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Abstract. The Bayesian approach together with Markov chain Monte Carlo
techniques has provided an attractive solution to many important bioinfor-
matics problems such as multiple sequence alignment, microarray analysis
and the discovery of gene regulatory binding motifs. The employment of
such methods and, more broadly, explicit statistical modeling, has revolution-
ized the field of computational biology. After reviewing several heuristics-
based computational methods, this article presents a systematic account of
Bayesian formulations and solutions to the motif discovery problem. Gener-
alizations are made to further enhance the Bayesian approach. Motivated by
the need of a speedy algorithm, we also provide a perspective of the problem
from the viewpoint of optimizing a scoring function. We observe that scoring
functions resulting from proper posterior distributions, or approximations to
such distributions, showed the best performance and can be used to improve
upon existing motif-finding programs. Simulation analyses and a real-data
example are used to support our observation.
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1. THE BIOLOGY OF TRANSCRIPTION nucleotides that are complementary to each other and
REGULATION joined by hydrogen bonds twisted into a double helix.
. . , This structure gives rise to the term “base pair” when
Th,e complgte mformqﬂqn that defmes .the charac- describing a DNA sequence. The specific ordering of
_terlstlcs of living cells within _an organism is encodeq these nucleotides, the “genetic code,” is the means by
in the form of a moderately simple molecule, deoxyri-  hich information is stored that completely defines all
bonucleic acid, or DNA. The building blocks of DNA - ¢,ctions within a cell. With the recent development of
are _four nucleotides, abbreviated by their attached O high-throughput sequencing technology, the National
ganic bases as A, C, G and T. A-T and C-G are com-|ngiitytes of Health genetic sequence database, Gen-
plementary bases between which hydrogen bonds cargank has sustained an exponential growth rate since
form. A DNA molecule consists of two long chains of 1g9go. Right now GenBank contains the complete ge-
nomic sequences of over 1,000 organisms (Benson
Shane T. Jensen and Qing Zhou are Ph.D. students an@t al., 2002) with approximately 22 billion DNA bases.
Jun S. Liu is Professor, Department of Statistics, Har-  The central dogma of molecular biology dictates that
vard University, 1 Oxford Street, Cambridge, Massa- certain segments of the DNA (i.e., genes) are tran-
chusetts 02138, USA (e-mail: jensen@stat.harvard.scribed into another molecule, RNA, which serves as
edu, zhou@stat.harvard.edu, jliu@stat.harvard.edu). a transient template to make the basic building blocks
X. Shirley Liu is Assistant Professor, Department of of cellular life, proteins. Although all the cells in the
Biostatistics, Harvard School of Public Health and same organism possess exactly the same DNA se-
Dana-Farber Cancer Institute, Boston, Massachusettsquences (i.e., genetic information), they display dif-
02115, USA (e-mail: xsliu@jimmy.harvard.edu). ferent physiological characteristics in different tissues,
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developmental stages and environmental conditions.pattern would bind the TF too tightly, preventing the
This “differentiation” is caused by the differences subsequent steps of transcription (Pfahl, 1981).

among the collections of proteins that are synthesized In eukaryotes (higher organisms with nuclei), many
in different cells or at different cell states. If a protein more transcription factors are involved in the regula-
is being synthesized at a certain state, its coding DNAtion of a gene, and their binding motifs tend to be
(called a gene) is termed as “active” or “expressed.” shorter. Eukaryotic upstream regions usually contain
Thus, a cell in a particular physiological state can be régulatory modules, a collection of adjacent binding
roughly viewed as a mechanical system where eachsites (sometimes multiple binding sites) of several tran-

different gene is switched either on (active) or off (in- scription factors. Transcription regulation not only re-
active). lies on the combination of the TFs involved, but also

In many organisms, the DNA that codes for proteins 2" the number of site copies in the upstream regions
(genes) is only a small portion of the total genomic (Wemer, 1999.)' . .
DNA. For example, genes make up only about 1.5% Characterizing the motifs of TFs and locating TF
of thé human geno’me (International Human Gen'omebinding sites are crucial tasks for understanding how

) . . the cell regulates its genes in response to develop-
Sequencing Consortl_um, 2001_)._'!'he nonchlng COM- mental and environmental changes. However, the gold
ponents of DNA, which were initially considered as

Lo . standard experimental procedures to determine bind-
junk” sequences, actually contain the control mech- g sites are inefficient, sometimes impractical, and it
anisms for activating and deactivating the genes, andcan only discover one transcription factor binding site

thus the synthesis and nonsynthesi; of proteins. Mostat 5 time. With the availability of complete genome
of the control sequences for a gene lie in tipstream  sequences, biologists are using techniques such as
regulatory region which is the region of a few thou-  DNA microarray (Schena, Shalon, Davis and Brown,
sand base pairs directly before the gene [also called1995) or serial analysis of gene expression (SAGE;
the transcription regulatory region (TRR), or the pro- Velculescu, Zhang, Vogelstein and Kinzler, 1995) to
moter]. Transcribing or activating a gene requires not measure the expression level of every gene in an or-
only the DNA sequence in the TRR, but also many ganism in various conditions. A collection of expres-
proteins called transcription factors (TFs). When these sions of a gene measured under various conditions is
TFs are present, they bind to specific DNA patterns in called the expression profile of the gene. A genome
the TRR of genes and either induce or repress the trancan be divided into gene clusters according to simi-
scription of these genes by recruiting other necessarylarities in their expression profiles (Eisen, Spellman,
proteins (Lodish et al., 1995). Brown and Botstein, 1998). Genes in the same expres-
One transcription factor can bind to many different sion cluster respond similarly to environmental and de-
upstream regions, thus regulating the transcription of velopmental changes and thus may be coregulated by
many genes. The binding sites of the same transcriptiont"® Same TF or the same group of TFs. Therefore, our

factor show a significant sequence conservation, which€@mMputational analysis can be focused on the search
is often summarized as a short (5-20 bases |0ng)forTF binding sites in the upstream of genes contained

common pattern called a transcription factor binding ?aﬁe%aéﬂig:ﬁ;;wisr;er; Lﬁ]r:)Otrheecri eiﬁgt?éminéagéoge%fe
motif (TFBM) or binding consensus, although some precip - yr

R . ) . croarray (ChlP-array or ChlP-on-chip; Buck and Lieb,
variability is tolerated. It is the main focus of this paper

o discover the locations and common pattern of these2004) can measure where a particular TF binds to DNA
mot;f sit;s : P in the whole genome, although at a coarse resolution of

_ _ . 1-2 thousand base pairs. Again, computational analy-
In prokaryotes (lower organisms without nuclei), gjs is required to pinpoint the short binding sites of a
there are fewer TFs, their motifs tend to be relatively transcription factor from all the long TF binding tar-
long and the strength of regulation for a particular gene gets.
often depends on how closely a particular site matches ~ \wjth the ever expanding number of whole genomes
the consensus for the motif. The more mismatches tosequenced and high-throughput gene expression and
the consensus in a binding site, the less often the TFprotein—-DNA binding data, motif finding and tran-
will bind and therefore the less control it will exert scription regulatory network elucidation have become
on the target gene. The variability between sites is major research topics in computational biology. In Sec-
sometimes crucial to the regulatory process, since TFtion 2, we describe the basic formulation of the mo-
binding sites that are perfect matches to the optimal tif finding problem and review discovery methods that
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are popular in the field. A formal Bayesian statisti- as a potential binding site. When scanning a set of
cal model together with its various extensions is given sequences against a consensus, all words matching the
in Section 3. In particular, we discuss models that consensus are considered putative binding sites. This
allow for unknown motif width and unknown motif sometimes results in many false positive sites, and it
abundance ratio. We then investigate the advantagesnay miss some true sites with variability that is not
of using scoring functions for motif finding in Sec- represented by the consensus sequence.

