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Bayesian Methods for Neural Networks
and Related Models
D. M. Titterington

Abstract. Models such as feed-forward neural networks and certain other
structures investigated in the computer science literature are not amenable to
closed-form Bayesian analysis. The paper reviews the various approaches
taken to overcome this difficulty, involving the use of Gaussian approx-
imations, Markov chain Monte Carlo simulation routines and a class of
non-Gaussian but “deterministic” approximations called variational approxi-
mations.
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1. INTRODUCTION

This contribution will review the impact that
Bayesian analysis has had on the class of models
known as (artificial) neural networks. It will also draw
attention to Bayesian methodology that has been publi-
cized mainly in the computer science and neural com-
puting literature; some of this work is not directly
related to neural networks per se, but is of interest also
in the context of other nonsimple types of model, many
of which come under the general description of graph-
ical models.

That there are substantial links between statistical
modelling and neural networks has become well doc-
umented in recent years, through review papers such
as those by Cheng and Titterington (1994) and Ripley
(1994) and in monographs such as Bishop (1995) and
Ripley (1996). The interface is also emphasized in
collections such as Kay and Titterington (1999), the
impact of the work of researchers from beyond the
mainstream statistical community on graphical-model
methodology is a major feature of Jordan (1999), more
bridges with the machine-learning world are built in
the monograph by Hastie, Tibshirani and Friedman
(2001) and the increasing cross-fertilization is appar-
ent across a wide range of statistical, neural-network
and machine-learning journals.

D. M. Titterington is Professor, Department of
Statistics, University of Glasgow, Glasgow, G12 8QQ,
Scotland, UK (e-mail: mike@stats.gla.ac.uk).

2. BAYESIAN ANALYSIS OF FEED-FORWARD
NEURAL NETWORKS

2.1 The Feed-Forward Neural Network

The feed-forward neural network, otherwise known
as the multilayer perceptron, can be thought of as a
particular type of nonlinear regression or classifica-
tion model, in which a set ofp input variablesx =
(x1, . . . , xp) is related to an output (response) vari-
able y; although in practicey might be multivariate,
we shall consider for simplicity only the scalar case.
The most familiar version of this structure leads to a
response function of the form

g

{
w00 +

m∑
j=1

w0jf

(
wj0 +

p∑
k=1

wjkxk

)}
,

where thew := {wjk} are called (connection) weights.
For eachk the wjk, for k = 1, . . . , p, correspond to
connections from the input variables to thej th of
a layer of m hidden nodes, and thew0j , for j =
1, . . . ,m, correspond to connections from the hidden
nodes to the output node. The functiong(·) is the so-
calledactivation function at the output node andf (·)
is the common activation function at each of the hidden
nodes. The output from thej th hidden node is

zj = f

(
wj0 +

p∑
k=1

wjkxk

)
.

The activation functionf is usually taken to be
sigmoidal, and therefore nonlinear, the most common
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choices being the logistic sigmoid, for whichf (u) =
1/(1+e−u), giving 0≤ z ≤ 1, and the “tanh” function,
giving −1 ≤ z ≤ 1. When the response variable is
continuous, the most common version of the model
takes the activation functiong to be the identity
function, so that the output is a linear combination of
the outputs from the hidden nodes, and a (Gaussian)
white noise error termε with varianceσ 2 is added
that makes it perfectly recognizable as a nonlinear
regression model:

y = g

{
w00 +

m∑
j=1

w0jf

(
wj0 +

p∑
k=1

wjkxk

)}
+ ε.

Versions in whichy is a categorical variable lead to
nonlinear models for discrimination or classification.
For example, ify is a 0–1 binary variable, then the
model can represent a nonlinear logistic regression
model in which

logit{pr(y = 1)}

= w00 +
m∑

j=1

w0j f

(
wj0 +

p∑
k=1

wjkxk

)
.

Although these models are strictly speaking paramet-
ric, their usage is more commonly nonparametric in
spirit; the more hidden nodes are included, possibly
arranged in more than one layer, the more flexible is
the model at representing a regression surface.

2.2 Bayesian Posterior Inference

In general, the model defines a probability density of
the formp(y|w), where thew are parameters, possibly
also includingσ 2 as appropriate. Clearly there should
be a mention ofx behind the conditioning sign; this
will be understood throughout. In practice a (training)
datasetD of n realizations of (y,x) is available,
providing a likelihood functionp(D|w) based on the
abovep(y|w), and the standard Bayesian paradigm can
proceed once a priorp(w) has been specified.

