli sampler model, the assumption of
fixed motif widthw can be relaxed somewhat to allow
so-calledfragmentationof motifs. In a fragmentation
model, onlyJ columns of a motif of widthw are se-
lected to form the motif pattern. This is accomplished
by positing additional missing indicator variables for
whether or not each of thew positions of a motif is con-
sidered as part of a conserved motif pattern. This new
missing data can be incorporated into a larger model
and a Gibbs sampling strategy can again be used for
implementation. This fragmentation model is useful
for correcting the problem that earlier Gibbs sampling
strategies could get stuck in local modes that were

phase-shifted versions of the true signal. A slightly
different approach to correcting this same phase shift
problem is to insert a Metropolis step within the Gibbs
sampler that shifts each motif in one direction or the
other (Liu, 1994).

If we view w as an unknown variable and treat it di-
rectly, then we face a Bayesian model selection prob-
lem (Gelman et al., 1995) since, for different widthsw

the dimensionality of the motif parameter� is differ-
ent. Lawrence et al. (1993) use an ad hocinformation
per parametercriterion to select the best motif width.
This criterion, however, tends to bias in favor of motifs
with strong conserved sites on the two ends. Noting
that � can be integrated out from the model to avoid
the dimensionality change, Gupta and Liu (2003) place
a prior distribution onw and use a Metropolis step
to updatew based on the joint distribution. In sum-
mary, with the mutually independent prior distributions
θ0 ∼ Dirichlet(β0), w ∼ p(w), p0 ∼ Beta(a, b) and
�|w ∼ ProductDirichlet(β1, . . . ,βw), we have

p(A,w|S) ∝ �(N(Ac) + β0)

�(L − |A| + |β0|)

·
w∏

j=1

�(N(A(j )) + βj )

�(|A| + |βj |)
�(|βj |)
�(βj )

· Ba,b(|A|,L − |A|) × p(w).

4. MUCH ADO ABOUT SCORING FUNCTIONS

In the frequent situation where the single “best” an-
swer to a motif-finding problem is desired (i.e., the
“best” set of site predictions or the “best” consen-
sus matrix), our goal is to find the “optimum” of
a certain scoring function. In our Bayesian formula-
tion, an appropriate log-posterior distribution can serve
our purpose. Although it is still a subject of debate
(see Stormo, 2000, for a review) whether the current
Bayesian formulation is the “best” one for the motif-
finding problem, the methods built based on a statis-
tical model have been shown to be more accurate in
many cases than heuristic ones, such as the word enu-
meration techniques outlined in the second section. Be-
cause of the need for a speedy algorithm, it is sensible
to seek strategies, such as optimizing a scoring func-
tion, instead of a full posterior analysis (via MCMC
sampling). Here we examine a few functions that have
been used in practice to evaluate a discovered motif and
attempt some generalizations of them. Throughout this
section we assume that the background parameterθ0 is
known.
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4.1 Bayesian Scoring Functions

We begin the discussion assuming that the motif
width w and the abundance ratiop0 are known, as
well as the background parametersθ0. We also assume
that the number of prior counts in each column of the
motif matrix is constant, that is,|βj | = |β| for all j .
In each scoring function, we letK be the collection
of terms that are constant with respect to the unknown
parameters. The first scoring function is the exact log-
posterior density forA:

ψexact(A)

= logp(A|θ0,p0,w,S)

= K + |A| logit(p0) − w log�(|A| + |β|)

+
w∑

j=1

∑
k

log�(njk + βjk) − njk logθ0k.

(2)

Whenp0 is unknown and is assigned a prior distribu-
tion Beta(a, b), we have

ψ ′
exact(A) = K + logBa,b(|A|,L − |A|)

− w log�(|A| + |β|)

+
w∑

j=1

∑
k

log�(njk + βjk) − njk logθ0k.