tion 4. Section 5 discusses the use of a Metropolis- Early research on discovering motifs was usually
algorithm-based optimization method to improve the simplified to finding a sequence pattern enriched or
results from a Gibbs-sampling-based algorithm, Bio- overrepresented in the sequence dataset compared to
Prospector, and examines a few simulation studies forthe genome background. Therefore, many computa-
comparing different scoring functions. We observed tional algorithms for finding motif consensus sequences
that those scoring functions resulting from a proper adopted a “pattern-driven” or “word enumeration” ap-
Bayes model usually performed the best. Section 7 proach by enumerating predefined consensus patterns

concludes with a brief discussion. to see which is significantly enriched in the sequence
dataset.

2. MOTIF FORMULATION AND GENERAL The first consensus sequence enumeration method

DISCOVERY STRATEGIES was developed (Galas, Eggert and Waterman, 1985)

There are two wavs of discoverina novel bindin to search for a TATA-box motif that appears once in
Y 9 9 each upstream region. They first align all the upstream

sites of a TFscanningmethods andle novamethods. . .
. : . sequences at the transcription start site. Then for every
In a scanning method, one uses a motif representation

. . . N . aligned position, they search in the nine-base windows
resulting from experimentally determined binding sites g b , Ney

. centered at that position of all the sequences. In this
to scan the genome sequence to find more matches. In

, ) window, every possible pattein of width 6 is scored
de novo methods, one attempts to findvel motifs : N _ _ _
that are “enriched” in a set of upstream sequences.élccorOIIng 105 (bi) = (6/6)gi6 + (5/6)ais + (4/6)qia,

X . where g;; is the number of n wh
This article focuses on the latter class of methods. The ere gi is the number of sequences ose best

- . matching 6-mer (subsequence of length 6)btoin
de novo methods can also be divided into two classes, . oo hase window has matched positions. The
according roughly to two general data formulations

) e highest scoring pattern is considered as a potential
for r.e'presentl'n.g a ”.“O“f- the'consensus SEqUENce or & otit and the positions corresponding to this are
position-specific weight matrix (PSWM). considered potential binding locations.

2.1 Consensus Sequence Methods In most motif finding problems, the binding site
locations are unknown and their distances from the
granscription start site vary extensively. Therefore,
oligoanalysis (van Helden, Andre and Collado-Vides,
1998) was developed to find sequence patterns en-
riched in the whole upstream region. This method enu-
merates every possible pattérnof a certain width to
determine whether it occurs in the dataset more than
expected. Sinha and Tompa (2000) later extended this
method to allow for one-base mismatch and to use
the IUPAC alphabet to find motifs with more flexible
base substitutions. To speed up computation, Sinha and
Tompa calculated the mean and variance of the num-

The consensus sequence shows the motif as a strin
of IUPAC characters (Table 1; see IUPAC, 1986).
For example, the Mse motif consensus CRCAAAW
suggests that the Mse protein binds to sites starting
with a C, followed by A or G, followed by CAAA
and followed by A or T. In the following sections,
we useword and segmeninterchangeably to mean a
short DNA sequence being tested by our motif model

TABLE 1
IUPAC nomenclatures for DNA consensus

A Adenine C Cytosine ber of occurrenc_es@f,- and _determined its significanc_:e

G Guanine T Thymine by a Z-test. Their calculations were based on a third-

R Purines (A, G) Y Pyrimidines (C, T) order Markov model for noncoding sequences in the
W' Weak hydrogen bond (A, T) S Strong hydrogen bond (C, G) genome. As shown in Liu, Brutlag and Liu (2001), the

M: Amino group (A, €) K Keto group (G, T) Markov model discriminates against meaningless pat-
B NotA(C,G,T) D NotC (A, G, T) h h ¢ v f

H NotG (A C,T) V NotT (A, C, G) terns such as AAAA or ATAT that are frequently ound

N Any(A C,G,T) in the noncoding sequences and therefore increases the

specificity of the discovered motifs.
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The time to enumerate all possible consensus pat-drawn independently from dictionary with their re-
terns increases exponentially as the pattern width in-spective “usage” frequencies. The initial motif dictio-
creases, so finding longer motif patterns is a challenge.nary contains individual bases A, C, G and T, with
Since many long motifs are more conserved near thetheir frequencies estimated from genome noncoding
two ends, van Helden, Rios and Collado-Vides (2000) sequences. Longer patterns are formed by adding into
proposed to detect long motifs as spaced dyad patternghe dictionary those concatenated word pairs that have
such asws - ns - wo, Wherew, and w are the dyad occurred more than expected (e.g., “CG” would be
motif words with short enough widths, and is the treated as a new word if its occurrence is significantly
s-base spacer of unspecified sequence. The expectefliore than what is expected from the independent pair-
occurrences of a spaced dyad can be determined eithéPg)- The frequencies are reestimated for all the words

by calculating from the joint distribution af; andw; in the new dictionary to maximize the likelihood pf
assuming thaiw; and wy are conditionally indepen- generating the sequence dataset. The process is re-
dent, or by countingos - ns - wy occurrences in the peated until no new words can be added. This method

whole genome noncoding sequences has recently been generalized to a stochastic dictionary

Another method encodes nucleotides using a two- model (Gupta and Liu, 2003).

bit binary number instead of an eight-bit character and 2.2 Position-Specific Weight Matrix and
converts the sequence into a much shorter array for  Statistical Models

quick access (Hampson, Baldi, Kibler and Sandmeyer,
2000). A third method uses a suffix tree to repre-

sent all patterns of all widths that exist in the whole

genome noncoding regions (Brazma, Jonassen, Vilo
and Ukkonen, 1998). Keich and Pevzner (2002) in-
troduce models for more refined consensus pattern,; position j of all the aligned sites for this motif

searching, which are useful in the case of very sub- (rapje 2). Also shown in Table 2 are the corresponding
tle motifs. Each node contains a sequence pattern tha?requency matrix ;. = nji/N), where N is the

reflects the path from the root to the node and stores,;mber of motif sites, and weight matrix 1o /60|
information of the count and location of all the se- (Hertz and Stormo, 1999), whefg is the proportion
quences matching that pattern. In addition, each nodegf pasek in the nonmotif (background) positions.
canbranchinto A, C, Gand T to form patternsone base A formal statistical model for the weight matrix
longer. Although building the full tree is extremely method was described in Lawrence and Reilly (1990)
time and memory intensive, one can trim many “rare” and a complete Bayesian method was given in Liu
nodes to speed up tree-building. (1994) and Liu, Neuwald and Lawrence (1995). In this
A recent method called MobyDick builds longer mo- model, the sequence data is represented as an&rray
tifs from concatenating shorter ones (Bussemaker, Liwheres;; is the base in positiopi of sequencé. Each
and Siggia, 2000). MobyDick models the sequence base can take ok = 4 different values corresponding
dataset as being generated by concatenations of word#o the nucleotides A, C, G and T. To reflect the fact that