We shall concentrate on the regression problem,
in which y is real-valued and the additive noise is
Gaussian. In early work it was assumed that, a priori,
the weights were all independentlyN(0, α−1), for
some positive hyperparameterα, so that, a posteriori,

p(w|D)

∝ exp

[
−1

2

{
E(D,w)

σ 2 + α
∑
j,k

w2
jk

}]
,

(1)

in which E(D,w), the “error” function, is the sum of
squared residuals corresponding to the model based
on w.

For fixedσ 2 andα the maximum a posteriori (MAP)
estimate of the weights is therefore the minimizer of

E(D,w)

σ 2
+ α

∑
j,k

w2
jk.

Pre-Bayesian “training” of neural networks involved
finding w to minimize E(D,w), equivalent in the
probabilistic interpretation to maximum likelihood. As
with other highly parameterized or ill-posed problems,
this led to overfitting (too much variance, relative to
bias), and one strategy for dealing with this was to add
on a quadratic penalty function,α

∑
w2

jk, yielding a
version of nonlinear ridge regression with an estimate
for w equivalent to the Bayesian MAP. The constantα

was called theweight-decay constant and was chosen
by one of a number of methods, including cross-
validation. Of course, the situation is complicated
because the nonlinearity of the model precludes any
explicit formula for the MAP forw, nor is there any
guarantee thatp(w|D), or for maximum likelihood
−E(D,w), has a unique local maximum; in general
quite the opposite is the case, with multiple maxima,
strategies for model averaging and so on.

The complicated nature ofE(D,w) also prevents
the posterior densityp(w|D) from having a conve-
nient closed form. A commonly used approximation
is to approximate logp(w|D) by a quadratic inw,
yielding a Gaussian approximation forp(w|D), espe-
cially when trying to calculate integrals as, for exam-
ple, in obtaining predictive distributions by the Laplace
method. If a number of local maxima ofp(w|D) are
identified, then a corresponding set of local Gaussian
approximations can be combined with weights to pro-
vide a Gaussian mixture approximation forp(w|D).
For a proper Bayesian analysis the unknownα andσ 2,
the latter of which is largely regarded as a nuisance
parameter, have to be dealt with. Forσ 2 a noninfor-
mative conjugate prior is typically chosen andσ 2 is
(easily) integrated out from the resulting joint poste-
rior for w andσ 2. So far asα is concerned, Buntine
and Weigend (1991) integrated it out. The alternative
approach is to plug in an empirical Bayes (Type II max-
imum likelihood, Berger, 1985) estimate obtained by
maximizing

p(D|α) :=
∫

p(D|w)p(w|α)dα;
this is the key to MacKay’sevidence framework
(MacKay, 1992a–c), discussed later in Section 2.3,
and is now perceived to be the method of choice, as
indicated there. (A similar approach should perhaps be
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taken when dealing withσ 2.) Neal (1996, page 20)
points out that the MacKay method turns out to provide
more effective predictions.

More flexible priors onw can be obtained by
including more than one hyperparameter. The most
extreme situation would be to allow each weight to
have its own hyperparameter, in which case

p(w|α) ∝ exp

{
−1

2

∑
j,k

αjkw
2
jk

}
,

where now α = {αjk}; see, for example, Tipping
(2001). Although this creates a large number of hyper-
parameters, it often turns out that many of the empir-
ical Bayes estimates of theαjk ’s become very large.
The consequence of this is that the posterior densities
for the corresponding weights are highly concentrated
around zero, the weights effectively disappear from the
model and the network can be “pruned” by deleting
the associated apparently unnecessary connections in
the graph.

This behavior is revealed by the following very
simple example. Consider a two-parameter multiple
linear regression problem in which the data satisfy

y = a1w1 + a2w2 + ε,

wherey represents a vector of observations,w1 andw2
are scalar parameters,a1 anda2 are column vectors of
covariates and nowε ∼ N(0, I ) is a vector of “errors.”
Suppose also thataT

1 a2 = 0 and that(w1,w2) have
prior density proportional to

√
(α1α2)exp{−1

2(α1w
2
1 +

α2w
2
2)}. Then simple manipulation shows that the

plug-in estimate ofαj , for j = 1,2, is

α̂j = (aT
j aj )

2/
{
(yT aj )

2 − aT
j aj

}
.

To find out what happens with large samples, replace
(yT aj )

2 by its expectation, which is easily shown to be
w2

j (a
T
j aj )

2 + (aT
j aj ), so that, approximately,

α̂j = 1/w2
j ;

a small truewj will lead to a large value of the
hyperparameter.