HereL = N − (w − 1)m, whereN is the total num-
ber of nucleotides andm is the number of sequences.
L is the total number of possible site positions, since
sites are not allowed to overlap the ends of a sequence.
Using Stirling’s formula (Stirling, 1730),�(x + 1) =
x! ≈ xxe−x(2πx)1/2, we can approximateψexactas

ψStir(A)

= K + |A| logit(p0) − 3

2
w log(|A| + |β| − 1)

+
w∑

j=1

∑
k

(
njk + βjk − 1

2

)

(3)
× log

(
njk + βjk − 1

|A| + |β| − 1

)
− njk logθ0k

≈ K + |A|
[

logit(p0) +
w∑

j=1

∑
k

θ̂jk log
(

θ̂jk

θ0k

)]

− 3

2
w log(|A| + |β| − 1),

whereθ̂jk = njk+βjk

|A|+|β| . Our empirical results showed that
the Stirling approximation tracksψexact very well for

realistic values of|A| andnjk. Whenp0 is assigned a
Beta(1,1) prior, we can again use the Stirling formula
to approximate log[B1,1(|A|,L − |A|)] so that

ψ ′
Stir(A) ≈ K + |A|

[
logit(p̂0) − 1

+
w∑

j=1

∑
k

θ̂jk log
(

θ̂jk

θ0k

)]

− 3

2
w log(|A| + |β| − 1),

where p̂0 = |A|/L is the estimated motif abundance
ratio.

Furthermore, we can considerw as unknown with
prior p(w), which will give us several extra terms in
the scoring function for our exact log-posterior density,

ψ ′′
exact(A,w)

= K + logB1,1(|A|,L − |A|)
+ logp(w) − w log

(
�(|A| + |β|)

�(|β|)
)

+
w∑

j=1

∑
k

log
(

�(njk + βjk)

�(βjk)

)
− njk logθ0k,

and the corresponding Stirling approximation,

ψ ′′
Stir(A,w)

≈ K + logp(w)

+ |A|
[

logit(p̂0) − 1+
w∑

j=1

∑
k

θ̂jk log
(

θ̂jk

θ0k

)]

−
w∑

j=1

∑
k

(
βjk − 1

2

)
log

(
βjk − 1

|β| − 1

)

− 3

2
w log

( |A| + |β| − 1

|β| − 1

)
.

A natural prior distribution forw would be the
Poisson(w0), wherew0 represents our a priori expec-
tation for the motif width. One could also consider
other prior distributions forw, such as Geometric(w0)
or Exponential(w0).

Another scoring function approximation that we can
consider is based on the entropy distance between
the motif and background parameters (or Kullback–
Leibler information),

ψent(A)

(4)

= |A|
[

logit(p0) + ∑
j

∑
k

θ̂jk log
(

θ̂jk

θ0k

)]
.
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Compared with this heuristic-based scoring function,
ψStir has an additional term, which gives an additional
penalty to a large number of motif sites.

4.2 Non-Bayesian Scoring Functions

A form similar to the entropy scoring function is
mentioned in Lawrence et al. (1993). It is interesting
to note that scoring functions related to this entropy
approximation have arisen in the motif-finding litera-
ture outside the context of a Bayesian formulation. In
developing their CONSENSUS algorithm, Stormo and
Hartzell (1989) introduced a scoring function very sim-
ilar to ψent which they call theinformation content:

ψinfo(A) = ∑
j

∑
k

θ̂jk log
θ̂jk

θ0k

, where

θ̂jk = njk

N
.

(5)

This function is equivalent to all the foregoing scoring
functions when the total number of motif sites|A| and
the motif width w are assumed known, which was
the case in Stormo and Hartzell (1989), Lawrence and
Reilly (1990) and Lawrence et al. (1993). However,
when |A| is unknown, functionψinfo cannot be used
to find a proper set of motif sites—it will converge to a
set of very few motif sites with high conservation and
ignore potential sites that are less conserved. A way
to remedy this is to give a prior distributionf (A) and
then construct

ψ ′
info(A) = logf (A) + |A|∑

j

∑
k

θ̂jk log
θ̂jk

θ0k

.

This scoring function is nearly equivalent to the en-
tropy one we have shown earlier except that a more
flexible prior of A is allowed here. A temptation here
is to use a prior on|A| directly, but this overlooks the
“entropy number,” that is, the number of differentA’s
that can give rise to the same value of|A|.

Liu, Brutlag and Liu (2002) present an algorithm
called MDScan for motif-finding based not only on
sequence data but also on gene expression information
from microarray experiments. Since the truep0 is
rarely known in practice, they propose to optimize the
following scoring function:

ψmd(A) = log(|A|)
w

∑
j

∑
k

θ̂jk log
θ̂jk

θ0k

.(6)

The functional form again shares some similarities
with the entropy approximation given above. Although

function ψmd is not intended as an approximation to
the posterior distributionp(A|θ0,p0,S), it can still
be used as a scoring function in the optimization
algorithm presented below.