An alternative motif formulation is a position-
specific weight matrix, or simplynotif matrix which
measures the desirabyliof each basat each pason
of the motif. The simplest matrix is an alignment
matrix n jx, which records the occurrence of base

TABLE 2
Matrix representation of transcription factor binding motif BCD

Alignment matrix Frequency matrix Weight matrix

Pos A CGT A C G T A C G T

1 ro 4 7 1 r0.00 033 058 0087 r—256 027 080 -0.967
2 21 8 1 0.17 008 067 008 —0.37 —-096 093 -0.96
3 0 0 12 O 0.00 000 100 000 —256 —-256 133 -256
4 12 0 0 O 1.00 000 000 000 133 -256 -256 -2.56
5 0 0 0 12 0.00 000 000 100 —256 —256 -256 133
6 0 0 0 12 0.00 000 000 100 —256 —256 —-256 133
7 12 0 0 O 1.00 000 000 000 133 —-256 -256 -2.56
8 L6 1 2 3] L0.50 008 017 025/ L 065 —096 -0.37 000




192 S. T.JENSEN, X. S. LIU, Q. ZHOU AND J. S. LIU

the motif sites withinS are substrings of lengtiv that 2.3 Motif Discovery Methods Based on Motif
are conserved relative to each other, we model themas  Matrix Updating
independent realizations from a comnidotif model.

Thatis, The first algorithm for discovering novel motifs

was CONSENSUS (Stormo and Hartzell, 1989). As-
(S1s-. ., Sw) suming that each sequence contains one motif site,
the algorithm starts by examining all possible loca-
tions of the motif sites in the first two sequences
if (s1,...,50) iS an observed motif site i (a sub-  [a total of (11 — w + D(n2 — w + 1) comparisons],
string of widthw), whered ; = (6,4,6;c,0;c.6,7) is and chooses the tof pairs of motif sites according

a probability vector for the preference of the nucleotide to the relative entropy scores of their corresponding
types in positionj. This model means that, for exam- motif matrix, where the score is defined ggnt =

ple, the motif site “TTACTAA" is generated with prob- =1 > i—4 fjk 109 /6o, Wheref;y is the observed
ability 0176o703404c057664674. The remainder of the  frequency of base typé in the jth position and
sequences are classified as nonsites, for which the simlog f;«/0o is the weight matrix given in Table 2. Later,
plest model is the i.i.d. multinomial distribution with ~another scoring function was deduced to estimate the
the “null” frequency@g = (foa. ..., 0r). Since the  p-value of each motif, which is the probability of ob-
motif sites are only a tiny fraction of the whole se- serving a motif from random alignment of the same
quence data, we can estimatgfirst (e.g., directcount- ~ size that scores equally or higher (Hertz and Stormo,
ing of the four nucleotide types) and subsequently treat1999). Only motifs with high information content or

it as known. It has been shown recently that using low p-value are retained, and each is aligned with
a Markov chain to model the nonsite positions can every possiblew-mer (subsequence of length) in

improve the motif specificity (Liu, Brutlag and Liu, the third sequence to form a set of new matrices and
2001). the topK matrices are retained. The algorithm cycles

From the alignment of a set of binding sites, we through all the sequences in the same fashion and the
can easily derive a frequency matrig, which is best-scoring motifs are reported at the end as poten-
the MLE of 6, and the weight matrix given in tial TFBMs. When there are more motif sites in the
Table 2. These matrices can be used to scan the wholdirst few sequences in the dataset, especially the first
genome sequence, by computing for each segment itgwo sequences, CONSENSUS is effective. Otherwise,
likelihood of being generated from the motif model, to a number of runs using different sequence orders are
discover novel realizations of the binding motif. This needed.
strategy tends to be more accurate in capturing the Another matrix motif discovery algorithm is based
correct sites than using the matching criterion basedon a missing data formulation, which will be detailed
upon the consensus sequence formulation. in the next section, and the EM algorithm (Lawrence

In a majority of gene regulation analysis problems, and Reilly, 1990). The original algorithm restricts each
we know neither the locations of the motif sites nor sequence to contain one TF site. A later method called
the motif pattern (i.e.® or an estimate of it). Thus, MEME overcomes this limitation (Bailey and Elkan,
we need to simultaneously estimate the motif matrix 1994; Grundy, Bailey and Elkan, 1996) by introducing
and locate the possible motif sites in the sequencea prior probability for every position to be the start of
data. A particularly successful class of computational a motif site. The algorithm also uses every existing
algorithms for this problem adopts a “data-driven” or w-mer in the sequence dataset to initialize the EM
“matrix update” approach based either on the EM algo- iteration, thus improving the convergence properties of
rithm or Gibbs sampling (Lawrence and Reilly, 1990; the original method of Lawrence and Reilly (1990).
Lawrence et al., 1993; Liu, 1994). These methods typ- About the same time, a Bayesian method and several
ically initiate a motif matrix randomly and use the se- related Gibbs sampling algorithms for motif discov-
guence dataset to gradually refine the motif. It is the ery were also developed (Lawrence et al., 1993; Liu,
focus of this article to give an overview and extension 1994, Liu, Neuwald and Lawrence, 1995), and these
of this class of algorithms, providing for them a rigor- Bayesian approaches together with powerful Markov
ous Bayesian or likelihood foundation, and to discuss chain Monte Carlo tools demonstrate more model-
possible improvements. ing and computational flexibilities. For example, many

~ ProductMultinomial® = (61, 0, ..., 0,,))
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new methods have been explored to extend the func- We can comfortably claim that the introduction
tionality of Gibbs sampling. Gibbs Motif Sampler in- of the full statistical model and the missing-data
corporates a prior probability of motif occurrence in formulation has played a pivotal role in revolutionizing
the sampling, thus allowing variable number of mo- this particular research area as well as the field of
tif sites in each input sequence (Liu, Neuwald and computational biology in general.

Lawrence, 1995). By only considering the posi-

tions out of w in the motif with the richest infor- 3. A BAYESIAN TREATMENT OF THE BINDING
mation content, it allows the motif to contain small MOTIF MODEL

gaps. AlignACE continues to improve the Gibbs Mo- _

tif Sampler by iteratively masking out aligned sites to 3:1 A Complete Bayesian Model

find multiple different motifs (Roth, Hughes, Estepand  as in the previous section, we 1& denote the set
Church, 1998). BioProspector uses a Markov model es-q¢ sequences under investigation, where esichakes
timated from the whole genome noncoding sequencesgjue in an alphabet of siz&€ (K = 4 for DNA se-
to represent the nonmotif background in order to im- quences). WithinS we postulate that there are sub-
prove the motif specificity (Liu, Brutlag and Liu, strings of lengthw that are sites of an unknownotif
2001). It can also find motifs that have two conserved yodel. The locations of these sites are unknown, so we
blocks separated by a nonconserved gap of variablepniroduce a missing array of indicatohs whereA; ; is
length. _ either one or zero indicating whether or not positjon
Algorithms based on word matches are usually j, sequenceis the starting point of a motif site. A par-

exhaustive in finding motifs, but are limited by the jcy|ar realization ofA gives us a subset & denoted
maximum width of the motif that can be enumerated. 555(A), which consists only of the bases in the motif