In Neal and MacKay’s technique of automatic rele-
vance determination (ARD) (MacKay, 1995) a single
hyperparameter is associated with all weights corre-
sponding to connections from a particular input vari-
able, so that any pruning that results amounts to the
omission of covariates that are “irrelevant” to the pre-
diction problem.

The natural alternative to developing analytical ap-
proximations to the complicatedp(w|D) is of course

to use modern simulation techniques. If conjugate
gamma and inverse gamma priors are chosen for
α andσ 2, respectively, then Gibbs-sampling steps are
available for updatingα and σ 2, but the complex-
ity of E(D,w) prevents this forw. Instead, Neal
(1996) promotes and develops the hybrid Monte Carlo
technique of Duane, Kennedy, Pendelton and Roweth
(1987), favoring this over other possible approaches
such as Metropolis. Suppose we write, for fixed values
of α andσ 2,

p(w|D) ∝ exp{−F(w)},
where F(w) is referred to as anenergy function in
statistical physics terminology. The above expression
is also that of the full conditional density ofw givenD,
α and σ 2, from which we wish to sample. For each
element ofw we introduce amomentum variable, all of
which together form a collectionv, say, and akinetic
energy

K(v) := ∑
j,k

v2
jk/(2mjk)

is defined, where the{mjk} are open to choice and used
to define aHamiltonian function

H(w,v) := F(w) + K(v).

The sampling procedure then is split into stages of sim-
ulating Hamiltonian dynamics in discretized fictitious
time. The aim here is to sample values ofw and v
with the value ofH(w,v) fixed. However, this is only
possible with continuous-time simulation, which is not
practicable. The discrete-time procedure leads to sam-
pled values(w∗,v∗), say, and is followed by a simple
Metropolis step that either retains the initial(w,v) or
accepts(w∗,−v∗), the latter to occur with probability

min
{
1,exp[−{H(w∗,−v∗) − H(w,v)}]}.

The Metropolis step corrects the bias inH created
by the time-discretization of the Hamiltonian dynam-
ics. Neal (1996) discusses in detail issues such as the
discretization used in the Hamiltonian dynamics; de-
cisions have to be made about the step size in the
discretization of fictitious time and the numberL of
time steps to be used before undertaking the Metropo-
lis step. The case ofL = 1 corresponds to Langevin
Monte Carlo, and Neal (1996) illustrates how allow-
ing L to be greater than 1 enables better exploration of
the distribution of interest.
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2.3 Bayesian Model Choice

As with any class of complicated models, model
selection is an important issue for feed-forward net-
works. Which input variables are important? Which
connections can be deleted? (We have already seen in
Section 2.2 that ARD represents one approach to this.)
How many hidden variables are necessary? Should
more than one layer of hidden nodes be used? In the lit-
erature, the non-Bayesian methods that have been used
include “the usual suspects,” such as cross-validation
and Akaike’s AIC. There is now the opportunity to try
out the recent ideas from Spiegelhalter, Best, Carlin
and van der Linde (2002); it is interesting that some
of the notions in that paper have in fact been stimu-
lated by material from the machine-learning literature
(Moody, 1992; Ripley, 1995).

The other Bayesian approach to the comparison of
models is of course to use Bayes factors, and to base
intermodel inference on the relative values of

p(Mr |D) ∝ p(D|Mr)p(Mr),

for m = 1, . . . ,R, whereM1, . . . ,MR areR competing
models, thep(Mr)’s are the models’ “prior” probabil-
ities,and for eachr

p(D|Mr) =
∫

p(D|w)p(w) dw,

the marginal likelihood of the data, where strictly
speakingMr should appear behind the conditioning
signs on the right-hand side. Whenp(w) involves
hyperparametersα, the above integration leads to
p(D|Mr,α). In his evidence framework, an argument
based on approximating the relevant integral amounts
to MacKay (1992a–c) substituting theα that maxi-
mizesp(D|Mr,α) to obtain a well-definedp(D|Mr)

for use in model choice, and this approach has been
adopted by many of the writers in the machine-learning
literature. If the models are believed a priori to be
equally probable, then the support for modelMr rel-
ative to modelMs should be based on the Bayes factor
p(D|Mr)/p(D|Ms). MacKay (1992a) also notes that,
if p(w|D) is highly peaked around the MAP,wMAP,

with “width” �post, and if the prior is relatively flat,
with “width” �prior, then, approximately,

p(D|Mr) = p(D|wMAP)
�post

�prior
,

the ratio of the�’s representing an “Ockham factor”;
more highly parameterized models will be automati-
cally penalized in the model-selection exercise because
their Ockham factors will be small.