4.3 Optimizing a Scoring Function

One disadvantage of the Gibbs sampling method de-
scribed in Section 3.2 is that it typically takes a longer
time than a researcher (especially biologists) can toler-
ate. It is also much more involved to summarize the re-
sults using the posterior samples. Even more seriously,
different Gibbs sampling chains with different starting
values often get stuck in different modes, due to both
the “stickiness” of the posterior distribution surface
and the limitation of computing power. Here, we seek
to achieve a simpler goal: optimizing one of the scor-
ing functions described above by using a Metropolis-
algorithm-based annealing approach.

In the Metropolis steps, we systematically scan
through every element of the matrixA and decide
whether the indicator variable at this position should be
“changed” to its opposite value. If we denoteA′ asA
with this change made, then we calculate the following
Metropolis ratio:

r = min
{
1,exp{ψ(A′) − ψ(A)}/T

}
.

The decision to accept the change or to keepA un-
changed is made with probabilityr and 1− r , respec-
tively. The scoring functionψ can be taken as any of
the scores discussed earlier in this section. The para-
meter T is called thetemperatureof the algorithm,
with low temperatures restricting the algorithm to ac-
cept only small jumps and high temperatures allowing
for more freedom to move around the parameter space.
We consider the following optimization strategies.

The Temperature= 0 strategy forces the algorithm
to accept only changes that immediately improve the
score, since forcingT to approach 0 then forcesr to
equal 0 ifψ(A′) < ψ(A) or r to equal 1 ifψ(A′) ≥
ψ(A). With this type of deterministic strategy, it is
important that we start the algorithm in an area near
the mode of the density, or else our simple hill-
climbing algorithm is guaranteed to get stuck in an
inferior local mode. Therefore, one would first want
to run the dataset through a sensitive program such
as BioProspector (Liu, Brutlag and Liu, 2001), which
would give a set of predicted sites that is near the area
of high posterior density, and then use these predicted
sites as the starting point of aT = 0 optimization
algorithm. In this scenario, our optimization strategy
is intended to “clean up” the output produced by
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a stochastic-based algorithm such as BioProspector,
Consensus or AlignACE.

The Temperature= 1 strategy is equivalent to sam-
pling from the posterior distribution, if the score func-
tion is the exact log-posterior. However, for other types
of score functions this approach imposes a target den-
sity on the parameter space, which may or may not be
desirable. One can run this algorithm over many iter-
ations and analyze the Monte Carlo samples thus ob-
tained. We did not implement this strategy because of
an overlap of the effort with previous approaches such
as Gibbs Motif Sampler, AlignACE and BioProspector.
A simulated annealing(Kirkpatrick, Gelatt and Vecchi,
1983) strategy combines deterministic and stochastic
strategies by starting the algorithm at a high tempera-
ture such asT = 4 and then slowly decreasing the tem-
perature toT = 0 as the algorithm continues through
many iterations through all positions ofA. For the cur-
rent exposition, we restrict ourselves to the modest goal
of the T = 0 strategy, that is, deterministic improve-
ment upon the output from Gibbs sampling algorithms
such as BioProspector.

5. EMPIRICAL STUDIES

5.1 Effect of Putting a Prior on p0

Earlier methods such as the Gibbs Motif Sampler
and AlignACE (Liu, Neuwald and Lawrence, 1995;
Liu, Brutlag and Liu, 2001; Roth et al., 1998) use a
fixed motif abundance ratiop0. However, some of our
recent studies (Liu, Brutlag and Liu, 2002) suggest
that this abundance ratio, if not given properly, may
have adverse effect on the accuracy (in terms of finding
true sites) of the findings. We also confirmed this
finding by some simple simulation experiments. To
circumvent this problem, Liu, Brutlag and Liu (2001,
2002) proposed to optimize a slightly different scoring
functionψmd as shown in (6). Here we investigate the
advantage of treatingp0 as an unknown parameter in a
full Bayesian formulation.