Algorithms based on matrix update algorithms can find sites, and the complementary subSe®), which are
motifs of any specified width, but none can guarantee yhe remaining background bases. We can further break
convergence or a globally optimal motif. To strike a yown S(A) into S(Am), S(A@). ... S(Aw)), Where

balance of thg two, a ret_:ent algorithm, MDscan (L_iu, S(A;) is the set of bases in thgth position of the
Brutlag and Liu, 2002), first uses a word enumeration y,qiif sites.

method to search motifs from the tdpsequences that We let N(C) = (n1.n0.....nx) be a vector of

biologists_, are most cqnfident contain the motif. USING {he counts of the different base types in a particular
every existingw-mer in these sequences as a seed,gpsetC of S. With a slight abuse of notation, we

l\/_ID;can finds allw-mers in theL sequences that are  4iso letN(A(2)) be the vector of the base counts in
similar to the seed and constructs from them a motif position 2 of all the motif sites, and we I&(A°)

matrix. All the motif matrices are evaluated by a semi- po the vector of all base counts that are not part of
'a motif site. For two vector® = 01, ...,0k) and

Bayesian scoring function and the best ones are furthe

refined using all the sequences in the dataset. Whery; _ (11, ....nx), we define

the motif is weak and the data are noisy, searching R

for motifs first from sequences with high signal-to- X = ¢ K ¢ K

background ratio increases the chance of success. 0" = H 9]'/’ N 1_[ ni I'(N) = 1_[ I'(nj),
In the past decade, much effort has been made j=1 j=1" j=1

in the area of regulatory motif analysis and many wherer(.) is the Gamma function. For the moment we
algorithms have been developed. Although there mayassume that the motif width is known and we will
still be debate and arguments over which algorithms attempt a generalization to a variable motif width in a
are “best” in a certain situation, the few most popular |ater section.

motif-finding algorithms (e.g., CONSENSUS, MEME,  wiith the statistical model introduced in Section 2.2,
AlignACE, Gibbs Motif Sampler, BioProspector) are e have

all based on explicit statistical modeling, either fully or

partially, in contrast to the word enumeration methods ~ {N(A). ... N(Aw))}

of van Helden and co-workers (van Helden, Andre and ~ ProductMultinomial® = (61, 02, ..., 8.,)),
Collado-Vides, 1998; van Helden, Rios and Collado-

Vides, 2000), Sinha and Tompa (2000), Hampson et al. which means that each vector of column tofa(#\ ;)
(2000) and Brazma et al. (1998). follows a multinomial distribution parameterized ®y
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independent of the other columns. Viewirly as
missing data, we can write the likelihood $fs

w
N(A®) N(A(j)
p(SI®,00,A) 8y x [] 0,
j=1
To enable a Bayesian analysis, we employ the follow-
ing conjugate prior distributions fa® andéo:

© ~ ProductDirichle(B = (81, ..., B.))
and
6o ~ Dirichlet(Bg),

where 8, = (Bj1,...,B;k). For a brief review of
multinomial models with Dirichlet prior distributions,
refer to Gelman, Carlin, Stern and Rubin (1995).
With these prior distributions, the conditional posterior
distribution is

N(A)+8g

p(©,00|S,A) x b

Y ONAG)+B;

y l—[ 0 TEj
j=1

A nearly trivial but important improvement of this ba-
sic general model is to treat the “nonsite” background
bases as being generated by tlmorder Markov chain
(empirically! = 3 works the best). More generally, we
can write the above model as

p(©,00|S, A) o p(S(A%)|00) p(S(A)|©) p(80, ©),

where 8y denotes the parameters in the background
Markov model. After prescribing a prior distribu-
tion p(A) to A independent ofy and®, we have the
joint posterior distribution of all unknowns:

p(©,00,A]S)
o p(S(A%)|00) p(S(A)|©) p(B0. ©) p(A).

In the early methods (e.g., Lawrence and Reilly,
1990; Cardon and Stormo, 1992; Lawrence et al.
1993) it has been assumed that each sequence mu
contain one and only one motif site, which corresponds
to assuming thati;; = O for all but one entry in théth
row. Thus, no explicit prior distribution fok is needed

S. T.JENSEN, X. S. LIU, Q. ZHOU AND J. S. LIU

propose a set of Markov chain Monte Carlo algorithms
for the computation.

3.2 Markov Chain Monte Carlo Algorithms for
Motif Discovery

In a typical data-augmentation-based Gibbs sam-
pling algorithm (Tanner and Wong, 1987), the de-
sired posterior distributiop(®, 09, A|S) can be simu-
lated by starting with arbitrary initial values of the un-
known parameter®° andgQ, and thenfor =0, 1, ...
iteratively sampling from the two conditional distribu-
tions:

1. p(A"©, 6, 9);
2. p(@'*1 95 AL ).

Given enough time steps, the draws simulated in
this fashion will converge to draws from the desired
posterior distribution. Typically, we are most interested
in the draws fromp(A|S) which would indicate the
most likely positions of the unknown conserved sites.

However, sincelg and especially® are of rather
high dimension, drawing these parameters at every
iteration can be both time-consuming and inefficient.
As demonstrated by Liu (1994), the algorithm can be
improved by integrating ove® andfg so that we can
simulate draws via Gibbs sampling from the posterior
distribution p(A|S) directly, where

P(A|S)=//p(®,00|8, A)p(A)dbod®.

We now give variations on the basic motif model un-
der different assumptions and the algorithmic conse-
quences of these assumptions. First, we present the
simplest model, a site sampler where the total number
of sites is fixed. Then we present an improved model,
the Bernoulli sampler, where the total number of sites
is allowed to vary. We briefly discuss extending the

’ model to multiple motifs. Finally, we discuss relaxing
$he assumptions of fixed motif abundance and width.

3.2.1 The site sampler—one site per sequentieis
algorithm, as described in Lawrence et al. (1993) and

if we suppose that the motif site can be anywhere Liu (1994), is based on the following assumptions:
in the sequence with equal probabilities. It has been(a) there is only one type of motif present in the
recently demonstrated, however, that incorporating asequence data (with fixed known width); (b) there
model that takes into account the location of the motif is one and only one motif site per sequence. In this
site relative to the end of each sequence can improvecase, the missing indicator arrdycan be reduced to
the sensitivity of the algorithm (McCue et al., 2001). a vectorA = (a1, ..., ayn), Wherea; gives the location
Since biological reality calls for a relaxation of the of the single site within sequencée As given in Liu
one-site-per-sequence assumption, Liu, Neuwald and(1994), the collapsed distribution(A|S) implies the
Lawrence (1995) propose an explicit prior fArand following conditional distribution for the locatiosy of
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the single sited; in sequence, conditional on the site where|A| is the total number of sites, now assumed to

locations in the other sequencés; be unknown. Integrating o andfo, we have
CIN((A*)®) — N(A;
pa;i|A*,S) « [ (l_(‘[Nz(/)A*)C)(-i-;;—;ﬂO] p(AIS, po)
y ° 1) o« LNAOTBY  TNAG) +8))
1‘[ (N(A?‘j)) _,’_ﬂj)N(Ai(j)) F(‘LA‘— Al + “fODAj:l C(Al+ 18,
/=1 -pp (L= po)t AL
N w 9; N(Sia+j-1) Based on this formula, Liu, Neuwald and Lawrence
=~ Hl é_; ’ (1995) constructed gredictive updatingalgorithm
]:

based on the conditional distribution

Ak . oy
whered; are theAEosterlor means 6f; .condltlonal p(a; = 1A, S) o 0; N(Si,a;+j-1)
on S andA*, andé are the corresponding means for (a; = 0|A*.S) X1 H ey )
the background. More precisely, as given in Lawrence pidi ’ po 0o
et al. (1993),

j=1

whereA*, 9?, 0, are the same as in Section 3.2.1.
éa;k _ Cjk+Bijk ’ An immediate next question is how to find a proper
AN =148 abundance ratipg. Some earlier literature has lgp
be in the range of 2200 to /2000 (Liu, Neuwald and
Lawrence, 1995; Neuwald, Liu and Lawrence, 1995;
sequenceé. Thus,4; can be randomly drawn from all Roth et al., 1998). However, our empirical studies have

possible starting points in sequericeith probability ~ found that the choice opo can have a significant
proportional top (a; |A*, S) given above, in either exact effec_t on the _motlf d_lscovery results. This issue will
or approximate form. To avoid being trapped in a P€ discussed in Section 3.3.