The above discussion is quite general. MacKay
(1992b, c) has used it with the corresponding Gaussian
approximations in the context of feed-forward net-
works. Others have used it in other contexts, as re-
ported in Section 2.4. Instead of plugging in anα,
an alternative approach would appear to be to aver-
age it out with respect to a hyperprior, as proposed
by Buntine and Weigend (1991), who then construct
a Gaussian approximation so far asw is concerned.
MacKay (1999) compares the two approaches at a gen-
eral level, showing among other things that the for-
mer approach is more robust in the context of ill-posed
problems and indeed that the latter method can lead
one into serious difficulties, such as yielding nonsensi-
cal posterior modes.

Paige and Butler (2001) consider model choice for
feed-forward networks with one hidden layer, the tanh
activation function, and one “skip layer,” which leads
to an extra term in the response function that is linear
in the covariates. They note that Bayes factors alone
are not enough for selecting a parsimonious model,
it being better to base choice on modal estimates
used in the Laplace approximation used to calculate
the model probabilities. Lee (2001) considers feed-
forward networks for classification and uses a Bayesian
random search to do Markov chain Monte Carlo
(MCMC) over the total space of all models, with
a Metropolis step used to move between models.
Incidentally, Lee (2003) remarks that proper priors are
hard to come by for feed-forward networks. Instead
he advocates the use of a flat prior on “restricted”
parameter space. Vila, Wagner and Neveu (2000) base
model choice for neural networks on predictive power.

Neal (1996) notes that the choice of the number
of hidden units in a feed-forward network can be
sidestepped by allowing the number to be infinite, in
that the model corresponding to this limiting case turns
out to be a Gaussian process model, which can be
parameterized and analyzed in its own right; see also
Williams (1998). As a result Neal’s view is that, if a
neural network model is to be used, then in practice
one should simply incorporate as many hidden units as
can be dealt with computationally, rather than embark
on a complicated search over the space of numbers of
hidden units.

2.4 Further Discussion of Application of the
Bayesian Paradigm

In this section we briefly list the variety of ap-
plications of the standard Bayesian paradigm to the
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feed-forward network and other models. Inevitably ap-
proximations, deterministic or simulation-based, are
necessary, and hyperparameters have had to be dealt
with.

The publications of MacKay and Neal have been
highly influential in the computer science literature,
and Bishop (1995, Chapter 10), Thodberg (1996),
Husmeier, Penny and Roberts (1999) and Lampinen
and Vehtari (2001) provide reviews of that framework.
Thodberg (1996) emphasizes the possible use of “com-
mittees” of network models, in which the predictions
from different models are averaged with weights pro-
portional to the “evidences”; for further discussion of
committees and ARD, see Penny and Roberts (1999).
Husmeier, Penny and Roberts (1999) report an empir-
ical study in which ARD fails, Husmeier (2000) ap-
plies the approach to a version of density estimation
and Wright (1999) considers the case where the inputs
are subject to uncertainty.

A number of papers apply MacKay’s paradigm to
particular application areas: Gencay and Qi (2001) ap-
ply the approach to problems in finance; Medeiros,
Veiga and Pedreira (2001) model exchange rates;
Zhang et al. (2001) model wavelet series by feed-
forward networks in forecasting futures trading;
Edwards et al. (1999) apply the approach to the pa-
permaking industry, showing in particular that over-
fitting can still occur in spite of the influence of the
Ockham factor; and Vivarelli and Williams (2001) con-
sider problems in image classification.

Müller and Ríos-Insua (1998) and Holmes and
Mallick (1998) investigate up-to-date Monte Carlo
ways of selecting the complexity of neural networks;
both papers apply the reversible jump MCMC method
of Green (1995), the formerto multilayer perceptrons
and the latter to radial basis function (RBF) networks,
in which the regression function is a linear combi-
nation of basis functions (such as Gaussian density
kernels) for which the locations and number have to
be selected. Andrieu, de Freitas and Doucet (2001)
also apply reversible jump MCMC to radial basis
function networks, providing a convergence theorem
for the reversible jump procedure; see also Andrieu,
de Freitas and Doucet (2000) and Konishi, Ando and
Imoto (2004). de Freitas, Niranjan, Gee and Doucet
(2000) apply sequential Monte Carlo methods to both
feed-forward networks and variable dimension RBF
networks; some parameters can be integrated out and
particle filtering is carried out on the rest, using impor-

tance sampling and MCMC steps on each particle to
avoid sample depletion.