Table 3 shows the results of a simulation in which
20 sequences of 500 base pairs each were generated
according to a first-order Markov model. In each
sequence a motif site of width 10 was inserted with
motif strength 0.9 (i.e., the most frequent letter is 90%
conserved). Different starting values forp0 ranging
from 1/100 to 1/2000 were tested andp0 was then
updated in the Gibbs sampler iterations. The results are
compared to those from methods using fixedp0.

It is seen from the table that, when the fixedp0
is large, we tend to get many false positive sites;

TABLE 3
FN is the number of false negative sites; FP is the number of false

positive sites; K = (1− p0)/p0 andK∗ is the best draw ofK

Starting values for K

Strategy 100 200 500 1,000 2,000

Fixedp0
FN 3 4 4 5 7
FP 49 18 5 3 3
Samplep0
K∗ 452 405 550 399 497
FN 3 4 4 4 5
FP 4 6 4 5 4

whereas whenp0 is small, we tend to pick up fewer
true sites, leading to more false negatives. The optimal
value of p0 is around 500 to 1,000. However, in the
results where we treatp0 as an unknown variable and
update it along with the Gibbs sampling iterations,
the performance was quite stable and invariant to the
starting values. With different starting values forp0,
we ended up with approximately the same number of
false positive and false negative sites, comparable to
the results from using a fixedp0 at its optimal value.
The best draw ofp0, in the sense of maximizing the
joint posterior distribution, is close to the true value of
p0 (1/500).

5.2 Comparison of Scoring Functions

In Section 4 we outlined a few scoring functions that
could be used in a motif-finding algorithm: the exact
log-posterior as in (2), its Stirling approximation as
in (3), its entropy approximation as in (4), the scoring
function (6) used by the MDscan (Liu, Brutlag and Liu,
2002) and the information-content function (5) used by
CONSENSUS. We designed the following simulation
study to investigate the relative ability of each scoring
function to find unknown motif sites under various
sequence conditions.

Sinceψinfo is only suitable for the case in which
the number of sites is known, we only compared the
effectiveness of the first four scoring functions. We
include the MDscan scoring function here since we
are interested in evaluating its performance against the
other scoring functions, though it not an approximation
to our posterior distribution.

Each simulated dataset consisted of 20 sequences of
200 base pairs each, with each sequence containing ex-
actly one true motif. Datasets were generated multiple
(200) times under each combination of several condi-
tions. The first condition was the length of the hidden
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motif, either 8 or 16 base pairs. The second condition
was the degree of conservation of the hidden motif
signal, either high conservation or low conservation.
High conservation means that each motif position had
a dominant nucleotide with 91% probability (all others
3% equally). Low conservation means that each motif
position had a dominant nucleotide with 70% probabil-
ity (all others 10% equally).

We tested the effect of theT = 0 strategy for
improving the results from BioProspector. BioProspec-
tor was run on each dataset and the best motif re-
sult was retained. We then applied our optimization
algorithm, based upon each of the four scoring func-
tions mentioned above, to this best BioProspector re-
sult. The motif result from each optimization algorithm
was also retained after the optimization algorithm had
converged.

We also compared the effects of the prior distribution
on � by using two different sizes of pseudocounts,
βjk = 2 versusβjk = 1.1. This comparison will affect
the three scoring functions derived from our complete
Bayesian model, but will not affectψmd since no prior
distribution was involved in its derivation.

Table 4 gives the accuracy of the results from algo-
rithms using each of the four scoring functions. Accu-
racy is measured by two statistics, the percentage of
correct sites found and how close the motif consensus
found matches the true motif consensus.

The first conclusion we can reach is that theT = 0
strategy seems to improve the accuracy of the predicted
sites in comparison with the BioProspector result. Re-
gardless of motif width or conservation, the “accuracy
of predicted sites” is higher for each scoring function
compared to the BioProspector output, except in the
case of a short motif and low conservation, where no
method seems to work. The results are not as dramatic
for the consensus match, suggesting that the scoring
function optimization is primarily refining the signal
that has already been found by the Gibbs sampling-
based BioProspector. Thus, it seems that thisT = 0
strategy has accomplished its intended goal of “clean-
ing up” the BioProspector output.