phase-shift mode, they also included a Metropolis step 323 Dealing with multiple motif typesAlthough

to allow for all the motif sites to move to the left or  thjs sjtuation is not the focus of this paper, it is worth
right by a few positions. That is, a move of the type mentioning that the above Bernoulli sampler model
A — A+éis considered. can be extended to the situation where we suspect that

3.2.2 Bernoulli sampler—unknown number of motif Multiple distinct motif patterns exist in the same set of
sites. As pointed out in Liu, Neuwald and Lawrence Ssequences. The simplest strategy is to introduce more
(1995), it is often too restrictive an assumption to hold motif matrices, one for each motif type, and to let the
the total number of unknown sites as fixed and known. variableA;; indicate not only the start of a motif site,

If we allow an unknown number of motif sites per but also the motif type (Liu, Neuwald and Lawrence,
sequence, this is equivalent to allowing multiple sites 1995). Another strategy is to mask out the discovered
in one long super sequence created by concatenatingites of the first motif and repeat the Bernoulli sampler
all the sequences, that i§ = (S1,..., S;+), where (Roth et al., 1998).

L* is the total length of allV the sequences in the As pointed out in Lawrence et al. (1993), searching
dataset. Since the motif site is not allowed to overlap for several patterns simultaneously permits the sharing
with the endpoints of the original sequences, we let of information between them to aid in the discovery
L =L*— N(w — 1) be the adjusted total sequence of unknown sites of each. Thepresent a naltiple-
length. Thus, our missing data array can be written as amotif version of the multinomial sampler, where the
long vectorA = (a1, az, ..., ar) of indicator variables,  multiple motifs are restricted to have the same or-
where eachy; is either 1 (site) or O (nonsite) with  dering (collinearity) between different sequences. Po-
a priori probability po and 1— po, respectively, where  tential modeling of the spacing between motifs is
po is termed as the motdbundance ratioUnder this  31so mentioned but not implemented. Liu, Neuwald

where|g ;| = Z,leﬁjk andC ;. are the counts of base
type k in position j of all sites except for the site in

model, the joint posterior distribution is and Lawrence (1999) mention that this early model
p(A, ©,00|S, po) for collinearity is computationglly ineffic_ient and pro-
pose that the models for a single motif be combined
O(gg‘(A°)+ﬂo < T1 0’;'(A</>)+ﬂ/pgAl(1_ po)LIAL with a hidden Markov model (HMM) for insertions

j=1 and deletions between different motifs. This unified
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model, called thepropagation modelcapitalizes on  phase-shifted versions of the true signal. A slightly

the collinearity properties inherent to hidden Markov different approach to correcting this same phase shift
models but does not require the large amount of free problem is to insert a Metropolis step within the Gibbs

parameters that a typical HMM would. There is the sampler that shifts each motif in one direction or the

additional model selection issue (Gelman et al., 1995; other (Liu, 1994).

Kass and Raftery, 1995) for determining the appropri- If we view w as an unknown variable and treat it di-
ate total number of different motif patterns. rectly, then we face a Bayesian model selection prob-
More recently, Xing, Wu, Jordan and Karp (2003) lem (Gelman et al., 1995) since, for different widths

presented LOGOS, a hidden Markov model for the the dimensionality of the motif paramet@x is differ-
occurrence of multiple motifs combined with a sepa- ent. Lawrence et al. (1993) use an ad Imformation
rate hierarchical Bayesian Markovian model for each per parametecriterion to select the best motif width.
different motif. Frith et al. (2003) introduce software, This criterion, however, tends to bias in favor of motifs
Cluster-Buster, which combines the information from with strong conserved sites on the two ends. Noting
known motif patterns to find dense clusters of motifs that ® can be integrated out from the model to avoid
in genome-wide searches. the dimensionality change, Gupta and Liu (2003) place
a prior distribution onw and use a Metropolis step
to updatew based on the joint distribution. In sum-
If we assume that the motif abundance rapig is mary, with the mutually independent prior distributions
unknown with a Beteu, b) prior distribution, then the 9y ~ Dirichlet(8y), w ~ p(w), po ~ Betaa, b) and

3.3 Flexible Motif Width and pg

joint posterior distribution becomes ®|w ~ ProductDirichlet8, ..., B8,,), we have
NAS+Bo . 17 JNAG)+HE; T(N(A°) + Bo)
A, 09, 0p, po|S) x 0 X 0. pA, w|S) x
_ YT (N(A( LB
‘p(I)AH-a 1(1_ Po)L_‘AHb_l- ) 1—[ (N(A@H) +ﬂ‘,) (|ﬂ,|)

iy TUAT+1B;D T(B)
- Bas (AL L = |A]) X p(w),

Integrating out the paramete®, §p and po, we have

T (N(A®) + Bo) ﬁ T(N(AG) +B;)

P(AIS) x
T(L—IAI+1BoD ;=3 TUAI+1B;D 4. MUCH ADO ABOUT SCORING FUNCTIONS

-Bap(|Al, L —|A)), In the frequent situation where the single “best” an-
swer to a motif-finding problem is desired (i.e., the
“best” set of site predictions or the “best” consen-
f01xa+c—1(1_x)b+d—1dx sus matrix), our goal is to find the “optimum” of
T .1 1 a certain scoring function. In our Bayesian formula-

Joxt 1 —x)" " dx tion, an appropriate log-posterior distribution can serve
This expression can be used to construct a predictiveour purpose. Although it is still a subject of debate
updating algorithm similar to that based on (1). (see Stormo, 2000, for a review) whether the current

In the Bernoulli sampler model, the assumption of Bayesian formulation is the “best” one for the motif-
fixed motif widthw can be relaxed somewhat to allow finding problem, the methods built based on a statis-
so-calledfragmentationof motifs. In a fragmentation tical model have been shown to be more accurate in
model, onlyJ columns of a motif of widthw are se-  many cases than heuristic ones, such as the word enu-
lected to form the motif pattern. This is accomplished meration techniques outlined in the second section. Be-
by positing additional missing indicator variables for cause of the need for a speedy algorithm, it is sensible
whether or not each of the positions of a motifis con-  to seek strategies, such as optimizing a scoring func-
sidered as part of a conserved motif pattern. This newtion, instead of a full posterior analysis (via MCMC
missing data can be incorporated into a larger modelsampling). Here we examine a few functions that have
and a Gibbs sampling strategy can again be used forbeen used in practice to evaluate a discovered motif and
implementation. This fragmentation model is useful attempt some generalizations of them. Throughout this
for correcting the problem that earlier Gibbs sampling section we assume that the background paranigtisr
strategies could get stuck in local modes that were known.

whereB, ,(c, d) is the Beta function
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4.1 Bayesian Scoring Functions realistic values ofA| andn ;. When pg is assigned a
Beta(1, 1) prior, we can again use the Stirling formula

We begin the discussion assuming that the motif to approximate logB1 1(|A|, L — |A])] so that

width w and the abundance ratigg are known, as
well as the background paramet@gs We also assume , o

that the number of prior counts in each column of the ~ ¥sur(A) ~ K + |A|[|Oglt(1?o) -

motif matrix is constant, that ig8 ;| = |B| for all ;. .