There are other network-like models in the literature,
and Bayesian methods have featured in their recent
development. Kwok (1999, 2000) applies MacKay’s
evidence framework to the case of support vector
machines, in which the regression function is a lin-
ear combination of kernels, one centered on each
data-point and with weights chosen to optimize a
particular penalized, nondifferentiable loss function.
Typically many of the optimal weights turn out to be
zero, thereby providing a parsimonious fitted model;
the data-points corresponding to the nonzero weights
identify the so-called support vectors (see also Van
Gestel et al., 2002). Chu, Keerthi and Ong (2001)
carry out the same program of work using a modi-
fied, differentiable loss function. Tipping (2000) in-
troduces the relevance vector machine as a version of
the support vector machine with a direct probabilistic
interpretation immediately open to Bayesian analysis.
He uses the evidence framework with a hyperparameter
for each weight. In empirical work typically very many
weights go to zero, providing very parsimonious fit-
ted models, although he admits that the training phase
is complex; see also Chen, Gunn and Harris (2001).
The hierarchical mixture of experts model (Jordan and
Jacobs, 1994) is a mixture model with added struc-
ture, in particular incorporating covariates; Bayesian
analysis of this model, including the use of MCMC
methodology, is covered by Peng, Jacobs and Tanner
(1996) and Jacobs, Peng and Tanner (1997). Luttrell
(1994) and Utsugi (1997) apply Bayesian methods to
Kohonen’s self-organizing map (SOM), the latter pa-
per giving an interpretation of the SOM prescription as
an approximate MAP estimator. Utsugi (1998) applies
MacKay’s procedures to the SOM. Bayesian treat-
ments are provided of the so-called generative topo-
graphic mappingby Bishop, Svensén and Williams
(1998) and of the type of learning rule used in the Hop-
field network by Sommer and Dayan (1998).

The phrase “Bayesian neural networks” in the title of
a paper generally means “Bayesian approach to feed-
forward networks.” There is of course a whole class
of models known as Bayesian networks, also known
as belief networks, causal networks and influence
diagrams, and representable as directed acyclic graphs
(DAGs). The various articles on the Bayesian analysis
of such models include Heckerman (1999), Geiger,
Heckerman and Meek (1999) and references therein.
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3. THE USE OF VARIATIONAL APPROXIMATIONS
IN BAYESIAN INFERENCE

3.1 Fundamentals of the Variational Approach

As in much of the recent mainstream statistical liter-
ature about Bayesian methods, the complexity of the
models and the lack of computationally simple ex-
act posterior and predictive distributions have been
central features in the context of these neural and
related networks. Apart from the use of the (analyt-
ical) Laplace approximation, the statistical literature
has been dominated by the development of simulation-
based approximations to the underlying distributions
or functionals thereof, based on MCMC algorithms,
particle filters and so on. MCMC methods have the
advantage that, all being well, the resulting approx-
imations become asymptotically “correct,” if enough
simulations are done and if the underlying model
does represent the truth. The more complicated the
model, however, especially if there are many parame-
ters and/or hyperparameters, the more expensive be-
come these Monte Carlo approaches, in terms of time
and storage. Issues here include monitoring the conver-
gence of Monte Carlo schemes. As an alternative to the
use of these stochastically generated approximations,
the computer-science literature has created a body of
work about deterministic, so-called variational approx-
imations.

At a very general level, suppose that a model in-
cludes observed itemsD and unobserved, or missing
or latent or hidden, itemsu. Suppose also that we are
interested inp(u|D), that the latter is very compli-
cated and that we are prepared to use instead a more
amenable approximationq(u); obviously,q will de-
pend onD but we omit explicit mention of that, for
clarity. We shall base our choice of an optimalq on the
Kullback–Leibler directed divergence,

KL(q,pD) := Eq log(q/p)

=
∫

q(u) log
{

q(u)

p(u|D)

}
du,

where the integral becomes a summation ifu is dis-
crete;pD denotes the densityp(·|D). Clearly, the op-
timal solution is to takeq(u) = p(u|D) but, to make
q amenable, we must impose some simplifying struc-
ture onq and optimize subject to the consequent con-
straints. One might be highly prescriptive and assume
thatq is, say, Gaussian, so that one is left with the task
of optimizing a mean vector and covariance matrix,
but extra flexibility is obtained if, to some extent, the

choice of the distributional types making upq also falls
out of the optimization, thereby justifying the use of the
word “variational,” with further, lower-level optimiza-
tion of the relevant “variational” parameters. We shall
see that often the type of structure imposed onq cor-
responds to its taking afactorized form, with a view to
facilitating the expectation operation inKL(q,pD), in
other words assuming some sort of independence struc-
ture among the unobserved itemsu. Ideally, the forms
of the constituent factors will be chosen optimally.