In general, the algorithms do not do nearly as
well for low conservation as for high conservation,
especially in the case of the shorter motif. This is
partly due to the fact that theT = 0 strategy is
deterministically restricted to stay in the same local

TABLE 4
Simulation results forT = 0 strategy

Motif Conser- BioProspector Optimization results using scoring function

Prior width vation results Exact Stirling Entropy MDscan

Accuracy of predicted sites (average |A|)
1.1 8 91 79 (18) 80 (18) 81 (19) 81 (20) 80 (18)
2 8 91 79 (18) 80 (18) 80 (18) 67 (15) 80 (18)
1.1 8 70 9 (15) 8 (8) 10 (11) 3 (2) 12 (19)
2 8 70 9 (15) 1 (0) 1 (0) 0 (0) 12 (19)
1.1 16 91 85 (17) 91 (19) 91 (20) 91 (23) 80 (16)
2 16 91 84 (17) 91 (20) 91 (20) 91 (24) 80 (16)
1.1 16 70 41 (11) 51 (14) 59 (17) 62 (20) 43 (11)
2 16 70 41 (11) 51 (13) 54 (14) 41 (10) 43 (11)

Consensus match (average |A|)
1.1 8 91 98 (18) 98 (18) 98 (19) 98 (20) 98 (18)
2 8 91 98 (18) 98 (18) 98 (18) 82 (15) 98 (18)
1.1 8 70 22 (15) 18 (8) 22 (11) 10 (2) 26 (19)
2 8 70 22 (15) 6 (0) 6 (0) 2 (0) 26 (19)
1.1 16 91 100 (17) 100 (19) 100 (20) 100 (23) 100 (16)
2 16 91 100 (17) 100 (20) 100 (20) 100 (24) 100 (16)
1.1 16 70 86 (11) 88 (14) 90 (17) 88 (20) 88 (11)
2 16 70 86 (11) 86 (13) 88 (14) 62 (10) 88 (11)

NOTES: “Accuracy of predicted sites” is the percentage of true sites found in each simulated dataset, averaged over all
simulated datasets. Shifting of up to 3 base pairs was allowed. “Consensus match” is the proportion of datasets where the
consensus found matches the true consensus (up to 2 mismatched or shifted letters allowed whenw = 8, and 4 allowed
whenw = 16). The average number of predicted sites is given in parentheses.
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mode that the BioProspector output is stuck in, and so
these algorithms do not have the freedom to correct a
poor starting point.

For the low conservation datasets, performance is
much better for a longer motif than for a shorter mo-
tif, suggesting that a certain threshold of information is
needed for the Gibbs sampling algorithm BioProspec-
tor, and consequently our optimization algorithm, to
be successful. If conservation is reduced, one needs a
longer motif for the algorithms to do well. In the case
of a short motif and low conservation, extra informa-
tion (such as prior information about the motif loca-
tions or�) is clearly needed.

The exact, Stirling and entropy scoring functions dis-
play similar performance in most situations, although
the entropy scoring function appears to do noticeably
worse in some cases with larger prior pseudocounts
and is in general most affected by a change in prior
pseudocounts.

MDscan in general does not perform as well as the
three Bayesian scores, except in the case where the
signal is very weak (low conservation and short motif).
This may be because in the case of a really weak signal,
the priors used for the Bayesian scores swamp the
weak signal so that it cannot be detected. This is also
shown by the slightly improved performance in Table 4
when the prior pseudo-counts are smaller. However, in
situations where prior information is actually available,
the formal use of a prior distribution will allow us to
incorporate that information properly.

Overall, these simulation results for the predicted
sites suggest that there is almost always a benefit as-
sociated with using a deterministic optimization algo-
rithm to further improve the output from a stochastic
algorithm such as BioProspector, and that this benefit
seems generally to be the greatest when using the exact
scoring function or one of its approximations, in terms
of a reasonable number of predicted sites and the accu-
racy of those sites. The additional computational cost

of the optimization algorithm is small (≈ 2 minutes for
each simulated dataset).

5.3 Application to Cyclic-AMP Receptor Protein
Motif Sites

We examine a dataset consisting of 18 sequences that
contain cyclic-AMP receptor protein (CRP) binding
sites. Each sequence is 105 base pairs long and each
contains at least one 22-base-pair motif site that has
been experimentally determined via the footprinting
method (Lawrence and Reilly, 1990). This dataset
has been previously analyzed by Lawrence and Reilly
(1990) using an EM algorithm and by Liu (1994) using
a Gibbs sampler.