In each scoring function, we |lek' be the collection 2 A Ok
of terms that are constant with respect to the unknown + Z 2_jklog (@)}
parameters. The first scoring function is the exact log- j=1 K

osterior density foA: 3
P v — Swlog(Al + 1] -
‘pexact(A) n . . .
where po = |A|/L is the estimated motif abundance

=log p(Al|8o, po, w,S) ratio.
5 . Furthermore, we can consider as unknown with
(2) =K +|Allogit(po) — wlogI' (|A[ +|B]) prior p(w), which will give us several extra terms in

w the scoring function for our exact log-posterior density,
+ ;Xk: logI" (njx + Bjk) — n jk 10g6or. -
=K +log By 1(JA|, L — |A])

When pg is unknown and is assigned a prior distribu-

tion Betag, b), we have + log p(w) — wlog (F(Ilél + Iﬂl))
VixaclA) = K +10g By s (Al L — |A]) (BD
I'(njx+
— wlogT'(A| + 8]) £33 g( LB i togdn.
y O (Bjk)
+ Z Z logT" (n jx + Bjx) — 1 jx 109 Ook. and the corresponding Stirling approximation,

j=t k W/S/tir(A’ w)
HereL = N — (w — 1)m, whereN is the total num- "y
ber of nucleotides ana: is the number of sequences. ~ K +logp(w)
L is the total number of possible site positions, since o =
sites are not allowed to overlap the ends of a sequence. +IAl [ logit(po) — 1+ Z >_0jxlog ( Do )}
Using Stirling’s formula (Stirling, 1730)"(x + 1) = j=1k
x! ~ x*e~* (2 x)1/2, we can approximatéeyactas

Vstir(A) Xz: 2 <ﬂjk B %> 09 </|3};’|< : i)

A

j=1
, 3 _
= K +|A|logit(po) — Swlog(IA| + 8] - 1) ; Iog(|A| ; Bl 1)'
1Bl —
- 1 A natural prior distribution forw would be the
+ ;Z (n]k Bk~ E) Poisson{g), wherewg represents our a priori expec-
(3) ‘ tation for the motif width. One could also consider

o other prior distributions fow, such as Geometrie()
) i 10gox or Exponential{o).
A Another scoring function approximation that we can
~ K + |A||:|Oglt(po) + ZZW'OQ( )} consider is based on the entropy distance between
=1k the motif and background parameters (or Kullback—
Leibler information),

3
— swlog(Al+ 1Bl - 1), Vent(A)
(4) 5
/k+,3/k

whereéjk = TATIA Our empirical results showed that —|A| [ logit(po) + Z Zéik log <9J_k>}
the Stirling approximation trackgexact very well for T ok

x log (—nlk + Ak
Al + (B -1
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Compared with this heuristic-based scoring function,

Y¥siir has an additional term, which gives an additional
penalty to a large number of motif sites.

4.2 Non-Bayesian Scoring Functions

A form similar to the entropy scoring function is
mentioned in Lawrence et al. (1993). It is interesting

S. T.JENSEN, X. S. LIU, Q. ZHOU AND J. S. LIU

function ¥mq is not intended as an approximation to
the posterior distributionp(Al|6o, po, S), it can still

be used as a scoring function in the optimization
algorithm presented below.

4.3 Optimizing a Scoring Function

One disadvantage of the Gibbs sampling method de-

to note that scoring functions related to this entropy scribed in Section 3.2 is that it typically takes a longer
approximation have arisen in the motif-finding litera- time than a researcher (especially biologists) can toler-
ture outside the context of a Bayesian formulation. In ate. Itis also much more involved to summarize the re-
developing their CONSENSUS algorithm, Stormo and sults using the posterior samples. Even more seriously,
Hartzell (1989) introduced a scoring function very sim- different Gibbs sampling chains with different starting

ilar to v¥ent Which they call thénformation content

. 6
Yinfo(A) =) Y 6jilog 91‘ where
(5) ik Ok

A n'k
J

N

This function is equivalent to all the foregoing scoring
functions when the total number of motif sitgs| and
the motif width w are assumed known, which was

values often get stuck in different modes, due to both
the “stickiness” of the posterior distribution surface
and the limitation of computing power. Here, we seek
to achieve a simpler goal: optimizing one of the scor-
ing functions described above by using a Metropolis-
algorithm-based annealing approach.

In the Metropolis steps, we systematically scan
through every element of the matrix and decide
whether the indicator variable at this position should be
“changed” to its opposite value. If we dendié asA

the case in Stormo and Hartzell (1989), Lawrence andwith this change made, then we calculate the following

Reilly (1990) and Lawrence et al. (1993). However,
when |A| is unknown, functionyinie cannot be used

to find a proper set of motif sites—it will converge to a
set of very few motif sites with high conservation and

Metropolis ratio:
r=min{1, exp{y(A") — ¥ (A)}/T}.
The decision to accept the change or to kéepin-

ignore potential sites that are less conserved. A waychanged is made with probabilityand 1— r, respec-

to remedy this is to give a prior distributiofi(A) and
then construct

.6
VinioA) =109 f(A) & 1A 1Y log .
ik

tively. The scoring function) can be taken as any of
the scores discussed earlier in this section. The para-
meter T is called thetemperatureof the algorithm,
with low temperatures restricting the algorithm to ac-
cept only small jumps and high temperatures allowing

This scoring function is nearly equivalent to the en- for more freedom to move around the parameter space.
tropy one we have shown earlier except that a more e consider the following optimization strategies.

flexible prior of A is allowed here. A temptation here
is to use a prior onA| directly, but this overlooks the
“entropy number,” that is, the number of differefits
that can give rise to the same value Af.