The same solution can be derived from a different
motivation, namely that of obtaining a lower bound ap-
proximation to the marginal probability (density)p(D)

of D. This follows because

logp(D) =
∫

q(u) log
{

p(D,u)

q(u)

}
du + KL(q,pD),

as can be seen by combining the two terms on the
right-hand side. The properties of the Kullback–Leibler
divergence then both provide the desired lower bound,
in that then

logp(D) ≥
∫

q(u) log
{

p(D,u)

q(u)

}
du,(2)

and demonstrate that aq that minimizesKL(q,pD)

provides the best lower bound for logp(D). The right-
hand side of (2) is known in statistical physics as the
free energy associated withq.

This source of variational approximations has been
used in both likelihood and Bayesian contexts, in both
cases withD representing the observed data. If in
incomplete-data problemsu represents missing values
or latent variables, as for example in mixture models,
hidden Markov chain models or factor-analysis mod-
els, then the method provides a lower bound for the
observed-data loglikelihood logp(D|w) for any fixed
value of the parameter vectorw; for details of this use
of variational approximations in likelihood analysis,
see, for example, Jordan, Ghahramani, Jaakkola and
Saul (1999), which includes references to many contri-
butions by Jordan and others, and Hall, Humphreys and
Titterington (2002). Jaakkola (2001) motivates varia-
tional approximations, but not through the Kullback–
Leibler measure; see Gibbs and MacKay (2000) for
an application. An application relevant to the other
motivation for the approximations, namely obtaining
throughKL(q,pD) a workable approximation to the
conditional density of missing values given observed
data, is in algorithms for finding maximum likelihood
estimates in incomplete-data problems. In particular
the E-step of the EM algorithm requires one to av-
erage with respect to apD(u), and approximations
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of the type considered here have indeed been found
useful in this context (Zhang, 1992, 1993; Archer
and Titterington, 2002; Ghahramani and Jordan, 1997;
Humphreys and Titterington, 2000b). The method has
strong connections to the so-called mean-field approx-
imations in statistical physics, particularly in cases
where the selectedq is an independence model, with
each factor parameterized by the corresponding mar-
ginal mean. Much could be said about these and more
refined approximations in non-Bayesian contexts, and
work is in progress to review them elsewhere, but we
restrict attention in this paper to directly Bayesian ap-
plications and invite the reader to browse among the
papers collected in Opper and Saad (2001). However,
we do point out that Neal and Hinton (1999) have
used (2) as the basis of a new rationale for the EM al-
gorithm and that there are links back to Csiszár and
Tusnády (1984), as hinted at in my discussion of Meng
and van Dyk (1997).

3.2 Applications in Bayesian Inference

Although in the more directly Bayesian implemen-
tation of the method one could simply adapt the above
methodology to obtain an approximation to the poste-
rior density at a particular value of the parametersw,
it is more natural to take the unobservablesu to con-
tain both hidden or latent variablesz, say, and unknown
aspects of the model. The latter will normally consti-
tute the unknown parametersw, but there might be
other features too, such as hyperparameters and, say,
the numberk of components to be included in a mix-
ture model fitted to the dataD. The motivation based
on KL(q,pD) is therefore to obtain a best approxima-
tion, with a prescribed structure to the joint distribution
of w andz givenD, whereafter appropriate marginal-
ization leads to an approximation top(w|D) itself. Of
course, if the approximatingq is specified to represent
independence betweenw andz, then this marginaliza-
tion will be trivial. The resulting optimalq then yields,
as a result of the other motivation, a lower bound on
the marginal probability of the observed data, that is,
the evidence which might subsequently be used to ap-
proximate Bayes factors if model selection is an issue.

The Bayesian version of inequality (2) is

logp(D) ≥
∫

q(z,w) log
{

p(D, z,w)

q(z,w)

}
dz dw.

The first stage in choosing a special structure forq is to
assume that it factorizes into a factor associated withz
and one forw, so thatq(z,w) = qz(z)qw(w), in which

qz andqw are themselves densities. This gives

logp(D)

≥
∫

qw(w) dw
[∫

qz(z) log
{

p(D, z|w)

qz(z)

}
dz

+ log
{

p(w)

qw(w)

}]
.