Similar to our strategy with the simulated datasets,
we first used the program BioProspector to find a
set of initial motif sites and then used ourT = 0
optimization strategy with one of the four scoring
functions to further improve the BioProspector result.
For the first three scoring functions prior pseudocounts
of βjk = 1.1 were used.

Table 5 shows the results from these optimization
algorithms, in terms of the consensus sequence for the
motif, the number of sites predicted and the number
of predicted sites that corresponded to one of the 24
experimentally established (“correct”) positions of the
CRP binding sites. These results are similar to the ones
from our simulation study. For each scoring function
the optimization algorithm improved upon the original
BioProspector signal in terms of the number of correct
sites predicted.

As shown in Table 5, the consensus sequences of
the motifs found by using different scoring functions
are similar. The three scoring functions (exact, Stirling
and entropy) that are closely related to the complete
Bayesian model seem to perform noticeably better than
the MDscan score, with the Stirling scoring function
performing the best in this example. As a comparison,
the “true” motif based on the alignment of the 24

TABLE 5
Results from optimization algorithms with each scoring function applied to the BioProspector

output; the number of experimentally determined binding sites is24

Number of Number of
Scoring function Consensus sequence predicted sites correct sites

BioProspector ttatttgatcgaggtcacactt 9 9
Exact ttatgtgaacgagttcacattt 15 15
Stirling ttttgtgatcgagctcacattt 18 18
Entropy taatgtgatcgaggtcacattt 20 17
MDscan ttatgtgaacgaggtcacactt 11 11
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FIG. 1. Sequence logo of the CRP binding motif based on the alignment of24 experimentally determined sites. The height of each position
is equal to its information content and the size of each letter is proportional to the letter’s relative frequency.

experimental sites is displayed in Figure 1 in the form
of a sequence logo. It is seen that the differing positions
of the five consensus sequences in Table 5 correspond
to the information-weak or ambiguous positions shown
in the sequence logo.

6. DISCUSSION

Motif discovery is an important problem in com-
putational biology since the binding of transcription
factors to upstream region motifs is crucial to the
mechanism of gene regulation. We have presented var-
ious techniques used in the past for motif discov-
ery, a set of Bayesian models useful for developing
motif-finding tools and generalizations of these models
that allow for unknown motif widthw and unknown
motif abundance ratiop0. We have also discussed
the use of scoring functions for motif finding. View-
ing Bayesian models in terms of scoring functions
has provided insight to the similarities between the
full Bayesian model-based approaches and some non-
Bayesian methods, such as CONSENSUS (Stormo and
Hartzell, 1989). We observed that an annealing opti-
mization process can further improve the results ob-
tained from the usual Gibbs sampling implementation,
such as the program BioProspector, and the best results
were obtained from the scoring functions that most
closely approximated a true posterior distribution.

There are still many interesting open problems in
this field. The vast majority of motif-finding research
has assumed that all information about the interaction
between transcription factors and their DNA binding
motifs can be summarized just by looking at the one-
dimensional nucleotide sequence. Benos, Lapedes and
Stormo (2002, b) discuss one-dimensional nucleotide

models and conclude that, although their fit is not
perfect, they do provide a very good approximation to
the true nature of protein–DNA interactions. However,
in actuality this interaction is occurring in three-
dimensional space, so ideally motif models should
incorporate characteristics of DNA morphology. As
an example, in eukaryotic organisms, DNA is stored
in the form of tightly compacted chromosomes where
substantial portions of the DNA sequence are wrapped
around proteins called histones. This is important
information to include in future models, since portions
of the sequence that are wrapped around histones are
less free to interact with DNA-binding proteins such as
transcription factors.

Another interesting problem is to establish a model-
based approach for incorporating gene expression in-
formation, such as microarray results, into the motif
discovery problem. The MDscan program mentioned
above gives one approach to this problem, since the up-
stream regions that are examined for motifs are updated
in an iterative fashion, based on microarray informa-
tion. A more recent method, Motif Regressor (Conlon,
Liu, Lieb and Liu, 2003), directly uses the microarray
expression values to help screen out false positive find-
ings of MDscan. However, model-based approaches
may still be desirable since these models may provide
us a principled way to tune relevant parameters and
guide us to achieve the optimal combination of the two
sources of information (i.e., genome sequences and mi-
croarray values).
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