Liu, Brutlag and Liu (2002) present an algorithm
called MDScan for motif-finding based not only on

sequence data but also on gene expression informatio

from microarray experiments. Since the trpg is

rarely known in practice, they propose to optimize the

following scoring function:

log(JA|) . Ok
6, log =L~
Y Y inloagl

w

6)  Ymd(A)=

The Temperature= 0 strategy forces the algorithm
to accept only changes that immediately improve the
score, since forcing to approach 0 then forcesto
equal 0 if ¥ (A’) < ¥ (A) or r to equal 1 ify(A’) >
¥ (A). With this type of deterministic strategy, it is
important that we start the algorithm in an area near

the mode of the density, or else our simple hill-

climbing algorithm is guaranteed to get stuck in an
inferior local mode. Therefore, one would first want
to run the dataset through a sensitive program such
as BioProspector (Liu, Brutlag and Liu, 2001), which
would give a set of predicted sites that is near the area
of high posterior density, and then use these predicted
sites as the starting point of & = 0 optimization

The functional form again shares some similarities algorithm. In this scenario, our optimization strategy

with the entropy approximation given above. Although

is intended to “clean up” the output produced by
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a stochastic—bas_ed algorithm such as BiOI:)r()SDE(:tOr’FN is the number of false :gggtlizvg SitE® is the number of false

Consensus or AlignACE. . . positive sitesK = (1 — pg)/pg and K* is the best draw ok
The Temperature= 1 strategy is equivalent to sam-

pling from the posterior distribution, if the score func- Starting valuesfor K

tion is the exact log-posterior. However, for other types g aegy 100 200 500 1,000 2.000

of score functions this approach imposes a target den—

sity on the parameter space, which may or may not beF*€dro

desirable. One can run this algorithm over many iter- 42 11'3 A:E’ 53 73
ations and analyze the Monte Carlo samples thus ob-gampiep,

tained. We did not implement this strategy because of g+ 452 405 550 399 497
an overlap of the effort with previous approaches such FN 3 4 4 4 5

as Gibbs Motif Sampler, AlignACE and BioProspector. FP 4 6 4 5 4

A simulated annealin{Kirkpatrick, Gelatt and Vecchi,

1983) strategy combines deterministic and stochastic

strategies by starting the algorithm at a high tempera-whereas wherpg is small, we tend to pick up fewer
ture such ag” = 4 and then slowly decreasing the tem- true sites, leading to more false negatives. The optimal
perature tol' = 0 as the algorithm continues through Vvalue of pg is around 500 to 1,000. However, in the
many iterations through all positions Af For the cur-  results where we tregip as an unknown variable and
rent exposition, we restrict ourselves to the modest goalupdate it along with the Gibbs sampling iterations,
of the T = 0 strategy, that is, deterministic improve- the performance was quite stable and invariant to the
ment upon the output from Gibbs sampling algorithms starting values. With different starting values fps,

such as BioProspector. we ended up with approximately the same number of
false positive and false negative sites, comparable to
5. EMPIRICAL STUDIES the results from using a fixegg at its optimal value.

The best draw of, in the sense of maximizing the
joint posterior distribution, is close to the true value of
Earlier methods such as the Gibbs Motif Sampler po (1/500).
and AlignACE (Liu, Neuwald and Lawrence, 1995;
Liu, Brutlag and Liu, 2001; Roth et al., 1998) use a
fixed motif abundance ratipg. However, some of our In Section 4 we outlined a few scoring functions that
recent studies (Liu, Brutlag and Liu, 2002) suggest could be used in a motif-finding algorithm: the exact
that this abundance ratio, if not given properly, may log-posterior as in (2), its Stirling approximation as
have adverse effect on the accuracy (in terms of findingin (3), its entropy approximation as in (4), the scoring
true sites) of the findings. We also confirmed this function (6) used by the MDscan (Liu, Brutlag and Liu,
finding by some simple simulation experiments. To 2002) and the information-content function (5) used by
circumvent this problem, Liu, Brutlag and Liu (2001, CONSENSUS. We designed the following simulation
2002) proposed to optimize a slightly different scoring study to investigate the relative ability of each scoring
function ¥mg as shown in (6). Here we investigate the function to find unknown motif sites under various
advantage of treatingg as an unknown parameter ina sequence conditions.
full Bayesian formulation. Since Yinio is only suitable for the case in which
Table 3 shows the results of a simulation in which the number of sites is known, we only compared the
20 sequences of 500 base pairs each were generateeffectiveness of the first four scoring functions. We
according to a first-order Markov model. In each include the MDscan scoring function here since we
sequence a motif site of width 10 was inserted with are interested in evaluating its performance against the
motif strength 0.9 (i.e., the most frequent letter is 90% other scoring functions, though it not an approximation
conserved). Different starting values fggp ranging to our posterior distribution.

5.1 Effect of Putting a Prior on pg

5.2 Comparison of Scoring Functions

from 1/100 to /2000 were tested angdy was then Each simulated dataset consisted of 20 sequences of
updated in the Gibbs sampler iterations. The results are200 base pairs each, with each sequence containing ex-
compared to those from methods using fixed actly one true motif. Datasets were generated multiple

It is seen from the table that, when the fixed (200) times under each combination of several condi-
is large, we tend to get many false positive sites; tions. The first condition was the length of the hidden
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motif, either 8 or 16 base pairs. The second condition Table 4 gives the accuracy of the results from algo-

was the degree of conservation of the hidden motif rithms using each of the four scoring functions. Accu-

signal, either high conservation or low conservation. racy is measured by two statistics, the percentage of
High conservation means that each motif position had correct sites found and how close the motif consensus
a dominant nucleotide with 91% probability (all others found matches the true motif consensus.

3% equally). Low conservation means that each motif ~ The first conclusion we can reach is that he=0

position had a dominant nucleotide with 70% probabil- Stratégy seems to improve the accuracy of the predicted
ity (all others 10% equally). sites in comparison with the BioProspector result. Re-

We tested the effect of th& = O strategy for gardless of motif width or conservation, the “accuracy
of predicted sites” is higher for each scoring function
compared to the BioProspector output, except in the
case of a short motif and low conservation, where no
method seems to work. The results are not as dramatic
for the consensus match, suggesting that the scoring

improving the results from BioProspector. BioProspec-
tor was run on each dataset and the best motif re-
sult was retained. We then applied our optimization
algorithm, based upon each of the four scoring func-
tions mentioned above, to this best BioProspector '€ function optimization is primarily refining the signal

sult. The motif result from each_op_tim?zation algorithm that has already been found by the Gibbs sampling-
was also retained after the optimization algorithm had 554 BioProspector. Thus, it seems that fhis: 0

converged. strategy has accomplished its intended goal of “clean-
We also compared the effects of the prior distribution ing up” the BioProspector output.

on © by using two different sizes of pseudocounts, |n general, the algorithms do not do nearly as

Bjr =2 versusBx = 1.1. This comparison will affect  well for low conservation as for high conservation,

the three scoring functions derived from our complete especially in the case of the shorter motif. This is

Bayesian model, but will not affe¢tmg Since no prior  partly due to the fact that th€ = 0 strategy is

distribution was involved in its derivation. deterministically restricted to stay in the same local

TABLE 4
Simulation results fof” = O strategy

Motif Conser- BioProspector Optimization results using scoring function

Prior width vation results Exact Stirling Entropy M Dscan

Accuracy of predicted sites (average |A|)

11 8 91 79 (18) 80 (18) 81 (19) 81 (20) 80 (18)
2 8 91 79 (18) 80 (18) 80 (18) 67 (15) 80 (18)
11 8 70 9 (15) 8(8) 10 (11) 3(2) 12 (19)
2 8 70 9 (15) 1(0) 1(0) 0 (0) 12 (19)
11 16 91 85 (17) 91 (19) 91 (20) 91 (23) 80 (16)
2 16 91 84 (17) 91 (20) 91 (20) 91 (24) 80 (16)
11 16 70 41 (11) 51 (14) 59 (17) 62 (20) 43 (11)
2 16 70 41 (11) 51 (13) 54 (14) 41 (10) 43 (11)
Consensus match (average |A|)