Consider, as do Ghahramani and Beal (2001) (see
also Sato, 2001) the case where the complete-data
distribution belongs to the exponential family, so that

p(D, z|w) = f (D, z)g(w)s exp{θ(w)T t(D, z)},
where θ(w) are the natural parameters andt(D, z)
are the complete-data sufficient statistics. Suppose also
that

p(w) ∝ g(w)α exp{θ(w)T β},
where α and β are hyperparameters, is the appro-
priate conjugate prior. Then the following theorem
(Ghahramani and Beal, 2001) follows directly from
the properties of the Kullback–Leibler directed diver-
gence.

THEOREM. The optimal factorized approximation
to q(w, z) has factors of the form

qw(w) ∝ g(w)α̃ exp{θ(w)T β̃},
where α̃ = α + s and β̃ = β + Eqzt(D, z), and

qz(z) ∝ f (D, z)exp
[
Eqw{θ(w)}T t(D, z)

]
.

Thusqw(w) belongs to the complete-data conjugate
family. Since the theorem does not decoupleqw andqz,
the optimal factorization and the relevant hyperpara-
meters cannot be calculated without iterative numerical
methods; the usual practice is to calculate updates for
the factorsqz andqw alternately, in the spirit respec-
tively of the E- and M-steps of the EM algorithm.

An important special case is when the data repre-
sentn independent and identically distributed observa-
tions, D = (y1, . . . , yn), in which cases = n and the
sufficient statistics take the form

t(D, z) = ∑
i

t′(yi, zi).

In this caseqz factorizes intoqz(z) = ∏
i qzi

(zi), for
which the optimal solutions satisfy

qzi
(zi) ∝ f ′(yi, zi)exp

[
Eqw{θ(w)}T t′(yi, zi)

]
.

Heref ′ is such thatf (D, z) = ∏
i f

′(yi, zi).

In many of the applications of this approach, the
missing z are discrete variables, often indicators, so
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the relevant integrations become summations. The key
advantage of the variational approach is that complex
multiple integrals or summations are reduced to simple
integrals or summations. However, implementation of
the methods is not completely straightforward and
there is a basic drawback as we now show with what
is arguably the simplest version of the problem.

Humphreys and Titterington (2000a) consider the
very simple case of a mixture of two known densities,
with unknown mixing weightw. For any observation,
the missing quantity is the mixture-component mem-
bership indicator, a Bernoulli variable, so that the con-
jugate prior is a Beta density. The same is true therefore
of the variational approximationqw to the posterior
distribution of the mixing weight, and theqzi

gives pre-
dictive probabilities of component membership for the
ith observation. Humphreys and Titterington (2000a)
show that computation of the optimal hyperparameters
required to minimize the relevant Kullback–Leibler di-
vergence involves iterative calculations that require the
repeated evaluation of the digamma function. The ex-
ample also reveals that the approach “fails” in a crucial
way, in that the true posterior and the variational ap-
proximation are essentially different; the former is a
complicated mixture of Beta densities whereas the lat-
ter is a pure Beta. Humphreys and Titterington (2000a)
also note that, if a Beta approximation is required, then
recursive methods already exist for which the hyper-
parameters are calculable trivially (Titterington, Smith
and Makov, 1985, Chapter 6), although they admit that
the resulting inference is dependent on the order in
which the observations are processed.

This variational treatment has been applied in a va-
riety of contexts, including feed-forward neural net-
works (Hinton and van Camp, 1993; Barber and
Bishop, 1998), hidden Markov chains (MacKay, 1997),
Gaussian mixtures with the inclusion of a prior distri-
bution on the number of mixture components (Attias,
1999b), more general graphical models (Attias, 2000),
mixtures of experts models (Waterhouse, MacKay
and Robinson, 1996), principal components analysis
(Bishop, 1999), mixtures of factor analyzers
(Ghahramani and Beal, 2000), independent compo-
nent analysis (Miskin and MacKay, 2000; Choudrey
and Roberts, 2001; Chan, Lee and Sejnowski, 2003),
independent factor analysis (Attias, 1999a), support
vector machines (Seeger, 2000) and relevance vector
machines (Bishop and Tipping, 2000, who incorpo-
rate hyperparameters as well as parameters intou).
Humphreys and Titterington (2001) develop recursive
(on-line) treatments of some structured mixtures and