11 8 91 98 (18) 98 (18) 98 (19) 98 (20) 98 (18)
2 8 91 98 (18) 98 (18) 98 (18) 82 (15) 98 (18)
11 8 70 22 (15) 18 (8) 22 (11) 10 (2) 26 (19)
2 8 70 22 (15) 6 (0) 6 (0) 2(0) 26 (19)
11 16 91 100 (17) 100 (19) 100 (20) 100 (23) 100 (16)
2 16 91 100 (17) 100 (20) 100 (20) 100 (24) 100 (16)
11 16 70 86 (11) 88 (14) 90 (17) 88 (20) 88 (11)
2 16 70 86 (11) 86 (13) 88 (14) 62 (10) 88 (11)

NoOTES “Accuracy of predicted sites” is the percentage of true sites found in each simulated dataset, averaged over all
simulated datasets. Shifting of up to 3 base pairs was allowed. “Consensus match” is the proportion of datasets where the
consensus found matches the true consensus (up to 2 mismatched or shifted letters allowed=8)eand 4 allowed

whenw = 16). The average number of predicted sites is given in parentheses.
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mode that the BioProspector output is stuck in, and soof the optimization algorithm is smaly{ 2 minutes for
these algorithms do not have the freedom to correct aeach simulated dataset).
poor starting point.

For the low conservation datasets, performance is
much better for a longer motif than for a shorter mo-
tif, suggesting that a certain threshold of informationis  We examine a dataset consisting of 18 sequences that
needed for the Gibbs sampling algorithm BioProspec- contain cyclic-AMP receptor protein (CRP) binding
tor, and consequently our optimization algorithm, to sites. Each sequence is 105 base pairs long and each
be successful. If conservation is reduced, one needs a&ontains at least one 22-base-pair motif site that has
longer motif for the algorithms to do well. In the case been experimentally determined via the footprinting
of a short motif and low conservation, extra informa- method (Lawrence and Reilly, 1990). This dataset
tion (such as prior information about the motif loca- has been previously analyzed by Lawrence and Reilly
tions or®) is clearly needed. (1990) using an EM algorithm and by Liu (1994) using

The exact, Stirling and entropy scoring functions dis- a Gibbs sampler.
play similar performance in most situations, although  Similar to our strategy with the simulated datasets,
the entropy scoring function appears to do noticeably we first used the program BioProspector to find a
worse in some cases with larger prior pseudocountsset of initial motif sites and then used odr = 0
and is in general most affected by a change in prior optimization strategy with one of the four scoring
pseudocounts. functions to further improve the BioProspector result.

MDscan in general does not perform as well as the For the first three scoring functions prior pseudocounts
three Bayesian scores, except in the case where thef g;, = 1.1 were used.
signal is very weak (low conservation and short motif).  Table 5 shows the results from these optimization
This may be because in the case of a really weak signalalgorithms, in terms of the consensus sequence for the
the priors used for the Bayesian scores swamp themotif, the number of sites predicted and the number
weak signal so that it cannot be detected. This is alsoof predicted sites that corresponded to one of the 24
shown by the slightly improved performance in Table 4 experimentally established (“correct”) positions of the
when the prior pseudo-counts are smaller. However, in CRP binding sites. These results are similar to the ones
situations where prior information is actually available, from our simulation study. For each scoring function
the formal use of a prior distribution will allow us to the optimization algorithm improved upon the original
incorporate that information properly. BioProspector signal in terms of the number of correct

Overall, these simulation results for the predicted sites predicted.
sites suggest that there is almost always a benefit as- As shown in Table 5, the consensus sequences of
sociated with using a deterministic optimization algo- the motifs found by using different scoring functions
rithm to further improve the output from a stochastic are similar. The three scoring functions (exact, Stirling
algorithm such as BioProspector, and that this benefitand entropy) that are closely related to the complete
seems generally to be the greatest when using the exadBayesian model seem to perform noticeably better than
scoring function or one of its approximations, in terms the MDscan score, with the Stirling scoring function
of a reasonable number of predicted sites and the accuperforming the best in this example. As a comparison,
racy of those sites. The additional computational costthe “true” motif based on the alignment of the 24

5.3 Application to Cyclic-AMP Receptor Protein
Motif Sites

TABLE 5
Results from optimization algorithms with each scoring function applied to the BioProspector
output the number of experimentally determined binding siteXlis

Number of Number of
Scoring function Consensus sequence predicted sites correct sites
BioProspector ttatttgatcgaggtcacactt 9 9
Exact ttat gt gaacgagttcacattt 15 15
Stirling ttttgtgatcgagctcacattt 18 18
Entropy t aat gt gat cgaggt cacattt 20 17

MDscan tt at gt gaacgaggt cacactt 11 11
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oo

Fic. 1. Sequence logo of the CRP binding motif based on the alignmedtefperimentally determined sitéhe height of each position
is equal to its information content and the size of each letter is proportional to the’ ketttative frequency

experimental sites is displayed in Figure 1 in the form models and conclude that, although their fit is not
of a sequence logo. Itis seen that the differing positions perfect, they do provide a very good approximation to
of the five consensus sequences in Table 5 correspondhe true nature of protein—DNA interactions. However,
to the information-weak or ambiguous positions shown in actuality this interaction is occurring in three-

in the sequence logo. dimensional space, so ideally motif models should
incorporate characteristics of DNA morphology. As
6. DISCUSSION an example, in eukaryotic organisms, DNA is stored

- . . . in the form of tightly compacted chromosomes where

Motif discovery is an important problem in com-  g,qantial portions of the DNA sequence are wrapped
putational biology since the binding of transcription 5rqund proteins called histones. This is important
factors to upstream region motifs is crucial to the jhtormation to include in future models, since portions
mechanism of gene regulation. We have presented varyf the sequence that are wrapped around histones are
lous techniques used in the past for motif diSCov- |ess free to interact with DNA-binding proteins such as
ery, a set of Bayesian models useful for developing {ranscription factors.
motif-finding tools and generalizations of these models  another interesting problem is to establish a model-
that allow for unknown motif widthw and unknown based approach for incorporating gene expression in-
motif abundance ratigpo. We have also discussed formation, such as microarray results, into the motif
the use of Scoring functions for motif flndlng View- discovery pr0b|em_ The MDscan program mentioned
ing Bayesian models in terms of scoring functions above gives one approach to this problem, since the up-
has provided insight to the similarities between the stream regions that are examined for motifs are updated
full Bayesian model-based approaches and some nonin an iterative fashion, based on microarray informa-
Bayesian methods, such as CONSENSUS (Stormo andion. A more recent method, Motif Regressor (Conlon,
Hartzell, 1989). We observed that an annealing opti- Liu, Lieb and Liu, 2003), directly uses the microarray
mization process can further improve the results ob- expression values to help screen out false positive find-
tained from the usual Gibbs sampling implementation, ings of MDscan. However, model-based approaches
such as the program BioProspector, and the best resultsnay still be desirable since these models may provide
were obtained from the scoring functions that most us a principled way to tune relevant parameters and
closely approximated a true posterior distribution. guide us to achieve the optimal combination of the two

There are still many interesting open problems in sources of information (i.e., genome sequences and mi-
this field. The vast majority of motif-finding research croarray values).
has assumed that all information about the interaction
between transcription factors and their DNA binding ACKNOWLEDGMENT
motifs can be summarized just by looking at the one- Research supported in part by NSF Grant DMS-02-
dimensional nucleotide sequence. Benos, Lapedes an@4674 and National Institutes of Health Grant RO1
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