hidden Markov models. Sato (2001) considers on-line
versions for the case where the complete data are mod-
elled by an exponential family distribution. de Freitas,
Højen-Sørensen, Jordan and Russell (2001) combine
the deterministic and stochastic approaches to approxi-
mation by suggesting the use of variational approxima-
tions as proposal distributions in Metropolis versions
of MCMC. Corduneanu and Bishop (2001) applied the
approach to the analysis of finite Gaussian mixtures,
subsuming the component membership indicators of
the observations and the parameters of the Gaussian
component densities within the unobserved itemsu but
treating the mixing weightsπ , say, as hyperparame-
ters. The variational method was used to obtain a lower
bound to the marginal loglikelihood log{p(D|π)},
which was then maximized with respect toπ by an
EM-type iteration. It was initially assumed that the
model contained a large number of components, with
the idea that, in the spirit of automatic relevance deter-
mination, redundant components would drop out and
a model with an appropriate number of components
would result. Ueda and Ghahramani (2002) also treat
Gaussian mixtures. Bishop, Spiegelhalter and Winn
(2003) describe a software implementation of varia-
tional inference for Bayesian networks.

If we do not assume an exponential family model for
the complete data together with the relevant conjugate
prior, then a convenient variational approximation does
not fall out. If we return to the general framework in
which the missing items are represented byu = {uk}
and if we choose a factorized formq = ∏

k quk
(uk)

for q, then the optimal solution is to take

quk
(uk) = exp[E\k log{p(D,u)}]∫

exp[E\k log{p(D,u)}]duk

,(3)

where E\k denotes expectation with respect to the
joint, factorized density∏

l �=k

qul
(ul).

However, except in simple cases such as those involv-
ing exponential family models with conjugate priors,
the right-hand side of (3) does not have a closed-form
expression. In some cases perhaps, as Ghahramani and
Beal (2001) point out, it might be possible to approx-
imate a complete-data model of interest adequately by
an exponential-family model. In Bishop and Tipping’s
(2000) variational treatment of relevance vector ma-
chines as applied to classification problems, they deal
with the lack of a convenient fully conjugate structure



136 D. M. TITTERINGTON

by employing a further variational approximation in-
troduced by Jaakkola and Jordan (2000) in their ap-
proach to the Bayesian analysis of logistic regression
models.

So far as comparison with stochastic “approxima-
tion” by MCMC is concerned, in the finite-sample case
the MCMC method in principle is better, in that, pro-
vided enough effort is put into the simulation, an arbi-
trarily good approximation to the true posterior density
can be obtained. This clearly will not happen with the
deterministic variational approach, as the simple mix-
ture example shows. It is an issue of current work to
consider what happens in the case of large samples; in
circumstances where the true posterior converges to a
Gaussian distribution, does the variational approxima-
tion converge to the same Gaussian? For some com-
ments in this direction see Attias (1999a, b).

4. CONCLUDING REMARKS

The Bayesian work on neural networks and simi-
lar models so far has involved both the application
of the standard Bayesian paradigm with the help of
“traditional” approximation ideas such Laplace’s ap-
proximation and MCMC, and the development of new
approximation ideas such as the variational methods.
The area is one of considerable current activity and sta-
tisticians are strongly encouraged both to explore the
relevant journals and conference proceedings in com-
puter science and to play active roles in future devel-
opments.

So far as the variational approach is concerned,
it should be fruitful to investigate potentially more
refined approximations than those discussed above.
Bishop, Lawrence, Jaakkola and Jordan (1998) use
mixture approximations; Humphreys and Titterington
(2000b) use truncated Bahadur expansions; more gen-
erally Bethe–Kikuchi methods involve less fully
factorized approximations and should lead to improve-
ments. So far these methods have not been devel-
oped in the standard Bayesian scenario, but much has
been done in other statistical contexts; see, for exam-
ple, Yedidia, Freeman and Weiss (2001) and Tanaka,
Inoue and Titterington (2003). Drawbacks are that
they do not provide guaranteed bounds and that they
will be much more computationally intensive than
the Kullback–Leibler-based approximations described
above. Other approximations that do provide sharper
bounds could evolve from ideas in Leisink and Kappen
(2001), but again so far the development has not cov-
ered the Bayesian approach. In addition, the creden-

tials of the variational approximations should continue
to be investigated. Current work with Bo Wang indi-
cates that in some problems, such as Bayesian infer-
ence for mixing weights in mixture distributions, the
variational posterior mode is “consistent,” whereas in
other problems, such as some simple nonlinear state-
space models, there is a lack of consistency. Finally,
current work with Clare McGrory is investigating the
use of variational approximations in the calculation of
Spiegelhalter et al.’s (2002) DIC in problems where ex-
act calculation of the criterion is not feasible.
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